MATH 130 Exam 5 Study Guide

David M. McClendon

Department of Mathematics Ferris State University

Contents

Contents 2
1 Exam 5 Information 3
1.1 Exam 5 content 3
1.2 Tasks for Exam 5 3
2 Old MATH 130 Exam 5s 4
2.1 Relevant exam questions from Spring 2018 8

Chapter 1

Exam 5 Information

1.1 Exam 5 content

Exam 5 covers Chapter 5 in the 2024 version of my MATH 130 lecture notes.

1.2 Tasks for Exam 5

NOTE: This guide is not meant to be an exact representation of exam material. I always reserve the right to ask some questions that use the course material in a creative way.

1. Compute the inverse of a function
2. Solve equations, including:

- any equation where the variable appears once;
- any equation with only one type of like term;
- any quadratic or quadratic-type equation;
- any equation that can be easily factored;
- rational equations;
- proportions;
- and equations involving tricks (log rules, trig identites, equations with complicated square root expressions, etc.)

Chapter 2

Old MATH 130 Exam 5s

1. (5.2) Match each function in the left-hand column to its inverse:
$\arctan \sqrt[3]{x+1}$
A. $\tan ^{3} x-1$
$\arctan \sqrt[3]{x}+1$
B. $\tan ^{3}(x-1)$
$\sqrt[3]{\arctan x}+1$
C. $\tan (x-1)^{3}$
$\sqrt[3]{\arctan x+1}$
D. $\tan \left(x^{3}-1\right)$

In Problems 2-8, solve each equation. Answers should be reasonably simplified.
2. (5.2) $\cos \frac{x}{2}=\frac{\sqrt{3}}{2}$
3. $(5.2) 3|x-7|=6$
4. (5.3) $e^{x}-6-16 e^{-x}=0$
5. (5.4) $x^{4}-13 x^{3}+42 x^{2}=0$
6. (5.2) $1-\sqrt[3]{x^{2}+2}=-2$
7. (5.3) $3 x^{4}+1=4 x^{2}$
8. (5.2) $\ln (2+3 \ln x)=-3$

Solutions

1. To compute their inverses, diagram each function and work backwards, starting with x. In order:

$$
\begin{aligned}
& x \xrightarrow{+1} \xrightarrow{\sqrt[3]{\arctan }} f(x) \\
& \tan ^{3} x-1 \underset{\leftarrow-1}{\tan ^{3} x} \underset{\wedge}{\varkappa_{\wedge}} \tan x \underset{\tan ^{\leftarrow}}{ } x
\end{aligned}
$$

This is choice \mathbf{A}.

$$
\begin{aligned}
& x \xrightarrow{\sqrt[3]{ }} \xrightarrow{+1} f(x)
\end{aligned}
$$

This is choice \mathbf{B}.

This is choice \mathbf{C}.

This is choice \mathbf{D}.
2. x only appears once in this equation, so we treat the equation as $f(x)=b$, diagram the left-hand side and work backwards:

$$
\begin{array}{r}
x \xrightarrow[<2]{\circ} \frac{\cos }{} f(x) \\
2\left(2 \pi n \pm \frac{\pi}{6}\right)_{\underset{\times 2}{ }} 2 \pi n \pm \frac{\pi}{6} \underset{2 \pi n \pm \arccos }{ } \frac{\sqrt{3}}{2}
\end{array}
$$

Therefore $x=2\left(2 \pi n \pm \frac{\pi}{6}\right)$, i.e. $x=4 \pi n \pm \frac{\pi}{3}$.
3. x only appears once in this equation, so we treat the equation as $f(x)=b$, diagram the left-hand side and work backwards:

Therefore $x= \pm 2+7$, i.e. $x=-2+7=5$ or $x=2+7=9$, meaning $x=5,9$.
4. Rewrite this as $e^{x}-6-\frac{16}{e^{x}}=0$; then since this contains an e^{x} term and an $\frac{1}{e^{x}}$ term, multiply through by e^{x} to identify the equation as quadratic-type in e^{x} :

$$
\begin{array}{rlrl}
e^{x}-6-\frac{16}{e^{x}} & =0 \\
e^{x}\left(e^{x}-6-\frac{16}{e^{x}}\right) & =e^{x}(0) \\
e^{2 x}-6 e^{x}-16 & =0 \\
\left(e^{x}-8\right)\left(e^{x}+2\right) & =0 \\
\swarrow & \searrow & \\
e^{x}-8=0 & e^{x}+2 & =0 \\
e^{x}=8 & e^{x} & =-2 \\
x=\ln 8 & x & =\ln (-2) \text { which DNE } \\
x=\ln 8 & &
\end{array}
$$

