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Chapter 1

Algebra / Precalculus Review

1.1 Exponent rules
Here is a list of exponent rules you should be familiar with. In calculus, we use
these exponent rules to rewrite a given expression in a way that makes it easier to
perform calculus operations on the expression.

Theorem 1.1 (Exponent rules I) Let x, a, b and n be numbers, where x ̸= 0. Then:

• xaxb = xa+b

•
xa

xb
= xa−b

• x0 = 1

• x−a = 1
xa

• (xa)b = xab

• n
√

x = x1/n (in particular,
√

x = x1/2)

• xm/n = n
√

xm = ( n
√

x)m (this last way of writing xm/n is most useful)

• (xy)a = xaya

•
(

x

y

)a

= xa

ya
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1.1. Exponent rules

EXAMPLE 1
Compute each quantity:

1. 642/3

Solution: 642/3 =
(

3
√

64
)

2 = 42 = 16 .

2. 2−3

Solution: 2−3 = 1
23 = 1

8 .

3. 4−5/2

Solution: 4−5/2 = 1
45/2 = 1

(
√

4)5
= 1

25 = 1
32 .

EXAMPLE 2
Simplify each expression as much as possible and write the answer so that it has
no radical signs (i.e. no √ or 3

√ , etc.) or fractions with xs in the denominators
(meaning that the answer should look like □x□):

1. 3x4x−2(x3)3

Solution: 3x4x−2(x3)3 = 3x4x−2x9 = 3x4−2+9 = 3x11 .

2.
1
x7

Solution:
1
x7 = x−7 .

3.
2x2

x4

Solution:
2x2

x4 = 2x2−4 = 2x−2 .

4.
√

x

Solution:
√

x = x1/2 .

5.
4√
x7

Solution:
4√
x7

= 4
x7/2 = 4x−7/2 .
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1.1. Exponent rules

EXAMPLE 3
Simplify each expression as much as possible, and write the answer so that it has
no radical signs or fractions with xs in the denominators:

1.
(

x

3

)−3

Solution:
(

x

3

)−3
= x−3

3−3 = x−3

1
27

= 27x−3 .

2. x2
√

x

2
Solution: x2

√
x

2 = x2
√

x√
2

= x2 x1/2
√

2
= x2+1/2
√

2
= x5/2
√

2
= 1√

2
x5/2 .

3.
(2x)3x4

(4x)2

Solution:
(2x)3x4

(4x)2 = 23x3x4

42x2 = 8x7

16x2 = 1
2x5 .

4. x0 3
√

2(2x)2

Solution: x0 3
√

2(2x)2 = 1 3
√

2(22)(x2) = 3
√

8x2 = 3
√

8 3
√

x2 = 2x2/3 .

Remark on existence of square roots:
√

x DNE if x < 0, and
√

x means only
the nonnegative square root of x, i.e.

√
25 = 5, not ±5. This is so that the

process of taking a square root is a function (later).

Remark on simplifying square roots: For any positive number x,

(√
x
)2

= x.

But, if you do the square root and the squaring in the other order, the opera-
tions don’t cancel: √

x2 =

In general, if n is even then n
√

xn = |x|, but if n is odd, then n
√

xn = x.
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1.2. Functions

WARNING: In general,

(x + y)a ̸= xa + ya and (x− y)a ̸= xa − ya.

As a special case of this, when a = −1 we see that

1
x + y

̸= 1
x

+ 1
y

and
A

x + y
̸= A

x
+ A

y
.

1.2 Functions
Definition 1.2 Let A and B be sets. A function f from A to B is a procedure that
assigns to each element of A (i.e. to each input) at most one element of B (i.e. an
output).

We denote such a function by writing “f : A → B”. The set A of inputs is called the
domain of f . The set of outputs of the function is called the range of f .

In MATH 220, we study functions where:

• the domain is R, the set of real numbers (sometimes the domain is a subset
of R like an interval), and

• the outputs are also real numbers.

Such a function f is often denoted by writing “f : R→ R”.

By hand, this looks like

As a first example, let f be the function R → R which takes the input, squares it,
and then adds 3 to produce the output.

To describe this function f , we could take some example inputs and see what
the outputs are, arranging the results in a table:
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1.2. Functions

INPUT OUTPUT

−2

−1

0

1

2

Rather than continuing to list inputs and outputs like this, it is easier to take a
generic input (something we call x and figure out what the generic output is. This
output is called f(x). Writing down a formula for f(x) in terms of x is sufficient to
describe any function f : R→ R; such a formula is called a rule for the function.

In our example above, we can describe the function by writing

f(x) = x2 + 3.

Definition 1.3 Let f : A → B and let x ∈ A. We write the output associated to
input x as f(x); this is pronounced “f of x”. A formula for f(x) in terms of x is
called a rule for the function.

How we use the rule for a function: Think of the x as a placeholder which
represents where the input goes. Given a rule for f , you take whatever input you
are given and replace all the xs in the rule with that input.

9



1.2. Functions

EXAMPLE 1
Let f(x) = 2x2 + x. Compute and simplify the following expressions:

1. f(2)
Solution: f(2) = 2 · 22 + 2 = 2 · 4 + 2 = 10 .

2. f(−1)

3. f(x) + f(3)

4. f(trumpet)

5. f(hamburger)

Solution: f(hamburger) = 2(hamburger)2 + hamburger .

6. f(2x)

Solution: f(2x) = 2(2x)2 + (2x) = 2(4x2) + 2x = 8x2 + 2x .

7. f(x− 1)

8. f(x)− f(1)

9. f(x + h)
Solution: f(x + h) = 2(x + h)2 + (x + h)

= 2(x2 + 2xh + h2) + x + h

= 2x2 + 4xh + 2h2 + x + h .

10.
f(x + 3)− f(x)

3
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1.2. Functions

WARNING: All your life you have been told that parenthesis means multipli-
cation, i.e.

3(2) = 6 or a(b + c) = ab + ac.

If f is a function, the parenthesis in the definition of f(x) do not mean mul-
tiplication. In particular, f(x) does not mean f times x, and f(a + b) is not the
same thing as f(a) + f(b) (in general).

f(x) means, literally, this:

“the output of function f when x is the input”.

and is better understood through the diagram

x
f7−→ f(x).

The graph of a function f : R→ R
Earlier, we saw the following table of values for the function whose rule is f(x) =
x2 + 3:

INPUT OUTPUT
x f(x)

−2 7

−1 4

0 3

1 4

2 7

-2 -1 1 2

1

2

3

4

5

6

7

Turning each of the inputs and outputs to the function into an ordered pair and
plotting all these points produces a picture called the graph of the function. Note
that since every input has at most one output, functions from R to R must pass the
Vertical Line Test (i.e. every vertical line must hit the graph in at most one point).
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1.2. Functions

Operations on functions

Definition 1.4 Let f and g be functions from R to R and let c be a constant. Then,
the functions f + g, f − g, fg, cf , f

g
and f ◦ g are defined by

• (f + g)(x) = f(x) + g(x)

• (f − g)(x) = f(x)− g(x)

• (fg)(x) = f(x)g(x)

• (cf)(x) = c f(x)

•
(

f

g

)
(x) = f(x)

g(x)

• (f ◦ g)(x) = f(g(x))

f ◦ g is called the composition of f and g.

EXAMPLE 2
Suppose f(x) = x + 2 and g(x) = x2. Compute a rule for each given function:

1. (f + g)(x)
Solution: (f + g)(x) = f(x) + g(x) = x + 2 + x2 .

2. (fg)(x)
Solution: (fg)(x) = f(x)g(x) = (x + 2)x2 .

3. (2g)(4)
Solution: (2g)(4) = 2g(4) = 2(42) = 2 · 16 = 32 .

4. (f − g)(3)
Solution: (f − g)(3) = f(3)− g(3) = (3 + 2)− (32) = −4 .

5. (f ◦ g)(x)

6. (g ◦ f)(x)

7. (f ◦ f)(x)

12



1.2. Functions

EXAMPLE 3
Given each function F , write F = f ◦ g where f and g are “easy” functions.

If you are familiar with diagramming functions, this means we want to identify
functions f and g so that F diagrams as

x
g−→ f−→ F (x).

1. F (x) = ln7 x

2. F (x) = ln x7

3. F (x) = sin2 x

4. F (x) = e−x

5. F (x) = 5 cos(ex + 2x− 1)
Solution: f(x) = 5 cos x; g(x) = ex + 2x− 1

6. F (x) = (3x− 2)12

Solution: f(x) = x12; g(x) = 3x− 2

Piecewise-defined functions

Consider the function

f(x) =
{

1− x x < −1
x2 x ≥ −1 .

This means that to evaluate f at a number x, you look at which inequality x sat-
isfies, then apply the corresponding formula. So a table of values for this f looks
like

x −3 −2 −1.5 −1 −.5 0 1 2

f(x)

and so the graph of f looks like

13



1.2. Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

4

EXAMPLE 4
Graph this function:

f(x) =
{

x2 x ̸= 2
−1 x = 2

-4 -3 -2 -1 1 2 3 4

-2

-1

1

2

3

4

5

6

Common functions whose graphs you should know

f(x) = x f(x) = x2 f(x) = x3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
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1.2. Functions

f(x) = 1
x

f(x) = |x|

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

f(x) = ex f(x) = ln x

-3 -2 -1 1 2 3

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

f(x) = sin x f(x) = cos x

-π - π

2

π

2
π 3 π

2
2 π 5 π

2
3 π

-1

1

-π - π

2

π

2
π 3 π

2
2 π 5 π

2
3 π

-1

1

Transformations on functions

It is useful to know how the graph of a function changes if you alter the rule of the
function a little bit. Suppose you know the graph of function f . Then:

Altered version of function f

(all cs are positive numbers)
Corresponding transformation on the graph

f(x) + c graph shifts up c units

f(x)− c graph shifts down c units

f(x + c) graph shifts left c units

f(x− c) graph shifts right c units

cf(x) graph stretched vertically by factor of c

(taller if c > 1, shorter if 0 < c < 1)

f(−x) graph reflected through y-axis

−f(x) graph reflected through x-axis

15



1.3. Lines

1.3 Lines
By far the most important class of functions are lines. Reasons:

1. Linear equations model a large class of real-world problems

2. Linear equations are relatively easy to work with.

3. You can often approximate the solution to hard problems (using calculus
techniques) by considering something related to a linear equation.

QUESTION

What “determines” a line? That is, what makes one line different from another
one?

1.

2.

Definition 1.5 The slope of a line is the ratio of the rise of the line to its run, i.e. for
any two points on the line (x1, y1) and (x2, y2), the slope of the line is given by

m = rise
run

= △ output
△ input

= △ y

△x
= y2 − y1

x2 − x1
.

If m > 0, then the line goes up
from left to right. In this case,
the greater m is, the steeper
the line is.

If m = 1, the line goes up at a
45◦ angle.

If m = 0, the line is horizontal.

If m < 0, then the line goes down
from left to right. In this case,
the more negative m is, the
steeper the line is.

If m = −1, the line goes down at a
45◦ angle.

Vertical lines have undefined slope.

m = 0

m = 1

m = -1

m DNE m > 1

0 < m < 1

-1 < m < 0

m < -1

16



1.3. Lines

EXAMPLE 1
Find the slope of the line passing through the points (2,−5) and (4, 11).

Solution: m = y2 − y1

x2 − x1
= 11− (−5)

4− 2 = 16
2 = 8 .

Given the slope m of a line, and a point (x0, y0) on the line, one can write the
equation of the line as follows:

Definition 1.6 The point-slope formula of a line with slope m passing through
(x0, y0) is

y = y0 + m(x− x0).

You may be familiar with the “slope-intercept” formula y = mx + b for a line. The
point-slope formula

y = y0 + m(x− x0)

is equivalent, because it can be rewritten as

It is extremely useful to know the point-slope formula, because it is easier than
the y = mx + b formula to apply in calculus.

EXAMPLE 2
Write the equation of the line passing through (2,−5) and (6,−7).

EXAMPLE 3

Write the equation of the line passing through (−3,−2) with slope
2
5 .

NOTE: Vertical lines do not have a slope, so their equation cannot be written using
the point-slope formula. The equation of a vertical line is x = h, where h is a
constant. For example, the vertical line passing through (6,−5) is x = 6.

17



1.4. Trigonometry

1.4 Trigonometry
Classically, trigonometry is the study of measurements on triangles. Modern trigonom-
etry concerns itself with three main problems:

1. converting between measurements of rotation/angle to measurements of length/distance
(via the definition of the trig functions);

2. determining lengths and angles in diagrams via auxiliary measurements (via
the Laws of Sines and Cosines; SOHCAHTOA; etc.)

3. analyzing oscillating behavior (via trig graphs).

To approach these problems we use the six trigonometric functions:

Definition 1.7 (Unit circle definition of the trig functions) Let t be a real num-
ber, or an angle in radians. Draw angle t in standard position and let (x, y) be the
point on the unit circle x2 + y2 = 1 at angle t. Define

• sin t = y • csc t = 1
y

= 1
sin t

• cos t = x • sec t = 1
x

= 1
cos t

• tan t = slope = y

x
= sin t

cos t
• cot t = x

y
= 1

tan t
= cos t

sin t

(x,y)=(cos t, sin t)

1

1

1 sin t

cos t

tan t = slope

t

18



1.4. Trigonometry

Definition 1.8 (Triangle definition of the trig functions) Consider a right trian-
gle with one angle measuring t, labelled as below:

x

y
r

t

Then we define the sine, cosine, tangent, cosecant, secant and cotangent func-
tions of t by

• sin t = opposite
hypotenuse

= y

r

• cos t = adjacent
hypotenuse

= x

r

• tan t = opposite
adjacent

= y

x

• csc t = hypotenuse
opposite

= r

y

• sec t = hypotenuse
adjacent

= r

x

• cot t = adjacent
opposite

= x

y

The two definitions of the trig functions are the same, so long as the angle t is
measured in radians. (This is one of the many reasons why mathematicians prefer
radians to degrees.) The advantage of the unit circle method is that it allows you
to evaluate trig functions at angles measuring less than 0 or more than 90◦ = π

2 .

Notice that we can determine the signs of the six trig functions by looking at the
signs of x and y, i.e. looking at the quadrant the angle t lies in:

Quadrant I (x>0, y>0)

A
Quadrant II (x<0, y>0)

Quadrant III (x<0, y<0) Quadrant IV (x>0, y<0)

S

T C

All trig functions
positive

Sin θ and csc θ > 0
(others negative)

Cos θ and sec θ > 0
(others negative)

Tan θ and cot θ > 0
(others negative)

Either way you choose to define the trig functions, it is straightforward to deduce
the following relationships:

19



1.4. Trigonometry

Theorem 1.9 (Trigonometric identites) The following identities hold for all x:

• Quotient identities:

tan x = sin x

cos x
cot x = cos x

sin x

• Reciprocal identities:

cot x = 1
tan x

sec x = 1
cos x

csc x = 1
sin x

• Pythagorean identities:

sin2 x + cos2 x = 1 1 + cot2 x = csc2 x 1 + tan2 x = sec2 x

• Odd-even identities:

sin(−x) = − sin x cos(−x) = cos x tan(−x) = − tan x

Using these identities and the “All Scholars Take Calculus” rules, you can find the
values of other trig functions if you are given the value of one trig function, and
the sign of a second trig function:

EXAMPLE 1

Find sec θ, if sin θ = 4
7 and tan θ < 0.

20



1.4. Trigonometry

Trig functions of special angles

You are responsible for computing any trig function at any multiple of
π

6 or
π

4
radians; virtually all problems in this course will use radians rather than degrees.
You should especially know the following values of sine, cosine and tangent:

x 0 π

6
π

4
π

3
π

2 π
3π

2

x in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

sin x 0 1
2

√
2

2

√
3

2 1 0 −1

cos x 1
√

3
2

√
2

2
1
2 0 −1 0

tan x 0 1√
3

1
√

3 DNE 0 DNE

EXAMPLE 2
Compute each quantity (note that these are trig functions of “quadrantal angles”,
meaning the angle is a multiple of

π

2 ):

1. sec 3π

2

2. sin 5π

2

3. tan 3π

4. cos(−π)
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1.4. Trigonometry

EXAMPLE 3
Compute each quantity (note that these are not trig functions of quadrantal angles,
meaning the angle is not a multiple of

π

2 ):

1. cos 3π

4

2. sin −5π

6

3. csc 5π

3

4. tan −π

4
Solution: the reference angle is

π

4 ; tan π

4 = 1.

−π

4 is in Quadrant IV, so tan −π

4 < 0.

Altogether, the answer is −1 .

5. cos 2π

3

Solution: the reference angle is
π

3 ; cos π

3 = 1
2 .

2π

3 = 2 · π3 = 2 · 60◦ = 120◦ is in Quadrant II, so cos 2π

3 < 0.

Altogether, the answer is −1
2 .
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1.4. Trigonometry

6. tan 4π

3
Solution: the reference angle is

π

3 ; tan π

3 =
√

3.

4π

3 = 4 · π3 = 4 · 60◦ = 240◦ is in Quadrant III, so tan 4π

3 < 0.

Altogether, the answer is −
√

3 .

Inverse trigonometric functions

Definition 1.10 The arctangent (a.k.a. inverse tangent) function is the function
arctan : R→ R defined by

arctan x = an angle (in radians) between
−π

2 and
π

2 , whose tangent is x.

1

x

arctan x

EXAMPLE: arctan 1 = π

4 , because tan π

4 = 1.

Definition 1.11 The arcsine (a.k.a. inverse sine) function is the function arcsin :
[−1, 1]→ R defined by

arcsin x = an angle (in radians) between
−π

2 and
π

2 , whose sine is x.

1
x

arcsin x

EXAMPLE: arcsin
√

3
2 = π

3 , because sin π
3 =

√
3

2 .

Notation: arctan x is sometimes written as tan−1 x, and arcsin x is sometimes writ-
ten as sin−1 x. That said, I dislike this notation.
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1.4. Trigonometry

Graphs of arctangent and arcsine:

f(x) = arctan x f(x) = arcsin x

-1 1

- π

2

- π

4

π

4

π

2

-1 - 1
2

1
2 1

- π
2

- π
6

π
6

π
2

Theorem 1.12 (Properties of arctangent and arcsin) These hold for all real num-
bers x, y:

• arctan(−x) = − arctan x and arcsin(−x) = − arcsin x.

• y = arctan x ⇐⇒ x = tan y

• y = arcsin x ⇐⇒ x = sin y

We will discuss inverse trig functions further in Chapter 6.
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1.5. Homework exercises

1.5 Homework exercises
Exercises from Section 1.1

1. Evaluate each expression:

a) 4−2 b) 1441/2 c) 275/3
d)

(1
4

)−3/2

2. Write each expression in the form □x□, where each of the two squares repre-
sent constants:

a) 3 4
√

x

b)
1
2x

c)
−2x

3
d)

5
9x8

e) 8
√

(2x)4

f)
√

7x

3. Write each expression in the form □x□, where each of the two squares repre-
sent constants:

a)
−2
5
√

x3

b)
√

x4

c) 5
√
−32x3

d)
8

3
√

8x4

e) (3x)4x2

f)
(3x)2

18x3

4. Write each expression in the form □x□, where each of the two squares repre-
sent constants:

a) 4x 3
√

x b)
(x2)5/2

2x3
c) 6 3
√

x5

Exercises from Section 1.2

5. Let f(x) = x2 − 3 and let g(x) = 3− x. Compute and simplify:

a) f(−4)
b) g(−2)
c) (f − g)(1)
d) (fg)(4)

e) (f ◦ g)(2)
f) (f ◦ f)(0)
g) g(bulldog)
h) g(x + 3)

i)
√

g(1)

j) g(
√

x)
k) (f + g)(x + 1)
l) (fg)(2x)
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1.5. Homework exercises

6. Let h(x) = 2 + x4. Compute and simplify:

a)
√

h(
√

x)
b) h(x− 1)

c) h(x)− h(1)
d) h(x)− 1

e) 4h(2x)
f) h(x2 + 1)

7. Let f(x) = x3. Compute and simplify
f(x + h)− f(x)

h
.

8. Let f(x) = x2 − x. Compute and simplify f(1+h)−f(1)
h

.

9. Let f(x) = x + 2. Compute and simplify
f(x)− f(t)

x− t
.

10. Let f(x) =
{

2x + 1 x < 1
2x + 2 x ≥ 1 . Evaluate f(−1), f(0), f(1) and f(2).

11. Sketch the graph of each function:

a) f(x) =
{

1− x x < 1
x + 1 x ≥ 1 b) g(x) =

{
x x ̸= 1
−1 x = 1

12. The graphs of unknown functions f and g are given below:

f g
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

Use these graphs to estimate answers to the following questions:

a) Compute f(−2)
b) Compute g(3).
c) Compute g(−3).
d) Compute (f + g)(−1).
e) Compute (f ◦ g)(3).
f) Compute (fg)(1).

g) Find all value(s) of x (if any)
such that f(x) = g(x).

h) Find all value(s) of x (if any) for
which f(x) = −1.

i) Find all value(s) of x (if any) for
which g(x) = 0.
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1.5. Homework exercises

13. Suppose the graph at right is the pic-
ture of a function where the output of
the function is a company’s profit (in
millions of dollars), and the input is
the price at which the company sells
its product. At (roughly) what price
should the company sell its product,
if its goal is to make as much money
as possible? How much profit will be
made at this price? 0 10 20 30 40 50 60 70 80 90 100

price

10

20

30

40

50

60

70

80

90

100
profit

14. Determine which one or ones of the following pictures (a)-(d) depict situa-
tions where y is a function of x.

a)

-4 -2 2 4

-4

-2

2

4

b)

-4 -2 2 4

-4

-2

2

4

c)

-4 -2 2 4

-4

-2

2

4

d)

-4 -2 2 4

-4

-2

2

4

15. Suppose y = f(x) is a function whose graph is:

f

-3 -2 -1 1 2 3

-2

-1

1

2

Sketch the graphs of the following functions:

a) y = f(x + 5)
b) y = f(x)− 5

c) y = f(−x)
d) y = −f(x) + 5

e) y = f(x− 2) + 1
f) y = −f(−x)

16. Sketch the graphs of the following functions:

a) y = 2 sin x

b) y = (x− 3)2 + 1

c) y = − ln x

d) y = e−x

e) y = cos(−x)

f) y = −(x + 2)3

g) y = −|x|+ 2

h) y = −1
x

i) y = −(x + 2)2 − 4
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1.5. Homework exercises

Exercises from Section 1.3

17. Estimate the slope of each of the following lines by looking at its graph (as-
sume the scales on the x- and y-axes are the same):

a)

-4 -2 2 4

-4

-2

2

4

b)

-4 -2 2 4

-4

-2

2

4

c)

-4 -2 2 4

-4

-2

2

4

d)

-4 -2 2 4

-4

-2

2

4

e)

-4 -2 2 4

-4

-2

2

4

18. Find the slope of the line passing through these pairs of points:

a) (3,−4) and (5, 2)

b)
(−1

2 ,
2
3

)
and

(−3
4 ,

1
6

)
c) (a, b) and (a + s, b + r)

d) (2, 7) and (2,−1)

e) (x, f(x)) and (x + h, f(x + h))

f) (−1, 4) and (5,−8)

19. Find the equation of the line with each set of properties:

a) passes through (0, 3) and has slope
3
4

b) passes through the origin; m = 2
3

c) passes through (2, 1) and (0,−3)
d) passes through (−3,−2); m = 4
e) passes through (2, 6) and is vertical

f) passes through (−4, 2) and is horizontal

g) passes through (5, 1) and (5, 8)
h) passes through (−7, 3) and (2,−5)

Exercises from Section 1.4

20. Suppose sin x = 5
13 . Assuming the values of the other five trig functions of x

are positive, find them.

21. Suppose cos x = 7
25 . If tan x < 0, find the values of the other five trig func-

tions of x.

22. Suppose csc x = 5
2 . What is sin x?

23. Suppose tan x = 2. If cos x < 0, what is sin x?
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1.5. Homework exercises

24. Compute each of the following (if they are not defined, say so). Try to do
these without looking anything up (to simulate how you will have to do these
things on quizzes and exams).

a) sin π

3

b) cos π

2

c) tan π

4
d) cos 0

e) cos π

6

f) cos 2π

3

g) sin 3π

2

h) cot 3π

4
i) sin 0

j) sec π

k) tan π

6

l) sin 7π

4
m) sec π

3

n) tan 3π

2
o) sin π

p) csc 5π

6

q) sec −π

4

r) sin −5π

6
s) tan−π

t) tan −8π

3

25. Evaluate each of the following:

a) arcsin 1
2

b) arcsin 0
c) arctan 1
d) arctan

(
−
√

3
)

e) arctan
√

3
3

f) arcsin −
√

3
2

g) arcsin−1

h) arctan−1

i) arcsin −
√

2
2

Answers

DISCLAIMER: Throughout the lecture notes, the provided answers are an-
swers only (not complete solutions) and may contain errors and/or typos.

1. a)
1
16

b) 12 c) 243 d) 8

2. a) 3x1/4

b) 2x−1

c)
−2
3 x1

d)
5
9x−8

e) 32x2

f)
√

7 x1/2

3. a) −2x3/5

b) x2

c) −2x3/5

d) 4x−4/3

e) 81x6

f)
1
2x−1

4. a) 4x4/3 b) 4x−4/3 c)
1
2x−1

5. a) 13
b) 5
c) −4
d) −13

e) −2
f) 6
g) 3− bulldog
h) −x

i)
√

2
j) 3−

√
x

k) (x + 1)2 − x− 1
l) (4x2 − 3)(3− 2x)
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1.5. Homework exercises

6. a)
√

2 + x2

b) 2 + (x− 1)4

c) x4 − 1
d) x4 + 1

e) 8 + 64x4

f) 2 + (x2 + 1)4

7. 3x2 + 3xh + h2

8. h + 1

9. 1

10. f(−1) = −1; f(0) = 1; f(1) = 4; f(2) = 6.

11. a)

-3 -2 -1 1 2 3

-1

1

2

3

b)

-2 -1 1 2

-2

-1

1

2

12. a) −1
b) 0
c) DNE

d) 4
e) 1
f) 4

g) x = 1
h) x = −4, x = −2
i) x = 3

13. The price should be roughly $32, and their profit will be about $67, 000, 000.

14. (a) and (d) are functions y = f(x); (b) and (c) are not.

15. a)
-7 -6 -5 -4 -3 -2 -1 1 2 3

-2

-1

1

2

b)

-3 -2 -1 1 2 3

-6

-5

-4

-3

-2

-1

1

c) -3 -2 -1 1 2 3

-2

-1

1

2

d)

-3 -2 -1 1 2 3

-1

1

2

3

4

5

6

7

e)
-1 1 2 3 4 5

-1

1

2

3

f) -3 -2 -1 1

-2

-1

1

2
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1.5. Homework exercises

16. a) -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-3

-2

-1

1

2

3

b)

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6

c) -1 1 2 3 4 5 6

-3

-2

-1

1

2

3

d)
-3 -2 -1 1 2 3 4

-1

1

2

3

4

5

e) -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-3

-2

-1

1

2

3

f) -5 -4 -3 -2 -1 1

-3

-2

-1

1

2

3

g)
-3 -2 -1 1 2 3

-2

-1

1

2

3

h) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

i)

-5 -4 -3 -2 -1 1

-8

-7

-6

-5

-4

-3

-2

-1

1

17. a) 0 b) ≈ 1
3

c) ≈ −1 d) DNE e) ≈ 4

18. a) 3

b) 2

c)
r

s

d) DNE

e)
f(x + h)− f(x)

h

f) −2

19. a) y = 3
4x + 3

b) y = 2
3x

c) y = 2x− 3

d) y = −2 + 4(x + 3)

e) x = 2

f) y = 2
g) x = 5

h) y = −5 + −8
9 (x− 2)

20. cos x = 12
13 ; tan x = 5

12 ; cot x = 12
5 ; sec x = 13

12 ; csc x = 13
5 .

21. sin x = −24
25 ; tan x = −24

7 ; cot x = −7
24 ; sec x = 25

7 ; csc x = −25
24 .

22.
2
5

23.
−2√

5

24. a)
√

3
2

b) 0

c) 1

d) 1

e)
√

3
2

f)
−1
2

g) −1
h) −1
i) 0
j) −1

k)
√

3
3

l)
−
√

2
2

m) 2

n) DNE

o) 0
p) 2
q)
√

2

r)
−1
2

s) 0

t)
√

3

25. a)
π

6
b) 0
c)

π

4

d)
−π

3

e)
π

6

f)
−π

3

g)
−π

2

h)
−π

4

i)
−π

4
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Chapter 2

Limits

2.1 The idea of the limit
WARMUP

Given the graphs of each of these functions, tell me the value of f(3):

f

-1 1 2 3 4 5
-1

1

2

f

-1 1 2 3 4 5
-1

1

2

f

-1 1 2 3 4 5
-1

1

2
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2.1. The idea of the limit

MODIFIED WARMUP

Here is the graph of some function f . The portion of the graph above x = 3 is
“covered” (by a strip of painters tape, for example). Based only on what you see,
what would you guess the value of f(3) is?

f
TAPE

-1 1 2 3 4 5
-1

1

2

First idea of the limit: graphical interpretation

Suppose you can see the entire graph of a function f except for the possible point
on the graph sitting above (or below) x = a. If, based on the picture, you’d guess
that f(a) = L, then you say

“the limit as x approaches a of f(x) is L”

and you’d write

lim
x→a

f(x) = L or “f(x)→ L as x→ a′′.

EXAMPLES: In the modified warmup above,

lim
x→3

f(x) =

In all three warmup examples,

lim
x→3

f(x) =

Note: f(3) is different in the three warmup examples. In one example, f(3) doesn’t
even exist!
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2.1. The idea of the limit

In general, if you have a function f which satisfies

lim
x→a

f(x) = L,

then the graph of f should look like one of these three pictures:

a

L = f (a)

or
a

L

f (a)
or

a

L

Back to the modified warmup:

f
TAPE

-1 1 2 3 4 5
-1

1

2

In this example, we said lim
x→3

f(x) = 1.
Why is 1 the most reasonable guess for the value of f(3)?

Second idea of the limit: approximation via tables

To say
lim
x→a

f(x) = L

means that as x gets closer and closer to a (without ever reaching a), the corre-
sponding values f(x) of the function get closer and closer to L.
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2.1. The idea of the limit

EXAMPLE 1

lim
x→0

sin x− x

x3 = ?

Solution: The first idea of the limit requires a graph to apply, and we don’t have a
graph.

To implement the second idea of the limit, let’s take x−values which get closer
and closer to 0 and see if the corresponding f(x)−values approach a number:

x .1 .05 .01 .001 .0000001

sin x− x

x3 −.166583 −.166646 −.166666 −.166666 −.166666

x −.1 −.05 −.01 −.001 −.0000001

sin x− x

x3 −.166583 −.166646 −.166666 −.166666 −.166666

Based on this, we can conjecture that

lim
x→0

sin x− x

x3 =

IMPORTANT:

This suggests that the graph of f(x) = sin x− x

x3 looks like

- 1
6

or
- 1
6

or
- 1
6
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2.1. The idea of the limit

The method of the previous example sometimes works well, but it can lie:

EXAMPLE 2

Let f(x) = cos 1
x

.
lim
x→0

f(x) = ?

Solution: Here’s a graph of f(x):

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙

1

9 π

1

8 π

1

7 π

1

6 π

1

5 π

1

4 π

1

3 π

1

2 π

-1

1

Let’s try the method of Example 1:

x
1

2π

1
4π

1
6π

1
100π

1
1000π

f(x)

x
1

3π

1
5π

1
7π

1
101π

1
1001π

f(x)
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2.2. One-sided limits

Third idea of the limit: formal definition

Suppose f(x) is defined for all x near a but possibly not at a. If f(x) is as close to L
as we like for all x sufficiently close to a (but not a itself), we say

lim
x→a

f(x) = L.

In Example 2, there is no L such that f(x) = cos 1
x

stays close to L for all x near 0.
Therefore

2.2 One-sided limits
EXAMPLE 3

Let f be the signum function

f(x) = |x|
x

=
{

1 if x > 0
−1 if x < 0 .

lim
x→0

f(x) = ?

Solution: Here is a graph of f :

f

-3 -2 -1 1 2 3

-2

-1

1

2
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2.2. One-sided limits

Definition 2.1 Suppose f(x) is defined for all x near a with x > a. If (whenever x
gets closer and closer to a from the right, f(x) approaches L), then we say the limit of
f(x) as x approaches a from the right is L and we write

lim
x→a+

f(x) = L.

Suppose f(x) is defined for all x near a with x < a. If (whenever x gets closer and
closer to a from the left, f(x) approaches L), then we say the limit of f(x) as x
approaches a from the left is L and we write

lim
x→a−

f(x) = L.

These are also called, respectively, left-hand limits and right-hand limits. Collec-
tively, left- and right-hand limits are referred to as one-sided limits.

EXAMPLE: In the previous example where f(x) = |x|
x

,

lim
x→0+

f(x) = lim
x→0−

f(x) =

Theorem 2.2 lim
x→a

f(x) exists only if lim
x→a+

f(x) and lim
x→a−

f(x) both exist and are
equal. In this situation,

lim
x→a

f(x) = lim
x→a+

f(x) = lim
x→a−

f(x).