5. Factor the left-hand side completely:

$$
\begin{aligned}
x^{4}-13 x^{3}+42 x^{2} & =0 \\
x^{2}\left(x^{2}-13 x+42\right) & =0 \\
x^{2}(x-7)(x-6) & =0
\end{aligned}
$$

From $x^{2}=0$, we get $x=0$; from $x-7=0$, we get $x=7$; from $x-6=0$ we get $x=6$. All together, the solutions are $x=0,6,7$.
6. x only appears once in this equation, so we treat the equation as $f(x)=b$, diagram the left-hand side and work backwards:

Therefore $x= \pm 5$.
7. This is quadratic-type in x^{2} :

$$
\begin{aligned}
3 x^{4}+1 & =4 x^{2} \\
3 x^{4}-4 x^{2}+1 & =0 \\
\left(3 x^{2}-1\right)\left(x^{2}-1\right) & =0
\end{aligned}
$$

From the left-hand factor, we get $3 x^{2}=1$, i.e. $x^{2}=\frac{1}{3}$, i.e. $x= \pm \sqrt{\frac{1}{3}}$. From the right-hand factor, we get $x^{2}=1$, i.e, $x= \pm \sqrt{1}= \pm 1$. So there are four solutions: $x= \pm 1, \pm \sqrt{\frac{1}{3}}$.
8. x only appears once in this equation, so we treat the equation as $f(x)=b$, diagram the left-hand side and work backwards:

Therefore $x=\exp \left(\frac{e^{-3}-2}{3}\right)$.

2.1 Relevant exam questions from Spring 2018

1. Solve each equation:
a) $e^{2 x-1}=17$
b) $\frac{3}{x+2}+1=\frac{2}{x-1}$
c) $6 \sin ^{2} x=6$
2. Solve each equation:
a) $\ln \left(e^{x / 3}+1\right)=4$
b) $2 \sqrt{2 x^{2}-5}-7=-3$
c) $e^{x}+30 e^{-x}=13$
3. Choose any two of the following five equations and solve them.
a) $\sin ^{2} x=2 \cos x+1$
b) $5^{x-2}=2^{x}$
c) $x^{5 / 2}-7 x^{2}=18 x^{3 / 2}$
d) $\log _{3}(8 x+3)+\log _{3} x=4$
e) $x+4=\sqrt{8-x}$
4. Solve each of the following equations:
a) $e^{3-x}=6$
b) $|x+3|-2=0$
c) $\sqrt{x^{2}+4}=3$
d) $2 \sin 4 x=1$
5. Solve each of the following equations:
a) $e^{2 x}-e^{x}-6=0$
b) $x^{5}+4 x^{4}=32 x^{3}$
c) $\sin x-\cos x=0$

Solutions

1. a) x only appears once, so we can use arrow diagrams:

Therefore $x=\frac{1}{2}(\ln 17+1)$.
b) This is a rational equation with least common denominator $(x+2)(x-1)$. Multiply through by this common denominator to get

$$
(x+2)(x-1) \frac{3}{x+2}+(x+2)(x-1)(1)=(x+2)(x-1) \frac{2}{x-1}
$$

cancel to get

$$
\begin{aligned}
3(x-1)+(x+2)(x-1) & =2(x+2) \\
3 x-3+x^{2}+x-2 & =2 x+4 \\
x^{2}+4 x-5 & =2 x+4 \\
x^{2}+2 x-9 & =0
\end{aligned}
$$

Last, solve this with the quadratic formula to get

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{2^{2}-4(1)(-9)}}{2}=\frac{-2 \pm \sqrt{40}}{2} .
$$

(This answer simplifies to $x=-1 \pm \sqrt{10}$, but you need not simplify it.)
c) x only occurs once, so we can use arrow diagrams:

$$
\frac{\pi}{2}+2 \pi n, \frac{-\pi}{2}+2 \pi n ~ \underset{\substack{\arcsin x+2 \pi n \\ \pi-\arcsin x+2 \pi n}}{\stackrel{\sin x}{\longleftrightarrow}} \quad \pm 1 \underset{ \pm \sqrt{x}}{\stackrel{x^{2}}{\longleftrightarrow}} 1 \underset{\frac{1}{6} x}{\leftrightarrows} 6
$$

Therefore $x= \pm \frac{\pi}{2}+2 \pi n$.
2. a) x only occurs once, so we can use arrow diagrams:

Therefore $x=3 \ln \left(e^{4}-1\right)$.
b) x only occurs once, so we can use arrow diagrams:

Therefore $x= \pm \sqrt{\frac{9}{2}}$.
c) Rewrite this as $e^{x}+\frac{30}{e^{x}}=13$; since this equation contains "something" and " 1 over something", multiply though by the "something" (in this case e^{x}) to get a quadratic-type equation:

$$
\begin{aligned}
e^{x}\left(e^{x}+\frac{30}{e^{x}}\right) & =e^{x}(13) \\
e^{2 x}+30 & =13 e^{x} \\
e^{2 x}-13 e^{x}+30 & =0 \\
\left(e^{x}-10\right)\left(e^{x}-3\right) & =0
\end{aligned}
$$

Therefore $e^{x}-10=0$ or $e^{x}-3=0$, i.e. $x=\ln 10, \ln 3$.
3. a) For the equation $\sin ^{2} x=2 \cos x+1$, use the Pythagorean identity to rewrite $\sin ^{2} x$ as $1-\cos ^{2} x$:

$$
\begin{aligned}
1-\cos ^{2} x & =2 \cos x+1 \\
0 & =\cos ^{2} x-2 \cos x \\
0 & =\cos x(\cos x-2)
\end{aligned}
$$

Therefore $\cos x=0$ (i.e. $x= \pm \frac{\pi}{2}+2 \pi n$) or $\cos x=2$ (no solutions). Altogether, we have $x= \pm \frac{\pi}{2}+2 \pi n$.
b) For the equation $5^{x-2}=2^{x}$, take the natural logarithm of both sides:

$$
\begin{aligned}
\ln 5^{x-2} & =\ln 2^{x} \\
(x-2) \ln 5 & =x \ln 2 \\
x \ln 5-2 \ln 5 & =x \ln 2 \\
x \ln 5-x \ln 2 & =2 \ln 5 \\
x(\ln 5-\ln 2) & =2 \ln 5 \\
x & =\frac{2 \ln 5}{\ln 5-\ln 2} .
\end{aligned}
$$

(This could be rewritten as $x=\frac{\ln 25}{\ln \frac{5}{2}}=\log _{5 / 2} 25$.)
c) For the equation $x^{5 / 2}-7 x^{2}=18 x^{3 / 2}$, set one side equal to zero, and factor:

$$
\begin{aligned}
x^{5 / 2}-7 x^{2} & =18 x^{3 / 2} \\
x^{5 / 2}-7 x^{2}-18 x^{3 / 2} & =0 \\
x^{3 / 2}\left(x-7 x^{1 / 2}-18\right) & =0 \\
x^{3 / 2}\left(x^{1 / 2}-9\right)\left(x^{1 / 2}+2\right) & =0
\end{aligned}
$$

From the first factor, we get $x^{3 / 2}=0$, i.e. $x=0$. From the second factor, we get $x^{1 / 2}=9$, i.e. $\sqrt{x}=9$, i.e. $x=9^{2}=81$. From the last factor, we get $x^{1 / 2}=\sqrt{x}=-2$ which has no solution. Altogether, we have $x=0,81$.
d) For the equation $\log _{3}(8 x+3)+\log _{3} x=4$, combine using a log rule:

$$
\begin{aligned}
\log _{3}(8 x+3)+\log _{3} x & =4 \\
\log _{3}[x(8 x+3)] & =4 \\
\log _{3}\left(8 x^{2}+3 x\right) & =4
\end{aligned}
$$

Thinking of the arrow diagram

$$
\begin{gathered}
8 x^{2}+3 x \\
3^{4}=81 \\
\stackrel{\log _{3} x}{\longleftrightarrow}
\end{gathered}{ }_{3}{ }^{x}
$$

we get $8 x^{2}+3 x=81$, i.e.