EXAMPLE: For the function f(x) = |x|
x

, since

lim
x→0+

f(x) = 1 ̸= −1 = lim
x→0−

f(x),

we see that
lim
x→0

f(x) DNE.
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2.2. One-sided limits

EXAMPLE 4
Consider the following graph of some unknown function f :

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

-4

-3

-2

-1

1

2

3

4

5

6

Based on this graph, find the following:

1. lim
x→2

f(x)

2. lim
x→0

f(x)

3. f(2)

4. f(0)

5. lim
x→2+

f(x)

6. lim
x→−3−

f(x)

7. lim
x→−3+

f(x)

8. lim
x→−3

f(x)

9. f(4)

10. lim
x→4+

f(x)

11. lim
x→4−

f(x)

12. lim
x→4

f(x)
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2.3. Infinite limits and limits at infinity

2.3 Infinite limits and limits at infinity

Consider the reciprocal function f(x) = 1
x

. What happens to f(x) as x→ 0?

x 1 .5 .1 .001 .0000001

f(x) 1 2 10 1000 1000000

x −1 −.5 −.1 −.001 −.0000001

f(x) −1 −2 −10 −1000 −1000000

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

We invent new notation to describe this situation. We say

lim
x→0+

1
x

=∞ and lim
x→0−

1
x

= −∞.
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2.3. Infinite limits and limits at infinity

Formally:

• to say lim
x→a+

f(x) =∞means that as x gets closer and closer to a from the right,

the numbers f(x) grow without bound.

f

a

• to say lim
x→a+

f(x) = −∞ means that as x gets closer and closer to a from the

right, the numbers f(x) become more and more negative without bound.

f

a

• to say lim
x→a−

f(x) =∞means that as x gets closer and closer to a from the left,

the numbers f(x) grow without bound.

f

a

• to say lim
x→a−

f(x) = −∞ means that as x gets closer and closer to a from the

left, the numbers f(x) become more and more negative without bound.

f
a

All these situations are called infinite limits. The graphical description of an
infinite limit is as follows:
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2.3. Infinite limits and limits at infinity

Definition 2.3 If lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞, we say the vertical line

x = a is a vertical asymptote (VA) for f(x).

EXAMPLE: x = 0 is a VA for f(x) = 1
x

.

NOTE: ∞ is not a number. It is only a symbol. However, in the context of
limits, ∞ can be manipulated in some ways as if it was a number (we’ll see
how in Chapter 3). For now you should remember these facts:

lim
x→0+

1
x

=∞ lim
x→0−

1
x

= −∞

One infinite limit to memorize:

lim
x→0+

ln x = −∞

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Other infinite limits are computed using techniques we will study later, using some
rules of arithmetic with∞.
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2.3. Infinite limits and limits at infinity

Limits at infinity

We want to consider the values of f(x) when x gets larger and larger without

bound. For example, suppose f(x) = 1
x

:

x 1 10 10000 10100 1010000

f(x) 1 1
10

1
10000

1
10100

1
1010000

We say lim
x→∞

f(x) = L if

• (heuristically) when x grows without bound, f(x) approaches L.
• (graphically) the graph of f looks like

f
L

or

f
L

We say lim
x→−∞

f(x) = L if

• (heuristically) when x becomes more and more negative without bound, f(x)
approaches L.

• (graphically) the graph of f looks like

f

L
or

f
L

Definition 2.4 If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the horizontal line y = L

is a horizontal asymptote (HA) for f(x).
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2.3. Infinite limits and limits at infinity

EXAMPLE

Consider the following graph of some unknown function f :

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Based on this graph, find the following:

1. lim
x→∞

f(x)

2. lim
x→−∞

f(x)

3. lim
x→−3+

f(x)

4. lim
x→−3−

f(x)

5. lim
x→−3

f(x)

6. lim
x→3+

f(x)

7. lim
x→3−

f(x)

8. lim
x→3

f(x)

9. the equation(s) of any vertical asymptote(s) of f

10. the equation(s) of any horizontal asymptote(s) of f

44



2.4. Homework exercises

2.4 Homework exercises
Exercises from Section 2.1

In Problems 1-2 below, you are given a limit. Use a calculator or computer to
complete the tables and use the results to estimate the value of the limit:

1. lim
x→3

x− 3
x2 − 7x + 12

x 2.9 2.99 2.999
f(x)

x 3.1 3.01 3.001
f(x)

2. lim
x→−2

√
2− x− 2
x + 2

x −2.1 −2.01 −2.001
f(x)

x −1.9 −1.99 −1.999
f(x)

3. Find the value of lim
x→0

ln(x + 1)− x

x2 using tables similar to Problems 1 and 2.
(This time, you have to pick your own x values.)

4. Find the value of lim
x→1

1− 2
x+1

x− 1 using tables similar to Problems 1 and 2. (Again,

you have to pick your own x values.)

5. Complete the following charts for the function f(x) = |x− 5|
x− 5 :

x 5.1 5.01 5.001
f(x)

x 4.9 4.99 4.999
f(x)

What do these charts suggest to you about lim
x→5

|x− 5|
x− 5 ?

45



2.4. Homework exercises

Exercises from Section 2.2

6. Given the graph of f below, evaluate the given expressions. If the quantity
does not exist, say so.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

a) lim
x→−5

f(x)

b) f(−5)
c) lim

x→−1
f(x)

d) lim
x→1−

f(x)

e) lim
x→1+

f(x)

f) lim
x→1

f(x)

g) lim
x→4−

f(x)

h) lim
x→4+

f(x)

i) lim
x→4

f(x)

j) f(4)

7. Given the graph of g below, evaluate the given expressions. If the quantity
does not exist, say so.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

a) lim
x→−8

g(x)

b) f(−8)
c) lim

x→−5
g(x)

d) lim
x→0−

g(x)

e) lim
x→1

g(x)

f) lim
x→7−

g(x)

g) lim
x→7+

g(x)

h) lim
x→7

g(x)

i) g(7)

j) lim
x→−2−

g(x)
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2.4. Homework exercises

8. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• f(0) is not defined;

• lim
x→0

f(x) = 4;

• f(2) = 6;

• lim
x→2

f(x) = 3.

9. Sketch a graph of a function f which has all of the following five properties
(there are many possible correct answers):

• lim
x→−1+

f(x) = 3;

• lim
x→−1−

f(x) = −2;

• lim
x→2−

f(x) DNE;

• f(2) = 0;

• lim
x→2+

f(x) = 3.

10. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→3

f(x) = −1;

• f(3) = 2;

• lim
x→−4−

f(x) = −5;

• lim
x→−4+

f(x) = −1.

Exercises from Section 2.3

In Problems 11-12 below, you are given a limit. Complete the table (use a calculator
or computer if necessary) and use the results to estimate the value of the limit:

11. lim
x→∞

4x + 3
2x− 1

x 10 100 1000 106 1010

f(x)

12. lim
x→∞

−6x√
4x2 + 5

x 10 100 1000 106 1010

f(x)
In Problems 13-18, graph each function inside the limit using Mathematica (or a
calculator) and use the graph of the function to estimate lim

x→∞
f(x):

13. f(x) = |x|
x + 1

Hint: the Mathematica code to plot this function (where x ranges from −10 to
10) is
Plot[ Abs[x] / (x+1), {x, -10, 10}]

14. f(x) = ln x√
x

Hint: Mathematica code to plot this function is
Plot[ Log[x] / Sqrt[x], {x, -10, 10}]
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2.4. Homework exercises

15. f(x) = sin x

x

16. f(x) = x arctan
(1

x

)
17. f(x) = x−

√
x(x− 1)

18. f(x) = x + 1
x
√

x

In Problems 19-20, complete the tables (use a calculator or computer if necessary)
and use the results to estimate the value of the limit:

19. lim
x→1+

2 + x

1− x

x 2 1.1 1.01 1.0001 1.000001
f(x)

20. lim
x→3−

x2 + 7
x− 3

x 2 2.9 2.99 2.9999 2.999999
f(x)

In Problems 21-26, graph the function inside the limit using Mathematica (or a cal-
culator) and use the graph of the function to estimate the given limit:

21. lim
x→π−

sec x

2
Hint: Mathematica code to plot this function (where x ranges from −10 to 10)
is

Plot[ Sec[x/2], {x, -10, 10}]

22. lim
x→π+

sec x

2

23. lim
x→0

(x− 1)2

x2

24. lim
x→π−

(cot x− sec x)

25. lim
x→4−

3x2 − 6x + 5
x2 − 5x + 4

26. lim
x→1−

x− 4
ex − e

27. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = x2 + 3
x3 − 5x2 + 4x

.

Hint: Mathematica code to plot this function (where x ranges from −10 to 10)
is Plot[ (xˆ2 + 3)/(xˆ3 - 5xˆ2 + 4x), {x, -10, 10}]
Make sure to use parentheses to surround the numerator and denominator
when using Mathematica.

28. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = 2x2 − 8x− 42
x2 − 25 .
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2.4. Homework exercises

29. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = (x− 3)(x + 4)(x− 7)
x(x− 3)(x + 1) .

30. Given the graph of f below, evaluate each given limit.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

a) lim
x→∞

f(x)

b) lim
x→−∞

f(x)

c) lim
x→−5−

f(x)

d) lim
x→−5+

f(x)

e) lim
x→−5

f(x)

f) lim
x→1+

f(x)

g) lim
x→1−

f(x)

h) lim
x→1

f(x)

31. Given the graph of g below, evaluate each given limit.

-5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

1

2

3

4

5

6

7

a) lim
x→∞

g(x)
b) lim

x→−∞
g(x)

c) lim
x→2−

g(x)

d) lim
x→2+

g(x)

e) lim
x→2

g(x)
f) lim

x→5+
g(x)

g) lim
x→5−

g(x)

h) lim
x→5

g(x)
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2.4. Homework exercises

32. Sketch a graph of a function f which has all of the following three properties
(there are many possible correct answers):

• lim
x→1+

f(x) =∞; • lim
x→1−

f(x) = −∞; • lim
x→∞

f(x) = 3.

33. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→−4

f(x) =∞;

• lim
x→−∞

f(x) = 5;

• lim
x→∞

f(x) = −2;

• f(0) = −3.

34. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→2−

f(x) = 4;

• lim
x→2+

f(x) =∞;

• f(2) = −1;

• lim
x→−∞

f(x) = lim
x→∞

f(x) = 2.

Answers

1. lim
x→3

x− 3
x2 − 7x + 12 = −1

2. lim
x→−2

√
2− x− 2
x + 2 = −1

4

3.
−1
2

4.
1
2

5. lim
x→5

|x− 5|
x− 5 DNE

(the left- and right-hand
limits are unequal)

6. a) 1
b) −3
c) −1
d) 1
e) DNE

f) DNE

g) 5
h) 1
i) DNE

j) 1

7. a) −4
b) 2
c) −2
d) 3
e) about −2.5
f) 2
g) −3
h) DNE

i) DNE

j) −5

8. Many answers are possible; one solution is on the next page after # 10, at left.

9. Many answers are possible; one solution is on the next page after # 10, in the center.
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2.4. Homework exercises

10. Many answers are possible; one solution is below, at right.

2

3

4

6

-1 2

-2

3 3-4
-1

2

-5

11. lim
x→∞

4x + 3
2x− 1 = 2

12. lim
x→∞

−6x√
4x2 + 5

= −3

13. 1

14. 0

15. 0

16. 1

17.
1
2

18. 0

19. lim
x→1+

2 + x

1− x
= −∞

20. lim
x→3−

x2 + 7
x− 3 = −∞

21. ∞

22. −∞

23. ∞

24. −∞

25. −∞

26. ∞

27. HA: y = 0
VA: x = 0, x = 1, x = 4.

28. HA: y = 2
VA: x = 5, x = −5.

29. HA: y = 1
VA: x = 0, x = −1.

30. a) 3
b) −2

c) −∞

d) ∞

e) DNE

f) −∞

g) −∞

h) −∞

31. a) ∞

b) 1

c) ∞

d) ∞

e) ∞

f) ∞

g) −∞

h) DNE

32. Many answers are possible; one solution is below at left.

33. Many answers are possible; one solution is below, in the center.

34. Many answers are possible; one solution is below, at right.

1

3 -4

-3
-2

5

2-1

2

4
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Chapter 3

Computing Limits

3.1 Continuity
Recall the modified warmup example from an earlier lecture:

f
TAPE

-1 1 2 3 4 5
-1

1

2

What is f(3)?

We don’t know the answer, but we said that the most “reasonable” guess was 1.

Why was this the most “reasonable” guess?
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3.1. Continuity

Mathematically, this idea is described by the notion of continuity. For example:

Functions whose graphs have no breaks are called “continuous”:

Definition 3.1 A function f is called continuous at the point x = a if

1. f(a) exists;

2. lim
x→a

f(x) exists (i.e. lim
x→a+

f(x) = lim
x→a−

f(x)); and

3. lim
x→a

f(x) = f(a) (i.e. lim
x→a+

f(x) = lim
x→a−

f(x) = f(a)).

Otherwise we say f is discontinuous at x = a.

The word continuous is abbreviated “cts”.

Definition 3.2 A function f is called continuous on an interval if it is continuous
at every point in that interval. A function f is called continuous if it is continuous
at every point in its domain.
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3.1. Continuity

Classification of discontinuities

When looking at the graph of a function, its easier to tell where the function is
discontinuous than where it is continuous, because the discontinuities in a function
usually stand out.

It turns out that there are four types of discontinuities (it’s not critical that you
know this vocabulary):

1. removable discontinuity (a.k.a. hole discontinuity): lim
x→a

f(x) exists but ei-
ther f(a) DNE or f(a) ̸= lim

x→a
f(x):

a

f (a)
a

2. jump discontinuity: lim
x→a−

f(x) and lim
x→a+

f(x) both exist but are not equal:

a a a

3. infinite discontinuity: lim
x→a+

f(x) or lim
x→a−

f(x) = ±∞:

a a

4. oscillating discontinuity: lim
x→a+

f(x) or lim
x→a−

f(x) DNE because of too many

wiggles:

a
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3.1. Continuity

Dictionary of continuous functions

What is important is that you have a working knowledge of functions which are
continuous.

In particular, the following functions are continuous, because there are no breaks
in their graphs:

Theorem 3.3 Suppose f and g are continuous functions. Then:

1. f + g, f − g, fg, and f ◦ g are continuous; and

2.
f

g
is continuous at all x where g(x) ̸= 0.

Theorem 3.4 Any function made up of powers of x, sines and cosines, arcsines, arct-
angents, exponentials and/or logarithms using addition, subtraction, and/or multipli-
cation is continuous (at every point of its domain).

Theorem 3.5 Any function which is the quotient of functions made up of powers of
x, sines, cosines, arcsines, arctangents, exponentials and/or logarithms is continuous
everywhere except where the denominator is zero.

EXAMPLES

f(x) = 3 arcsin(x2 + 4) cos5
( 3x

x2 + 4

)
− 5esin(3x8−5) ln(x4 + 3)

is continuous everywhere on its domain.

g(x) = x3 + 3 cos(2x2 − 5)− 6x−4 sin 3√x

x− 3
is continuous everywhere except x = 3.
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3.2. Evaluation of limits: general concepts

3.2 Evaluation of limits: general concepts
First concept: limits behave “nicely” with respect to arithmetic

Theorem 3.6 (Main Limit Theorem) Suppose lim
x→a

f(x) and lim
x→a

g(x) both exist and
are finite, where a is either ±∞ or a finite number. Then:

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x);

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x);

3. lim
x→a

[f(x)g(x)] =
[
lim
x→a

f(x)
] [

lim
x→a

g(x)
]
;

4. lim
x→a

[
f(x)
g(x)

]
=

lim
x→a

f(x)
lim
x→a

g(x) provided the denominator is nonzero.

Second concept: limits can be interchanged with many common
operations

Theorem 3.7 (Interchange of Limit and Common Operations) Suppose lim
x→a

f(x)
exists and is finite. Then:

1. lim
x→a

[k f(x)] = k · lim
x→a

f(x) for any constant k.

2. lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

.

3. lim
x→a

n

√
f(x) = n

√
lim
x→a

f(x), provided both sides exist.

4. lim
x→a
|f(x)| =

∣∣∣∣limx→a
f(x)

∣∣∣∣.
5. lim

x→a
ef(x) = exp

(
lim
x→a

f(x)
)

.

6. lim
x→a

ln f(x) = ln
(

lim
x→a

f(x)
)

.

7. lim
x→a

sin f(x) = sin
(

lim
x→a

f(x)
)

.

8. Statements similar to (5), (6), (7) above hold for cos, arctan, and arcsin.
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3.2. Evaluation of limits: general concepts

Third concept: evaluate limits of cts functions by plugging in

If f is continuous at a, then lim
x→a

f(x) = f(a).

Fourth concept: manipulate expressions with∞ using rules

When evaluating limits, you often encounter expressions that work out to be ±∞.
Although∞ is not a number, you can sometimes work with∞ as if it was a num-
ber (especially when computing limits).

Useful arithmetic rules with∞

When computing a limit, and you encounter an expression of the form

3
0 or

−5
0 or

1
0 or

∞
0 or anything else of the form

nonzero
0 ,

that expression will evaluate to ±∞ (you need careful analysis to determine
whether it is∞ or −∞).

Once you’ve encountered an expression with ±∞ in it, you can then continue
evaluating the limit using the following rules (which I hope you think are in-
tuitive):

Adding/subtracting a finite amount to ±∞ doesn’t change it: For any c ∈ R,
∞± c =∞.

Multiplying/dividing ±∞ by positive constant doesn’t change it: For any c >

0, c · ∞ = ∞
c

=∞. (This includes∞ ·∞ =∞.)

Multiplying/dividing ±∞ by negative constant reverses it: For any c < 0, c ·
∞ = ∞

c
= −∞. (This includes −∞ ·∞ = −∞.)

Dividing a number by infinity gives 0: For any c ∈ R,
c

∞
= 0.

Natural exponentials and logs of∞ are∞: e∞ =∞ and ln∞ =∞.

Positive powers of∞ are∞; If c > 0, then∞c = ∞. (This includes
√
∞ = ∞

and n
√
∞ =∞.)

Negative powers of∞ are zero: If c < 0, then∞c = 0.
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3.2. Evaluation of limits: general concepts

WARNING: Here are some expressions that we haven’t covered with the rules
on the previous page. They are called indeterminate forms because they work
out to different things depending on the particular limit you are evaluating
(we will see more on how to deal with these in Section 8.2).

0
0 is indeterminate
∞
∞

is indeterminate

∞−∞ is indeterminate
0 · ∞ is indeterminate
∞0 is indeterminate
00 is indeterminate

1∞ is indeterminate

When you encounter an indeterminate form in a limit, that doesn’t mean you
are done–you have to do some work to figure out what the limit is.

EXAMPLE 1
Determine if the following expressions evaluate to anything meaningful, or whether
they are indeterminate:

1.
12− 8− 4
3 + 5− 8

2.
6− 4− 2
3 + 8− 4

3.
10− 5
3− 3

4. e−∞

5. −5(∞+ 2∞/2000)

6. −5(∞− 2∞/2000)

7. 3 + 4
ln∞
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3.3. Evaluating limits at infinity

3.3 Evaluating limits at infinity
The most important examples of limits to understand how to evaluate are those
for which x→∞ (i.e. limits at infinity):

Limits at infinity of rational functions
EXAMPLE 1

lim
x→∞

4 + 3x2

8x2 + 3x + 2

Remark: this example could have been phrased differently: suppose you were

asked to find the horizontal asymptotes of f(x) = 4 + 3x2

8x2 + 3x + 2 . In this case, you’d

compute the limit as above, and identify the HA as

Rephrasing this as a story problem: Suppose the population of an endangered

species in a national park at time x, in thousands, is given by f(x) = 4 + 3x2

8x2 + 3x + 2
(the function from Example 1). What is the long-term population of this species in
this park projected to be?

EXAMPLE 2

lim
x→∞

−3− 5x2

2x4 − x + 5
2
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3.3. Evaluating limits at infinity

EXAMPLE 3

lim
x→∞

2x2 + 7x− 2
x− 1

General principle behind examples 1-3: Suppose f is a rational function, i.e.
has form

f(x) = amxm + am−1x
m−1 + am−2x

m−2 + ... + a2x
2 + a1x + a0

bnxn + bn−1xn−1 + bn−2xn−2 + ... + b2x2 + b1x + b0
.

Then:

1. If m < n (i.e. largest power in numerator < largest power in denomina-
tor), then

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

2. If m > n (i.e. largest power in numerator > largest power in denomina-
tor), then

lim
x→∞

f(x) = lim
x→−∞

f(x) = ±∞.

3. If m = n (i.e. largest powers in numerator and denominator are equal),
then

lim
x→∞

f(x) = lim
x→−∞

f(x) = am

bn

.
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3.3. Evaluating limits at infinity

EXAMPLE 4

lim
x→∞

x√
2x2 + 1

EXAMPLE 5

lim
x→∞

cos
(

x

3x2 + 4

)
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3.3. Evaluating limits at infinity

Limits at infinity based on graphs

Corresponding
Graph limit statement Slang version

-3 -2 -1 1 2 3

1

2

3  lim
x→∞

ex =∞
lim

x→−∞
ex = 0

{
e∞ =∞
e−∞ = 0

-3 -2 -1 1 2 3

1

2

3  lim
x→∞

e−x = 0
lim

x→∞
e−x =∞

{
e−∞ = 0
e−(−∞) = e∞ =∞

1 2 3 4 5

-3

-2

-1

1

2

3

 lim
x→∞

ln x =∞
lim

x→0+
ln x = −∞

{
ln∞ =∞
ln 0 = −∞

-1 1

- π

2

- π

4

π

4

π

2 
lim

x→∞
arctan x = π

2
lim

x→−∞
arctan x = −π

2


arctan∞ = π

2
arctan(−∞) = −π

2

EXAMPLE 6

lim
x→∞

(
e−3x + arctan 2x

)

EXAMPLE 7

lim
x→∞

sin x
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3.4. Evaluating limits not at infinity

3.4 Evaluating limits not at infinity
Evaluation of limits of continuous functions

Key fact: If f is continuous at a, then lim
x→a

f(x) = f(a).

EXAMPLE 1

lim
x→3

x2 + 3
x− 1

EXAMPLE 2

lim
x→ π

2

3 cos 2x

EXAMPLE 3

lim
x→0

e2x
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3.4. Evaluating limits not at infinity

Evaluation of limits of functions which are not known to be
continuous

Given limit lim
x→a

f(x), start by plugging in a to the function f .

1. if you get a number when you plug in, almost always this is the answer (and
the function is actually continuous at a);

2. if you get
nonzero

0 , the limit is infinite; carefully analyze the sign of f(x) to
determine whether the answer is∞ or −∞;

3. if you get
0
0 , use an algebraic technique to rewrite f :

a) if f can be factored, factor and cancel terms;
b) if f contains square roots which are added or subtracted, multiply through

by the conjugate (then factor and cancel);
c) if f contains “fractions within fractions”, clear the denominators of the

interior fractions (then factor and cancel).

EXAMPLE 4

lim
x→5

x2 − 3x− 10
x2 + x− 20

EXAMPLE 5

lim
x→3

x2 + 2x− 15
x2 − 7x + 12
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3.4. Evaluating limits not at infinity

EXAMPLE 6

lim
x→2+

4
4− x2

EXAMPLE 7

lim
x→2−

4
4− x2

EXAMPLE 8

lim
x→2

4
4− x2

Solution: From Examples 6 and 7, we see that

lim
x→2+

4
4− x2 ̸= lim

x→2−

4
4− x2 .

Therefore the two-sided limit

lim
x→2

4
4− x2 DNE .
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3.4. Evaluating limits not at infinity

EXAMPLE 9

lim
x→3+

(
2

(x− 3)2 + 2x2
)

EXAMPLE 10

lim
x→−2

x2 − 3x− 10
x3 + 5x2 + 6x

EXAMPLE 11

lim
x→1/2

2x− 1
2x2 + x + 1
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3.4. Evaluating limits not at infinity

More complicated examples

Key idea: if you get
0
0 when you plug in, eventually you have to factor and cancel.

But in complicated situations, you first have to do some preliminary algebra to
rewrite the function. Here are some worked-out examples which illustrate some
techniques:

EXAMPLE 11

lim
x→−1

1
x

+ 1
1

x+2 − 1

Solution: When I look at this, I see “fractions inside fractions”. In such a problem,
here is the procedure:

Multiply through the top and bottom of the “big fraction”
by the “small denominators”.

In this example, the “small denominators” are x and x+2, and the “big fraction”

is the entire function
1
x

+ 1
1

x+2 − 1 . So you get

lim
x→−1

1
x

+ 1
1

x+2 − 1 = lim
x→−1

(
1
x

+ 1
)

(x)(x + 2)(
1

x+2 − 1
)

(x)(x + 2)
Distribute over the red + and − signs:

= lim
x→−1

1
x
(x)(x + 2) + 1(x)(x + 2)

1
x+2(x)(x + 2)− 1(x)(x + 2)

= lim
x→−1

x + 2 + x(x + 2)
x− x(x + 2)

= lim
x→−1

x + 2 + x2 + 2x

x− x2 − 2x

= lim
x→−1

x2 + 3x + 2
−x2 − x

Now factor and cancel:

= lim
x→−1

(x + 2)(x + 1)
−x(x + 1)

= lim
x→−1

x + 2
−x

= −1 + 2
−(−1) = 1 .
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3.4. Evaluating limits not at infinity

EXAMPLE 12

lim
t→4

√
t− 2

t− 4

Solution: I see a square root term plus/minus another term in the numerator of the
fraction. In such a situation, here is the procedure:

Multiply through the top and bottom by the “conjugate” of the square root
term.

In this problem, the “conjugate” of
√

t − 2 is
√

t + 2 (see below for more on
conjugates). So you get

lim
t→4

√
t− 2

t− 4 = lim
t→4

(√
t− 2

) (√
t + 2

)
(t− 4)

(√
t + 2

)

Now notice the numerator is of the form
(A−B)(A + B), which becomes A2 −B2.

Don’t multiply out the bottom.

= lim
t→4

t− 4
(t− 4)

(√
t + 2

)
= lim

t→4

1√
t + 2

= 1√
4 + 2

= 1
4 .

How to find conjugates:

Expression Conjugate Example Conjugate of example

□ +
√
△ □−

√
△ 3 +

√
x− 1 3−

√
x− 1

□−
√
△ □ +

√
△ 5−

√
2x 5 +

√
2x

√
□ +
√
△
√
□−

√
△
√

t + 3 +
√

x− 1
√

t + 3−
√

x + 1
√
□−

√
△
√
□ +
√
△

√
u−
√

3x
√

u +
√

3x
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3.5. Homework exercises

3.5 Homework exercises
Exercises from Section 3.1

1. Consider the function f whose graph is given below:

-5 5

-6

-4

-2

2

4

6

a) At what value(s) of x, if any, is f not continuous?

b) At what value(s) of x, if any, does f have a removable discontinuity?

c) At what value(s) of x, if any, does f have a jump discontinuity?

d) At what value(s) of x, if any, does f have an infinite discontinuity?

e) At what value(s) of x, if any, does f have an oscillating discontinuity?

2. Consider the function g whose graph is given below:

-4 -2 2 4 6 8 10

-2

2

4

6

a) At what value(s) of x, if any, does g have a removable discontinuity?

b) At what value(s) of x, if any, does g have a jump discontinuity?

c) At what value(s) of x, if any, does g have an infinite discontinuity?

d) At what value(s) of x, if any, does g have an oscillating discontinuity?
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3.5. Homework exercises

Exercises from Section 3.3

In Problems 3-14, evaluate the given limit (algebraically, by hand). If the limit does
not exist, say so.

3. lim
x→∞

x2 + 3
x3 − 2

4. lim
x→∞

x2 + 3
x2 − 2

5. lim
x→∞

x2 + 3
x− 2

6. lim
x→∞

3− 2x2 + x

4x(x− 1)

7. lim
x→∞

√
x

x + 1

8. lim
x→∞

x + 1√
4x2 − x

9. lim
x→−∞

7x3

x3 + 1

10. lim
x→∞

ln(4x + 1)

11. lim
x→∞

8 arctan x2

12. lim
x→∞

4
ex + x

13. lim
x→∞

e4x−5

14. lim
x→∞

e−x2

15. Suppose that the population of emperor penguins (in thousands of penguins)

in Antarctica at time t (in years) is given by the function p(t) = 350
1 + 3

4e−t/35 .

Estimate the long-term population of emperor penguins in Antarctica.

16. After taking a certain antibiotic, the concentration C (in ppm) of a drug in a

patient’s bloodstream is given by C(t) = t

40t2 − 80 where t (in hours) is the

time after taking the antibiotic. What is the long-term concentration of the
drug in the patient’s bloodstream? (Write your answer with correct units.)

17. If you are r km from the center of a black hole, general relativity theory sug-
gests that the velocity of a light wave at your position is given by v(r) =
300000r − 7800000

r
km/sec. If you are very, very far away from the black

hole, what is the velocity of a light wave at your position? (Write your an-
swer with correct units.)

Exercises from Section 3.4

In Problems 18-47, evaluate the given limit (algebraically, by hand). If the limit
does not exist, say so.

18. lim
x→2−

x− 3
x− 2

19. lim
x→5+

x2

x2 − 25

20. lim
x→−2+

x + 3
x2 + x− 2

21. lim
x→4

x + 2
(x− 4)2

22. lim
x→0−

(
x2 − 1

x

)

23. lim
x→0+

x + 1
ex − 1
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3.5. Homework exercises

24. lim
x→0+

3
sin x

25. lim
x→0−

3
sin x

26. lim
x→4

x + 2
x− 4

27. lim
x→3+

ln(x− 3)

28. lim
x→−2

(
x2 − 4x

)
29. lim

x→3

x + 5
x2 − 1

30. lim
x→0

e−x

31. lim
x→5

3
√

x + 3

32. lim
x→π

tan
(

x

3

)
33. lim

x→−3
sin πx

34. lim
x→e2

ln x2

35. lim
x→5+

x

x2 − 5

36. lim
x→−1

arctan x

37. lim
x→3

1
x
− 1

3
x + 3

38. lim
x→2

f(x), where f(x) =
{

x + 2 x < 2
x2 x ≥ 2 Hint: Consider the left- and right-

hand limits at x = 2 separately.

39. lim
x→2

f(x), where f(x) =


2x + 1 x < 2

8 x = 2
x2 − 1 x > 2

Hint: Consider the left- and right-

hand limits at x = 2 separately.

40. lim
x→−2

x2 − 3x− 10
x2 + 5x + 6

41. lim
x→4

x2 − 16
x2 + x− 20

42. lim
x→1

x3 − 3x2 + 2x

x− 1

43. lim
x→0

x3 + 2x2 + x

x2 − x

44. lim
x→3

x2 − x− 6
2x2 − 7x + 3

45. lim
x→2

1
x
− 1

2
x− 2

Hint: Use the method of Example 16.

46. lim
x→0

√
x + 7−

√
7

x

Hint: Use the method of Example 17.

47. lim
x→1

1− x√
x + 3− 2

Hint: Use the method of Example 17.

In Problems 48-51, find the equations of all horizontal and vertical asymptotes of
the given function.

Hint: for the VA, you need to find values of c for which lim
x→c±

f(x) = ±∞. This

means that when you evaluate the limit, you need to get
nonzero

0 .
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3.5. Homework exercises

48. f(x) = 3− x

x + 2

49. f(x) = x2 − 4
x + 1

50. f(x) = x + 10
x2 − 8x + 15

51. f(x) = 2x2 − 8x + 10
x2 − 11x + 30

Answers

1. a) x = −5, x = 1,
x = 3

b) x = −5
c) x = 3
d) x = 1
e) no such x

2. a) no such x

b) x = 0
c) x = 2
d) x = 6

3. 0

4. 1

5. ∞

6.
−1
2

7. 0

8.
1
2

9. 7

10. ∞

11. 4π

12. 0

13. ∞

14. 0

15. 350000 penguins

16. 0 ppm

17. 300000 km/sec

18. ∞

19. ∞

20. −∞

21. ∞

22. ∞

23. ∞

24. ∞

25. −∞

26. DNE

27. −∞

28. 12

29. 1

30. 1

31. 2

32.
√

3

33. 0

34. 4

35.
1
4

36.
−π

4
37. 0

38. 4

39. DNE

40. −7

41.
8
9

42. −1

43. −1

44. 1

45.
−1
4

46.
1

2
√

7

47. −4

48. HA: y = −1;

VA: x = −2

49. HA: none;

VA: x = −1

50. HA: y = 0;

VA: x = 3, x = 5

51. HA: y = 2;

VA: x = 6 (not x = 5)
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Chapter 4

Introduction to Derivatives

4.1 Odometers and speedometers
Suppose you get in your car and drive to Grand Rapids. There are two ways to
record your motion as a function of elapsed time t:

1.

2.

As an example, here are two graphs representing the same trip:

0 10 20 30 40 50 60
time t

odometer reading

0 10 20 30 40 50 60
time t

speedometer reading

Essentially, Calculus 1 centers on the conversion from one of these pictures to the
other. In particular, we want to know:

1.

2.

In Chapters 4-8, we focus on the first question above and its other applications. We
will turn to the second question in Chapter 9.
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4.1. Odometers and speedometers

First major problem of calculus

Given a function f = f(t) which represents the
position of an object at time t, compute the object’s

instantaneous velocity at time t.

Motivation: Given the graph of a position function (i.e. a function which rep-
resents an odometer), what attribute(s) of that graph are relevant to understanding
the velocity (i.e. speedometer)?

EXAMPLES

Here, you are given a series of pictures which represent odometers (that is, the
x−axis represents time and the y−axis represents an odometer reading). On the
blank graph to the right, sketch the graph of the corresponding speedometer (that
is, the graph of a function where x represents elapsed time and y represents the
velocity at time x).

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

(four more graphs on the next page)
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4.1. Odometers and speedometers

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

Punchline: Given a function f which measures distance traveled at time t, the
corresponding velocity at time t is the slope or steepness of the graph of f at time
t.

But what is meant by “slope”? We know how to find the slope of a line (from
high-school algebra), but what is meant by the “slope” of a curve?

Big Ideas used to address these questions:
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4.1. Odometers and speedometers

Tangent lines and differentiability

Definition 4.1 Given a function f and a number x in the domain of f , the tangent
line to f at x (if it exists) is the line which most closely approximates the graph of f
at points very near x.

QUESTION 1: What is meant by “most closely” approximating the graph of f?
What makes one line a “better” approximation than another?

QUESTION 1 (A): Is it possible for a function f to have more than one tangent line
at x?

QUESTION 2: What does it mean (conceptually) for the tangent line to f to exist at
x? Why might a tangent line not exist at x?

Definition 4.2 A function is called differentiable at x if it has a tangent line at x.

Theorem 4.3 (Differentiability implies continuity) Suppose f : R → R is dif-
ferentiable at x. Then f must be continuous at x.

Theorem 4.4 A function f fails to be differentiable at x if:

1. f is not continuous at x; or

2. the tangent line to f at x is vertical; or

3. the graph of f has a corner or cusp at x.
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4.1. Odometers and speedometers

Second major problem of calculus

Given a function f and a particular number x
(sometimes I’ll use a for the value of x),

find (if possible) the slope of the line tangent to f at x.

Why else might we care about finding the slope of a tangent line to a graph?

Business / economics:

20 40 60 80 100 120
price

5000

10000

150000

200000

250000
profit

Optometry:
0.5 1.0 1.5 2.0x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y

(There will be other reasons coming later.)

Can we find the slope of a tangent line to a graph using just algebra?
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4.2. Definition of the derivative

4.2 Definition of the derivative
RECALL

The second major problem of calculus is to find the slope of the line tangent to f at
x.

Let’s try to solve this problem theoretically, thinking of the following picture:

f

GOAL: find slope of
this tangent line

x

f (x)

So we define the slope of the red tangent line as
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4.2. Definition of the derivative

Back to the first major problem
(find instantaneous velocity given position function)

An object’s average velocity over some interval of time is given by

vavg = △ output
△ input

= change in object’s position
elapsed time

.

Therefore if the object’s position at time t is given by f(t), then the object’s average
velocity between times t1 and t2 is

v[t1,t2] =

So the object’s velocity over the time interval [x, x + h] is

v[x,x+h] =

and its instantaneous velocity at time x should therefore be
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4.2. Definition of the derivative

We have seen that the formula

lim
h→0

f(x + h)− f(x)
h

solves both of the two major problems of calculus posed earlier in this chapter.
This motivates the following definition:

Definition 4.5 (Limit definition of the derivative) Let f : R → R be a function
and let x be in the domain of f . If the limit

lim
h→0

f(x + h)− f(x)
h

exists and is finite, say that f is differentiable at x. In this case, we call the value of

this limit the derivative of f and denote it by f ′(x) or
df

dx
or

dy

dx
.

The word “differentiable” is abbreviated “diffble”.

Some algebraic manipulation of the derivative formula:

Theorem 4.6 (Alternate limit definition of the derivative) Let f : R → R be a
function and let f be differentiable at x. Then

f ′(x) = lim
t→x

f(t)− f(x)
t− x

.
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4.2. Definition of the derivative

Notation and verbiage

• “derivative” is a noun. The verb form of this noun is “differentiate”, i.e. to
“differentiate” a function means to compute the derivative of that function.

• Given a function f and a particular value of x (say 4), the derivative of f at
x = 4 is denoted

These denote a number, which is the slope of the line tangent to f at x = 4.

• The fractional notation with “d”s above is called Leibniz notation.

The derivative as an operator

We can also think of the derivative as a function. But it is a different kind of
function than the ones you are used to. You are used to functions like f(x) = x2,
where

The derivative is a new kind of function. Its inputs and outputs aren’t numbers;
they are functions. This makes differentiation into something called an operator:

Definition 4.7 An operator is a function whose inputs and outputs are themselves
functions.

When thought of as an operator, the operation of differentiation is usually denoted
d

dx
or D or just ′. In particular,

d

dx
(blah) = derivative of (blah)

(blah)′ = derivative of (blah)

The output of the differentiation operator is itself a function, which we denote by
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4.2. Definition of the derivative

The function f ′ takes input x (a number) and produces as its output f ′(x) the slope
of the line tangent to f at x.

At this point, we know that the derivative is used to compute the following
quantities:

1. f ′(x) gives the slope of the tangent line to f at the value x;

2. f ′(x) gives the slope of the curve f at the value x;

3. f ′(t) gives the instantaneous velocity of an object at time t, given that the
object’s position at time t is f(t);

4. f ′(x) gives the instantaneous rate of change of y = f(x) with respect to x.

Units: If y = f(x) is measured in some unit Uy and x is measured in some unit
Ux, then the units of f ′(x) are Uy/Ux. For example, if y is measured in lbs and x is
measured in ft, then f ′(x) will be measured in lbs/ft.

QUESTION

What is the equation of the line tangent to differentiable function f at the point
where x = a (a is a constant)?

f

GOAL: write equation of
this tangent line

a

f (a)

We will return to this formula many times, so it is good to remember it:

Theorem 4.8 (Tangent line equation) Suppose f is differentiable at a. Then the
equation of the line tangent to f at x = a is

y = f(a) + f ′(a)(x− a).
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4.2. Definition of the derivative

EXAMPLE 1
Use the definition of derivative to compute the slope of the line tangent to f(x) =√

x at the point (9, 3).

EXAMPLE 2
Use the definition of derivative to compute the instantaneous velocity of an object
at time 4, given that the object’s position (in m) at time t (in sec) is given by f(t) =
t2 − t.

Solution: f ′(x) = lim
h→0

f(x + h)− f(x)
h
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4.2. Definition of the derivative

EXAMPLE 3
Let f(x) = |x|. Find f ′(0).

Conceptual solution: Sketch the graph of f :

Justification of this: Again, use the definition:

f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

|h| − 0
h

= lim
h→0

|h|
h

We studied the signum function
|h|
h

back in Chapter 2; here is its graph:

-3 -2 -1 1 2 3

-2

-1

1

2
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4.3. Estimating derivatives using tables or graphs

4.3 Estimating derivatives using tables or graphs
EXAMPLE 1

A straight piece of wire is placed over a heat source, so that at various points on
the wire, the temperature of the wire is different. Here is a table which gives some
temperature measurements at various points on the wire:

x T (x)
(cm from left end of wire) (degrees Fahrenheit)

0 76
6 94
10 110
12 102
16 85

1. Use the information in this table to estimate T (8). Show the computations
that lead to your answer, and write your answer with correct units.

2. What does your answer to Question 1 mean, in the context of this problem?

3. Use the information in this table to estimate T ′(8). Show the computations
that lead to your answer, and write your answer with correct units.

4. What does your answer to Question 3 mean, in the context of this problem?
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 2
During a flight, an airplane crew takes periodic measurements of the distance they
have travelled and the amount of fuel left in their fuel tank. Their results are de-
scribed in the following chart:

t
(minutes after takeoff) 0 30 60 120 200 240

x
(miles travelled) 0 170 405 945 1595 1775

f
(thousands of gallons) 18 14 12 7 5 1.5

1. Use the information in this table to estimate
dx

dt

∣∣∣∣∣
t=90

. Show the computations

that lead to your answer, and write your answer with correct units.

2. What does your answer to Question 1 mean, in the context of this problem?

3. Use the information in this table to estimate
df

dt

∣∣∣∣∣
t=220

. Show the computations

that lead to your answer, and write your answer with correct units.

4. What does your answer to Question 1 mean, in the context of this problem?

5. What is the rate of fuel consumption of this aircraft per mile travelled, when
the aircraft is at cruising speed? Show the computations that lead to your
answer, and write your answer with correct units.
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 3
Given below is the graph of some unknown function f :

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-5

-4

-3

-2

-1

1

2

3

4

Use this graph to answer the questions below:

1. Give the values of x at which f is not continuous.

2. Give the values of x at which f is not differentiable.

3. Estimate f(1).

4. Estimate f ′(1).

5. Estimate f ′(−5).

6. Find two values of x for which f ′(x) = 0.

7. Estimate
df

dx

∣∣∣∣∣
x=5
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 4 (TRICKIER)
The graph of some unknown function f is given below.

17

2
9

19

2
10

21

2
11

23

2
12

x

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500
f(x)

1. Use this graph to estimate f ′(10).

2. Use your estimate from Question 1 to write the equation of the line tangent
to f at x = 10.
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 5
The graph of some unknown function f is given below at left. On the right-hand
axes, sketch the graph of f ′.

-10 -8 -6 -4 -2 2 4 6 8 10

-10

-8

-6

-4

-2

2

4

6

8

10

-10 -8 -6 -4 -2 2 4 6 8 10

-10

-8

-6

-4

-2

2

4

6

8

10
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4.4. Homework exercises

4.4 Homework exercises
Exercises from Section 4.1

In Problems 1-4, you are given the graph of an odometer. Sketch the graph of the
corresponding speedometer.

1.

time t

odometer reading

2.

time t

odometer reading

3.

time t

odometer reading

4.

time t

odometer reading

Exercises from Section 4.2

In Problems 5-10, you must compute all derivatives using the definition of deriva-
tive (do not use any “rules” you may know if you have already taken calculus).

5. Let f(x) = 4− 2
3x. Find f ′(x).

6. Find the derivative of f(x) = 1
x + 3 .

7. Compute
dy

dx
if y =

√
3x− 2.

8. Find the equation of the line tangent to the function f(x) = x3+1 when x = 1.

9. Suppose that the power supplied to a machine (in kilowatts) at time t (in
hours) is P =

√
t. Find the instantaneous rate of change in the power sup-

plied to the machine at time 4; write your answer with correct units.
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4.4. Homework exercises

10. Find the instantaneous velocity of an object at time 6, given that the object’s
position (in miles) at time t (in hours) is f(t) = 2t2 +3t−1; write your answer
with correct units.

11. Use Mathematica to sketch a graph of the function f(x) = |3x2 − 15x + 12|;
use this graph to determine the values of x at which f is not differentiable.

12. Given the following graph of function f , give all the values x at which f is
not differentiable:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

Exercises from Section 4.3

13. Use the graph of the function f given below to answer the following ques-
tions:

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10
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a) Estimate f(−6).
b) Estimate f ′(−6).
c) Estimate a value of x between −3 and 5 for which f ′(x) = 0.

d) Find all values of x at which f is not continuous.

e) Find all values of x at which f is not differentiable.

f) Estimate
df

dx

∣∣∣∣∣
x=−3

.

g) Is f ′(2) positive, negative or zero? Explain.

h) Estimate
dy

dx

∣∣∣∣∣
x=5

.

i) Estimate limx→∞ f(x).
j) Estimate limx→∞ f ′(x).

k) Find the slope of the function f when x = −3.

l) Find the equation of the line tangent to f when x = −3.

m) Find the equation of the line tangent to f when x = 8.

n) On the graph above, sketch the graph of the tangent line to x when x =
2.

14. A botanist measures the height, in inches, of a plant each day after it sprouts.
Her data is gathered in the following table:

t
(days) 0 1 3 4 8 10

h
(height in inches) 0 2 8 9 10 10

a) Use the given data to estimate h′(6). Show the computations that lead
to your answer, and write your answer with correct units.

b) What does your answer to part (a) mean, in the context of this problem?

c) Use the given data to estimate h′(1). Show the computations that lead
to your answer, and write your answer with correct units.

d) What does your answer to part (c) mean, in the context of this problem?

15. As time passes, a scientist records the temperature and pressure of a gas in-
side a chamber as the chamber is heated. His data is summarized in the
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4.4. Homework exercises

following table:

time t
(minutes after start

of experiment)
0 1 2 4 5 6 8

pressure P
(pressure in kPa) 696 764 818 891 916 935 963

temperature T
(◦ C) 20 48 71 102 112 120 132

a) Use the given data to estimate
dP

dt

∣∣∣∣∣
t=1

. Show the computations that lead

to your answer, and write your answer with correct units.

b) What does your answer to part (a) mean, in the context of this problem?

c) Use the given data to estimate
dT

dt

∣∣∣∣∣
t=2

. Show the computations that lead

to your answer, and write your answer with correct units.

d) What does your answer to part (c) mean, in the context of this problem?

e) Use the given data to estimate the rate of change in temperature with
respect to time when t = 3. Show the computations that lead to your
answer, and write your answer with correct units.

f) Use the given data to estimate the rate of change in temperature with
respect to the change in pressure when t = 5. Show the computations
that lead to your answer, and write your answer with correct units.

16. Given the graph of f below at left, estimate f ′(30) and f ′(80).

f

0 10 20 30 40 50 60 70 80 90 100

30

60

90

120

150

180

210

240

270

300

g

0 1 2 3 4 5 6 7 8 9 10 11 12

30

60

90

120

150

180

210

240

270

300

17. Given the graph of g above at right:

a) Estimate g′(5).
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b) Write the equation of the line tangent to g when x = 5.

c) Estimate
dg

dx

∣∣∣∣∣
x=6

.

d) Sketch the graph of g′(x).

In Problems 18-21, you are given the graph of an unknown function f . Sketch the
graph of the function f ′.

18.
-8 -6 -4 -2 2 4 6 8
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19.
-10 -8 -6 -4 -2 2 4 6
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20.
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21.
-10 -8 -6 -4 -2 2 4 6
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-6

-4

-2

2

4

6

8

Mathematica questions (for Exam 1 review)

22. For each problem, you are given a problem that a student was trying to
solve on Mathematica, and what the student typed in. What they typed in
is WRONG. Explain why what they typed in is wrong, and write what the
command should have been:

a) The student wants to find the sine of π/6, but types in Sin(Pi/6)

b) The student wants to find log 7, but types in Log[7]

c) The student wants to solve the equation x2 + 3x = 7, but types in
Solve[x^2 + 3x = 7, x]

d) The student wants to define function f(x) = x2, but types in f[x] = x^2
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4.4. Homework exercises

e) The student wants to evaluate 32+9
63−17 , but types in [32+9]/[63-17]

f) The student wants to define function f(x) = x−1
x+1 , but types in

f[x_] = x-1/x+1

23. In each problem, you are given some code in Mathematica (the code works).
Determine what output Mathematica will give you.

a) f[x_] = x^2 + x; f[3]

b) Cos[2 Pi/3]

c) g[x_] = 1/x-1; g[x+1]

d) Solve[x+3 ==5, x]

e) Factor[x^2 - 4, x]

24. Suppose you typed in the following command into Mathematica:

Plot[x^3 Log[x^2 + 1], {x, -3, 5}, PlotRange -> {0,4}]

a) What function is being plotted? (Write the function in hand-written no-
tation, not Mathematica syntax.)

b) What x−value will be at the left edge of the graph?

c) What y−value will be at the top of the graph?

Answers

1.

time t

speedometer reading

2.

time t

speedometer reading
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4.4. Homework exercises

3.

time t

speedometer reading

4.

time t

speedometer reading

5.
−2
3

6.
−1

x2 + 6x + 9

7.
3

2
√

3x− 2

8. y = 2 + 3(x− 1)

9. P ′(4) = 1
4 kw/hr

10. 27 mi/hr

11. x = 1 and x = 4

12. x = −5 (cusp),

x = −2 (discontinuous),

x = 2 (discontinuous),

x = 4 (corner),

x = 9 (vertical tangency)

13. a) 3

b) 0

c) x ≈ −1
2

d) x = −5, x = 3, x = 4

e) x = −5, x = −2, x = 3, x = 4, x = 6

f) 1

g) Positive, since the graph goes up
from left to right at x = 2.

h) −2

i) 3

j) 0

k) 1

l) y = 1(x + 3) + 3
(a.k.a. y = x + 6)

m) y ≈ 2
3(x− 8) + 1.5

n) The line should go through (2, f(2))
and have positive slope, lying tan-
gent to the graph at (2, f(2)).

14. a) h′(6) ≈ h(8)− h(4)
8− 4 = 10− 9

8− 4 = 1
4 in/day (answer can vary somewhat)

b) On day 6, the plant is growing at a rate of 1
4 inches per day.

c) h′(1) ≈ h(1)− h(0)
1− 0 = 2− 0

1− 0 = 2 and h′(1) ≈ h(3)− h(1)
3− 1 = 8− 2

3− 1 = 3; averag-

ing these gives h′(1) ≈ 2.5 in/day (this answer can vary somewhat)

d) On day 1, the plant is growing at a rate of 2.5 inches per day.

15. a)
dP

dt

∣∣∣∣
t=1
≈ P (1)− P (0)

1− 0 = 764− 696
1 = 68 and

dP

dt

∣∣∣∣
t=1
≈ P (2)− P (1)

2− 1 =
818− 764

1 = 54; averaging these gives
dP

dt

∣∣∣∣
t=1
≈ 61 kPa/min (answer can

vary somewhat)
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b) 1 minute after the start of the experiment, the pressure in the chamber is in-
creasing at a rate of 61 kPa/min.

c)
dT

dt

∣∣∣∣
t=2
≈ T (2)− T (1)

2− 1 = 71− 48
1 = 23 and

dT

dt

∣∣∣∣
t=2
≈ T (4)− T (2)

4− 2 = 102− 71
2 =

15.5; averaging these gives
dT

dt

∣∣∣∣
t=2
≈ 19.25 ◦ C/min (answer can vary some-

what)

d)
dT

dt

∣∣∣∣
t=3
≈ T (4)− T (2)

4− 2 = 102− 71
2 = 15.5 ◦ C/min (answer can vary some-

what)

e)
dT

dP

∣∣∣∣
t=5
≈ T (5)− T (4)

P (5)− P (4) = 112− 102
916− 891 = 10

25 = .4 and
dT

dP

∣∣∣∣
t=5
≈ T (6)− T (5)

P (6)− P (5) =
120− 112
935− 916 = 8

19 ≈ .421; averaging these gives
dT

dP

∣∣∣∣
t=5
≈ .411 ◦ C/kPa (answer

can vary somewhat)

16. f ′(30) ≈ 6; f ′(80) ≈ −3

17. a) ≈ 45

b) y = 120 + 45(x− 5)

c) ≈ 120

d)

g'

4

18.
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21. -10 -8 -6 -4 -2 2 4 6
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-4

-2

2

4

6

8

22. a) Used parentheses instead of brackets: command should have been Sin[Pi/6]
b) Log computes natural logarithm, not logarithm base 10: command should have

been Log10[7] or Log[10,7]

97



4.4. Homework exercises

c) Equation inside solve command needs two equal signs, not one: should have
been Solve[xˆ2 + 3x == 7, x]

d) Missing underscore after the x: command should have been f[x_] = xˆ2
e) Used brackets instead of parentheses: should have been (32+9)/(63-17)
f) Forgot parentheses: should have been f[x_] = (x-1)/(x+1)

23. a) 12
b) −1/2

c)
1

x + 1 − 1

d) 2
e) (x− 2)(x + 2) (the order doesn’t matter)

24. a) x3 ln(x2 + 1)
b) −3
c) 4
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Chapter 5

Elementary Differentiation
Rules

MOTIVATING EXAMPLE

Compute the derivative f ′(0), given that

f(x) = (x + 2)4√cos x.

Practical approach to the answer: Graph f using the Mathematica code

Plot[(x+2)ˆ4 Sqrt[Cos[x]], {x, -2, 2}]

to obtain this graph of f , then estimate the value of f ′(0):

-2 -1 1 2

10

20

30

40

50

60

Problem with this practical approach:

Analytic solution: based on what we know so far, the exact answer is

f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

f(h)− f(0)
h

= lim
h→0

(h + 2)4
√

cos h− 24

h
=
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5.1. Constant function and power rules

GOAL

We want to figure out how to compute derivatives without using the limit defini-
tion (and without having to resort to estimates coming from graphs and/or tables).

General procedure for computing derivatives

1. Memorize the derivatives of a few basic functions

(power, exponential, trigonometric, logarithmic, etc.)

2. Learn some rules which tell you how to compute the derivatives of more
complicated functions in terms of the derivatives you have memorized.

Over the next two chapters we will develop these rules, which allow us to compute
derivatives without having to resort to the limit definition. Eventually we will
come to a list of rules which are given on page 165 in Section 6.7.

5.1 Constant function and power rules
EXAMPLE 1

Find the derivative of f(x) = c, where c is a constant.

First, what should this be? The graph of f(x) = c is a ,

whose slope is . So f ′(x) should equal .

Justification of this intuition:

Theorem 5.1 (Constant Function Rule) Let c be a constant. Then
d

dx
(c) = 0.

As a reminder,
d

dx
(blank) means “derivative of blank”.
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EXAMPLE 2
Find the derivative of f(x) = mx + b, where m and b are constants.

First, what should this be? The graph of f(x) = mx + b is a (straight) line, whose

slope is . So f ′(x) should equal .

Justification of this intuition:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

[m(x + h) + b]− [mx + b]
h

=

Theorem 5.2 (Linear Function Rule) If f(x) = mx + b, then f ′(x) = m.

Special case:
d

dx
(x) =
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EXAMPLE 3
Find the derivative of f(x) = x2.

Solution:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

[(x + h)2]− [x2]
h

= lim
h→0

[x2 + 2xh + h2]− x2

h

= lim
h→0

2xh + h2

h

=

EXAMPLE 4
Find the derivative of f(x) = xn, where n is a nonnegative integer.

Solution:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

[(x + h)n]− [xn]
h

= lim
h→0

[xn + nxn−1h + ... + hn]− xn

h

(continued on next page)
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From the previous page,

f ′(x) = lim
h→0

[xn + nxn−1h + ... + hn]− xn

h

= lim
h→0

nxn−1h + ... + hn

h

= lim
h→0

(
nxn−1 + ... + hn−1

)

= nxn−1 .

EXAMPLE 5
Find the derivative of f(x) =

√
x.

Solution: Just to show you that you can use either definition of derivative, we’ll
do this example with the alternate definition:

f ′(x) = lim
t→x

f(t)− f(x)
t− x

= lim
t→x

√
t−
√

x

t− x

= lim
t→x

(√
t−
√

x
)

(t− x) ·

(√
t +
√

x
)

(√
t +
√

x
)

= lim
t→x

t− x

(t− x)
(√

t +
√

x
)

= lim
t→x

1√
t +
√

x

= 1√
x +
√

x
= 1

2
√

x
.
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EXAMPLE 6

Find the derivative of f(x) = 1
x

.

Solution:
f ′(x) = lim

t→x

f(t)− f(x)
t− x

= lim
t→x

1
t
− 1

x
t− x

=

Examples 1-6 illustrate the following general principle:

Theorem 5.3 (Power Rule) Let f(x) = xn, where n ̸= 0. Then f ′(x) = nxn−1.

The Power Rule can also be written this way:
d

dx
(xn) = nxn−1 whenever n ̸= 0.

Theorem 5.4 (Special cases of the Power Rule) .

d

dx
(x) = 1

d

dx
(mx + b) = m

d

dx

(1
x

)
= −1

x2

d

dx

(√
x
)

= 1
2
√

x

d

dx

(
x2
)

= 2x
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EXAMPLE 7
An object’s position (in meters) at time t (measured in seconds) is given by y = t4.
Find the object’s velocity at time 3.

Old solution:

v(3) = f ′(3) = lim
h→0

f(3 + h)− f(3)
h

= lim
h→0

(3 + h)4 − 34

h
= · · ·

New solution:

Using exponent rules with the Power Rule
EXAMPLE 8

Compute the derivative of each function:

1. f(x) = 2 3
√

x

2. f(x) = 2
9x

3. f(x) = 4
x5

Solution: Rewrite f as f(x) = −4x−5.

Then f ′(x) = −4(−5x−5−1) = 20x−6 .

4. f(x) = 2
5 7
√

x
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5. f(x) =
√

x5

2

Solution: Rewrite f as f(x) = 1
2x5/2. Then f ′(x) = 1

2 ·
5
2x

5
2 −1 = 5

4x3/2 .

6. f(x) = 3
√

x3

4x2

Solution: Rewrite f as f(x) = 3
4 ·

x3/2

x2 = 3
4x

3
2 −2 = 3

4x−1/2.

Then f ′(x) = 3
4 ·
−1
2 x

−1
2 −1 = −3

8 x−3/2 .

5.2 Linearity rules
QUESTION

If f and g are differentiable functions,
• does (f + g)′ = f ′ + g′ ?

• does (f − g)′ = f ′ − g′ ?

• does (cf)′ = c · f ′ when c is a constant?

• does (fg)′ = f ′ · g′?

• does
(

f

g

)′

= f ′

g′ ?

Theorem 5.5 (Sum Rule) If f and g are differentiable at x, then f+g is differentiable
at x and (f + g)′(x) = f ′(x) + g′(x).

PROOF OF THE SUM RULE By definition, (f + g)(x) means f(x) + g(x). Now using
the definition of the derivative,

(f + g)′(x) = lim
h→0

(f + g)(x + h)− (f + g)(x)
h

= lim
h→0

[f(x + h) + g(x + h)]− [f(x) + g(x)]
h

= lim
h→0

f(x + h)− f(x) + g(x + h)− g(x)
h

= lim
h→0

f(x + h)− f(x)
h

+ lim
h→0

g(x + h)− g(x)
h

= f ′(x) + g′(x). □
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Theorem 5.6 (Difference Rule) If f and g are differentiable at x, then f − g is
differentiable at x and (f − g)′(x) = f ′(x)− g′(x).

PROOF OF THE DIFFERENCE RULE is similar to the proof of the Sum Rule.

Theorem 5.7 (Constant Multiple Rule) If f is differentiable at x, then cf is differ-
entiable at x for any constant c and (cf)′(x) = c · f ′(x).

PROOF OF THE CONSTANT MULTIPLE RULE:

(cf)′(x) = lim
h→0

(cf)(x + h)− (cf)(x)
h

= lim
h→0

c f(x + h)− c f(x)
h

= lim
h→0

c[f(x + h)− f(x)]
h

= c lim
h→0

[f(x + h)− f(x)]
h

= c f ′(x).

Together, the Sum Rule, Difference Rule and Constant Multiple Rule are called
the linearity rules for differentiation (for reasons that you learn in linear algebra
(MATH 322)).

EXAMPLE 1
Compute the derivative of y = 3x2 + 2

√
x− 1.

EXAMPLE 2
Suppose the cost of producing x units of a drug is given by c(x) = 10x15 − 8x + 7.
Find the instantaneous rate of change in the cost when x = 1.
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EXAMPLE 3

Let y = 3 3
√

x− 2
3x3 + (3x− 2)2. Find dy

dx
.

Solution: First, rewrite y as y = 3x1/3 − 2
3x−3 + 9x2 − 6x + 4.

Then,
dy

dx
= 3 · 13x

1
3 −1 − 2

3(−3)x−3−1 + 9(2x)− 6 + 0, which simplifies to

dy

dx
= x−2/3 + 2x−4 + 18x− 6 .

EXAMPLE 4

Compute g′(x), if g(x) = 2
5x
√

x
+ (
√

x + 1)2

x2 .

WARNING: Products do not behave nicely under differentiation. Here is an
example to show why (fg)′ ̸= f ′ · g′:

Suppose f(x) = x2 and g(x) = x3.

Then f ′(x) = 2x and g′(x) = 3x2.
Therefore the product of the derivatives is f ′(x)g′(x) = (2x)(3x2) = 6x3.

BUT (fg)(x) = f(x)g(x) = x2x3 = x5.

Therefore the derivative of the product is (fg)′(x) =
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5.3. Derivatives of sine, cosine and tangent

5.3 Derivatives of sine, cosine and tangent
To figure out what the derivatives of sin x, cos x and tan x are, let’s first use

graphs to get some intuition as to what these derivatives might be:

f (x) = sin x

π

2
π 3 π

2
2 π

-1

1

π

2
π 3 π

2
2 π

-1

1

f (x) = cos x

π

2
π 3 π

2
2 π

-1

1

π

2
π 3 π

2
2 π

-1

1

f (x) = tan x

π

2
π 3 π

2
2 π

-1

1

π

2
π 3 π

2
2 π

-1

1

Theorem 5.8 (Derivatives of sine, cosine and tangent)

d

dx
(sin x) = cos x

d

dx
(cos x) = − sin x

d

dx
(tan x) = sec2 x

The derivatives of cot x, sec x and csc x, as well as the derivatives of arctan x
and arcsin x will be derived in the next chapter.

I have written proofs of the statements in Theorem 5.8 at the end of this section,
but I probably won’t go over the proofs in class. Essentially, you establish these
derivative formulas rigorously by writing out the limit definition of derivative,
and using a bunch of algebra and trig identities (and some other stuff).
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EXAMPLE 1

Compute f ′(x) if f(x) = 2 sin x− cos x

5 + 4.

EXAMPLE 2

Let y = 8
√

x3 + 5x− 2 tan x. Compute
dy

dx
.

EXAMPLE 3

Find the equation of the line tangent to y = 4 cos x− 2 when x = π

3 .
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5.3. Derivatives of sine, cosine and tangent

Proofs of the derivative formulas for sine, cosine and tangent

First, when computing these derivatives, we will need some trigonometric identi-
ties that are listed and numbered here for convenience:

sin(x + h) = sin x cos h + cos x sin h (5.1)

cos x = 1− 2 sin2
(

x

2

)
(5.2)

cos(x + h) = cos x cos h− sin x sin h (5.3)

tan(x + h) = tan x + tan h

1− tan x tan h
(5.4)

1 + tan2 x = sec2 x (5.5)

We will also need a couple of preliminary results:

Preliminary result # 1: lim
h→0

sin h

h
= 1.

PROOF OF PRELIMINARY RESULT # 1 Consider the following picture, where the
black arc is a quarter-circle and h is the angle between the x-axis and the diagonal
line:

h

C

tan h

B

O
A

cos h 1

sin h

1

From this picture, it is clear that

area of pink triangle ≤ area of blue pizza wedge ≤ area of green triangle
with corners O, A and B with vertices O, A and C

1
2(base)(height) ≤ angle

2π
(π radius2) ≤ 1

2(base)(height)

1
2(cos h)(sin h) ≤ h

2π
π(1)2 ≤ 1

2(1)(tan h)
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5.3. Derivatives of sine, cosine and tangent

From the previous page, we have

1
2(cos h)(sin h) ≤ h

2π
π(1)2 ≤ 1

2(1)(tan h).

Cancel the πs in the middle term, rewrite tan h as
sin h

cos h
and multiply everything

by 2 to get

cos h sin h ≤ h ≤ sin h

cos h
.

Divide everything by sin h to get

cos h ≤ h

sin h
≤ 1

cos h
.

Take reciprocals (this flips all the inequality signs) to get

1
cos h

≥ sin h

h
≥ cos h.

This proves the relationships between the graphs of cos h,
sin h

h
and

1
cos h

seen
below:

1
cos h

cos h

sin h
h

-1 - 1
2 0 1

2 1

1

We can conclude that since

lim
h→0

cos h = cos 0 = 1 and lim
h→0

1
cos h

= 1
1 = 1,

that lim
h→0

sin h

h
must also equal 1, proving preliminary result # 1. □

112



5.3. Derivatives of sine, cosine and tangent

Preliminary result # 2: lim
h→0

cos h− 1
h

= 0.

PROOF OF PRELIMINARY RESULT # 2 Multiply the top and bottom by (cos h + 1):

lim
h→0

cos h− 1
h

= lim
h→0

(cos h− 1)(cos h + 1)
h(cos h + 1)

= lim
h→0

cos2 h− 1
h(cos h + 1)

= lim
h→0

− sin2 h

h(cos h + 1) (by trig identity cos2 h + sin2 h = 1)

= lim
h→0

(
sin h

h

)
− sin h

cos h + 1

= (1)
( − sin 0

cos 0 + 1

)
= −0

1 + 1 = 0. □

PROOF THAT
d

dx
(sin x) = cos x:

Use the limit definition of derivative:

d

dx
(sin x) = lim

h→0

sin(x + h)− sin x

h

= lim
h→0

sin x cos h + cos x sin h− sin x

h
(by trig identity (5.1) above)

= lim
h→0

(cos x)sin h

h
+ lim

h→0
(sin x)cos h− 1

h

= cos x

(
lim
h→0

sin h

h

)
+ sin x

(
lim
h→0

cos h− 1
h

)
= cos x · 1 + sin x · 0 (by the preliminary results)
= cos x.

PROOF THAT
d

dx
(cos x) = − sin x:

d

dx
(cos x) = lim

h→0

cos(x + h)− cos x

h

= lim
h→0

cos x cos h− sin x sin h− cos x

h
(by trig identity (5.3) above)

= lim
h→0

(cos x)cos h− 1
h

− lim
h→0

(sin x)sin h

h
= cos x · 0− sin x · 1 (by the preliminary results)
= − sin x.
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5.3. Derivatives of sine, cosine and tangent

PROOF THAT
d

dx
(tan x) = sec2 x:

d

dx
(tan x)

= lim
h→0

tan(x + h)− tan x

h

= lim
h→0

tan x + tan h

1− tan x tan h
− tan x

h
(by trig identity (5.4) above)

= lim
h→0

tan x + tan h− tan x(1− tan x tan h)
h(1− tan x tan h)

= lim
h→0

tan x + tan h− tan x + tan2 x tan h

h(1− tan x tan h)

= lim
h→0

tan h + tan h tan2 x

h(1− tan x tan h)

= lim
h→0

tan h(1 + tan2 x)
h(1− tan x tan h)

= lim
h→0

tan h sec2 x

h(1− tan x tan h) (by trig identity (5.5) above)

= sec2 x · lim
h→0

sin h

cos h · h · (1− tan x tan h) (by writing tan h as
sin h

cos h
)

= sec2 x · lim
h→0

( 1
cos h

)(sin h

h

)
1

1− tan x tan h

= sec2 x · 11 · (1) · 1
1− tan x · 0 (by prelim. result # 1 on the third term)

= sec2 x.
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5.4. Exponential and logarithmic functions

5.4 Exponential and logarithmic functions
Question: What are the derivatives of ex and ln x?

Better question:

To get some intuition for this, let’s try to compute the derivative of an exponential
function with an arbitrary base b > 0. To do this, let f(x) = bx where b is a constant.
First, some pictures to give us an idea of what to expect:

1

1

b

So it looks like the derivative of an exponential function is .

To check this, use the limit definition of derivative:

d

dx
(bx) = lim

h→0

bx+h − bx

h

= lim
h→0

bxbh − bx

h

= lim
h→0

bx(bh − 1)
h

= bx ·
[
lim
h→0

bh − 1
h

]

What this tells us: the derivative of an exponential function with base b is itself,
times a constant that depends on b. Next, we will give a name to that constant:
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5.4. Exponential and logarithmic functions

Definition 5.9 Let b > 0. The natural logarithm of b, denoted ln b (and executed
with Log[b] in Mathematica), is

ln b = lim
h→0

bh − 1
h

.