$$
\begin{aligned}
8 x^{2}+3 x-81 & =0 \\
(x-3)(8 x+27) & =0
\end{aligned}
$$

From the first factor, we get $x=3$. From the second factor, we get $x=\frac{-27}{8}$. But the second solution doesn't work when plugged into the equation (you would have to take the \log of a negative number), so we get only $x=3$.
e) For the equation $x+4=\sqrt{8-x}$, square both sides to get a quadratic:

$$
\begin{aligned}
x+4 & =\sqrt{8-x} \\
(x+4)^{2} & =8-x \\
x^{2}+8 x+16 & =8-x \\
x^{2}+9 x+8 & =0 \\
(x+8)(x+1) & =0
\end{aligned}
$$

Therefore we get two solutions $x=-8,-1$. However, when plugging in $x=-8$ in the original equation, we get $-4=\sqrt{16}$, which is false. This leaves only the valid solution $x=-1$.
4. In each of these equations, x only appears once, so we can solve each equations with arrows:
a) $e^{3-x}=6$:

$$
-\ln 6+3 \underset{-x}{\stackrel{-x}{\leftrightarrows}} \ln 6-3 \underset{x-3}{\stackrel{x+3}{\longleftrightarrow}} \ln 6 \underset{\ln x}{\stackrel{e^{x}}{\leftrightarrows}} 6
$$

Therefore $x=-\ln 6+3$.
b) $|x+3|-2=0$:

$$
-1,-5 \underset{x-3}{\stackrel{x+3}{\longleftrightarrow}} \pm 2 \underset{ \pm x}{\stackrel{|x|}{\longleftrightarrow}} 2 \underset{x+2}{\stackrel{x-2}{\longleftrightarrow}} 0
$$

Therefore $x=-1,-5$.
c) $\sqrt{x^{2}+4}=3$:

$$
\begin{array}{cccc}
x & \xrightarrow{x^{2}} \\
\pm \sqrt{5} & \stackrel{y+4}{\longleftrightarrow} & \stackrel{y y}{x} & \stackrel{\sqrt{x}}{\longleftrightarrow} \\
\underset{x-4}{\longleftrightarrow} & 9 & \stackrel{x^{2}}{\overleftrightarrow{ }}
\end{array}
$$

Therefore $x= \pm \sqrt{5}$.
d) $2 \sin 4 x=1$:

$$
\frac{\pi}{24}+\frac{\pi}{2 n}, \frac{5 \pi}{24}+\frac{\pi}{2 n} \stackrel{\stackrel{4 x}{\longleftrightarrow}}{\stackrel{1}{4} x} \frac{\pi}{6}+2 \pi n, \frac{5 \pi}{6}+2 \pi n, \underset{\substack{\arcsin x+2 \pi n \\ \pi-\arcsin x+2 \pi n}}{\stackrel{\sin x}{\longleftrightarrow}} \quad \stackrel{\frac{1}{2}}{\stackrel{2 x}{\longleftrightarrow} 1}
$$

Therefore $x=\frac{\pi}{24}+\frac{\pi}{2 n}, \frac{5 \pi}{24}+\frac{\pi}{2 n}$.
5. a) This equation is quadratic-type, so factor it and set each factor equal to zero:

$$
\begin{array}{r}
e^{2 x}-e^{x}-6=0 \\
\left(e^{x}-3\right)\left(e^{x}+2\right)=0
\end{array}
$$

From the first term, $e^{x}=3$ so $x=\ln 3$; from the second term we get $e^{x}=-2$ which has no solution. Thus the only solution is $x=\ln 3$.
b) Move all terms to the left-hand side, then factor and set each factor equal to zero:

$$
\begin{aligned}
x^{5}+4 x^{4} & =32 x^{3} \\
x^{5}+4 x^{4}-32 x^{3} & =0 \\
x^{3}\left(x^{2}+4 x-32\right) & =0 \\
x^{3}(x+8)(x-4) & =0
\end{aligned}
$$

Therefore $x=0, x=-8, x=4$ are the three solutions.
c) Add $\cos x$ to both sides, divide through by $\cos x$:

$$
\begin{aligned}
\sin x-\cos x & =0 \\
\sin x & =\cos x \\
\frac{\sin x}{\cos x} & =1 \\
\tan x & =1
\end{aligned}
$$

Therefore $x=\frac{\pi}{4}+\pi n$.