Theorem 5.10 (Derivative of exponential functions that have arbitrary base)
Let b > 0 be a constant. Then

d

dx
(bx) = bx · ln b.

EXAMPLE 1
Compute the derivative of f(x) = 3 · 2x + 5−2x.

The graph of ln x

Theorem 5.11 (Basic logarithm facts) Let a, b > 0. Then:

Log of 1 is 0: ln 1 = 0.

Logs are increasing: if a < b, then ln a < ln b.

Logs have VA at x = 0: lim
b→0+

ln b = −∞.

Logs have no HA: lim
b→∞

ln b =∞.

PROOF For the first statement, use our definition of natural log:

ln 1 =

For the second statement (logs are increasing), notice that if a < b,

ah − 1
h

<
bh − 1

h
.

Taking limits as h→ 0 preserves this inequality, so ln a < ln b.
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5.4. Exponential and logarithmic functions

For the third statement (VA at x = 0), notice that as b → 0+,
bh − 1

h
→ 0− 1

h
=

−1
h

. Take limit as h→ 0 of this to get −1
0 = −∞.

For the fourth statement (no HA), notice that as b→∞,
bh − 1

h
gets bigger and

bigger without bound, so taking limits as h→ 0 means ln b will also get bigger and
bigger without bound. Thus lim

b→∞
ln b =∞. □

The preceding theorem tells you about the graph of ln x: it must go through
(1, 0), increase from left to right, have VA x = 0, and no HA, so it looks like:

1

1

The number e

Definition 5.12 The number e, called Euler’s constant, is the number which satis-
fies ln e = 1. (In Mathematica, this number is obtained by typing E.) The natural
exponential function is the function

exp(x) = ex.

e is an irrational number that is roughly 2.71828....

e cannot be expressed in terms of rational numbers, roots, or trig functions.

You probably have heard of e before, but you probably didn’t hear why you were
being told about e. Mathematicians like base e for their exponents and logarithms
because they lead to easier derivatives than other bases do. In particular:

Theorem 5.13 (Derivative of the natural exponential function)
d

dx
(ex) = ex.

PROOF
d

dx
(ex) = ex · ln e = ex · 1 = ex. □
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EXAMPLE 2
Find the derivative of y = 2ex − 4 sin x + cos x− 2x6 − 1.

More logarithm rules

In this section, I have told you the following definition of natural logarithm:

ln b = lim
h→0

bh − 1
h

.

You probably have heard of logarithms before, but they were probably presented
to you differently. However, this is the same notion of logarithm that you already
knew about. In particular, we can derive algebraic rules for logarithms (that are
hopefully familiar to you) using only this limit definition:

Theorem 5.14 (Algebra with logarithms) Let a, b > 0 and let n ∈ R. Then:

Log of a product is the sum of the logs: ln(ab) = ln a + ln b.

Log of a quotient is the difference of the logs: ln
(

a

b

)
= ln a− ln b.

Exponents in a log can be pulled in front: ln(bn) = n ln b.

Cancellation laws: ln eb = b and eln b = b.

PROOF To prove the first statement, notice

ln a + ln b = lim
h→0

ah − 1
h

+ lim
h→0

bh − 1
h

= 1 · lim
h→0

ah − 1
h

+ lim
h→0

bh − 1
h

= lim
h→0

bh · lim
h→0

ah − 1
h

+ lim
h→0

bh − 1
h

= lim
h→0

bh(ah − 1)
h

+ lim
h→0

bh − 1
h

= lim
h→0

ahbh − bh

h
+ lim

h→0

bh − 1
h
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5.4. Exponential and logarithmic functions

Continuing from the previous page:

ln a + ln b = lim
h→0

ahbh − bh

h
+ lim

h→0

bh − 1
h

= lim
h→0

[
ahbh − bh

h
+ bh − 1

h

]

= lim
h→0

ahbh − bh + bh − 1
h

= lim
h→0

ahbh − 1
h

= lim
h→0

(ab)h − 1
h

= ln(ab).

The second and third statements have similar proofs; these are omitted.

To prove the first cancellation laws, observe ln eb = b ln e = b(1) = b.

That leaves the second cancellation law: suppose b = ex. Then

eln b = eln ex = ex = b

(in the red equals sign, we used the first cancellation law). □

EXAMPLE 3
Evaluate each expression:

ln e5 =

ln
√

e =

ln ex =

eln 2 =

e4 ln 3 =

3e
1
2 ln 16 =

The last examples above generalize into the following fact, which is incredibly
useful:

Theorem 5.15 (Change of base formula for exponentials) Let a > 0 and let b ∈
R. Then

ab = eb ln a.

In calculus, we use the formula of Theorem 5.15 to simplify expressions like the
e4 ln 3 in Example 3, and also use it to rewrite expressions so they are easier to dif-
ferentiate.
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5.4. Exponential and logarithmic functions

EXAMPLE 4
Rewrite each expression so that it contains no ln nor e:

3.4ex ln 1.6 =

e5 ln x =

4e
1
7 ln(2x) =

EXAMPLE 5
Simplify each expression and then rewrite it so that it is a constant times a single
exponential expression, whose base is e (in other words, reverse the technique of
the previous example):

−2 · 53x =

3(2ex)4e3xe−2y =

(e2x)42−3x =

5 · 72y+x4x =

The derivative of erx

EXAMPLE 6
Find the derivative of y = e4x.

Example 6 generalizes into the following result, which previews something we’ll
learn later called the Chain Rule:
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5.4. Exponential and logarithmic functions

Theorem 5.16 For any constant r,
d

dx
(erx) = rerx.

EXAMPLE 7

An object’s position at time t (t is measured in hours), is f(t) = 2e7t + 5e−t

e3t
km.

Compute the object’s velocity at time t, and the object’s velocity at time 0.

Logarithms with arbitrary bases

Definition 5.17 Let a > 0. Define the logarithm base a of b by the following
formula:

loga x = ln x

ln a
.

EXAMPLE 8
Rewrite each expression in terms of only natural logarithms:

log x (if no base is given, this means log10 x)

4 log3(4x) =
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Theorem 5.18
loga x = y if and only if ay = x.

PROOF This is a direct calculation, using the definition in Definition 5.17:

loga x = y ⇐⇒ ln x

ln a
= y

⇐⇒ ln x = y ln a

⇐⇒ ln x = ln ay

⇐⇒ x = ay. □

This rule is used to actually compute logarithms in arbitrary bases:

EXAMPLE 9
Evaluate the following expressions:

1. log 10000

2. log9 3

3. log3
1
27

Solution:
1
27 = 1

33 = 3−3, so log3
1
27 = −3 .

4. log6 36
Solution: 36 = 62, so log6 36 = 2 .

5. log2 64
Solution: 64 = 2 · 2 · 2 · 2 · 2 · 2 = 26, so log2 64 = 6 .

6. log4 32

Solution: 32 = 4 · 4 · 2 = 4 · 4 · 41/2 = 41+1+1/2 = 45/2 so log4 32 = 5
2 .

122



5.4. Exponential and logarithmic functions

The derivative of ln x

First, let’s get some intuition as to what the derivative of ln x should be, using
graphs:

1 e

1

1 e

1

What function do we know that has a graph that looks like the one at right?

To verify whether this guessed derivative of ln x is correct, we’ll use a trick,

where we compute
dy

dx
(the rate of change of y with respect to x) by first comput-

ing
dx

dy
(the rate of change of x with respect to y). To understand how

dy

dx
and

dx

dy
are related, let’s consider an example:

Suppose y is position and x is time. Then

dy

dx
= velocity = rate of change of position per unit of time

dx

dy
=

In particular, if
dy

dx
= 5 m/sec, then

dx

dy
=

In general,
dy

dx
=
(

dx

dy

)−1

= 1
dy

dx

. In other words, the Leibniz notation for

derivatives works the way fractions do when taking reciprocals (even though deriva-
tives aren’t fractions).

Now, let’s use this observation for the computation of the derivative of y = ln x:
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5.4. Exponential and logarithmic functions

.

Theorem 5.19 (Derivative of the natural logarithm function)
d

dx
(ln x) = 1

x
.

EXAMPLE 10
Find the slope of the line tangent to the function f(x) = 3 ln x +

√
x at x = 4.

EXAMPLE 11

Find the derivative of λ(z) = 2 ln z

3 + log z − 2 log4 z.
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Summary of Section 5.4

Definitions of “ln”, “e”, “exp” and “loga” are as follows:

• ln b =lim
h→0

bh − 1
h

.
• e is the number such that ln e = 1.
• The natural exponential function is exp(x) = ex.

• loga x = ln x

ln a
.

The graph of ln x goes up from left to right, passes through (1, 0), has VA x = 0
and no HA.

Derivatives and limits to know
d

dx
(ex) = ex

d

dx
(erx) = rerx

d

dx
(bx) = bx · ln b (less important)

d

dx
(ln x) = 1

x
lim

x→0+
ln x = −∞

lim
x→∞

ln x =∞

Rules used to manipulate expressions containing logarithms

ln ab = ln a + ln b

ln a

b
= ln a− ln b

ln bn = n ln b

ln eb = b

eln b = b

Change of base formulas

loga x = ln x

ln a
ab = eb ln a

Rule used to evaluate logarithms

loga x = y means ay = x
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5.5 Higher-order derivatives
We will see that many problems can be studied not just by differentiating a func-
tion once, but by repeatedly differentiating it many times. First, we establish nota-
tion to describe this procedure:

Definition 5.20 Let f : R→ R be a function.

• The zeroth derivative of f , sometimes denoted f (0), is just the function f itself.

• The first derivative of f , sometimes denoted f (1) or
dy

dx
, is just f ′.

• The second derivative of f , denoted f ′′ or f (2) or
d2y

dx2 , is the derivative of f ′;

in other words, f ′′ = (f ′)′. The third derivative of f , denoted f ′′′ or f (3) or
d3y

dx3 , is the derivative of f ′′; in other words, f ′′′ = ((f ′)′)′.

• More generally, the nth derivative of f , denoted f (n) or
dny

dxn
,is the derivative of

f (n−1); in other words f (n) = ((((f ′)′) · · ·′)′.

Why is the Leibniz notation
d2y

dx2 ?

EXAMPLE 1
Let f(x) = 2x6. Find f ′′′(x).

EXAMPLE 2

If y = cos x + sin x, find
d2y

dx2

∣∣∣∣∣
x=π/4

.
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5.5. Higher-order derivatives

Physical interpretation of the second derivative

Suppose an object’s position on a number line after t seconds of elapsed time is
given by f(t). Then

f ′(t) = rate of change of position = velocity

f ′′(t) = (f ′)′(t) = rate of change of velocity =

EXAMPLE 3
A bee is flying back and forth along a number line, so that its position (in ft) after t

seconds of time is f(t) = −1
3 t3 +3t2. What is the velocity of the object at the instant

where its acceleration is zero?
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Graphical interpretation of the second derivative

Let f be a twice- differentiable function. Then

f ′(x) = slope of graph of f at x

f ′′(x) = (f ′)′(x) = rate of change of slope at x

EXAMPLE 4

Let k be a constant and define f(x) = 1
2kx2 + (1− k)x + 1

2k. Examine the behavior
of f(x) at x = 1 for various k:

f(1) = 1
2k + 1− k + 1

2k = 1⇒ graph goes through (1, 1)

f ′(x) = kx + 1− k ⇒ f ′(1) = k + 1− k = 1⇒ graph has slope 1 at (1, 1)
f ′′(x) = k ⇒ f ′′(1) = k

k=-1

k=-3

k=-6

k=0

k=1

k=4

k=12

1

1
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5.5. Higher-order derivatives

Compiling information from the first and second derivative, we can determine the
general shape of a graph near a value x as follows:

f ′(x) > 0 f ′(x) < 0 f ′(x) = 0

f ′′(x) > 0

f ′′(x) < 0

f ′′(x) = 0

Before the days of Mathematica and graphics calculators, this is how people learned
to sketch the graphs of functions.

EXAMPLE 5
Suppose f is some unknown function such that f(3) = −2, f ′(3) = 1 and f ′′(3) = 2.
Sketch a picture of what the graph of f looks like near x = 3:

-1 1 2 3 4 5

-3

-2

-1

1

2

3
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EXAMPLE 6
Suppose f is some function whose graph is given below:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

1. Estimate f(−6).

2. Estimate f ′(−6).

3. Estimate f ′(1).

4. Estimate f ′′(1).

5. Estimate f ′′(−3).

6. Estimate a value of x for which f ′(x) = 0 but f ′′(x) < 0.

7. Estimate a value of x for which f ′(x) < 0 but f ′′(x) > 0.

8. Is f ′′(9) positive, negative, or zero? Explain.

9. Is f ′′(−7) positive, negative, or zero? Explain.
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EXAMPLE 7
Suppose that you look at your Fitbit periodically to measure the number of steps
you have walked and record what you see in the following table:

time t

(minutes after noon)
0 2 5 7 11 15

steps taken f(t) 0 35 115 147 163 191

Use the table above to estimate the answers to these questions. Show your work;
use correct mathematical language and use appropriate units.

1. How fast are you walking at 12:06 PM?

Solution: This is asking for the velocity at time 6, which is f ′(6). We estimate
this with a difference quotient, as in Chapter 4:

f ′(6) ≈ f(7)− f(5)
7− 5 = 147− 115

7− 5 = 32
2 = 16 steps/min .

Note that the concept generalizes as follows:

2. What is your acceleration at 12:07 PM? Use appropriate units.
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EXAMPLE 8
The graph of some unknown function f is given below at left. Sketch the graph of
f ′′ on the right-hand axes:

0 2 4 6 8

2

4

6

8

2 4 6 8

-4

-2

2

4

132



5.6. Homework exercises

5.6 Homework exercises
In these problems (and in all future problems), you may (and should) use differen-
tiation rules to compute any necessary derivatives (i.e. you do not have to use the
limit definition).

Exercises from Sections 5.1 and 5.2

1. Find
dy

dx
if y = 3.

2. Find f ′(x) if f(x) = x6 + 2
√

x.

3. Find
d

dx

(
3x− 4

5x
+ 1

)
.

4. A business estimates that if it employs x thousands of people, then its profit,
in millions of dollars, is given by the function f(x) = 2x3 + 2− x−1. Find the
rate of change of the business’ profit relative to the change in x, when x = 2.

5. Find the instantaneous rate of change of y with respect to x, if y = (x−2)(x2 +
4).

6. Find the slope of the line tangent to y = 2x5/2 − x3/2 when x = 4.

7. Find the equation of the line tangent to f(x) = 3− x4 + 1
x

when x = 1.

8. Suppose an object is traveling along a number line so that its position (in
meters) at time t (in seconds) is f(t) = 2t − 4t−2. Find the object’s velocity
when t = 2.

9. Suppose an object’s position at time t is given by f(t) = 4t2 − 5t + 2. Find all
times t where the velocity of the object is −1.

In Problems 10-21, compute the derivative of the indicated function:

10. f(x) = 5
√

x− 3
3
√

x

11. h(x) =
√

7x

12. g(t) = (t + 2)(
√

t− 1)

13. F (x) = 2
7x
− 2x

7

14. f(x) = (2x)3

15. f(x) = (x + 1)(x− 1)√
x

16. g(x) = 3 + 4x− 3
√

x

17. f(x) = 7
2x4 − 2

18. f(x) = x
3
√

x5

19. v(x) = 20 4
√

x11 − 3x2x3
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20. f(w) = (2
√

w + 1)(
√

w − 3)
w

21. f(t) = 2t2 + 3t− 1
3t

Exercises from Section 5.3

22. Find f ′(x) if f(x) = 2
3 sin x + 3

4 cos x− x2.

23. Find the derivative of y = 2− x− 4 tan x.

24. Let f(x) = cos x− 3. Find
df

dx

∣∣∣∣∣
x=π/4

.

25. Find the slope of the line tangent to y = 3 tan x− cos x when x = π

6 .

26. Find the instantaneous velocity of an object at time t (measured in hours), if
the object’s position at time t is f(t) = 3t + sin t (measured in km).

Exercises from Section 5.4

27. Simplify each of the following expressions:

a) 4 ln e5

b) 2e2 ln 3

c) 4 ln 3
√

e2

d) exp
(1

2 ln 4
9

) e) ln 1

f) ex ln(a−1)

g) eln 6

h) ln e8

28. Write each of the following expressions as a single exponential term, where
the base of the exponent is e (meaning your answer should look like e□):

a) tx

b) 48

c)
e4xex

e−2x

d) 6x−123x

e) 7−xe4x

f) (3x)4x

g) (6x)t+1ex

h)
e3x

2x

29. Rewrite the following expressions in terms of natural logarithms:

a) log y b) 3 log4 11 c) log1/2
2
3

d) log2(x + 4y)

30. Evaluate each expression:

a) log .01

b) 5 ln e3

c) log9 3

d) log7 498

e) log4
1
16

f) 4 log5 625 + log3 27
g) log2 36− log2 9
h) log1/3 27
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In Problems 31-44, compute the derivative of each given function.

31. f(x) = 7x

32. f(x) = 6 · 8x + 3
(2

5

)x

33. f(x) = −ex

4
34. g(t) = 4et − 5t(1− t) + sin t

35. g(x) = 5e3x − 4 cos x

36. f(x) = 1
6ex

+ 3 5
√

x

37. h(x) = 5 ln x− 11ex

38. f(x) = 5x2 − 2
√

x + ln x

3

39. θ(x) = 4− 3
x

+ 2 ln x

40. G(z) = 4 log7 z

41. f(t) = ln(7t)

42. r(x) = ex(e−x − 3)

43. q(x) = 1
x 3
√

x
− 4 ln x + 8ex − ex/2

44. f(x) = ln x + 4 3
√

x− tan x + 16

45. Suppose the volume of dirt on an ant hill at time t (in days) is t + ln t cubic
inches. Find the rate at which the volume of the anthill is changing at time
t = 6.

46. Write the equation of the line tangent to y = 4e2x + 5e−3x when x = 0.

Exercises from Section 5.5

47. Find the second derivative of f(x) = x3 − 1
x

+ 4 sin x.

48. Find σ′′(x) if σ(x) = 2
3x6 − 2

x
+ 4.

Note: σ is the Greek letter sigma.

49. Let y = 2 sin θ. Find
d2y

dθ2 .

50. Find
d2f

dx2

∣∣∣∣∣
x=1

if f(x) =
(2

x
+
√

x
)

.

51. If f(x) = 4ex − 5x4 + 3x, find f ′′(x).

52. Find the third derivative of f(x) = ln x when x = 2.

53. Find the 33rd derivative of f(x) = ex.

54. Let f(x) = sin x. Find f (801)(x).

55. Find the acceleration of an object at time 3, if the object’s position (in inches)
at time t (in seconds) is f(t) = 2t3 − t2 + 4t.
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5.6. Homework exercises

56. Find the acceleration of an object at time
2π

3 , if the object’s velocity at time t

is v(t) = 3 sin t + 2 mi/hr.

57. An object moves in such a fashion that its position after t units of time is
f(t) = et − 2t. As time passes, is the object speeding up or slowing down?

58. An object moves in such a fashion that its position at time t (measured in
minutes) is f(t) = t3 − 9t2 cm. Find all times t where the acceleration of the
object is zero.

59. Suppose f is some unknown function such that f(4) = 0, f ′(4) = −1 and
f ′′(4) = 5. Sketch a picture of what the graph of f looks like near x = 4.

60. Suppose g is some unknown function such that g(−1) = 3, g′(−1) = 0 and

g′′(−1) = −2
5 . Sketch a picture of what the graph of g looks like near x = −1.

61. Suppose f is some unknown function such that f(4) = 1, f ′(4) = 1
7 and

f ′′(4) = −2
3 . Sketch a picture of what the graph of f looks like near x = 4.

62. Pictured below is the graph of some unknown function f .

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9
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-4
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-2
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5

6

7

8

Use the graph to determine, with justification, whether each of the following
quantities are positive, negative, or zero:

a) f(5)
b) f ′(5)
c) f ′′(5)

d) f(−6)
e) f ′(−6)
f) f ′′(−6)

g) f(−1)
h) f ′(−1)
i) f ′′(−1)

j) f(3)
k) f ′(3)
l) f ′′(3)

63. Pictured below is the graph of some unknown function g.
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5.6. Homework exercises

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Use the graph to answer the following questions:

a) Estimate g′′(1).
b) Estimate g′′(5).
c) Estimate g′′(−7).
d) Find a value of x such that g′(x) = 0 but g′′(x) > 0.

e) Find a value of x such that g′(x) = 0 but g′′(x) < 0.

f) Find a value of x for which g′′(x) DNE.

64. The position of a bug which is crawling back and forth along the x-axis at
various times t are given in the following chart:

time t
(seconds) 0 1 4 8 12

position x(t)
(inches) 14 7 −5 40 220

a) Use the information in the chart to estimate x′(3). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

b) In the context of this problem, what does your answer to part (a) mean?

c) In the context of this problem, what is the significance of the sign of your
answer to part (a)?

d) Use the information in the chart to estimate x′′(6). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

e) In the context of this problem, what does your answer to part (d) mean?

f) In the context of this problem, what is the significance of the sign of your
answer to part (d)?
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5.6. Homework exercises

65. During a snowstorm, you periodically measure the depth of snow that has
fallen outside your house. Your observations are recorded in the following
table:

time t
(hours) 0 1 3 4 5 7 8

depth of snow f(t)
(inches) 0 6 15 18 20 21 24

a) Use the information in the chart to estimate f ′(4). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

b) In the context of this problem, what does your answer to part (a) mean?

c) Use the information in the chart to estimate f ′′(6). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

d) In the context of this problem, what does your answer to part (c) mean?

66. The graph of some unknown function g is shown below at left. Use this graph
to sketch graphs of the functions g′ and g′′.

g

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

f

-8 -6 -4 -2 2 4 6

-8

-6

-4

-2

2

4

6

67. The graph of some unknown function f is shown above at right. Use this
graph to sketch graphs of the functions f ′ and f ′′.

68. The graph of some unknown function h is shown below. Use this graph to
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5.6. Homework exercises

sketch graphs of the functions h′, h′′ and h′′′.

h

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

69. Sketch the graph of any differentiable function f which has all of the follow-
ing properties:

• f ′(3) > 0;

• f ′′(3) < 0;

• f ′(−1) > 0;

• f ′′(−1) > 0.

70. Sketch the graph of any differentiable function g which has all of the follow-
ing properties:

• g′(5) < 0;

• g′′(5) < 0;

• g′(0) = 0;

• g′′(0) < 0.

71. Sketch the graph of any differentiable function h which has all of the follow-
ing properties:

• h′(2) = 0;

• h′(2) > 0;

• h′(−4) > 0;

• h′′(−4) = 0.

Answers

1. 0

2. 6x5 + 1√
x

3. 3 + 4
5x2

4.
97
4 million $ per 1000 people

5. 3x2 − 4x + 4

6. 37
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5.6. Homework exercises

7. y = 3− 5(x− 1)

8. 3 m/sec

9. t = 1
2

10.
5

2
√

x
+ x−4/3

11.
√

7 1
2
√

x

12.
3
2
√

t− 1 + 1√
t

13. − 2
7x2 −

2
7

14. 24x2

15.
3
2
√

x + 1
2x−3/2

16. 4− 1
3x−2/3

17. −14x−5

18. −2
3x−5/3

19. 55x7/4 − 15x4

20.
5
2x−3/2 + 3x−2

21. 4t + 3 + 1
3t2

22.
2
3 cos x− 3

4 sin x− 2x

23. −1− 4 sec2 x

24. −
√

2
2

25.
9
2

26. 3 + cos t km/hr

27. a) 20
b) 18

c)
8
3

d)
2
3

e) 0
f) (a− 1)x

g) 6
h) 8

28. a) ex ln t

b) e8 ln 4

c) e7x

d) e(x−1) ln 6+3x ln 2

e) e4x−x ln 7

f) e4x ln 3x

g) ex+(t+1) ln 6x

h) e3x−x ln 2

29. a)
ln y

ln 10

b)
3 ln 11

ln 4

c)
ln 2

3
ln 1

2

d)
ln(x + 4y)

ln 2
30. a) −2

b) 15

c)
1
2

d) 16
e) −2
f) 19
g) 2
h) −3

31. 7x · ln 7

32. 6 · 8x · ln 8 + 3
(2

5

)x

ln 2
5

33. −1
4ex

34. 4et − t + 10t + cos t
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5.6. Homework exercises

35. 15e3x + 4 sin x

36. −1
6e−x + 3

5x−4/5

37.
5
x
− 11ex

38. 10x− 1√
x

+ 1
3x

39.
3
x2 + 2

x

40.
4

ln 7 ·
1
z

41.
1
t

42. −3ex

43. −4
3x−7/3 − 4

x
+ 8ex − 1

2ex/2

44.
1
x

+ 4
3x−2/3 − sec2 x

45.
7
6 cubic in/day

46. y = 9− 7(x− 0)

47. 6x− 2x−3 − 4 sin x

48. 20x4 − 4x−3

49. −2 sin θ

50.
15
4

51. 4ex − 60x2

52.
1
4

53. ex.

54. f(x) = cos x

55. 34 in/sec2

56.
−3
2 mi/hr2

57. Speeding up (since acceleration is
positive)

58. t = 3

59. Passes through (4, 0), slope of tangent line is −1 and lies above the tangent line at 4:

2 4 6 8

-3

-2

-1

1

2

3

4

60. Passes through (−1, 3), curved downward such that the “peak” of the graph is at
(−1, 3):

-3 -2 -1 0 1 2

1

2

3

4

61. Passes through (4, 1), slope of tangent line is
1
7 , and graph lies below the tangent

line:
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5.6. Homework exercises

1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

62. a) f(5) = 0 (graph at x−axis at x = 5)

b) f ′(5) > 0 (graph going up from left to right)

c) f ′′(5) > 0 (graph lies above tangent line)

d) f(−6) > 0 (graph above x−axis at x = −6)

e) f ′(−6) > 0 (graph going up from left to right)

f) f ′′(−6) < 0 (graph lies below tangent line)

g) f(−1) > 0 (graph above x−axis at x = −1)

h) f ′(−1) < 0 (graph going down from left to right)

i) f ′′(−1) = 0 (graph is straight at x = −1)

j) f(3) < 0 (graph below x−axis at x = 3)

k) f ′(3) = 0 (tangent line horizontal)

l) f ′′(3) > 0 (graph lies above tangent line)

63. a) 0

b) ≈ 1
4 (a small positive number)

c) ≈ −5 (a negative number)

d) x ≈ −5.25, x ≈ 8.1
e) x ≈ −6.8, x ≈ −2.8
f) x = −2

64. a) x′(3) ≈ x(4)− x(1)
4− 1 = −5− 7

4− 1 = −4 in/sec.

b) The bug’s velocity at time 3 is −4 in/sec.

c) Since the velocity is negative, the bug is moving from right to left at time 3.

d) x′(6) ≈ x(8)− x(4)
8− 4 = 40− (−5)

8− 4 = 11.25 in/sec;

x′(10) ≈ x(12)− x(8)
12− 8 = 220− 40

12− 8 = 45 in/sec;

x′′(6) ≈ x′(10)− x′(6)
10− 6 = 45− 11.25

10− 6 ≈ 8 in/sec2.

e) The bug’s acceleration at time 6 is 8 in/sec2.

f) Since the acceleration is positive, the bug is speeding up at time 6.
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5.6. Homework exercises

65. a) f ′(4) ≈ f(5)− f(4)
5− 4 = 2 and f ′(4) ≈ x(4)− x(3)

4− 3 = 3; averaging these we

estimate f ′(4) ≈ 2.5 in/hr.

b) At time 4, the snow is falling at a rate of 2.5 inches per hour.

c) f ′(5) ≈ f(5)− f(4)
5− 4 = 2 and f ′(7) ≈ f(7)− f(5)

7− 5 = 1
2 . Then, f ′′(6) ≈ f ′(7)− f ′(5)

7− 5 =
1
2 − 2

2 = −3
4 in/hr2.

d) At time 6, since f ′′(6) < 0, the rate at which the snow is falling is decreasing
(i.e. the snowstorm is “letting up”).

66.

g'

g''

-8 -6 -4 -2 2 4 6 8 67.

h'

h''

-8 -6 -4 -2 2 4 6 8 68.

h'

h''

h'''
-8 -6 -4 -2 2 4 6 8

69. Answers may vary; one possible answer is

-1 3

70. Answers may vary; one possible answer is

5

71. Answers may vary; one possible answer is

-4 2

143



Chapter 6

Intermediate Differentiation
Rules

6.1 Product rule
Question: What is

d

dx
(fg) (a.k.a. (fg)′) in terms of f , g, f ′ and g′?

First, what is (fg)′ not equal to?

Some intiution involving units: Suppose x is time (measured in sec) and f(x) and
g(x) are both distances (measured in meters). Then

f ′(x) is , which is measured in .

g′(x) is , which is measured in .

So f ′(x)g′(x) would be measured in .

But (fg)(x) = f(x)g(x) is , which is measured in ,

which means (fg)′(x) would be measured in .

So this reinforces that (fg)′(x) ̸= f ′(x)g′(x). But how do you compute (fg)′(x)?
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6.1. Product rule

More intuition: Suppose you have a rectangle whose length is l = f(x) and
whose width is w = g(x). This makes the area lw = (fg)(x). Suppose you increase
l and w by a small amount. How much does the area change?

l = f (x)

w = g(x)
rate f '(x)

rate g'(x)

CONCLUSION:

Justification of this intuition:

(fg)′(x) = lim
h→0

(fg)(x + h)− (fg)(x)
h

= lim
h→0

f(x + h) g(x + h)− f(x) g(x)
h

= lim
h→0

f(x + h) g(x + h)− f(x) g(x + h) + f(x) g(x + h)− f(x) g(x)
h

= lim
h→0

[
f(x + h) g(x + h)− f(x) g(x + h)

h
+ f(x) g(x + h)− f(x) g(x)

h

]

= lim
h→0

[
g(x + h)f(x + h)− f(x)

h

]
+ lim

h→0

[
f(x)g(x + h)− g(x)

h

]
= g(x) f ′(x) + f(x) g′(x).

This work proves the following theorem:

Theorem 6.1 (Product Rule) Let f and g be differentiable at x. Then fg is differen-
tiable at x and

(fg)′(x) = f ′(x) g(x) + g′(x) f(x).
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6.1. Product rule

The Product Rule says, in English, the following:

the derivative of a product is “the derivative of the first times the second plus the
derivative of the second times the first”.

EXAMPLE 1
Find y′ if y = 3x2 sin x.

EXAMPLE 2
Find the slope of the line tangent to f(x) = (2x3 + 4x− 1) tan x, at x = 0.

EXAMPLE 3

Find
d2y

dx2 if y = x4ex.

Solution: First, by the Product Rule,

dy

dx
= 4x3ex + exx4.

EXAMPLE 4
Find f ′(x) if f(x) = cos2 x.
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6.2. Quotient rule

6.2 Quotient rule
Theorem 6.2 (Quotient Rule) Let f and g be differentiable at x, where g(x) ̸= 0.

Then
f

g
is differentiable at x and

(
f

g

)′

(x) = f ′(x) g(x)− g′(x) f(x)
[g(x)]2 = .

The proof of this is similar to the proof of the Product Rule and is omitted.

The Quotient Rule says, in English, the following:

the derivative of a quotient is “the derivative of the top times the bottom minus the
derivative of the bottom times the top, all over the bottom squared”.

EXAMPLE 1

Find θ′(x) if θ(x) = 2
√

x− 3x + 1
5 ln x

.

Solution: Apply the Quotient Rule:

θ′(x) = TOP′ · BOT− BOT′ · TOP
BOT2

EXAMPLE 2

Let f(x) = x2 + 1
x2 − 1 . Find the slope of the line tangent to f when x = 0.
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6.2. Quotient rule

EXAMPLE 3
Suppose that at time t (measured in seconds), the energy in a nuclear reaction is
3et

t
Joules. Find the rate of change of the energy with respect to time.

EXAMPLE 4
Find f ′(x) if

f(x) = 3 tan x + 6x2 − 5x + 2
−4 cos x− 3x−2/3 + 2 .
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6.3. Derivatives of secant, cosecant and cotangent

6.3 Derivatives of secant, cosecant and cotangent
The quotient rule can be used to compute the derivatives of sec x, csc x and cot x.
You can either memorize the answers that are derived below, or remember how to
“re-compute” them using the quotient rule, as necessary.

EXAMPLE 1
Find the derivative of f(x) = sec x.

d

dx
(sec x) = d

dx

( 1
cos x

)

=

EXAMPLE 2
Find the derivative of f(x) = csc x.

Solution:

d

dx
(csc x) = d

dx

( 1
sin x

)
= (1)′ · sin x− (sin x)′ · 1

(sin x)2

= 0 · sin x− cos x · 1
sin2 x

= − cos x

sin2 x
= − 1

sin x
· cos x

sin x
= − csc x cot x .

EXAMPLE 3
Find the derivative of f(x) = cot x.

Solution:

d

dx
(cot x) = d

dx

(cos x

sin x

)

=
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6.3. Derivatives of secant, cosecant and cotangent

Theorem 6.3 (Derivatives of secant, cosecant and cotangent)

d

dx
(sec x) = sec x tan x

d

dx
(csc x) = − csc x cot x

d

dx
(cot x) = − csc2 x

EXAMPLE 4
Find the instantaneous rate of change of the function f(x) = 2x sec x + 1 when
x = 0.

EXAMPLE 5

Let y = sec x + 3 cot x

x− sin x
. Find

dy

dx
.

EXAMPLE 6

Find
d

dt

(
2 5
√

t4 csc t
)
.
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6.3. Derivatives of secant, cosecant and cotangent

EXAMPLE 7
Suppose an object’s position, measured in feet, at time t, measured in seconds, is
given by f(t) = et sec t. Find the object’s velocity and acceleration at time 0.

EXAMPLE 8

Find g′
(

π

3

)
if g(t) = t2 sin t.

Solution: First, by the Product Rule, g′(t) = 2t sin t + (cos t)t2.

⇒ g′
(

π

3

)
= 2

(
π

3

)
sin

(
π

3

)
+ cos

(
π

3

)
·
(

π

3

)2

= 2
(

π

3

) √3
2 + 1

2

(
π2

9

)

= π
√

3
3 + π2

18 .
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6.4. Chain rule

6.4 Chain rule
Goal: Compute derivatives of compositions. This means that given differentiable
functions f and g, we want to find the derivative of f ◦ g in terms of f , f ′, g and g′.

Motivating example:

Suppose Mrs. Young (y) is moving 5 times as fast as Mrs. Underwood (u).

Suppose also that Mrs. Underwood is moving 3 times as fast as Mrs. Xavier (x).

What is the relationship between Mrs. Young’s speed and Mrs. Xavier’s speed?

Answer:

In the language of derivatives, the motivating example becomes the following
question:

“If
dy

du
= 5 and

du

dx
= 3, what is

dy

dx
?”

The answer is found as follows:

The general idea described here is what is called the Chain Rule:

Theorem 6.4 (Chain Rule, Leibniz notation)

dy

dx
= dy

du
· du

dx
.
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6.4. Chain rule

EXAMPLE 1

Find
dy

dx
if y =

√
sin x.

Question: What’s missing here, given what we did on the previous page?

Continuing with this example, let F (x) =
√

sin x. Then,
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6.4. Chain rule

Theorem 6.5 (Chain Rule, prime notation) If f and g are differentiable functions,
then f ◦ g is differentiable and

(f ◦ g)′(x) = f ′(g(x)) g′(x).

I like to think of a composition as having an “outside” part (the f , which is the last
thing you do in the function) and an “inside” part (the g, which is the first thing
you do). If you are familiar with diagramming functions, this means the function
diagrams as

x
g−→ f−→ or x

IN−→ OUT−→

The Chain Rule says, in English, the following:

the derivative of a composition is “the derivative of a composition is the derivative of
the outside, with the inside plugged in, times the derivative of the inside”.

EXAMPLE 2

Find
d

dx

[(1
x
− sin x

)4]
.

Alternate solution: Let u = 1
x
− sin x. Then y = u4, so by the Leibniz version of the

Chain Rule,

dy

dx
= dy

du
· du

dx
= 4u3 ·

(−1
x2 − cos x

)
= 4

(1
x
− sin x

)3 (−1
x2 − cos x

)
.

EXAMPLE 3
Find y′, if y =

√
3x + 4.
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6.4. Chain rule

EXAMPLE 4
Find the equation of the line tangent to F (x) = (3x2 − 3x− 1)9 when x = 1.

EXAMPLE 5
If an object’s position, in feet, at time t (measured in minutes) is given by f(t) = e−t,
find the object’s velocity and acceleration at time t.

Alternate solution: We already learned
d

dx
(erx) = rerx, so we could just apply that

rule (which is really a special case of the Chain Rule with IN = rx and OUT = ex).

EXAMPLE 6
Compute the second derivative of y = cos(x2).
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6.4. Chain rule

When to use the Product Rule, as opposed to the Chain Rule
EXAMPLE

d

dx

(
x2 sin x

)
vs.

d

dx

(
sin x2

)

Use of the Chain Rule in conjunction with other rules
EXAMPLES

Find the derivative of each of these functions:

1. y = 2x ln(4x2 + 1)

2. f(x) = x2 cos3 x− 4x tan2 x
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6.4. Chain rule

3. y = (ex + x2 − 2)3

(x−3 − 1)3/2

4. f(x) = sin
(

ln x− 2
cos x + x

)

Solution: Start with the Chain Rule, because “sin” doesn’t mean anything by
itself:

f ′(x) = outside′(inside) · (inside)′

= cos
(

ln x− 2
cos x + x

)
·
(

ln x− 2
cos x + x

)′

Now use the Quotient Rule to compute the inside′:

f ′(x) = cos
(

ln x− 2
cos x + x

)
·

1
x
(cos x + x)− (− sin x + 1)(ln x− 2)

(cos x + x)2 .

5. g(x) = cos(
√

sec x)
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6.5. Implicit differentiation

6.5 Implicit differentiation
Another application of the Chain Rule

Suppose z = sin y and y = f(x), where you don’t know what the function f is.

dz

dx
= ?

Some ex: y = f(x) z = sin y z′(x) = dz

dx
= d

dx
(sin y)

x6

4
√

x

ex

sec x

General answer: By the Chain Rule,

EXAMPLE 1

Suppose that y is some unknown function of x. Find
d

dx

(
y2 + 6y − 2

)
.

In general: if y is an unknown function of x, then

d

dx
(f(y)) = f ′(y) · dy

dx

Note: If y is a constant, rather than a function of x, then
d

dx

(
y2 + 6y − 2

)
=

EXAMPLE 2
d

dx

(
x4 − sin y + 5

)
= ?
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6.5. Implicit differentiation

EXAMPLE 3
d

dx

(
y3 sin x

)
= ?

Implicit differentiation of equations
MOTIVATING EXAMPLE

Consider the equation x2 + y2 = 25.

This equation is not a function y = f(x), for two reasons:

1.

2.

Suppose you wanted to write the equation of the tangent line to x2 + y2 = 25
at some point. You would need to compute

dy

dx
at that point to get the slope. But

which equation do you differentiate:

y =
√

25− x2 or y = −
√

25− x2

In this example, the choice is obvious:
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6.5. Implicit differentiation

But for a more interesting equation, there is no way to tell which equation to
use. Consider the equation

4(y2 − x2) = y4.

If you solve for y, you will get four different solutions:

There’s no (easy) way to tell which solution goes with which graph.

Question: Is there a way to compute
dy

dx
for some equation without solving for

y in terms of x?

Answer: Yes. The method is called implicit differentiation. To implement it,

start with the equation and differentiate both sides with respect to x (i.e. “take
d

dx
of both sides”).

General procedure to implement implicit differentiation:

1. Take
d

dx
of both sides (as with the examples earlier).

2. If you are given x and/or y values, plug them in.

3. Solve for
dy

dx
.
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6.5. Implicit differentiation

EXAMPLE 4
Find the slope of the line tangent to the circle x2 + y2 = 25 at the point (3,−4).

Follow up question # 1: What is the equation of the line tangent to the circle x2 +
y2 = 25 at (3,−4)?

Follow up question # 2 (time permitting): In the preceding example, how would
you determine the value of the second derivative at (3,−4) (i.e. how would you
measure the concavity of the circle)?

(If we skip this, omit problems 89 and 90 in the homework problems of Section
6.7.)
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6.5. Implicit differentiation

EXAMPLE 5

Compute
dy

dx

∣∣∣∣∣
x=3,y=3

for the equation x3 + y3 = 6xy.

EXAMPLE 6

Compute
dy

dx
for the equation x + e2xy = 10y3.
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6.6 Derivatives of inverse trigonometric functions
Implicit differentiation can be used to find the derivatives of arctan x and arcsin x:

EXAMPLE 1
Compute the derivative of f(x) = arctan x.

First, what should the graph of
d

dx
arctan x look like?

-1 1

- π

2

- π

4

π

4

π

2

-1 1

To figure out the derivative of arctan x, we will recall that y = arctan x means

tan y = x. So we will find
dy

dx
by implicitly differentiating tan y = x:

EXAMPLE 2
Compute f ′(1) if f(x) =

√
x arctan x.
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EXAMPLE 3
Find the derivative of f(x) = arcsin x.

Solution: As in Example 1, rewrite the function and use implicit differentiation:

y = arcsin x⇔ x = sin y

1 = cos y
dy

dx

1 =
√

cos2 y
dy

dx

1 =
√

1− sin2 y
dy

dx

1 =
√

1− x2 dy

dx
1√

1− x2
= dy

dx

Theorem 6.6 (Derivatives of arctangent and arcsine)

d

dx
(arctan x) = 1

x2 + 1
d

dx
(arcsin x) = 1√

1− x2

EXAMPLE 4
Compute y′, if y = x3 arcsin x.

Solution: Use the Product Rule:

y′ = (x3)′ arcsin x + (arcsin x)′x3

= 3x2 arcsin x + 1√
1− x2

· x3 .

EXAMPLE 5

Compute
d

dx

(1
4 arcsin x

4

)
.

Solution: Use the Chain Rule (outside = arcsin x; inside = x
4 ):

y′ = OUT′(IN) · IN′

= 1√
1− IN2

· 14

= 1√
1−

(
x
4

)2
· 14 = 1

4
√

1−
(

x
4

)2
.
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6.7 Summary of differentiation rules
Derivatives of functions that you should memorize:

Constant Functions d
dx

(c) = 0
Power Rule d

dx
(xn) = nxn−1 (so long as n ̸= 0)

Special cases of the Power Rule: d
dx

(mx + b) = m

d
dx

(
√

x) = 1
2
√

x

d
dx

(
1
x

)
= −1

x2

d
dx

(x2) = 2x

Trigonometric Functions d
dx

(sin x) = cos x

d
dx

(cos x) = − sin x

d
dx

(tan x) = sec2 x

d
dx

(cot x) = − csc2 x

d
dx

(sec x) = sec x tan x

d
dx

(csc x) = − csc x cot x

Exponential Functions d
dx

(ex) = ex

d
dx

(erx) = rerx

d
dx

(bx) = bx · ln b

Natural Log Function d
dx

(ln x) = 1
x

Inverse Trig Functions d
dx

(arctan x) = 1
x2+1

d
dx

(arcsin x) = 1√
1−x2

Rules that tell you how to differentiate more complicated functions:

Sum Rule (f + g)′(x) = f ′(x) + g′(x)
Difference Rule (f − g)′(x) = f ′(x)− g′(x)
Constant Multiple Rule (kf)′(x) = k · f ′(x) for any constant k

Product Rule (fg)′(x) = f ′(x) g(x) + g′(x) f(x)
Quotient Rule

(
f
g

)′
(x) = f ′(x) g(x)−g′(x) f(x)

[g(x)]2

Chain Rule (f ◦ g)′ (x) = f ′(g(x)) g′(x)
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6.8. Homework exercises

6.8 Homework exercises
Exercises from Sections 6.1-6.3

1. Let g(x) = (x2 + 1)(x2 − 3x + 4). Find g′(x).

2. Let f(x) = 4x2 ln x. Find
df

dx
.

3. Find the derivative of f(x) = x

x2 − x + 1 .

4. Find g′(1) if g(x) = x√
x + 1 .

5. Differentiate f(x) = sin x

x2 .

6. Find the derivative of f(x) =
√

x sin x.

7. Find dy
dx

if y = (2x3 − x−2/3)ex.

8. Find the instantaneous velocity of an object at time t = π

3 seconds, if the

position of the object is given by f(t) = t2 sin t meters.

9. Find
d

dx

[(1
4x2 − 1

)
ln x

]
.

10. Find the second derivative of f(x) = x ln x.

11. a) Find f ′(2) if f(x) = 2 sin x 5
√

x.

b) Explain in your own words what your answer to part (a) means.

12. Differentiate f(x) = x2 + 1
x3 − 1 .

13. Find y′ if y = cos x√
x

.

14. Find the slope of the line tangent to the graph of f(x) = 4 cos x sin x when
x = π

4 .

15. Find the acceleration of a particle at time t (measured in minutes), given that

the particle’s position at time t is
3t2 − 4
t2 + 1 ft.

16. Let y = 8x9 − sin x

ln x + 5 . Find
dy

dx
.
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17. Find f ′(π) if f(x) = x2 sin x.

18. Find the equation of the line tangent to the graph of y = cos x

x
when x = π/2.

19. Find the equation of the line tangent to f(x) = (x − 1)(x2 − 2) at the point
(0, 2).

20. Suppose f ′′′(x) = 2x cos x. Find f (4)(x).

21. Suppose f and g are functions such that f(3) = 2, f ′(3) = −1, g(3) = 4 and

g′(3) = 2. Find (fg)′(3) and
(

f

g

)′

(3).

22. Here is a table which lists of values of functions f , g, f ′ and g′:

x −4 −3 −2 −1 0 1 2 3 4
f(x) 2 1 −2 −5 3 0 1 2 3
f ′(x) 3 −1 4 2 −1 3 2 2 5
g(x) 2 −5 0 3 1 −4 2 0 −2
g′(x) 3 −2 −1 −2 4 1 0 3 7

Use this information to compute the following quantities:

a) (fg)′(2)

b) (fg)′(0)

c)
(

f

g

)′

(4)

d) (f + 3g)′(−1)

e)
(

f

f + g

)′

(2)

f) h′(3), if h(x) = x2f(x)
g) k′(−2), if k(x) = 4x3g(x)

h)
d

dx

(
x

g(x)

)∣∣∣∣∣
x=−1

23. The graphs of two functions f and g are shown below:

f

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4

g

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4

Use the graphs to estimate these quantities:
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a) (fg)′(0)

b) (fg)′(3)

c)
(

f

g

)′

(2)

d)
(

f

g

)′

(−5)

e) b′(6), if b(x) = 5xg(x)

f)
d

dx

(
g(x)

x

)∣∣∣∣∣
x=−6

24. A team of biologists studies the behavior of a bacteria colony under the effect
of exposure to radiation as time passes. They produce graphs of functions
n and m, where n(t) is the bacteria population (measured in thousands of
bacteria) at time t (measured in hours), and m(t) is the number of mutated
bacteria (measured in thousands of bacteria) at time t (measured in hours).
Graphs of these functions are shown below:

n

m

0 2 4 6 8 10
time

2

4

6

8

10

thousands of bacteria

a) Let p be the proportion of bacteria that have mutated at time t. Write p
as a function of m and n.

b) Estimate p′(7) from the given graphs. Write your answer with appropri-
ate units.

c) In terms of the context of this problem, what does your answer to part
(b) mean?

25. Suppose that at time t (measured in months), a raw material needed by a
business costs c(t) dollars per unit. Suppose also that at time t (in months),
the business estimates that it needs x(t) units of the material. If the graphs
of c and x are as given below, what is the instantaneous rate of change of the
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6.8. Homework exercises

company’s total raw material costs relative to time, when t = 7?

c

0 2 4 6 8 10
time

200

400

600

800

1000
cost (per unit)

x

0 2 4 6 8 10
time

10

20

30

40

50
# units needed

In Problems 26-33, find the derivative of the given function.

26. f(x) = 2 cot x

27. y = 3x4 csc x

28. f(x) = −1
x2 + sec x− 4 sin x

29. f(x) = sec x

x

30. y = x sin x− 2x

cot x

31. f(x) = 1
4
√

x + 3− 5 csc x

32. y = 4
√

x + 6 tan x− 3 cot x

33. f(x) = ln x sin x

Exercises from Section 6.4

34. a) Find the derivative of f(x) = (x− 3)−3 using the Chain Rule.

b) Find the derivative of f(x) = (x− 3)−3 by rewriting the function (to get
rid of the negative exponent) and using the Quotient Rule.

c) Verify that the answers you got in (a) and (b) are the same.

35. Find the derivative of y = (2x− 3)8.

36. Find f ′(2) if f(x) =
√

8− x.

37. Find
dy

dx
if y = 3

√
4x2 + 5.

38. Differentiate π(x) = csc2 x.

Note: In this problem, π is not the number π; it is just the name of the function.

39. Find the derivative of f(x) = 4 ln(cos x).

40. Suppose an object’s position at time t (in seconds) is cos
(3πt

2

)
mm. Find the

velocity of the object at the instant t = 1.
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41. Find
d2y

dx2 if y = (5x− 1)−3.

42. Find the derivative of f(x) = e5x.

43. Find the derivative of f(x) = sin x

2 .

44. Find the slope of the line tangent to f(x) = 3 cos(x2) when x = 0.

45. Find y′ if y = sec 1
x
− x2.

46. Let f(x) = 1
4 sin4(2x). Find f ′(x).

47. Find the equation of the line tangent to f(x) =
√

x2 + 2x + 8 when x = 2.

48. Suppose an object’s position (in feet) at time t (in seconds) is given by f(t) =
(t2 + 3)e2t. Find the velocity of the object when t = 0.

49. Suppose f and g are functions such that f(1) = 4, f ′(1) = −3, f(3) = 2,
f ′(3) = 5, g(3) = 1 and g′(3) = 2. Find (fg)′(3) and (f ◦ g)′(3).

50. Suppose
dy

du
= 3 and

du

dx
= 6. What is

dy

dx
?

51. Suppose
dy

dx
= 8 and

du

dx
= 4. What is

dy

du
?

52. Suppose
dy

dv
= 5 and

dx

dv
= 3. What is

dy

dx
?

53. Use the table of values given in Problem 22 above to compute the following
quantities:

a) (f ◦ g)′(2)
b) (g ◦ f)′(−3)
c) (f ◦ f)′(0)
d) (g ◦ f)′(4)
e) r′(1), if r(x) = g(2x)

f) h′(2), if h(x) = (f(x))2

g) H ′(2), if H(x) = f(x2)
h) k′(0), if k(x) = f(g(x) cos x)
i) z′(−2), if z(t) = x2f(g(t))
j) w′(1), if w(x) = g(f(x)g(x))

54. Use the graphs given in Problem 23 above to estimate these quantities:

a) (f ◦ g)′(0)
b) (g ◦ f)′(0)
c) (f ◦ g)′(6)

d) (f ◦ f)′(−5)
e) r′(−1), if r(x) = f(2x)
f) h′(−2), if h(x) = (g(x))2
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In Problems 55-74, find the derivative of the given function.

55. f(x) = x2(x− 2)4

56. f(x) = x
√

4− x2

57. f(x) =
(1− 2x

x + 1

)5

58. f(x) =
√

x cos x

59. f(x) = x3 − 2√
x6 + 1

60. f(x) = sin
(

x + 1
x− 1

)
61. f(x) = cos(tan x)

62. f(x) = cos x tan x

63. f(x) = cos(x tan x)

64. y = cot4(5x + 1)

65. y =
√

x

x− 1

66. f(x) = esin x

67. f(x) = e2x−5

68. g(x) = ln(x2 + 8x + 5)

69. f(x) = sec2(4x)

70. f(x) = 3
x
−
√

x + x2 sin x

71. f(x) = 2 + ln x− x7e4x

72. f(x) = 3 + x2 cot x

4
√

x− sin(ex)

73. f(x) = xx

74. f(x) = x2x

Exercises from Section 6.5

75. Compute
d

dx

(
3y2 + 5y

)
.

76. Compute
d

dx

(
4y5 − 3x3

)
.

77. Compute
d

dx

(
y2e3x

)
.

78. Compute
d

dx

(
4x3y2

)
.

In Problems 79-84, find the derivative dy
dx

.

79. x2 + y2 = 49

80. x3 − xy + y2 = 4

81. sin x + 2 cos 2y = 1

82. x = cos(xy)

83. ex = x

ey

84. ln y = cos x

85. Find the slope of the line tangent to x2y − y3 = −8 at the point (0, 2).
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86. Find the equation of the line tangent to (x2 + y2)2 = 4x2y at the point (1, 1).

87. Find the equation of the line tangent to the elllipse
x2

2 + y2

8 = 1 at (1, 2).

88. Find the slope of the line tangent to the hyperbola
y2

6 −
x2

8 = 1 at the point
(−2,−3).

89. Find
d2y

dx2 if x2 + y2 = 4.

Hint: First find
dy

dx
, then take the derivative of that expression implicitly.

90. Find
d2y

dx2 if y2 = sin x.

Exercises from Section 6.6

In Problems 91-96, find the derivative of the given function.

91. f(x) = arctan 2x

92. f(x) = x3 arctan x

93. f(x) = arcsin x− 1
x

+ ln x− 2

94. f(x) = 4 arcsin 3x

95. f(x) = x arctan 2x

96. f(x) = earctan x

Mathematica questions (for Exam 2 review)

97. Write Mathematica commands which will compute the derivative of the func-
tion f(x) = 3 sin(2x4 − 8) tan(3 ln x) when x = 4.

98. Write Mathematica commands which will compute the eighth derivative of

the function f(x) = 2
x
− csc x.

99. Write the output you will get (either in Mathematica syntax or hand-written
notation) when you execute the following commands in Mathematica:

g[x_] = Log[x] +3
g”[2]

100. Write the output you will get (either in Mathematica syntax or hand-written
notation) when you execute the following commands in Mathematica:

h[x_] = Cos[x] + 3xˆ20
D[h[x], {x, 42}]
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Answers

1. 2x(x2 − 3x + 4) + (2x− 3)(x2 + 1)

2. 8x ln x + 4x

3.
x2 − x + 1− x(2x− 1)

(x2 − x + 1)2 .

4.
3
8

5.
x2 cos x− 2x sin x

x4

6.
1

2
√

x
sin x +

√
x cos x

7. (6x2 + 2
3x−5/3)ex + (2x3 − x−2/3)ex

8.
π
√

3
3 + π2

18 m/sec

9.
1
2x ln x +

(1
4x2 − 1

) 1
x

10.
1
x

11. a) 2 5√2 cos 2 + 2
52−4/5 sin 2

b) The answer in part (a) is some
number which gives the slope of
the line tangent to f at x = 2.

12.
2x(x3 − 1)− 3x2(x2 + 1)

(x3 − 1)2

13.
−
√

x sin x− 1
2
√

x
cos x

x
.

14. 0

15.
14(1− 3t2)
(1 + t2)3 ft/min2

16.
(72x8 − cos x)(ln x + 5)− 1

x(8x9 − sin x)
(ln x + 5)2

17. −π2.

18. y = − 2
π

(
x− π

2

)
19. y = 2− 2x

20. 2 cos x− 2x sin x

21. (fg)′(3) = 0;
(

f

g

)′
(3) = −1

2 .

22. a) 4
b) 11

c)
−31

4
d) −4

e)
4
9

f) 30
g) 32

h)
−7
9

23. Answers can vary a bit here:

a) 0

b)
1
3

c) −2

d)
3
25

e) −15

f)
1
4

24. a) p(t) = m(t)
n(t)

b) p′(7) ≈ 1
4 hr−1

c) At time 7, the proportion of mu-
tated bacteria is increasing at a
rate of 1/4 per hour.

25. −675 dollars per month

26. −2 csc2 x

27. 12x3 csc x− 3x4 csc x cot x

28. 2x−3 + sec x tan x− 4 cos x
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29.
x sec x tan x− sec x

x2

30. sin x + x cos x− 2 cot x + 2x csc2 x

cot2 x

31.
1

8
√

x
+ 5 csc x cot x

32.
1
4x−3/4 + 6 sec2 x + 3 csc2 x

33.
1
x

sin x + ln x cos x

34. −3(x− 3)−4

35. 16(2x− 3)7

36.
−1
2
√

6

37.
8x

3 (4x2 + 5)−2/3

38. −2 csc2 x cot x

39. −4 tan x

40.
3π

2 mm/sec

41. 300(5x− 1)−5

42. 5e5x

43.
1
2 cos x

2
44. 0

45.
−1
x2 sec 1

x
tan 1

x
− 2x

46. 2 sin3(2x) cos(2x)

47. y = 4 + 3
4(x− 2)

48. 6 ft/sec

49. (fg)′(3) = 9; (f ◦ g)′(3) = −6.

50. 18

51. 2

52.
5
3

53. a) 0
b) −1
c) −2
d) 15
e) −4

f) 4
g) 20
h) 12
i) −8
j) −48

54. a) 0

b)
4
3

c)
1
4

d) 0

e) 2

f) −3

55. 2x(x− 2)4 + 4(x− 2)3x2

56.
√

4− x2 − x2
√

4− x2

57. 5
(1− 2x

x + 1

)4
· −2(x + 1)− (1− 2x)

(x + 1)2

58.
1

2
√

x cos x
· (cos x− x sin x)

59.
3x2√x6 + 1− 6x5

2
√

x6+1(x3 − 2)
x6 + 1

60. cos
(

x + 1
x− 1

)
· −2

(x− 1)2

61. − sin(tan x) sec2 x

62. − sin x tan x + cos x sec2 x

63. − sin(x tan x) · (tan x + x sec2 x)

64. −20 cot3(5x + 1) csc2(5x + 1)

65.
1

2
√

x
x−1

· −1
(x− 1)2

66. esin x cos x

67. 2e2x−5

68.
2x + 8

x2 + 8x + 5
69. 8 sec2(4x) tan(4x)

70.
−3
x2 −

1
2
√

x
+ 2x sin x + x2 cos x

71.
1
x
− 7x6e4x − 4x7e4x
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72.
(2x cot x− x2 csc2 x)(4

√
x− sin(ex))− ( 2√

x
− ex cos(ex))(3 + x2 cot x)

(4
√

x− sin(ex))2

73. xx(1 + ln x)

74. x2x(2 ln x + 2)

75. 6y
dy

dx
+ 5dy

dx

76. 20y4 dy

dx
− 9x2

77. 2y
dy

dx
e3x + 3e3xy2

78. 12x2y2 + 8x3y
dy

dx

79.
−x

y

80.
y − 3x2

2y − x

81.
cos x

4 sin 2y

82.
− csc xy − y

x

83.
ex+2y − ey

−xey

84. −y sin x

85. 0

86. y = 1

87. y = 2− 2(x− 1)

88.
1
2

89.
−4
y3

90.
−2y2 sin x− cos2 x

4y3

91.
2

1 + (2x)2

92. 3x2 arctan x + x3

x2 + 1

93.
1√

1− x2
+ 1

x2 + 1
x

94.
12√

1− 9x2

95. arctan 2x + 2x

1 + 4x2

96. earctan x · 1
1 + x2

97. This takes two lines as shown here:

f[x_] = 3 Sin[2xˆ4 - 8] Tan[3 Log[x]]
f’[4]

98. This could be done in one line:

D[2/x - Csc[x], {x, 8}]
A different (but less good) way to do this is in two lines:

f[x_] = 2/x - Csc[x]
f””””[x]

99.
−1
4

100. − cos x
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Chapter 7

Optimization Analysis

7.1 What is an optimization problem?
There are many situations in the real world where you need to determine how to
make some quantity as large or as small as possible. Here are some examples:

EXAMPLE 1
If an archer shoots an arrow into the air at angle θ from the ground, it will travel a

horizontal distance of
v sin 2θ

g
, where v and g are constants. At what angle should

the archer shoot the arrow to make it travel as far as possible? (Equivalently, what
is the maximum range of the archer?)

EXAMPLE 2
An epidemic spreads through a population in such a way that the number of in-
fected people, I , is a function of the number of susceptible people, x, by the for-
mula

I(x) = 4 ln
(

x

30

)
− x + 30.

What is the maximum number of people who will become infected?

EXAMPLE 3
A patient’s temperature change T , when given dose d of some medicine, is given
by

T =
(

1− d

3

)
d2

What dosage maximizes this temperature change?
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7.1. What is an optimization problem?

EXAMPLE 4
A farmer has 50 feet of fence with which to build a rectangular pen. What dimen-
sions of the pen make its area as big as possible?

EXAMPLE 5
A box with a square base and no top is to be constructed from plywood. If there is
48 square feet of plywood available, and if the length, width and height of the box
must be at least 1 foot, what is the largest volume of a box that can be made?

Common characteristics of Examples 1-5

1. In each example, there is some quantity you are allowed to “choose”; this
quantity is the variable.

2. In each example, there is a second quantity which depends on the vari-
able. This quantity is called the utility; the goal of the problem is to
maximize or minimize the utility.

Any problem which asks you to maximize or minimize a utility function de-
pending on one (or more) variables is called an optimization problem.

Here is the variable and utility for each of the first three examples on the previ-
ous page:

Variable Utility

Example 1

Example 2

Example 3
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7.1. What is an optimization problem?

Constrained optimization problems

Examples 4 and 5 are a little different, because there are two variables present in
the problem.

In MATH 220, we can only solve an optimization problem with two or more
variables if there is some extra information which relates the variables. This extra
information is called a constraint on the variables. (Take MATH 320 - Calculus 3 -
if you want to learn how to solve general optimization problems with more than
one variable.)

Variables Utility Constraint

Example
4

Example
5

We call problems like Examples 1 to 3 free optimization problems and problems
like Examples 4 and 5 constrained optimization problems.

• Free optimization problem:

• Constrained optimization problem:
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7.1. What is an optimization problem?

Converting a constrained optimization problem to a free
optimization problem

The techniques of Math 220 are best suited to solving free optimization problems.
So if you are given a constrained optimization problem, you first have to convert
it to a free optimization problem by

1.

2.

Let’s see how this works in Examples 4 and 5:

EXAMPLE 4
(variables x and y) (utility A = xy) (constraint 2x + 2y = 50)

EXAMPLE 5
(variables x and y) (utility V = x2y) (constraint x2 + 4xy = 48)

Henceforth we will focus on solving free optimization problems. Keep in mind
that whenever you are given a constrained optimization problem, the first step is
to convert it to a free optimization as above.
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7.2. Theory of optimization

7.2 Theory of optimization
Our goal is to determine the maximum and minimum of some utility function

f(x). To understand how this is done, we first need a lot of vocabulary:

Definition 7.1 Given a function f and a specified domain D of that function:

1. We say f has an absolute maximum (a.k.a. global maximum) at x = c if
f(x) ≤ f(c) for all x ∈ D. In this case f(c) is called the absolute (global)
maximum value of f on D.

2. We say f has an absolute minimum (a.k.a. global minimum) at x = c if
f(x) ≥ f(c) for all x ∈ D. In this case f(c) is called the absolute (global)
minimum value of f on D.

3. We say f has a local maximum (a.k.a. relative maximum) at x = c if f(x) ≤
f(c) for all x ∈ D sufficiently close to c. In this case f(c) is called a local
(relative) maximum value of f on D.

4. We say f has a local minimum (a.k.a. relative minimum) at x = c if f(x) ≥
f(c) for all x ∈ D sufficiently close to c. In this case f(c) is called a local
(relative) minimum value of f on D.

5. Collectively, all maxima and minima are called extrema.

Note: If one says “f has a local maximum of 5 at 3”, then one means that 5 is
the y−value and 3 is the x−value, i.e. that the maximum is at the point (3, 5).

Note: A function can have lots of local maxs/local mins, but has at most one
global max and at most one global min. A list of all the local maxs (local mins) of a
function always includes the global max (global min).
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7.2. Theory of optimization

EXAMPLES

For each of the following graphs, identify all global extrema and all local extrema.
At all local extrema which are not endpoints, find the derivative of the function at
the extrema.

h

-5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6 GLOBAL MAX:

GLOBAL MIN:

LOCAL MAX:

LOCAL MIN:

g

-3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5 GLOBAL MAX:

GLOBAL MIN:

LOCAL MAX:

LOCAL MIN:

H

-5 -4 -3 -2 -1 1 2 3 4 5

-1

1

2

3

GLOBAL MAX: 2, at x = −4

GLOBAL MIN: none (there is no point
on the graph at (0, 0))

LOCAL MAX:
{

2 at x = −4
1 at x = 3

LOCAL MIN: none

k

-5 -4 -3 -2 -1 1 2 3 4 5

-1

1

2

3

GLOBAL MAX: 2, at all x

GLOBAL MIN: 2, at all x

LOCAL MAX: 2, at all x

LOCAL MIN: 2, at all x
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7.2. Theory of optimization

f

-10 -8 -6 -4 -2 2 4 6 8 10

-6

-4

-2

2

4

6

8 GLOBAL MAX: 8 at x = 3

GLOBAL MIN: DNE

LOCAL MAX:
{

3 at x = −4 f ′(−4) =
8 at x = 3 f ′(3) =

LOCAL MIN: −1 at x = −1 f ′(−1) =

Definition 7.2 An optimization problem is a problem in which you are asked to
find the absolute maximum and/or absolute minimum value of a function on some
domain.

Question 1: Does a function necessarily have an absolute maximum and/or
absolute minimum? (In other words, does a generic optimization problem neces-
sarily have a solution?)

Theorem 7.3 (Max-Min Existence Theorem) If f is continuous on a closed and
bounded interval [a, b], then f has a global maximum value and a global minimum
value on that interval.

Note: The preceding theorem may fail if f is not cts, or if the interval is not
closed, or if it is not bounded.

Question 2: How do you find the absolute maximum value and/or absolute
minimum value of some function on some domain? (In other words, how do you
solve an optimization problem?)
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7.2. Theory of optimization

Definition 7.4 A critical point (a.k.a. CP) of a function f is a number c such that
f ′(c) = 0 or f ′(c) does not exist.

Note: Critical points are numbers, not points. (They are the x-coordinates of
points).

Theorem 7.5 (Critical Point Theorem) All local extrema of a function (and there-
fore all global extrema) on an interval must occur at

1. endpoints of the interval, and/or

2. critical points of f lying in the interval.

Note: Not all critical points are local extrema.

The Critical Point Theorem suggests a method of finding the global extrema of
a function on an interval:

To optimize function f on interval [a, b]:

1. Find the critical points of f by

(a) setting f ′(x) = 0 and solving for x, and
(b) finding all x for which f ′(x) DNE.

2. Discard any critical points which are not inside the interval [a, b].

3. Plug each of the remaining critical points, as well as the two endpoints a
and b, into the function f .

The largest number you get is the absolute maximum, and the smallest
number you get is the absolute minimum.

EXAMPLE A
Find the absolute extrema of the function f(x) = 8− x2 on the interval [−4, 2].
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7.2. Theory of optimization

EXAMPLE B
Find the absolute extrema of the function f(x) = 2x3− 6x2 + 1 on the interval [1, 3].

Solution: First, find CPs: Third, test CPs and endpoints:

f ′(x) = 6x2 − 12x .

f ′(x) = 0 : 6x2 − 12x = 0
6x(x− 2) = 0
x = 0, x = 2

f ′(x) DNE : no such points

⇒ CPs: x = 0, x = 2

EXAMPLE C
Find the absolute extrema of the function f(x) = 9 3

√
x on the interval [−1, 8].

Solution: First, find CPs: Third, test CPs and endpoints:

f ′(x) = 9
(1

3

)
x−2/3 = 3

x2/3 .

f ′(x) = 0 : 3
x2/3 = 0

3 = 0

no such points

f ′(x) DNE : 3
x2/3 DNE
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7.2. Theory of optimization

Solving optimization word problems

General procedure to solve optimization word problems

1. Read the problem carefully, and draw a picture if necessary.

2. Identify any variable(s) and the utility (the quantity that needs to be max-
imized and/or minimized).

3. If there is more than one variable, find a constraint and convert the prob-
lem to a free optimization problem using the procedure outlined on p.
182.

4. Optimize the utility function using the procedure on p. 186 (find critical
points, plug in critical points and endpoints to the utility, and choose the
maximum and/or minimum value).

5. Make sure you answer the question that is asked.

EXAMPLE 1 (FROM PAGE 180)
If an archer shoots an arrow into the air at angle θ from the ground, it will travel a
horizontal distance of 1000 sin 2θ ft. What is the maximum range of the archer?
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7.2. Theory of optimization

EXAMPLE 4 (FROM PAGE 181)
A farmer has 50 feet of fence with which to build a rectangular pen. What dimen-
sions of the pen make its area as big as possible?

EXAMPLE 5 (FROM PAGE 181)
A box with a square base and no top is to be constructed from plywood. If there is
48 square feet of plywood available, and if the length, width and height of the box
must be at least 1 foot, what is the largest volume of a box that can be made?

186



7.2. Theory of optimization

EXAMPLE 2 (FROM PAGE 180)
An epidemic spreads through a population in such a way that the number of in-
fected people, I (measured in thousands), is a function of the number of suscepti-
ble people, x (measured in thousands), by the formula

I(x) = 4 ln
(

x

30

)
− x + 30.

What is the maximum number of people who will become infected?
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7.3. Graphical analysis using derivatives

7.3 Graphical analysis using derivatives
Tone

-4 -1 2

Definition 7.6 1. A function f is called increasing on an open interval if for any
x1 and x2 in that interval,

x1 ≤ x2 implies f(x1) ≤ f(x2).

2. A function f is called decreasing on an open interval if for any x1 and x2 in
that interval,

x1 ≤ x2 implies f(x1) ≥ f(x2).

3. A function f is called monotone on an open interval if it is either increasing or
decreasing on that interval.

Note: Constant functions are both increasing and decreasing.

Note: Functions are always said to increase or decrease on an open interval, not
at a point.
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7.3. Graphical analysis using derivatives

Theorem 7.7 (Monotonicity Test) If f is differentiable on (a, b), then

1. f ′(x) > 0 on (a, b)⇒ f is increasing;

2. f ′(x) < 0 on (a, b)⇒ f is decreasing.

EXAMPLE

Determine whether or not the function f(x) = ln x

x
is increasing or decreasing on

the interval (0, 1). Determine whether or not f is increasing or decreasing on the
interval (4, 5).

Solution: Whether or not the function is increasing or decreasing depends on
whether the derivative f ′(x) is positive or negative. By the Quotient Rule,

f ′(x) =
1
x
· x− 1 · ln x

x2 = 1− ln x

x2 .

When x ∈ (0, 1),

When x ∈ (4, 5),

Concavity

Definition 7.8 Let f : R→ R be a function.

1. f is called concave up (smiling) on an open interval if f ′ is increasing on that
interval.

2. f is called concave down (frowning) on an open interval if f ′ is decreasing on
that interval.

3. A number c is called an inflection point of f if the concavity of f changes at c.
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7.3. Graphical analysis using derivatives

Theorem 7.9 (Concavity Test) Let f be a function so that f ′′ exists on (a, b). Then:

1. if f ′′(x) > 0 for all x ∈ (a, b), then f is concave up on (a, b);

2. if f ′′(x) < 0 for all x ∈ (a, b), then f is concave down on (a, b).

3. c is an inflection point of f if and only if the sign of f ′′ changes at c.

Remark: Based on the discussion from Chapter 5, if a function is concave up
at/near x, then it will lie above the tangent line at x. If a function is concave down
at/near x, then it will lie below the tangent line at x. If the function crosses its
tangent line at x, then x is an inflection point of f .

EXAMPLE

Determine whether the function f(x) = x2e−x + 2xe−x − e−x is concave up or con-
cave down on the interval (1, 2).

Solution: We need to determine whether f ′′(x) is positive or negative on (1, 2).
So we compute f ′′(x):

f(x) = x2e−x + 2xe−x − e−x

⇒ f ′(x) =
[
2xe−x + (−e−x)x2

]
+
[
2e−x + (−e−x)2x

]
− [−e−x]

= 2xe−x − x2e−x + 2e−x − 2xe−x + e−x

= −x2e−x + 3e−x

⇒ f ′′(x) =
[
−2xe−x − x2(−e−x)

]
+
[
−3e−x

]
= −2xe−x + x2e−x − 3e−x

When x ∈ (1, 2),
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7.3. Graphical analysis using derivatives

EXAMPLE

Find the inflection points of the function f(x) = x3 + 3x2 − 2x + 1.

Solution: Compute the second derivative of f :

f ′(x) = 3x2 + 6x− 2

f ′′(x) = 6x + 6

The second derivative can also be used to classify critical points as local maxima
or local minima using the following test:

Theorem 7.10 (Second Derivative Test) Suppose f ′(c) = 0 and that f ′′ is contin-
uous on an open interval containing c. Then:

1. if f ′′(c) > 0, then f has a local minimum at c;

2. if f ′′(c) < 0, then f has a local maximum at c;

3. if f ′′(c) = 0, then this test is inconclusive.

More sophisticated ideas along the lines of the Second Derivative Test were
developed in your lab assignment on applications of derivatives. These ideas are
summarized in this theorem:

Theorem 7.11 (nth Derivative Test) Suppose f is continuous on an open interval
containing c and f ′(c) = f ′′(c) = f ′′′(c) = ...f (n−1)(c) = 0 but f (n)(c) ̸= 0. Then:

1. if n is even and f (n)(c) > 0, then f has a local minimum at c;

2. if n is even and f (n)(c) < 0, then f has a local maximum at c;

3. if n is odd, then f has no local extremum at c.

Before the days of Mathematica and graphics calculators, this is how people
learned to sketch the graphs of functions. In 2024, it is more useful to use these
ideas to study applied optimization problems.
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7.4 More examples of optimization problems
EXAMPLE 6

A farmer grows zucchini. He has 10 acres available to plant; if he plants x acres his
profit/loss will be 2x3 − 33x2 + 108x dollars. How many acres should the farmer
plant (assuming he wants to make as much money as possible)?
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7.4. More examples of optimization problems

EXAMPLE 7
In the human body, arteries must branch repeatedly to deliver blood to the entire
body. Suppose a small artery branches off from a large artery at angle θ ∈ [0, π

2 ];
the energy lost due to friction in this setting is approximately

E = csc θ + 1− cot θ

16 .

Find the value of θ that minimizes the energy loss.

Solution: First, write E as E = csc θ + 1
16 (1− cot θ) and differentiate to get

E ′(θ) = − csc θ cot θ + 1
16 csc2 θ.

Next, find critical points: let E ′(θ) = 0 and solve for θ to get

0 = − csc θ cot θ + 1
16 csc2 θ

0 = csc θ
(
− cot θ + 1

16 csc θ
)

csc θ = 1
sin θ

is never zero, so the only critical point is where − cot θ + 1
16 csc θ = 0.

Rewriting with trig identities, we get

− cos θ

sin θ
+ 1

16 sin θ
= 0 ⇒ − cos θ + 1

16 = 0 ⇒ cos θ = 1
16 ⇒ θ = arccos 1

16 .

Plug the EPs θ = 0 and θ = π

2 and the CP arccos 1
16 into the utility E:

θ = 0 : E = csc 0 + 1− cot 0
16 = 1 + 1−DNE

16 which DNE.

θ = arccos 1
16 : E = csc(arccos 1

16) + 1
16

(
1− cot(arccos 1

16)
)

= 16√
255

+ 1
16

(
1− 1√

255

)
= 1

16
(
1 +
√

255
)

.

θ = π

2 : E = csc π

2 +
1− cot π

2
16 = 1 + 1− 0

16 = 17
16 .

Notice
1
16
(
1 +
√

255
)

<
1
16
(
1 +
√

256
)

= 1
16(1 + 16) = 17

16 , so the absolute mini-

mum is at θ = arccos 1
16 .
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7.4. More examples of optimization problems

EXAMPLE 8
A 12” by 12” square sheet of cardboard is made into an open box (i.e. no top)
by cutting squares of equal size out of each corner and folding up the sides along
the dotted lines (see the pictures below). Find the dimensions of the box with the
largest volume.
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7.4. More examples of optimization problems

EXAMPLE 9
Find the maximum area of a rectangle if one side of the rectangle is on the x−axis

and two corners of the rectangle are to be on the graph of y = 12− 1
3x2 (this graph

is shown below):

-8 -6 -4 -2 0 2 4 6 8

2

4

6

8

10

12

14
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7.4. More examples of optimization problems

EXAMPLE 10
Michigan wants to build a new stretch of highway to link two sites on either side
of a river (see the picture below) which is 2 miles wide. The second site is 12 miles
downriver from the first site. It costs the state $13 million per mile to build over
water and $5 million per mile to build over land. How should the state build its
road to minimize costs?

River

� - y
12 mi CITY 2

yCITY 1

2 mi

Solution: First, it only makes sense to build a bridge in a straight line over the
river, then to build along the riverbank to the other city. So the road goes along the
solid lines shown below:

y
y

2

x12− x

√
4 + x2

@
@

@
@

@

Letting x be as indicated in the picture, that means the cost of the road is

C(x) = cost of road along shore + cost of bridge

= 5(12− x) + 13
√

4 + x2.

Our goal is to maximize this utility on the interval [0, 12]. First, differentiate (use
the Chain Rule on the second term):

C ′(x) = −5 + 13
2
√

4 + x2
· (2x) = −5 + 13x√

4 + x2
.

Set this equal to zero and solve for x (details omitted, ask me if you don’t follow
this):

0 = −5 + 13x√
4 + x2

⇒ 5 = 13x√
4 + x2

⇒ x = ±5
6

Plug the endpoints x = 0 and x = 12 and the critical point x = 5
6 into the utility

C; you will find that the minimum value of C is when x = 5
6 . Therefore the state

should angle the bridge so that it goes 5/6 mile downastream as it crosses the
river.
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7.5 Homework exercises
Exercises from Section 7.1

In Problems 1-10, you are given a word problem. Identify the utility and write
the utility as a function of one variable. (You do not need to actually solve the
problem.)

1. Find the maximum product of two numbers whose sum is 12.

2. On a given day, the rate of traffic flow on a congested roadway is given by
F (v) = v

24 + .01v2 , where v is the velocity of the traffic. Find the velocity

which maximizes the rate of traffic flow.

3. A farmer will build a rectangular pen, where one side of the pen is against a
river (and does not need to be fenced). If he wants the pen to enclose an area
of 3 acres, what is the minimum amount of fence that he can use?

4. Find the maximum sum of two numbers, where the second number is three
times the reciprocal of the first.

5. A box has a square base. Find the maximum volume of the box, if the surface
area of the box is 300 square cm (assume that the box has a top and a bottom).

6. The potential energy of a particle moving along an axis (say the x−axis) is

E = b

(
a2

x2 −
a

x

)
where a, b are positive constants and x > 0. What value of x

minimizes this potential energy?

7. A box with four sides and a bottom, but no top, has a square base. Find the
minimum surface area of the box, if its volume is to be 80 cubic cm.

8. A rectangular box (with a top and bottom) has its length equal to twice its
width. Find the maximum volume of the box, if the surface area of the box is
120 square inches.

9. Suppose the perimeter of a rectangle is P units, where P is a constant. Find
the maximum area of such a rectangle.

10. A 6-foot tall wall runs parallel to the side of a building, 4 feet away from the
building. Find the minimum length of a ladder that can lean up against the
building and touch the ground, while just touching the top of the wall.

Hint: Write the utility as a function of the angle the ladder makes with the
ground.
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Exercises from Section 7.2

In Problems 11-16, you are given a graph of some unknown function f . In each
picture, you should assume the graph continues to the left and right (i.e. that the
extreme left and right ends of the graph have arrows on them). For each function:

(a) Give the location of any local minima of f ;

(b) Find the global minimum value of f on the interval [−1, 4];

(c) Give the location of any local maxima of f ;

(d) Find the global maximum value of f on the interval [−1, 4].

11.
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3
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12.
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4
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-2
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1

2

3

4

5

13.
-5 -4 -3 -2 -1 1 2 3 4 5
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14.
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4
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15.
-5 -4 -3 -2 -1 1 2 3 4 5
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16.
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5
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In Problems 17-24, find all critical points of the given function.

17. f(x) = x2(x2 − 4)

18. f(x) = 3x1/5 + 2

19. f(x) = x3 − 3x + 4

20. f(x) = |x|
Hint: consider the graph of f .

21. f(x) = 4e−x

22. f(x) = x7/3 − 28x1/3

23. f(x) = 3x

x2 − 1

24. f(x) = sin x + cos x

25. Show that the functions f(x) and ef(x) have the same set of critical points.

Hint: Let g(x) = ef(x). Explain why solving g′(x) = 0 and f ′(x) = 0 gives the
same solutions.

In Problems 26-35, find the absolute extrema of the given function on the indicated
interval.

26. f(x) = sin x + cos x on [0, 2π]

27. f(x) = x2/3 on [−1, 27]

28. f(x) = x3 − 12x + 4 on [−3, 5]

29. f(x) = x3 − 12x + 4 on [−3, 0]

30. f(x) = 1
2e−x2

on [−4, 4]

31. f(x) = 5 on [−3, 4]

32. f(x) = x

x− 2 on [3, 5]

33. f(x) = 3x

x2 − 1 on [0, 2]

34. f(x) = 5− x on [1, 4]

35. f(x) = arctan(x2) on [0, 1]

36. If a person eats n sausages, then they will get heartburn in the amount of
h(n) = −n3 + 12n. If a person has the most amount of heartburn possible
from eating sausages, how many sausages do they eat?

37. A farmer has 96 feet of fence with which to build a rectangular pen divided
into two pieces as follows:

What dimensions should the farmer use to build her pen, if she wants the
enclosed area to be as big as possible?
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38. In an endurance contest, athletes start 2 miles out to sea need to reach a lo-
cation which is 2 miles inland and three miles east of their initial location
(assume the seashore runs east-west). If an athlete can run 10 miles per hour
and swim 5 miles per hour, what is the minimum amount of time she will
need to reach the finish? (Use Mathematica to compute the derivative of your
utility function, then use the NSolve command in Mathematica to solve for the
critical point.)

39. Suppose that if a company spends x hundred dollars on advertising, then
their profit will be P (x) = −3x3 + 225x2 − 3600x + 18000. How much should
the company spend on advertising if they want to maximize their profit, as-
suming that they only have enough capital to spend $3000 on advertising?

40. A box is made with a square base and no top. If the surface area of the box is
80 square units, what is the largest possible volume of the box?

Exercises from Section 7.3

In Problems 41-44, you are given a function f and an interval (a, b). Determine,
with justification, the sign of f ′ on (a, b). Use the sign of f ′ to draw a conclusion
about the behavior of f on (a, b).

41. f(x) = x2 + 1
x2 on (0, 1)

42. f(x) = ex − e−x on (−1, 1)

43. f(x) = −2x3 + 3x2 − 5 on (2, 3)

44. f(x) = ln
(

x + 1
x

)
on (0, 1)

In Problems 45-49, find all the local extrema of the given function, and classify
them as local maxima or local minima.

45. y = x4 + 4x3 + 4x2 − 3

46. f(x) = x ln x

47. f(x) = x2 − 16
x

48. f(x) = e1/x2

Hint: The result of Problem 25 may be
useful.

49. f(x) = x + 1
x

In Problems 50-53, you are given a function f and an interval (a, b). Determine,
with justification, the sign of f ′′ on (a, b). Use the sign of f ′′ to draw a conclusion
about the behavior of f on (a, b).

50. f(x) = ex + e−x on (−∞,∞)

51. f(x) = x4 − 16x3 + 5 on (6, 7)

52. f(x) = −5 sin x on (π
2 , π)

53. f(x) = ln
(

x + 1
x

)
on (0, 1)
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In Problems 54-58, find all inflection points of the function.

54. f(x) = x3 − 3x2 + 4x− 1

55. f(x) = x + 1
x

56. f(x) = xe−2x

57. f(x) = x2 + 2x + 3

58. f(x) = sin x− cos x

59. Suppose f is some function such that f ′(2) = f ′′(2) = f ′′′(2) = 0 and f (4)(2) =
−3. Is x = 2 the location of a local maximum, local minimum, or neither?

60. Suppose f is some function such that f ′(4) = f ′′(4) = f ′′′(4) = ... = f (14)(4) =
0 and f (15)(4) = 2. Is x = 4 the location of a local maximum, local minimum,
or neither?

61. Suppose f is some function such that f ′(−1) = f ′′(−1) = f ′′′(−1) = ... =
f (11)(−1) = 0 and f (12)(−1) = −5. Is x = −1 the location of a local maximum,
local minimum, or neither?

62. Suppose f is some function such that f ′(0) = f ′′(0) = f ′′′(0) = ... = f (100)(0) =
0 and f (101)(0) = −17. Is x = 0 the location of a local maximum, local mini-
mum, or neither?

63. Suppose f is some function such that f ′(4) = f ′′(4) = f ′′′(4) = ... = f (99)(4) =
0 and f (100)(4) = 2

3 . Is x = 4 the location of a local maximum, local minimum,
or neither?

Exercises from Section 7.4

64. Let f(x) = x2

x2 + 1 for x > 0. Determine where the graph of f is steepest (i.e.

where the slope of the graph is a maximum).

65. The Gompertz growth curve, whose formula is

W (t) = ae−be−t

,

is useful in several fields (including biology and economics). Assuming a
and b are positive constants, find the value of t at which the rate of change of
W (t) with respect to t is largest.

66. Suppose that a worker can make Q(t) = −t3 + 12t2 + 60t items in t hours.

a) Explain why the efficiency of the worker at time t can be measured by
Q′(t).

b) Find the time at which the worker is most efficient.
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7.5. Homework exercises

67. A rectangular poster is to be made which consists of a printed region and an
unprinted margin, which is 3 inches on the top and bottom but 2 inches on
the left and right side. If the total area of the poster is to be 120 square inches,
what dimensions of the poster maximize the area of the printed region?

68. Suppose a wire of length 4 ft is cut into two pieces. Each piece is bent to form
a square; find the largest possible combined area from the two pieces.

69. The velocity of air moving through a person’s windpipe is V (r) = Cr2(A−r)
for constants C and A, where r is the radius of the windpipe.

a) Find the radius which maximizes this velocity.

b) Suppose that normally, a person’s windpipe has radius A. When a per-
son coughs, the windpipe changes radius so that air moves through the
windpipe as quickly as possible. Based on your answer to (a), does a
person’s windpipe get wider or narrower when a person coughs?

70. Find the point on the curve y =
√

x which is closest to the point (2, 0). Hint:
Don’t minimize the distance to the point; minimize the square of the distance
to the point.

71. To transmit data (like a music file) electronically, the file has to be translated
into a sequence of 0s and 1s so that it can be read by a computer or phone.
An important computation related to the coding of files by 0s and 1s is the
computation of a quantity called entropy, which is given by the following
formula:

h(x) = x ln x + (1− x) ln(1− x)

Find the value of x ∈ (0, 1) which maximizes the entropy h.

72. A 12−inch wide piece of sheet metal is bent to form a rain gutter. A cross-
section of the gutter is shown in the picture below. What value of θ maxi-
mizes the volume of water that can be held by the gutter?

4 in
θθ

4 in4 in

Answers
1. The utility is the product, denoted by U(x) = x(12− x).
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2. The utility is the rate of traffic flow, denoted by F (v) = v

24 + .01v2 .

3. The utility is the amount of fence used, denoted by A(x) = x + 6
x

or A(x) = 2x + 3
x

,
depending on your setup.

4. The utility is the sum of the numbers, denoted by U(x) = x + 3
x

.

5. The utility is the volume of the box, denoted by V (x) = x2 · 300− 2x2

4x
.

6. The utility is the energy, denoted by E(x) = b

(
a2

x2 −
a

x

)
.

7. The utility is the surface area of the box, denoted by S(x) = x2 + 320
x

.

8. The utility is the volume of the box, denoted by V (w) = 2
3w(60− 2w2).

9. The utility is the area of the rectangle, denoted by A(x) = x

(
P − 2x

2

)
.

10. The utility is the length of the ladder, denoted by L(θ) = 6 csc θ + 4 sec θ.

11. a) x = −4, x = 0, x = 3.5
b) −2.2
c) x = −1.2, x = 1.4
d) .4

12. a) all x are local mins

b) 3
c) all x are local maxs

d) 3

13. a) x = −3
b) −1.2
c) no local max

d) 5

14. a) x = −1
b) 0
c) no local max

d) no absolute max

15. a) x = 2

b) −2
c) x = −2
d) no absolute max

16. a) x = 2
b) −2
c) x = −2
d) 3

17. x = 0, x =
√

2, x = −
√

2

18. x = 0

19. x = 1, x = −1

20. x = 0

21. None

22. x = 0, x = 2, x = −2

23. x = 1, x = −1

24. x = π

4 + πn
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25. Let g(x) = ef(x). By the Chain Rule, the derivative of g is g′(x) = ef(x)f ′(x). Since
ef(x) always exists and is never zero, g′(x) = 0 only if f ′(x) = 0 and g′(x) DNE only
if f ′(x) DNE. Thus g(x) and f(x) have the same critical points.

26. Max is
√

2 at π/4; min is −
√

2 at 5π/4

27. Max is 9 at x = 27; min is 0 at x = 0

28. Max is 69 at x = 5; min is −12 at x = 2

29. Max is 20 at x = −2; min is 4 at x = 0

30. Max is
1
2 at x = 0; min is

1
2e−16 at x = ±4

31. Max and min are 5 occuring at all x

32. Max is 3 at x = 3; min is
5
3 at x = 5

33. No max or min because of the asymptote at x = 1

34. Max is 4 at x = 1; min is 1 at x = 4

35. Max is
π

4 at x = 1; min is 0 at x = 0

36. 2 sausages

37. Relative to the picture in the homework assignment, the height should be 16 feet and
the width (all the way across) should be 24 feet.

38. .728134 hours

39. $3000

40.
160
3

√
5
3 cubic units.

41. f ′(x) = 2x−2x−3 = 2x−3(x4−1) = (+)(−) < 0 on (0, 1), so f is decreasing on (0, 1).

42. f ′(x) = ex + e−x > 0 on (−1, 1), so f is increasing on (−1, 1).

43. f ′(x) = −6x2 + 6x = −6(x)(x + 1) = (−)(+)(+) < 0 on (2, 3), so f is decreasing on
(2, 3).

44. f ′(x) = 1
x + 1

x

·
(

1− 1
x2

)
= 1

+(−) < 0 on (0, 1), so f is decreasing on (0, 1).

45. x = 0 local min; x = −1 local max; x = −2 local min

46. x = 1
e

local min

47. x = −2 local min
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48. No local extrema

49. x = −1 local max; x = 1 local min

50. f ′′(x) = ex + e( − x) > 0 on (−∞,∞), so f is concave up on (−∞,∞).

51. f ′′(x) = 12x2 − 96x = 12x(x− 8) = 12(+)(−) < 0 on (6, 7), so f is concave down on
(6, 7).

52. f ′′(x) = 5 sin x > 0 on
(

π

2 , π

)
, so f is concave up on

(
π

2 , π

)
.

53. f ′′(x) = 4x

(x2 + 1)2 = +
+ > 0 on (0, 1), so f is concave up on (0, 1).

54. x = 1

55. None

56. x = 1

57. None

58. x = π

4 + πn

59. local maximum

60. neither

61. local maximum

62. neither

63. local minimum

64. The graph is steepest at x = 1√
3

.

65. At t = ln b.

66. a) The efficiency of the worker is the rate at which the worker makes items; this
rate is given by the derivative Q′(t).

b) At t = 4.

67. The width should be 4
√

5 inches and the height should be 6
√

5 inches.

68. 1 sq ft. (Cut the wire into a piece of length 4 ft and a piece of length 0 ft.)

69. a) r = 2A/3.

b) It gets narrower, since 2A/3 is less than A.

70.

(
3
2 ,

√
3
2

)

71. x = 1
2

72. θ = π

3
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Chapter 8

Other Applications of
Differentiation

8.1 Tangent line and quadratic approximation
Motivation: Suppose you wanted to estimate

√
102 without the use of a calcu-

lator. (Put another way, how does your calculator produce an approximation of√
102? )

A way of rephrasing this is as follows: let f(x) =
√

x. What is the approximate
value of f(102)?

What we know is that f(100) =
√

100 = 10, and since 102 is a little bit bigger
than 100,

√
102 should be a bit bigger than 10. But how much bigger?

To address this issue, we use the ideas of calculus. Recall from Chapter 4 that
the tangent line to a function at x = 100 is the line which most closely approximates
the function at values near 100. Let’s give a name to the tangent line at 100 and call
it L.

20 40 60 80 100 120 140 160 180 200

2

4

6

8

10

12

14

99. 99.5 100. 100.5 101. 101.5 102. 102.5 103.

9.9

10.

10.1
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8.1. Tangent line and quadratic approximation

Now from a calculation we did on page 85 of these notes, we found that the
tangent line to a function f at a is

L(x) = f(a) + f ′(a)(x− a).

In our setting, f(x) =
√

x so f ′(x) = 1
2
√

x
and a = 100. So we have

L(x) = f(a) + f ′(a)(x− a)
= f(100) + f ′(100)(x− 100)

=
√

100 + 1
2
√

100
(x− 100)

= 10 + 1
20(x− 100).

The whole point of this is that the tangent line closely approximates the original
function, so

√
102 = f(102) ≈ L(102) = 10 + 1

20(102− 100) = 10 + 2
20 = 10.1.

Note: the actual value of
√

102 is 10.0995... so our approximation of 10.1 is correct
to four decimal places.

Definition 8.1 (Linear approximation) Given a differentiable function f and a num-
ber a at which you can easily compute f(a) and f ′(a), the values f(x) for x close to a
can be estimated by the formula

f(x) ≈ L(x) = f(a) + f ′(a)(x− a).

This procedure is called tangent line approximation or linear approximation.

The function L(x) described above (which depends on f and a) has lots of
names. It is also denoted P1(x) and is called:

1. the tangent line to f at a;
2. the linearization of f at a;
3. the standard linear approximation to f at a; and
4. the first Taylor polynomial of f centered at a.
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8.1. Tangent line and quadratic approximation

EXAMPLE 1
Estimate 4

√
17 using tangent line approximation.

Note: You do not need to know the formula for f to perform a tangent line
approximation. All you need to know are the values of f(a) and f ′(a) (these two
numbers can often be determined experimentally if f is some unknown function
dealing with some experiment).

EXAMPLE 2
A biologist is growing bacteria in a petri dish. At 2:00 PM, she estimates that there
are 20000 living bacteria in the dish, and that the number of bacteria is growing at
a rate of 500 bacteria per minute. Use tangent line approximation to estimate the
number of bacteria in the dish at 2:05 PM.

A more interesting calculus problem: In the example above will the answer
overestimate, or underestimate the number of bacteria that are actually in the dish?
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8.1. Tangent line and quadratic approximation

0 5
time

20000

22500

# of bacteria

To get a better approximation which accounts for this kind of error, we approx-
imate f not by a line but by a parabola which has the same slope and concavity as
f at a.

Question: What would the equation of this parabola be?

Let’s call this parabola Q(x). Since Q(x) is a parabola, we could write

Q(x) =

but it is actually easier to write the equation of this parabola “centered at a”, i.e.

Q(x) = c0 + c1(x− a) + c2(x− a)2.

To find c0, c1 and c2, use the concept that Q has to have the same value, slope and
concavity as f at a.

The value of Q at a is

This should be the same as the value of f at a, which is

Conclusion:
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8.1. Tangent line and quadratic approximation

The slope of Q at a is

This should be the same as the slope of f at a, which is

Conclusion:

The concavity of Q at a is Q′′(a) = 2c2.

This should be the same as the concavity of f at a, which is

Conclusion:

From all this, we know that

Q(x) = c0 + c1(x− a) + c2(x− a)2.

where
c0 = f(a) c1 = f ′(a) c2 = 1

2f ′′(a).

To summarize:

Definition 8.2 (Quadratic approximation) Given a twice-differentiable function
f and a number a at which you can easily compute f(a), f ′(a) and f ′′(a), the val-
ues f(x) for x close to a can be approximated by the formula

f(x) ≈ Q(x) = f(a) + f ′(a)(x− a) + 1
2f ′′(a)(x− a)2.

This procedure is called quadratic approximation.

In general, quadratic approximation of a function is more accurate than lin-
ear approximation. In Math 230, you will learn how to approximate functions f
by polynomials of larger degree which can produce highly accurate estimates to
problems.

The function Q(x) described above (which depends on f and a) also has lots of
names. It is also denoted P2(x) and is called:

1. parabolic approximation to f at a;
2. the standard quadratic approximation to f at a; and
3. the second Taylor polynomial of f at a.
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EXAMPLE 3
Approximate

√
102 using quadratic approximation.

EXAMPLE 4
Suppose the biologist in Example 2 assumes (in addition to what she knew in Ex-
ample 2) that the number of bacteria in her petri dish at time t is given by a function
whose second derivative at 2:00 PM is 10. Estimate the number of bacteria in her
dish at 2:15 PM using quadratic approximation.
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8.1. Tangent line and quadratic approximation

EXAMPLE 5
A pharmacy researcher measures a patient’s blood pressure periodically after re-
ceiving a dose of an experimental medicine. His data is collected in the following
table:

t
(minutes after dosage) 0 1 2 3 4

P (t)
(blood pressure in mmHg) 230 190 162 142 128

Use quadratic approximation at t = 3 to estimate the patient’s blood pressure at
time 6.

212



8.1. Tangent line and quadratic approximation

Differentials

We will now establish some additional notation which will be used later in the
course. Given a function y = f(x), we create a new function with 2 inputs and one
output. The two inputs are:

x = an “initial” value of x

dx = a change in the value of x

Thus, we think of x as changing from x to x + dx. Given these inputs, we de-
fine dy to be the estimated change in y that we would compute using tangent line
approximation at x:

dy = L(x + dx)− L(x)
= [f(x) + f ′(x)(x + dx− x)]− [f(x) + f ′(x)(x− x)]
= [f(x) + f ′(x) dx]− [f(x)]
= f ′(x) dx.

The quantities dy and dx are called differentials. They represent small changes in y
and x, respectively and are related by the formula

dy = f ′(x) dx

.

EXAMPLE 6
Suppose y = 2x6 + sin x− 3. Compute dy (in terms of x and dx).
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8.2. L’Hôpital’s rule

A picture associated to differentials:

x x+Δx

f(x)

f(x+Δx)

In principle dy ≈ the actual change in y, since L(x) ≈ f(x).

8.2 L’Hôpital’s rule
Recall that most limits are evaluated by “plugging in”, i.e.

lim
x→5

2x + 1
x− 3 = 2(5) + 1

5− 3 = 11
2 .

Other limits are not so easy:

lim
x→2

x2 − 4
x− 2

lim
x→0

sin x

x
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8.2. L’Hôpital’s rule

The
0
0 obtained by plugging in 2 to the expression

x2 − 4
x− 2 or by plugging in 0 to

sin x

x
is called an “indeterminate form”. Note that both examples above are of the

form
0
0 , but evaluate to different answers. More generally:

Definition 8.3 An indeterminate form is an expression which can work out to one
of many different answers, depending on the context.

Examples of indeterminate forms:

0
0

∞
∞

0 · ∞ ∞−∞ 1∞ ∞0 00

Forms which are not indeterminate:

0
nonzero constant

= 0 nonzero constant
0 = ±∞

∞
0 = ±∞ 0

∞
= 0 0 · 0 = 0 01 = 0 10 = 1

(nonzero constant)0 = 1 ∞
nonzero constant

= ±∞ nonzero constant
∞

= 0

In Chapter 3, we learned to evaluate limits that have indeterminate forms in
them by factoring and cancelling, or performing other algebraic manipulations
(like conjugating square roots and clearing fractions within fractions).

One additional, and very useful, method to evaluate indeterminate forms in
limits is called L’Hôpital’s Rule:
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8.2. L’Hôpital’s rule

Theorem 8.4 (L’Hôpital’s Rule) Suppose f and g are differentiable functions. Sup-
pose also that either

lim
x→a

f(x) = lim
x→a

g(x) = 0

or
lim
x→a

f(x) = lim
x→a

g(x) = ±∞.

Then:
lim
x→a

f(x)
g(x)

L= lim
x→a

f ′(x)
g′(x) .

Application: Expressions like
0
0 or

∞
∞

can often be evaluated by taking deriva-
tives of the top and bottom independently, then plugging in a.

WARNING: We are not differentiating
f

g
here. To do this, use the quotient rule

(but that has nothing to do with the evaluation of the limit).

WARNING: Be sure that the limit you are calculating is a common (i.e. easy)
indeterminate form before using L’Hôpital’s Rule.

Notation: The symbol L= is used to denote usage of L’Hôpital’s Rule. It is just
an equals sign, and the L tells the reader that you are using L’Hôpital’s Rule.

EXAMPLE 1

lim
x→2

x2 − 4
x− 2

EXAMPLE 2

lim
x→0

sin x

x
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8.2. L’Hôpital’s rule

EXAMPLE 3

lim
x→0

3
x2

EXAMPLE 4

lim
x→3

x− 3
2x + 1

EXAMPLE 5

lim
x→∞

7 + 2x2

x2 − 3x + 1

EXAMPLE 6

lim
x→0

cos x− 1
x2

Solution:

lim
x→0

cos x− 1
x2 =

′′0′′

0
L= lim

x→0

− sin x

2x
=

′′0′′

0
L= lim

x→0

− cos x

2 = −1
2 .
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8.2. L’Hôpital’s rule

EXAMPLE 7

lim
x→∞

x2

x + 1

EXAMPLE 8
Evaluate this limit, where n is a positive integer:

lim
x→∞

xn

ex

Harder indeterminate forms

You can also evaluate other indeterminate forms (like 0 ·∞,∞−∞, 1∞,∞0, 00) by
first doing some algebra, then using L’Hôpital’s Rule:

EXAMPLE 9

lim
x→∞

x sin
(1

x

)
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8.2. L’Hôpital’s rule

EXAMPLE 10

lim
x→0+

(csc x− cot x)

Solution:
lim

x→0+
(csc x− cot x) =′′ ∞−∞′′ which is indeterminate

Rewrite as

lim
x→0+

(csc x− cot x) = lim
x→0+

( 1
sin x

− cos x

sin x

)
= lim

x→0+

1− cos x

sin x
=

′′0′′

0

L= lim
x→0+

sin x

cos x
= 0

1 = 0.

EXAMPLE 11

lim
x→∞

(
1 + 1

x

)x

Note: The answer to this problem should be memorized.
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8.2. L’Hôpital’s rule

WARNING: L’Hôpital’s Rule is a dangerous thing to rely on too much for two
reasons:

(1)

EXAMPLE 12

lim
x→0

cos x− 1 + 1
2x2

ex − 1− x− 1
2x2 − 1

6x3

(2)

EXAMPLE 13

lim
x→∞

√
x2 + 1

x
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8.3. Newton’s method

8.3 Newton’s method
Goal: use calculus to quickly and accurately approximate solutions to equa-

tions.

First, to solve any equation in one variable, it is sufficient to solve equations
where one side is equal to zero (i.e. to find roots a.k.a. x-intercepts of functions).
This is because if you are given an equation of the form

g(x) = h(x)

you can rewrite it as

g(x)− h(x) = 0 or h(x)− g(x) = 0.

So our goal is: given function f , find (or at least approximate) r such that f(r) =
0. The procedure we will use is called Newton’s method and works as follows:

Newton’s method

1. Guess the value of r. Call your
guess x0 (x0 is called the “initial
guess” or “seed”).

2. Draw the tangent line to f at x0.

3. Find the x−intercept of the tan-
gent line from step (2). Call this
x−int x1.

(Ideally, x1 is closer to r than x0
is.)

4. Draw the tangent line to f at x1.

5. Find the x−intercept of the tan-
gent line from step (2). Call this
x−int x2.

(Ideally, x2 is closer to r than x1
is.)

6. Repeat the procedure over and
over: given xn, sketch the tan-
gent line to f at xn; call this
x−int of this tangent line xn+1.

7. You get a sequence of points
x0, x1, x2, x3, ...

The numbers xn should (hope-
fully) get closer and closer to r,
so they approximate r better and
better as n gets larger.

r x0

f(x0)
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8.3. Newton’s method

Let’s implement this procedure for an arbitrary function f and initial guess x0:

The tangent line to f at xn has equation

and xn+1, the x−intercept of this line is found as follows:

EXAMPLE 1
Approximate a solution to x3−x = 2 by using Newton’s method with initial guess
2 and two steps.
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8.3. Newton’s method

EXAMPLE 2
Approximate a solution to x3 − x = 2 by using Newton’s method and getting an
approximation correct to 4 decimal places.

Newton’s method on Mathematica

Newton’s method is easy to implement on Mathematica. You need three lines of
code, all in the same cell. For example, to implement Newton’s method for the
function f(x) = x2 − 2 where x0 = 3 and you want to perform 6 iterations (to find
x6), just type

f[x_] = xˆ2 - 2;
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton, 3, 6]

and execute (all three lines at once). The first line defines the function f , the second
line gives a name to the formula you iterate in Newton’s method, and the last line
iterates the formula and spits out the results.

The resulting output for the code listed above is:

{3, 1.83333, 1.46212, 1.415, 1.41421, 1.41421, 1.41421}

These numbers are x0, x1, x2, ..., x6 so for example, x2 = 1.46212 and x4 = 1.41421...
and x6 = 1.41421 (the same as x4 to 5 decimal places).

To implement Newton’s method for a different function, different initial guess
and different number of iterations, simply change the formula for f , change the 3
to the appropriate value of x0 and the 6 to the number of times you want to iterate
Newton’s method.
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8.3. Newton’s method

EXAMPLE 3
Use Newton’s method to approximate the solution to

cos 2x + 3x = sin x.

Obtain an approximation which is accurate to four decimal places.

Mathematica code:

In: f[x_] = Cos[2x] + 3x - Sin[x];
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton, -1/2, 10]

Out: {-1/2, -0.373791, -0.367115, -0.367093, -0.367093, -0.367093,
-0.367093, -0.367093, -0.367093, -0.367093, -0.367093}

Potential problems with Newton’s method
EXAMPLE 4

Use Newton’s method to find a solution of

x1/3 = 0

using initial guess x = 1.

-10 -5 5 10

-4

-2

2

4
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EXAMPLE 5
Use Newton’s method to find a solution of

2x− x2 = 0

using initial guess x = 1.

-2 -1 1 2 3 4

-2

-1

1

2

EXAMPLE 6
Use Newton’s method to find a solution of

x3 − 2x + 2 = 0

using initial guess x = 0.

-2 -1 1 2

-2

-1

1

2

3

4
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EXAMPLE 7
Here is a graph of f(x) = 1

2(x + 2)(x− 3)(x− 4)(x− 5) + 4:

x1 r x0

This function has two roots, a negative one which is about −2 and a positive one
which is about 3. If you use initial guess x0 = 3.4, you get the following:

x1 = −8.9451; x2 = −6.28878; x3 = −4.38652; ... xn → −1.96114

which is the negative root. In other words, you get a root, but not the root you
wanted.

Major reasons why Newton’s method fails

1. “overshooting” (as in Example 4) - caused by vertical tangency at the root

2. f ′(xn) being equal to zero for some n (as in Example 5) - caused by hori-
zontal tangency at xn

3. periodicity in the sequence xn (as in Example 6) - caused by “poor” or
“unlucky” initial guess

4. getting an unexpected root (as in Example 7) - caused by having a point
where f ′(x) is small too close to the root you want

Reasons for the failure of Newton’s method can always be explained graphi-
cally.

226



8.4. Homework exercises

8.4 Homework exercises
Exercises from Section 8.1

In Problems 1-4 below, compute the linear approximation L(x) to f at the given
value of a:

1. f(x) = 5
√

x, a = 1

2. f(x) = cot x, a = π/4

3. f(x) = sin 3x, a = π

4. f(x) = xex, a = 0

In Problems 5-8 below, compute the quadratic approximation Q(x) to f at the given
value of a:

5. f(x) = x2/3, a = 27

6. f(x) = 4 cos x, a = π

7. f(x) = ln(x + 1), a = 0

8. f(x) = 3 sec x, a = 0

In Problems 9-16 below, estimate the following quantities using tangent line ap-
proximation:

9.
√

50

10. (8.1)3

11. ln(1.3)

12. e.2

13. 3
√

66

14. sin(.2)

15. arctan(1/3)

16. cos(π
2 + 1/8)

17. Is the estimate you made in problem 9 an overestimate or an underestimate?
Explain (without obtaining a decimal approximation to

√
50 using a com-

puter or calculator).

18. Is the estimate you made in problem 10 an overestimate or an underestimate?
Explain (without obtaining a decimal approximation to (8.1)3 using a com-
puter or calculator).

In Problems 19-22 below, estimate the following quantities using quadratic approx-
imation:

19. 173/2

20. cos 1
2

21. e1/3

22.
√

150
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23. After turning his gas grill on, a cook looks at the grill’s internal temperature
regularly, writing what he sees in the following table:

t
(minutes after grill is lit) 0 1 2 4 5

T (t)
(temperature in ◦F) 70 240 320 440 475

a) Use linear approximation to estimate what the temperature of the grill
will be 7 minutes after it is turned on.

b) Use quadratic approximation to estimate what the temperature of the
grill will be 7 minutes after it is turned on.

c) Use the same quadratic approximation you computed in part (b) to es-
timate what the temperature of the grill will be 13 minutes after it is
turned on.

d) Does your answer to part (c) make sense? Explain.

e) What about the procedure of quadratic approximation made our answer
to part (c) so far off?

In Problems 24-27, compute the differential dy.

24. y = 3x2 − 4

25. y = x
√

1− x2

26. y = arcsin x

27. y = e3x

28. a) Compute dy if y = 1
2x3, when x = 2 and dx = .1.

b) Sketch a picture representing the computation done in part (a) of this
problem, labelling x, dx and dy appropriately.

29. a) Compute dy if y = 1− x4, when x = 1 and dx = .1.

b) Sketch a picture representing the computation done in part (a) of this
problem, labelling x, dx and dy appropriately.

Exercises from Section 8.2

In Problems 30-43, compute the indicated limit (indicating if the limit is ±∞ or
does not exist):

30. lim
x→3

2x− 6
x2 − 9 31. lim

x→0

√
4− x2 − 2

x
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32. lim
x→0

2ex − 2x− 2
x2

33. lim
x→3

x2 − 2x− 3
x− 3

34. lim
x→2

x2 + 10
x + 2

35. lim
x→0

sin 4x

sin 9x

36. lim
x→∞

3x2 − 2x + 1
2x2 + 3

37. lim
x→∞

x4

ex/3

38. lim
x→∞

ln x

x2

39. lim
x→∞

ex

x9

40. lim
x→∞

2000x2014

ex

41. lim
[x→2+

( 8
x2 − 4 −

x

x− 2

)
Hint: Add the fractions by finding a
common denominator.

42. lim
x→∞

x1/x

Hint: Follow the procedure of Exam-
ple 11 on page 224.

43. lim
x→0

xx

Exercises from Section 8.3

44. Approximate (by hand) a solution to 2x3 + x2 − x = −1 by using Newton’s
method with initial guess x = −1 and two steps.

45. Approximate (by hand) a solution to x5 = 4 by using Newton’s method with
initial guess x = 1 and two steps.

In Problems 46-49, use Mathematica to estimate a solution to the following equa-
tions using Newton’s method; solutions should be correct to 4 decimal places:

46. x3 = 3

47. x5 + x = 1

48. 3
√

x− 1 = x

49. 2x3 = cos x

In Problems 50-52, use Mathematica to estimate all solutions to the following equa-
tions using Newton’s method; solutions should be correct to 4 decimal places.

Hint: First, have Mathematica plot both functions on the same xy−plane; use
the plot to determine the number of solutions to the equation. For each solution,
run Newton’s method with an initial guess close to the x−value of the appropriate
solution.

50. ex−5 = ln x 51. arctan 2x = x2 − 1 52. 6 sin x
6 = 8x− x3
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In Problems 53-60, use the graph of some unknown function f shown here. As you
can see, the equation f(x) = 0 has two solutions, r1 (the negative one, near−5) and
r2 (the positive one, near 8).

r1 r2-12 -10 -8 -6 -4 -2 2 4 6 8 10 12

53. Suppose you were to execute Newton’s method for this function with initial
guess x = 4. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

54. Suppose you were to execute Newton’s method for this function with initial
guess x = −6. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

55. Suppose you were to execute Newton’s method for this function with initial
guess x = −10 (assume that −10 is the x−coordinate of the “peak” of the
function). Will this produce an approximation to r1 or r2 (or will it not work
at all)? Explain.

56. Suppose you were to execute Newton’s method for this function with initial
guess x = 3. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

57. Suppose you were to execute Newton’s method for this function with initial
guess x = −1. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

58. Suppose you were to execute Newton’s method for this function with initial
guess x = 2. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.
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8.4. Homework exercises

59. Suppose you were to execute Newton’s method for this function with initial
guess x = −7.5. Will this produce an approximation to r1 or r2 (assume that
the slope at −7.5 is a very small positive number)? Explain.

60. Suppose you were to execute Newton’s method for this function with initial
guess x = 10. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

61. Attempt Newton’s method on the function f(x) = 4x3 − 12x2 + 12x− 3 with

initial guess x = 3
2 . Try lots of iterations.

a) What happens?

b) Sketch the graph of the function f using Mathematica and explain, via
the graph, the phenomenon you observe in part (a).

Answers

1. L(x) = 1 + 1
5(x− 1)

2. L(x) = 1− 2
(

x− π

4

)
3. L(x) = −3(x− π)

4. L(x) = x

5. Q(x) = 9 + 2
9(x− 27)− 1

729(x− 27)2

6. Q(x) = −4 + 2(x− π)2

7. Q(x) = x− x2

2

8. Q(x) = 3 + 3
2x2

9.
99
14

10. 531.2

11. .3

12. 1.2

13.
97
24

14. .2

15.
1
3

16. −1
8

17. Overestimate, because f ′′(49) < 0.

18. Underestimate, because f ′′(8) > 0.

19.
2243
32

20.
7
8

21.
25
18

22.
4703
384

23. a) 545◦ F (answers may vary)

b) 520◦ F (answers may vary)

c) 355◦ F (answers may vary)
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8.4. Homework exercises

d) No, because the grill should be hotter at time 13 than it was at time 5.

e) Since we approximated using a parabola Q that opens downward, eventually
Q starts to decrease. But the temperature T probably continues to increase; it is
just that it increases at a slower rate.

24. 6x dx

25.

√
1− x2 − −2x2

2
√

1− x2

1− x2 dx = 1
(1− x2)3/2 dx

26.
1√

1− x2
dx

27. 3e3x dx

28. a) .6

b)

f
L

dy Δy

dxx

2.00 2.05 2.10 2.15

3.8

4.0

4.2

4.4

4.6

4.8

5.0

29. a) −.4

b)

f

L

dy

dx
x

1.00 1.05 1.10 1.15

-0.8

-0.6

-0.4

-0.2

0.2

30.
1
3

31. 0

32. 1

33. 4

34.
7
2

35.
4
9

36.
3
2

37. 0

38. 0

39. ∞

40. 0

41. −3
2

42. 1
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8.4. Homework exercises

43. 1

44.
−235
189

45.
35893
25600

46. 1.44225

47. .754878

48. 7.8541

49. .721406

50. 1.01884 and 5.53738

51. −.482303 and 1.49966

52. −2.65184, 0 and 2.65184

53. r2

54. r1

55. won’t work (since tangent line at x = −10 never hits x−axis)

56. r2

57. won’t work (tangent line at x = −1 is vertical)

58. won’t work (function not differentiable at x = 2

59. r2 (tangent line at −7.5 hits x−axis close to r2)

60. r2

61. a) Starting with the second iteration, you get infinity.

b) If you sketch the picture associated to Newton’s method, after the first iteration
the tangent line is horizontal.
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Chapter 9

Theory of the Definite Integral

9.1 Motivating problems: area and displacement
RECALL

To define the derivative of a function, we started with a real-world problem we
wanted to solve:

Then, we approximated the solution to that problem (by finding the slope of
some secant line):

Next, we observed how the approximation got better:

This told us how to define the answer to the problem (using a limit):

(In principle, we don’t use this definition to compute derivatives; we use rules
like the Power Rule, Product Rule, Chain Rule, etc.)
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9.1. Motivating problems: area and displacement

For the rest of the semester, we will consider two new classes (actually only one
class) of real-world problems.

We need to define a new mathematical object which will solve these problems.

To create this new object, we will:
1. Approximate the answer to the problem.
2. Observe how the approximation gets better.
3. Define the answer to the problem using a limit.

What are the two new classes of real-world problems?

1.

2.

First remark: Problems (1) and (2) above are really the same problem in dis-
guise. Why?

Suppose you are in a car and you look at the speedometer once an hour:

(hr) t 0 1 2 3
(mph) v(t) 40 43 38 34

How far do you travel from t = 0 to t = 4 (i.e. what is your displacement from
time 0 to time 4)?

0
1
2 1

3
2 2

5
2 3

7
2 4

time

32

34

36

38

40

42

44

velocity • observed values of v(t)

−−− actual values of v(t)
(unknown)

−−− assumed values of v(t)
(based on observations)

This is just an approximation. How might the approximation improve?
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9.1. Motivating problems: area and displacement

Suppose you look at the speedometer every 30 minutes:

(hr) t 0 1
2 1 · · ·

(mph) v(t) 40 41 43 · · ·

0
1
2 1

3
2 2

5
2 3

7
2 4

time

32

34

36

38

40

42

44

velocity
• observed values of v(t)
−−− actual values of v(t)

(unknown)

−−− assumed values of v(t)
(based on observations)

So the displacement is
≈ 40

(
1
2

)
+ 41

(
1
2

)
+ 43

(
1
2

)
+ 41

(
1
2

)
+38

(
1
2

)
+ 35

(
1
2

)
+ 34

(
1
2

)
+ 36

(
1
2

)
= 154 mi .

Take more and more measurements:

0
1
2 1

3
2 2

5
2 3

7
2 4

time

32

34

36

38

40

42

44

velocity

This suggests the following important principle:

displacement of an object
from t = 0 to t = 4,

given velocity function v(t)
= area under the graph of v

from t = 0 to t = 4

236



9.1. Motivating problems: area and displacement

More generally: Suppose an object’s position at time t is given by function f(t).
Then its displacement from time t = a to time t = b is f(b)− f(a).

At the same time, its velocity at time t is given by f ′(t), and the displacement
from time a to time b is equal to the area under the graph of f ′ from t = a to t = b.
Putting this together, we have the following important idea:

area under the graph of f ′

from t = a to t = b
= f(b)− f(a)

This means: the problems of finding the area between the graph of a function
and the x−axis, and the problem of finding displacement given velocity, are really
the same problem. The process that solves these problems is probably something
like “differentiation in reverse”.

EXAMPLE 1
Suppose that the velocity (in m/sec) of a bird at time t (in seconds) is given by

v(t) = 2
3t + 4

3 . Find the distance travelled by the bird between time 0 and time 6.
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9.1. Motivating problems: area and displacement

EXAMPLE 2
In each situation A through D described below:

1. Based on the description given, sketch a graph of the velocity, plotted against
time.

2. Determine how far you travel between time t = 0 and t = 3 (throughout this
assignment, t is in hours).

3. Determine how far you travel between times t = 5 and t = 9.

4. Without being given any other information, do you know what your odome-
ter reading is at time t = 4? If so, what is it?

5. Without being given any other information, do you know what your odome-
ter reading is at time t = 8? If so, what is it?

6. Suppose your odometer reading at time t = 0 is 0. Now, do you know the
odometer readings at time 8? If so, what is it?

7. Suppose your odometer reading at time t = 0 is 10000. Now, do you know
the odometer readings at time 8? If so, what is it?

8. Suppose your odometer reading at time t = 0 is C, where C is an arbitrary
constant. What is the odometer reading at time 4? What is the odometer
reading at time 8?

Situation A: Assume that the velocity at all times is 60 miles per hour.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10
20
30
40
50
60
70
80
90
100

velocity v(t)
Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:

238



9.1. Motivating problems: area and displacement

Situation B: Assume that the velocity is 50 miles per hour for the first six hours,
then 80 miles per hour at all times after the first six hours.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10
20
30
40
50
60
70
80
90
100

velocity v(t)
Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:

Situation C: Assume that the velocity at time x is equal to x.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

1
2
3
4
5
6
7
8
9
10
11
12

velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:

Situation D: Assume that the velocity at time x is equal to x2.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:
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9.1. Motivating problems: area and displacement

Concepts illustrated in the preceding example

• At the beginning of the semester, we discussed the “big picture” problem
of converting from a function which represents an odometer to a function
which represents a speedometer. The operation we eventually cooked up to
do this is differentiation. In other words:

ODOMETER DERIVATIVE−→ SPEEDOMETER

POSITION DERIVATIVE−→ VELOCITY

f(x) DERIVATIVE−→ f ′(x)

• Now, we are looking at the same problem in the other direction. That is, we
want to assume we are given a speedometer (i.e. a function that represents
velocity), and we want to determine the function that was the odometer:

ODOMETER ←− SPEEDOMETER

POSITION ←− VELOCITY

? ?←− f(x)

• If you are given a function f which represents your velocity, then you cannot
use f by itself to determine your odometer reading at a certain time (because
you didn’t know what the original odometer reading was).

• But, if you are given a function f which represents your velocity and you are
given an initial odometer reading (a.k.a. the odometer reading at time a),
then you can determine your odometer reading at any time t by the formula

odometer reading
at time t

=

original odometer reading
+

area under velocity function
from time a to time t

EXAMPLE 3
The graph of some function f ′ is given below at left. If f(0) = 2, sketch the graph
of f on the middle axes. On the right-hand axes, sketch all possible graphs of f (if
you don’t know f(0)).

f '

1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4
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9.2. Riemann sums

9.2 Riemann sums
Summation notation

Suppose ak is some expression which can be computed in terms of k. (ak is like
a(k).) For example, if ak = k2 + k, then

a1 = 12 + 1 = 2 a2 = 22 + 2 = 6 a3 = 32 + 3 = 12 etc.

Frequently in mathematics we want to add together values of ak where k ranges
over some set. For example, we might want to add up

a2 + a3 + a4 + a5 + ... + a20.

We use the following notation to represent this kind of addition:

Definition 9.1 Given numbers a1, a2, ... the sum from k = 1 to n of ak is

n∑
k=1

ak = a1 + a2 + a3... + an.

(More generally,
n∑

k=m

ak = am + am+1 + am+2 + ... + an.)

EXAMPLE 1

Write the expression
32

2 + 42

2 + 52

2 + ... + 172

2 in Σ-notation.

EXAMPLE 2

Compute
3∑

k=0

2
k + 1 .
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Approximating the area under a function

Idea: Approximate the area under a function by finding the total area of some rect-
angles.

Definition 9.2 Given an interval [a, b], a partition P is a (finite) list of numbers
{x0, x1, x2, ..., xn} such that a = x0 < x1 < ... < xn−1 < xn = b. Such a partition
divides [a, b] into n subintervals; the kth subinterval is [xk−1, xk]. For each k, set
∆xk = xk−xk−1; ∆xk is called the width of the kth subinterval. Call the largest ∆xk

the norm of the partition; denote the norm by ||P||.

EXAMPLE 3

a = 0; b = 1; P =
{

0,
1
4 ,

3
4 ,

7
8 , 1

}
.

EXAMPLE 4
P = partition of [a, b] into n equal-length subintervals.

a bx1 x2 x3 x4 xk-1 xk xn-1
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9.2. Riemann sums

Definition 9.3 Given function f : [a, b] → R and given partition P = {x0, ..., xn}
of [a, b], a Riemann sum associated to P for f is any expression of the form

n∑
k=1

f(ck)∆xk

where for all k, ck belongs to the kth subinterval of P . The points c1, c2, ..., cn are called
test points for the Riemann sum.

a=x0 x1 x2 x3 x4 b=x5
time t

velocity v(t)

A Riemann sum approximates the area under f(x) from x = a to x = b by adding
up areas of rectangles as above. Different choices of P and different choices of ck

(even for the same P) give different Riemann sums.

243



9.2. Riemann sums

EXAMPLE 5

Let f(x) = 2x − x2 and let P =
{

0,
1
2 , 1,

7
4 , 2

}
. By choosing different test points,

we get different Riemann sums for this partition. Compute each of the following
specific Riemann sums associated to this f and this P :

1. Left sum (this means that we choose each test point ck to be xk−1, the left
endpoint of the kth subinterval)

x0=0 x1=1/2 x2=1 x3=7/4 x4=2

4∑
k=1

f(ck)∆xk =

2. Right sum (this means we choose each ck to be xk, the right endpoint of the
kth subinterval)

x0=0 x1=1/2 x2=1 x3=7/4 x4=2

7
16

3
4

1

4∑
k=1

f(ck)∆xk

= f
(1

2

) 1
2 + f(1)1

2 + f
(7

4

) 3
4 + f(2)1

4

=
(3

4

) 1
2 + (1)1

2 +
( 7

16

) 3
4 + (0)1

4

= 3
8 + 1

2 + 21
64 + 0

= 24 + 32 + 21
64

= 77
64 .
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3. Upper sum (this means we choose each ck to be the x−value corresponding
to the absolute maximum of f on the kth subinterval, making the rectangles
as tall as possible)

x0=0 x1=1/2 x2=1 x3=7/4 x4=2

7
16

3
4

1

4∑
k=1

f(ck)∆xk

= f
(1

2

) 1
2 + f(1)1

2 + f (1) 3
4 + f(7

4)1
4

=
(3

4

) 1
2 + (1)1

2 + (1) 3
4 +

( 7
16

) 1
4

= 3
8 + 1

2 + 3
4 + 7

64
= 24 + 32 + 48 + 7

64
= 111

64 .

4. Lower sum (this means we choose each ck to be the x−value corresponding
to the absolute minimum of f on the kth subinterval, making the rectangles
as short as possible)

x0=0 x1=1/2 x2=1 x3=7/4 x4=2

7
16

3
4

1

4∑
k=1

f(ck)∆xk

= f(0)1
2 + f

(1
2

) 1
2 + f

(7
4

) 3
4 + f(2)1

4

= (0) 1
2 +

(3
4

) 1
2 +

( 7
16

) 3
4 + (0) 1

4

= 0 + 3
8 + 21

64 + 0

= 24 + 21
64

= 45
64 .

The upper and lower sums associated to a partition P for a function f are of
particular importance. Why?

Note: If f is increasing on [a, b], then

Note: If f is decreasing on [a, b], then
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9.3. Definition of the definite integral

EXAMPLE 6
Estimate the area under f(x) = x3 from x = 0 to x = 1 by using a lower sum for a
partition into 6 subintervals of equal length.

Therefore this Riemann sum works out to

0
(1

6

)
+ 1

216

(1
6

)
+ 1

27

(1
6

)
+ 1

8

(1
6

)
+ 8

27

(1
6

)
+ 125

216

(1
6

)
= 25

144 .

9.3 Definition of the definite integral
In the last section: we approximated the area under f from a to b by the Rie-

mann sum
n∑

k=1
f(ck)∆xk

Next task:

Key observation: As ||P|| → 0, the rectangles under the graph of f get skinnier
and skinnier, so the corresponding Riemann sum estimates become more and more
exact. So

lim
||P||→0

n∑
k=1

f(ck)∆xk

should give the exact area under the graph. This motivates the following defini-
tion:
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9.3. Definition of the definite integral

Definition 9.4 (Limit definition of the integral) Given function f : [a, b] → R,
the definite integral of f from a to b is

∫ b

a
f(x) dx = lim

||P||→0

n∑
k=1

f(ck)∆xk

if this limit exists (in MATH 220 and MATH 230, it always will). If the limit exists,
we say f is integrable on [a, b].

Notation:

Two ways to think about the integral:

1. The definite integral is “continuous addition of areas of rectangles of in-
finitely small width”.

2. The definite integral is “accumulation” of values of f from x = a to x = b.
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9.3. Definition of the definite integral

Some integrals can be computed without doing any sophisticated calculus:

EXAMPLE 1
Evaluate the following definite integrals:

1.
∫ 7

4
5 dx

2.
∫ 8

4

1
4x dx

3.
∫ 3

−3

√
9− x2 dx

4.
∫ 1

−2
(3− |x|) dx
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9.3. Definition of the definite integral

Evaluating an integral using the definition of integral is much harder:

EXAMPLE 2
Compute ∫ 1

0
x dx

using the limit definition of the definite integral.

Aside: The answer is

Computation using the limit definition:

∫ 1

0
x dx = lim

||P||→0

n∑
k=1

f(ck)∆xk

We need to choose partitions whose norm→ 0,
and we need to choose a type of Riemann sum.
I will choose a partition into n equal-length subintervals

(this makes all the ∆xk = 1− 0
n

= 1
n

)

and compute a right-hand Riemann sum

(this makes ck = xk = 0 + k
(1− 0

n

)
= 0 + k · 1

n
= k

n
)

and notice that ||P|| → 0 is the same as n→∞ in this context.
So the integral becomes

lim
n→∞

n∑
k=1

f

(
k

n

)
· 1

n

= lim
n→∞

n∑
k=1

k

n
· 1

n
(since f(x) = x)

= lim
n→∞

1
n2

n∑
k=1

k

= lim
n→∞

1
n2 (1 + 2 + 3 + ... + n).

Now the question is, what is 1 + 2 + 3 + ... + n?
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9.4. Elementary properties of Riemann integrals

From the previous page,

∫ 1

0
x dx = lim

n→∞

1
n2 (1 + 2 + 3 + ... + n) = lim

n→∞

1
n2 ·

n(n + 1)
2

= lim
n→∞

n + 1
2n

L= lim
n→∞

1
2 = 1

2 .

This example was very hard (even though the integrand was very simple). This
suggests that computing integrals like∫ π

0
sin x dx or

∫ 4

1
x5 dx

using the definition of definite integral is impossible. We need another method,
which we will discuss in Section 9.5.

9.4 Elementary properties of Riemann integrals
Theorem 9.5 All continuous functions are integrable.

Definition 9.6 Let a < b and let f : [a, b]→ R be integrable. Then

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

Definition 9.7 Let f : [a, b]→ R. Then
∫ a

a
f(x) dx = 0.

Theorem 9.8 (Linearity properties of integrals) Let f and g be integrable; let k
be any constant. Then:

1.
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx;

2.
∫ b

a
[f(x)− g(x)] dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx;

3.
∫ b

a
k f(x) dx = k

∫ b

a
f(x) dx.
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9.4. Elementary properties of Riemann integrals

WARNING: integrals are not multiplicative nor divisive:

∫ b

a
[f(x)g(x)] dx ̸=

[∫ b

a
f(x) dx

] [∫ b

a
g(x) dx

] ∫ b

a

f(x)
g(x) dx ̸=

∫ b

a
f(x) dx∫ b

a
g(x) dx

Theorem 9.9 (Inequality properties of integrals) Suppose that f and g are inte-
grable functions. Then:

1. (Positivity Law) If f(x) ≥ 0 on [a, b], then
∫ b

a f(x) dx ≥ 0.

2. (Monotonicity Law) If f(x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

3. (Max-Min Inequality) Let m and M be the absolute min value and absolute
max value of f on [a, b], respectively. Then

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

f

g

a b

f

a b

m

M

Theorem 9.10 (Additivity property of integrals) Suppose f is integrable. Then
for any numbers a, b and c,

∫ b

a
f(x) dx +

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

f

a b c

f

a c
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9.4. Elementary properties of Riemann integrals

Note: It is possible for integrals to be negative (so integrals actually compute
something called “signed area”):

a b

EXAMPLE 1
Suppose f and g are functions such that∫ 7

3
f(x) dx = 6

∫ 8

7
f(x) dx = 4 and

∫ 7

3
g(x) dx = 2.

1. Compute
∫ 8

3
f(x) dx.

2. Compute
∫ 3

7
f(x) dx.

3. Compute
∫ 4

4
f(x) dx.

4. Compute
∫ 7

3
[4f(x) + 5g(x)] dx.

5. Compute
∫ 7

3
[f(x) + 2x] dx.
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9.4. Elementary properties of Riemann integrals

EXAMPLE 2
Here is the graph of some unknown function f :

-10 -8 -6 -4 -2 2 4 6 8 10

-5

-3

-1

1

3

5

Use the graph to estimate the answers to the following integrals:

1.
∫ 2

−1
f(x) dx

2.
∫ −4

−6
10f(x) dx

3.
∫ 3

5
f(x) dx

4.
∫ 7

5
f(x) dx

5.
∫ −2

−2
f(x) dx
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9.5. Fundamental Theorem of Calculus

9.5 Fundamental Theorem of Calculus
RECALL FROM SECTION 9.3

It is virtually impossible to compute integrals using the limit definition. So, in
order to compute integrals, we need some new ideas. The theory that follows is
motivated by the idea from page 237, which suggests that

∫ b

a
f ′(x) dx = f(b)− f(a).

Based on this idea, to evaluate an integral like∫ 4

1
x5 dx,

we should think of x5 as f ′(x) and try to find f(x). Just by “guessing” (for now),

we see that f(x) = 1
6x6 works. So if we let f(x) = 1

6x6, we have

∫ 4

1
x5 dx =

∫ 4

1
f ′(x) dx = f(4)− f(1) = 1

646 − 1
616 = 1365

2 .

In this section we justify that this idea works in general. To do this, we need some
new terminology:

Definition 9.11 Given function f , an antiderivative of f is a function ′f (read this
as “f antiprime”) such that (′f)′ = f .

EXAMPLES
′f(x) = x2 − 3 is an antiderivative of f(x) = 2x.

′f(x) = x2 is an antiderivative of f(x) = 2x.

′f(x) = x2 + C is an antiderivative of f(x) = 2x for any constant C.

QUESTION

Are there any other antiderivatives of f(x) = 2x?
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9.5. Fundamental Theorem of Calculus

Theorem 9.12 (Antiderivative Theorem) Suppose ′f1 and ′f2 are both antideriva-
tives of the same function f . Then, for all x, ′f1(x) =′ f2(x) + C.

PROOF Let G(x) = ′f1(x)−′f2(x). Then

G′(x) = (′f1)′(x)− (′f2)′(x) = f(x)− f(x) = 0.

so G is a function whose derivative is everywhere zero. That means G has slope
zero, so it must be a horizontal line, i.e. must be a constant function (this seems
obvious, but is actually very deep - take MATH 430 (Advanced Calculus) to see
how to prove this rigorously).

Thus G(x) = ′f1(x)−′f2(x) = C so ′f1(x) =′ f2(x) + C where C is a constant. □

Remark: The point of the Antiderivative Theorem is that any two antideriva-
tives of the same function must differ by at most a constant.

(So there are no other antiderivatives of f(x) = 2x other than F (x) = x2 + C.)

Restated, this means that if you have found one antiderivative of a function,
you have found them all (by adding an arbitrary constant).

Theorem 9.13 (Fundamental Theorem of Calculus I) (Differentiation of Inte-
grals) Let f be continuous on [a, b]. Consider a new function

′f(x) =
∫ x

a
f(t) dt.

Then:

1. ′f is continuous and differentiable on [a, b]; and

2. (′f)′(x) = f(x) (i.e. ′f is an antiderivative of f ).

Picture:
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9.5. Fundamental Theorem of Calculus

Physical interpretation:

Mathematical significance of this part of the FTC:

1. The FTC reveals that differentiation and integration are inverse operations
(because it says that if you start with a function f , take its integral (to get ′f )
and then take the derivative of that, you get back to the function f that you
started with).

2. The FTC guarantees that every continuous function has an antiderivative:

given function f(x), the function ′f(x) =
∫ x

a
f(t) dt is an antiderivative of f

for any choice of a.

PROOF OF FTC PART I: By the definition of derivative,

(′f)′(x) = lim
h→0

′f(x + h)−′f(x)
h

= lim
h→0

1
h

(∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

)

. = lim
h→0

1
h

∫ x+h

x
f(t) dt.

Now by the Max-Min Inequality, by letting m and M be the minimum and maxi-
mum values of f on [x, x + h], we have

m(x + h− x) ≤
∫ x+h

x
f(t) dt ≤M(x + h− x)

⇒ mh ≤
∫ x+h

x
f(t) dt ≤Mh

⇒ m ≤ 1
h

∫ x+h

x
f(t) dt ≤M

As h→ 0, m and M both go to f(x), so the inside quantity must go to f(x) as well,
i.e.

(′f)′(x) = lim
h→0

1
h

∫ x+h

x
f(t) dt = f(x). □
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9.5. Fundamental Theorem of Calculus

Now for our last big theorem. Remember that the goal is to develop a method to
evaluate integrals that doesn’t use the limit definition. We are now able to achieve
this goal:

Theorem 9.14 (Fundamental Theorem of Calculus Part II) (Evaluation of In-
tegrals) Let f be continuous on [a, b]. Suppose ′f is any antiderivative of f . Then

∫ b

a
f(x) dx = ′f(b)−′f(a).

Notation: The expression ′f(b)−′f(a) is written [′f(x)]ba or ′f(x)|ba.

Proof: Let G(x) =
∫ x

a
f(t) dt. G′(x) = f(x) by the first part of the Fundamental

Theorem of Calculus. By the Antiderivative Theorem, if ′f is any antiderivative of
f , we know ′f(x) = G(x) + C. Therefore

′f(b)− ′f(a) = G(b) + C − (G(a) + C)
= G(b)−G(a)

=
∫ b

a
f(t) dt−

∫ a

a
f(t) dt

=
∫ b

a
f(t) dt− 0

=
∫ b

a
f(t) dt

=
∫ b

a
f(x) dx (since the t and x are dummy variables).

Physical interpretation of this part of the FTC: Suppose ′f(x) gives the posi-
tion of an object at time x. Then the object’s velocity is (′f)′(x) = f(x). This part of
the FTC says that the displacement of the object from time a to time b equals the
area under the velocity function f from a to b, as suggested earlier in this chapter.

More general interpretation: Suppose ′f(x) is any quantity. Then the rate of
change of ′f with respect to x is (′f)′(x) = f(x). This part of the FTC says that the
integral of the rate of change, i.e. the accumulation of the rate of change, is equal
to the net change in ′f from x = a to x = b.

Mathematical significance of this part of the FTC: This result provides a mech-
anism to evaluate definite integrals without having to compute limits of Riemann
sums. In particular, if you can find any one antiderivative of f that is easy to work
with (say ′f ), then you can evaluate integrals of f by subtracting values of ′f .
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9.5. Fundamental Theorem of Calculus

You are responsible for being able to state both parts of the FTC and explain
their physical interpretation and mathematical significance.

EXAMPLE 1
Evaluate the integral: ∫ 4

3
x dx

EXAMPLE 2
Suppose an object is moving along a line so that its velocity at time t is 3 sec2 t. Find
the distance traveled by the object between times t = 0 and t = π

4 .
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9.5. Fundamental Theorem of Calculus

EXAMPLE 3
In an electrical circuit, the current is the instantaneous rate of change of the charge.

If the current in a circuit at time t (in seconds) is 2 + 1
4 sin t amperes, find the net

change in the charge from time
π

2 to time π. (P.S. An ampere times a second is a
coulomb, a unit of charge.)

EXAMPLE 4
A tank is being filled with fluid at a non-constant rate: at time t (in seconds), the
rate at which the tank is being filled is 2t(4 − t) L/sec. Find the amount of fluid
that is poured in the tank during the first 3 seconds.

The Fundamental Theorem of Calculus reduces the problem of computing inte-
grals to the problem of finding antiderivatives. Thus it is important to be able to
find antiderivatives of functions, and we address this task in the next chapter.
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9.6. Homework exercises

9.6 Homework exercises
Exercises from Chapter 9.1

1. During a car trip, let v(t) represent the car’s speedometer reading (in miles
per hour) at time t (measured in hours after the beginning of the car trip).
Suppose that the graph of v(t) for 0 ≤ t ≤ 10 is as given below:

0 2 4 6 8 10
time t

20

40

60

80

100
velocity v(t)

Use this graph to estimate the answers to the following questions (answer
with appropriate units):

a) What is the speedometer reading 2 hours after the trip starts?

b) What is the acceleration of the car at time 6?

c) Is the car speeding up, or slowing down at time 3? Explain.

d) Is the car moving forward or backward at time 6? Explain.

e) Find the distance the car travels during the first 3 hours of the trip.

f) Find the distance the car travels between times 4 and 9.

g) If the odometer reading of the car at the beginning of the trip is 1000,
find the odometer reading six hours later.

h) If the odometer reading of the car at time 5 is 2000, what was the odome-
ter reading three hours earlier?
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9.6. Homework exercises

2. On Mars, a rover is moving back and forth along a dirt track so that at time
t (measured in seconds), its velocity (measured in cm/sec) is given by the
function v whose graph is given below for 0 ≤ t ≤ 10:

2 4 6 8 10
time t

-4

-2

2

4

velocity v(t)

Use this graph to estimate the answers to the following questions (answer
with appropriate units):

a) What is the velocity of the rover at time 8?

b) At what time(s) is the velocity of the rover equal to 1 cm/sec?

c) What is the acceleration of the rover at time 7?

d) Is the rover moving forward or backward at time 6? Explain.

e) Find the displacement of the rover from time 0 to time 3.

f) Find the displacement of the rover from time 6 to time 10.

g) Suppose the initial position of the rover is 0. Find all times when the
position of the rover is 8.

h) Suppose the initial position of the rover is 4. Sketch a crude graph of the
position of the rover, as a function of t.

3. In each part of this problem, you are given the graph of the derivative f ′ of
some function f for 0 ≤ x ≤ 10, and the value of f at one value of x. Use this
information to sketch the graph of f for 0 ≤ x ≤ 10.

a) f(3) = 2; f ′ has graph
2 4 6 8 10

-2

2
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9.6. Homework exercises

b) f(0) = 4; f ′ has graph

0 2 4 6 8 10

2

4

c) f(0) = −3; f ′ has graph
2 4 6 8 10

-2

2

d) f(0) = 5; f ′ has graph
2 4 6 8 10

-2

2

4. Suppose the graph of some derivative g′ is as given below. On a single set of
axes, sketch all possible graphs of g:

g'

2 4 6 8 10

-2

2

4

6

Exercises from Section 9.2

In Problems 5-8, write the following sums in Σ−notation:

5.
1
3 + 1

4 + 1
5 + 1

6 + ... + 1
19

6.
5
72 + 5

82 + 5
92 + ... + 5
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9.6. Homework exercises

7.
24

4 + 25

5 + 26

6 + ... + 214

14

8.
3
82

√
2 + 3

83

√
3 + 3

84

√
4 + ... + 3

825

√
25

In Problems 9-11, evaluate the given sum by hand (simplify your answer):

9.
7∑

n=1
2n 10.

4∑
n=0

cos πn 11.
6∑

n=3
n2

In Problems 12-14, evaluate each of the following sums using Mathematica. Note:

to evaluate a sum of the form
N∑

n=M

an in Mathematica, use the following syntax:

Sum[an, {n, M, N}]

For example, to evaluate
9∑

n=2
n2, execute Sum[nˆ2, {n, 2, 9}]. (You can also get a Σ

on the Basic Math Assistant Pallette.)

12.
13∑

n=2

1
n

13.
35∑

n=1

12n + 4n2 + n3

6400 14.
17∑

n=1
cos

(
π

2 n
)

3n2

15. Consider the partition P = {2, 3, 8, 10, 13}.
a) Sketch a picture of this partition.
b) What interval is this a partition of?
c) How many subintervals comprise this partition?
d) What is x3 for this partition?
e) What is the second subinterval of the partition?
f) What is ∆x1?
g) What is ||P||?

16. Consider the partition P of [5, 12] into 70 equal-length subintervals.

a) What is x20 for this partition?
b) What is the twelfth subinterval of the partition?
c) What is ∆x32?
d) What is ||P||?

17. Let f(x) = 1 + 2x− x2. Consider the partition P =
{

0,
1
4 ,

1
2 , 1

}
of the interval

[0, 1].

a) Calculate the value of the Riemann sum associated to P where the test
points cj are chosen to be the midpoints of their respective subintervals.
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9.6. Homework exercises

b) Sketch a picture which reflects the area being calculated in the Riemann
sum you computed in part (a).

c) What is the smallest possible value of any Riemann sum associated to
the partition P? Explain your answer.

d) What is the largest possible value of any Riemann sum associated to the
partition P? Explain your answer.

e) What do your answers to parts (c) and (d) of this question tell you about
the possible value of the area under f from x = 0 to x = 1?

18. Let f(x) = 4 sin x and let P =
{

0,
π

3 ,
π

2 ,
5π

6 , π
}

.

a) Calculate the right-hand Riemann sum associated to this partition.

b) Sketch a picture which reflects the area being calculated in part (a).

c) Calculate the lower Riemann sum associated to this partition.

d) Sketch a picture which reflects the area being calculated in part (c).

19. Let f(x) = 2x2 + 1.

a) Compute the left-hand Riemann sum associated to the partition of [1, 4]
into three equal-length subintervals.

b) Sketch a picture which reflects the area being calculated in part (a).

c) Compute the upper sum associated to the partition of [1, 4] into six equal-
length subintervals.

d) Sketch a picture which reflects the area being calculated in part (c).

20. Let f be an unknown function with the following table of values:

x −3 −1 1 4 10 11
f(x) 2 1 2 0 3 5

a) Use a left-hand Riemann sum to estimate the area under the graph of f
from x = −1 to x = 4.

b) Use a right-hand Riemann sum to estimate the area under the graph of
f from x = 1 to x = 11.

c) Can you compute an upper Riemann sum for f associated to the par-
tition P = {−3,−1, 1, 4}? If so, explain why and compute it. If not,
explain why you do not have enough information to compute this Rie-
mann sum.
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21. Suppose that the velocity of a rocket t seconds after it is launched is given by
function v, some of whose values are given in the following table:

t
(seconds after launch) 0 1 2 4 8 9 10 12

v(t)
(m/sec) 0 2 5 13 30 75 110 240

Suppose also that the acceleration of the rocket is positive at all times between
t = 0 and t = 12.

a) Use a left-hand Riemann sum to estimate the distance the rocket travels
in the first 8 seconds after it is launched.

b) Use a right-hand Riemann sum to estimate the distance the rocket trav-
els between times t = 4 and t = 10.

c) Can you compute an upper Riemann sum for f associated to the par-
tition P = {0, 2, 4, 8, 12}? If so, explain why and compute it. If not,
explain why you do not have enough information to compute this Rie-
mann sum.

Exercises from Section 9.3

In Problems 22-24, write a definite integral which computes the desired area. (You
do not actually need to compute the integral.)

22. The area between the graph of the function f(x) = sin x and the x−axis from
x = 0 to x = π/2.

23. The area between the graph of the function f(x) = x6 and the x−axis from
x = −3 to x = 4

24. The area between the graph of the function f(x) = arctan x and the x−axis
from x = 0 to x = 1.

In Problems 25-32, evaluate each definite integral:

25.
∫ 6

2
3 dx

26.
∫ 11

8
0 dx

27.
∫ 7

0
5x dx

28.
∫ 2

0
(2x + 3) dx

29.
∫ 8

5
(20− 2x) dx

30.
∫ 4

−4

√
16− x2 dx

31.
∫ 4

0
|x− 3| dx

32.
∫ 2

0

√
4− x2 dx

265



9.6. Homework exercises

Exercises from Section 9.4

33. Assuming the following two statements,∫ 5

0
f(x) dx = 10 and

∫ 9

5
f(x) dx = 2.

compute each of the following:

(a)
∫ 9

0
f(x) dx (b)

∫ 5

0
2f(x) dx (c)

∫ 0

5
f(x) dx (d)

∫ 3

3
f(x) dx

34. Assuming the following two statements,∫ 4

0
f(x) dx = 7 and

∫ 4

2
f(x) dx = 6.

compute each of the following:

(a)
∫ 2

0
f(x) dx (b)

∫ 4

0
7f(x) dx (c)

∫ 4

0
[f(x) + 9] dx

35. Assuming the following two statements,∫ 8

5
f(x) dx = 4 and

∫ 8

5
g(x) dx = 7.

compute each of the following:

(a)
∫ 8

5
[2f(x)+3g(x)] dx (b)

∫ 8

5
[g(x)−f(x)] dx (c)

∫ 7

3
f(x) dx+

∫ 3

7
f(x) dx

36. Assume that f is an unknown function with the following properties:∫ 3

0
f(x) dx = 7

∫ 5

3
f(x) dx = −3

∫ 8

5
f(x) dx = 2

Also, assume g and h are unknown functions whose graphs are given below:

g

2 4 6 8 10

-2

2

4

6

8

h

2 4 6 8 10

-12

-6

6

12

Use this information to compute the folllowing quantities:
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9.6. Homework exercises

a)
∫ 3

0
[f(x) + g(x)] dx

b)
∫ 7

3
3g(x) dx

c)
∫ 5

8
[f(x)− h(x)] dx

d)
∫ 8

3
[2g(x) + 4f(x)] dx

e)
∫ 8

0
[f(x) + g(x) + h(x)] dx

f)
∫ 3

5
[h(x)− 2f(x)] dx

g)
∫ 5

0
(h(x)− 2) dx

h)
∫ 2

0
(g(x) + 3x) dx

Exercises from Section 9.5

In Problems 37-44, classify each statement as TRUE or FALSE:

37. ′f(x) = sin(x2) is an antiderivative of f(x) = cos(x2).

38. ′f(x) = 3x2 is an antiderivative of f(x) = 6x.

39. ′f(x) = 3x2 is the only antiderivative of f(x) = 6x.

40. If ′f is an antiderivative of f , then for any constant C, ′f(x) − C is an an-
tiderivative of f as well.

41. If ′f is an antiderivative of f , then for any constant C, C [′f(x)] is an an-
tiderivative of f as well.

42. All antiderivatives of f(x) = sec2 x are of the form tan x + C.

43. If ′f is an antiderivative of some continuous function f , then
∫

f(x) dx =
′f(x).

44. If ′f is an antiderivative of some continuous function f , then
∫ b

a f(x) dx =
′f(b)− ′f(a).

In Problems 45-49, compute the indicated definite integral by using the Funda-
mental Theorem of Calculus:

45.
∫ 7

3
4x3 dx

46.
∫ π/2

π/3
cos x dx

47.
∫ 3

0
(12t2 − 6t) dt

48.
∫ ln 6

0

1
2ex dx
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49.
∫ 10

7

1
x

dx

50. A syringe is being emptied at a non-constant rate: at time t (in seconds), the
rate at which the syringe is being emptied is 4 sin t + 2 cos t mL/sec. Find the
amount of liquid drained from the syringe in the first

π

4 seconds.

51. If the current in an electrical current at time t (in seconds) is t − 2
t

amperes,
find the net change in the charge in the circuit from time 1 to time 3.

52. A truck’s velocity at time t (in hours) is v(t) = 40t(t + 1) miles per hour. How
far does the truck travel in the first 30 minutes of its journey?

Answers
1. a) 30 mi/hr

b) −10 mi/hr2

c) The car is speeding up, because the acceleration (i.e. the slope of v) is positive
at t = 3.

d) The car is moving forward, because the velocity (i.e. the height of the graph of
v) is positive at t = 6.

e)
135
2 = 67.5 miles

f) 195 miles

g) 1220
h) 1855

2. a) v(8) = 2 cm/sec

b) t = 3.5 sec, t = 7.5 sec

c) 2 cm/sec2

d) The rover is moving backward, because the velocity is negative at t = 6.

e) 11 cm

f) 4 cm

g) t = 2, t = 7
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h)

0 2 4 6 8 10
time t

4

position f(t)

3. a)

2 4 6 8 10

2

4

b)

0 2 4 6 8 10

4

c) 2 4 6 8 10

-3

d)

0 2 4 6 8 10

5

4.

2 4 6 8 10

5.
19∑

n=3

1
n

6.
26∑

n=7

5
n2

7.
14∑

n=4

2n

n

8.
25∑

n=2

3
8n

√
n

9. 56

10. 1

11. 86

12.
785633
360360

13.
4641
64

14. 432
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9.6. Homework exercises

15. a)
2 3 8 10 13

b) [2, 13]
c) 4

d) 10
e) [3, 8]
f) 1
g) 5

16. a) [6.9, 7]
b) [6.1, 6.2]
c) .1
d) .1

17. a)
215
128

b)

0 1

8

1

4

3

8

1

2

3

4
1

1

2

c) The smallest possible value is the
lower Riemann sum associated to P ,

which is
95
64 .

d) The largest possible value is the upper
Riemann sum associated to P , which

is
115
64 .

e) The actual area under the function f
must be greater than the lower sum
(i.e. greater than 95

64 and less than the

upper sum (i.e. less than
115
64 ).

18. a)
(4 + 2

√
3)π

3

b)

0 π

3

π

2

5 π

6
π

1

2

3

4

c)
π

3
(√

3 + 2
)

d)

0 π

3

π

2

5 π

6
π

1

2

3

4

19. a) 31

b)

0 1 2 3 4

4

8

12

16

20

c)
211
4 = 52.75

d)

0 1 2 3 4

5

10

15

20

25

30

35

40

20. a) 8
b) 23
c) You do not have enough in-

formation, because you do not
know the maximum value f
achieves on each subinterval of
P .

21. a) 64 m
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b) 305 m

c) Since the acceleration is positive,
v is increasing. This means that
the upper sum coincides with
the right-hand sum, which is
1116 m.

22.
∫ π/2

0
sin x dx

23.
∫ 4

−3
x6 dx

24.
∫ 1

0
arctan x dx

25. 12

26. 0

27.
245
2

28. 10

29. 21

30. 8π

31. 5

32. π

33. a) 12

b) 20

c) −10
d) 0

34. a) 1

b) 49

c) 43

35. a) 29

b) 3

c) 0

36. a) 23.5
b) 48
c) −26
d) 36

e) 66.5
f) −18
g) 38
h) 18

37. FALSE (the derivative of sin(x2) is
cos(x2) · 2x)

38. TRUE (the derivative of 3x2 is 6x)

39. FALSE (3x2 + 1 is also an antideriva-
tive)

40. TRUE (the derivative of F (x) − c is
also f(x))

41. FALSE (the derivative of 2F (x) is
2f(x), not f(x))

42. TRUE (by the Antiderivative Theo-
rem)

43. FALSE (
∫

f(x) dx = F (x) + C)

44. TRUE (this is the Fund. Thm. of Cal-
culus Part 2)

45. 74 − 34

46. 1−
√

3
2

47. 81

48.
5
2

49. ln 10− ln 7

50. 4−
√

2 mL

51. 4− ln 9 coulombs

52.
20
3 miles
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Chapter 10

Integration Rules

10.1 General integration concepts
In Chapter 9, we formally defined the definite integral as a limit of Riemann sums:

∫ b

a
f(x) dx = lim

||P||→0

n∑
j=1

f(cj) ∆xj

This expression gives the area under function f from x = a to x = b.
In practice, it is mostly impossible to compute integrals by evaluating these

limits; rather, we use:

Theorem 10.1 (Fundamental Theorem of Calculus Part II) (Evaluation of In-
tegrals) Let f be continuous on [a, b]. Suppose ′f is any antiderivative of f . Then

∫ b

a
f(x) dx = ′f(b)− ′f(a) = ′f(x)|ba .

This suggests that it is important to find antiderivatives of functions.

Definition 10.2 Given a function f , an antiderivative of f is another function ′f
such that (′f)′ = f .

Definition 10.3 Given function f , the indefinite integral of f , denoted∫
f(x) dx,
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10.1. General integration concepts

is the set of all antiderivatives of f .

At this point, we have two objects which look the same but are very different:

Definite Integral Indefinite Integral

∫ b

a
f(x) dx

∫
f(x) dx

EXAMPLE 1
If f(x) = 2x, then ∫

f(x) dx =

∫ 4

−1
f(x) dx =

EXAMPLE 2
Suppose

∫
f(x) dx = cos x + C. Compute

∫ π/2

π/3
f(x) dx

and find f(x).

General principle illustrated by the previous example:

This means that each of the derivatives we learned earlier in the semester turns
into an integral that we know now:
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10.1. General integration concepts

x
d

dx
(C) = 0 ⇒

d

dx
(xn) = nxn−1(if n ̸= 0) ⇒

d

dx
(ex) = ex ⇒

∫
ex dx = ex + C

d

dx
(ln x) = 1

x
⇒

∫ 1
x

dx = ln x + C

d

dx
(arctan x) = 1

x2 + 1 ⇒
∫ 1

x2 + 1 dx = arctan x + C

d

dx
(arcsin x) = 1√

1− x2
⇒

∫ 1√
1− x2

dx = arcsin x + C

d

dx
(sin x) = cos x ⇒

∫
cos x dx = sin x + C

d

dx
(cos x) = − sin x ⇒

∫
(− sin x) dx = cos x + C

d

dx
(tan x) = sec2 x ⇒

∫
sec2 x dx = tan x + C

d

dx
(cot x) = − csc2 x ⇒

∫
csc2 x dx = − cot x + C

d

dx
(sec x) = sec x tan x ⇒

∫
sec x tan x dx = sec x + C

d

dx
(csc x) = − csc x cot x ⇒

∫
csc x cot x dx = − csc x + C

Furthermore, since differentiation is linear, so is integration. We have:

Theorem 10.4 (Linearity of Definite Integration) Suppose f and g are integrable
functions. Then:

1.
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx;

2.
∫ b

a
[f(x)− g(x)] dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx;

3.
∫ b

a
[k · f(x)] dx = k

∫ b

a
f(x) dx for any constant k.
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10.1. General integration concepts

Theorem 10.5 (Linearity of Indefinite Integration) Suppose f and g are integrable
functions. Then:

1.
∫

[f(x) + g(x)] dx =
∫

f(x) dx +
∫

g(x) dx;

2.
∫

[f(x)− g(x)] dx =
∫

f(x) dx−
∫

g(x) dx;

3.
∫

[k · f(x)] dx = k
∫

f(x) dx for any constant k.

NOTE: Integration is not multiplicative nor divisive:∫
f(x)g(x) dx ̸=

(∫
f(x) dx

)
·
(∫

g(x) dx
)

∫ (
f(x)
g(x)

)
dx ̸=

∫
f(x) dx∫
g(x) dx

EXAMPLE 3
Compute ∫

−1
4 csc2 x dx.

EXAMPLE 4
Suppose a bicyclist is driving down a road so that her velocity at time t is 3−2t+t9.

(a) Find the displacement of the bicyclist from time 1 to time 2.

(b) If the position of the bicyclist at time 0 is 4, find the position at time 1.

EXAMPLE 5
Compute ∫ (

2
3
√

x
+ 5

x

)
dx.
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10.1. General integration concepts

EXAMPLE 6
Compute ∫

(4 cos x− 3x5 + 2ex) dx.

EXAMPLE 7
Compute ∫ (sin x

7 + 4
1 + x2 − 2

)
dx.

EXAMPLE 8
A MATH 230 student is asked to compute this integral:∫

x sec2 x dx

After some substantial work, the student obtains the answer

ln(cos x) + x tan x + C.

Is the student’s answer correct? Why or why not?
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10.1. General integration concepts

Here is a list of integration rules which, together with linearity, allows you to do
most easy integrals:

Theorem 10.6 (Integrals that we memorize)

CONSTANTS:
∫

0 dx = C∫
M dx = Mx + C

POWERS:
∫

xn dx = xn+1

n + 1 + C whenever n ̸= −1∫
x−1 dx =

∫ 1
x

dx = ln |x|+ C

(I don’t care so much about the | | here)

TRIG:
∫

sin x dx = − cos x + C∫
cos x dx = sin x + C∫
sec2 x dx = tan x + C∫
csc2 x dx = − cot x + C∫
sec x tan x dx = sec x + C∫
csc x cot x dx = − csc x + C

EXPONENTIALS:
∫

ex dx = ex + C∫
erx dx = 1

r
erx + C whenever r ̸= 0∫

bx dx = 1
ln b

bx + C

INVERSE TRIG:
∫ 1

x2 + 1 dx = arctan x + C∫ 1√
1− x2

dx = arcsin x + C
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10.2. Rewriting the integrand

Note: There are some integrals which we don’t know yet. They include:∫
tan x dx

∫
cot x dx

∫
sec x dx

∫
sin(x2) dx

∫
ln x dx, etc.

Some (most) of these integrals will be discussed in MATH 230 (alternatively, some
of them can be computed using Mathematica, but some integrals are known to be
impossible to compute, even with an infinitely powerful computer!).

10.2 Rewriting the integrand
Sometimes it is useful to use algebra, or a trigonometric identity, or a logarithm
rule, to rewrite the integrand before computing an integral.

EXAMPLE 1

Find the area under the graph of f(x) = (x2 − 1)2

x
between x = 1 and x = 2.
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10.3. Elementary u-substitutions in indefinite integrals

EXAMPLE 2∫
tan2 x dx =

EXAMPLE 3∫
ln (2x) dx =

10.3 Elementary u-substitutions in indefinite integrals
MOTIVATING EXAMPLE

Let f(x) = sin(x3).

Goal: Recognize integrands which arise as the result of the Chain Rule.

Idea: Identify the presence of a function and its derivative in the integrand.
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10.3. Elementary u-substitutions in indefinite integrals

GENERALIZATION OF THE MOTIVATING EXAMPLE

Consider the function F (g(x)), where F ′ = f . Then

d

dx
[F (g(x))] = F ′(g(x)) · g′(x) = f(g(x)) · g′(x)

Theorem 10.7 (Integration by u−substitution - Indefinite Integrals)∫
f(g(x)) · g′(x) dx =

∫
f(u) du by setting u = g(x).

Procedure for indefinite integration by u−substitution:

1. Make sure you can’t just “write the answer” to the integral without a
substitution.

2. Check the integrand to make sure a u−substitution is appropriate:

• The integral should not be one you have memorized.
• The integrand should have two terms multiplied together.
• One of the terms being multiplied should be (up to a constant) the

derivative of part of the other term (i.e. the terms should be “re-
lated”).

Schematically, the integral should look like this:

3. Let u = the term whose derivative stands by itself.

4. Write the derivative of u in Leibniz notation, then multiply through by
an appropriate constant to match what is in the integral.

5. Substitute in the integral so that all xs are replaced with us as appropriate.

6. Integrate with respect to u.

7. Back-substitute to get an answer in terms of x.
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A picture to explain the logic:

integral with respect to x answer in terms of x

EXAMPLE 1∫ (
6x2 + 3

)4
x dx
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EXAMPLE 2∫
27z2(z3 + 1)9 dz

EXAMPLE 3 ∫
tan3(3x + 1) sec2(3x + 1) dx

Solution:

Let u = tan(3x + 1).

⇒ du

dx
= sec2(3x + 1) · 3

⇒ du = 3 sec2(3x + 1) dx

⇒ 1
3du = sec2(3x + 1) dx
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Some integrals require rewriting before performing a substitution:

EXAMPLE 4∫
tan x dx =

EXAMPLE 5
Find all functions g whose derivative is g′(x) = ex+ex .
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10.3. Elementary u-substitutions in indefinite integrals

The Linear Replacement Principle

Let’s suppose that you start with some integral you “know”. Call this integral a
prototype integral:

Specific example General situation∫
cos x dx =

∫
f(x) dx = ′f(x) + C

In this section, we want to look at what happens when you replace the x in the
above prototype integrals with a linear expression of the form mx + b:

Specific example General situation∫
cos(3x + 2) dx

∫
f(mx + b) dx =

The big idea here is that if you remember how this general situation works, you
can quickly integrate lots of functions of the form f(mx + b). These integrals come
up often in applications and in advanced math courses, so it is useful to integrate
them without actually doing the u-substitution.

Theorem 10.8 (Linear Replacement Principle) Suppose you know the “prototype”
integral ∫

f(x) dx = ′f(x) + C.

Then for any constants m and b (m ̸= 0),∫
f(mx + b) dx = 1

m
′f(mx + b) + C.
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EXAMPLE 6∫
(5x− 2)12 dx =

EXAMPLE 7∫
2e5x dx =

EXAMPLE 8∫
e2−x/4 dx =

EXAMPLE 9

∫ 4
5 + 3x

dx =

EXAMPLE 10

∫ 3 sec2 4x

5 dx = 3
5 ·

1
4 tan 4x + C = 3

20 tan 4x + C .

EXAMPLE 11

∫ π/2

π/3
sin 3x dx = 1

3(− cos 3x)
∣∣∣∣π/2

π/3
= −1

3 cos 3π

2 + 1
3 cos π = 0− 1

3 = −1
3 .
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10.4 Elementary u-substitutions in definite integrals
EXAMPLE 1

Compute: ∫ 4

1

1√
x(
√

x + 1)3 dx

What’s the same in a
definite integral u-sub:

1.

2.

3.

What’s different:

1.

2.

Theorem 10.9 (Integration by u−substitution - Definite Integrals) By way of
the u-substitution u = g(x),

∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(u) du.
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Procedure for definite integration by u−substitution:

1. Make sure you can’t just “write the answer” to the integral without a
substitution.

2. Check the integrand to make sure a u−substitution is appropriate:

• The integral should not be one you have memorized.
• The integrand should have two terms multiplied together.
• One of the terms being multiplied should be, up to a constant, the

derivative of part of the other term (i.e. the terms should be “re-
lated”).

Schematically, the integral should look like this:

3. Let u = the term whose derivative stands by itself.

4. Write the derivative of u in Leibniz notation, then multiply through by
an appropriate constant to match what is in the integral.

5. Substitute in the integral so that all xs are replaced with us as appropriate.

6. Change the limits of integration to values of u using the formula from
Step 3.

7. Integrate with respect to u (don’t back-substitute for x).

EXAMPLE 2

∫ ln 3

0

ex

ex + 1 dx
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10.4. Elementary u-substitutions in definite integrals

EXAMPLE 3

Find the distance travelled by an object between times 0 and
π

2 , if its velocity at

time t is ecos t sin t.

EXAMPLE 4
Compute the area under the function f(x) = x−3(x−2+1)2 between x = 1 and x = 2.

Solution: The area is ∫ 2∫
1

x−3(x−2 + 1)2 dx.

To evaluate this, use the u-substitution

u = x−2 + 1

du = −2x−3 dx
−1
2 du = x−3 dx

and change the limits:

x = 1 : u = 1−2 + 1 = 2 x = 2 : u = 2−2 + 1 = 1
4 + 1 = 5

4
so the integral becomes∫ 5/4∫

2

−1
2 u2 du =

∫ 2

5/4

1
2u2 du

= 1
6u3

∣∣∣∣2
5/4

= 1
6(2)3 − 1

6

(5
4

)3
= 8

6 −
1
6

(125
64

)
= 129

128 .
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10.5 Homework exercises
Exercises from Section 10.1

In Problems 1-6, an advanced student was asked to compute the given integral.
Determine, in part by taking an appropriate derivative, whether or not the stu-
dent’s answer was correct:

1. Problem:
∫

cos x dx; proposed answer: sin x

2. Problem:
∫

ln x dx; proposed answer:
1
x

+ C

3. Problem:
∫ 1

x + 3 dx; proposed answer: ln(x + 3) + C

4. Problem:
∫ 1

x2 + 25 dx; proposed answer: ln(x2 + 25) + C

5. Problem:
∫ 1

x2 + 25 dx; proposed answer:
1
5 arctan x

5 + C

6. Problem:
∫ 4

x2 − 1 dx; proposed answer: 2 ln(1− x) + 2 ln(1 + x) + C

In Problems 7-12, an advanced student was asked to compute the given integral,
and got an answer which is close, but wrong. After taking a derivative of the
student’s answer, use the derivative you get to “fix” the student’s answer, making
it correct.

7. Problem:
∫

cos 2x dx; wrong answer: sin 2x + C

8. Problem:
∫ 1

3x− 4 dx; wrong answer: ln(3x− 4) + C

9. Problem:
∫

csc2 x dx; wrong answer: cot x + C

10. Problem:
∫

e3x dx; wrong answer: e3x + C

11. Problem:
∫

2e−x/4 dx; wrong answer: 2e−x/4 + C

12. Problem:
∫

sin3 2x cos 2x dx; wrong answer: sin4 2x + C

13. Compute
∫

0 dx.
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14. Compute
∫ 6

4
5 dx.

15. Evaluate
∫ 5

3
x dx.

16. Find
∫

4x dx.

17. Find all antiderivatives of f(x) = x + 3.

18. Compute
∫ 1

0

3
√

x2 dx

19. Suppose that the rate at which a tank is being filled with water at time t is 5et

gal/min. Find the amount of water put in the tank between times 0 and 4.

20. Find the area under the graph of f(x) = 4
x

between x = 2 and x = 9.

21. Compute
∫
(2x3 − x) dx.

22. Compute the integral
∫
(sec2 x− 7 sin x) dx.

23. Compute the indefinite integral of
3
x2 + csc2 x with respect to x.

24. Suppose that the rate at which energy is used by a machine at time t is given
by 2 sec t tan t J/sec. Find the energy consumption between times

π

4 and
π

3 .

25. Find the area under the graph of y = 1 + 4
x2 from x = 1 to x = 2.

26. Compute
∫ ex

4 dx.

27. Evaluate
∫ (

6√
x

+ 1
x

)
dx.

28. Find all antiderivatives of f(x) = x3/2 + 4x + 2.

29. Compute
∫ 1

−1
(x3 − x2) dx.

30. Find
∫

dx.

31. Compute
∫

(2− csc x cot x) dx.

32. Find the indefinite integral of f(x) = x3 + 4 cos x with respect to x.
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33. Suppose an object is moving back and forth along a line so that its accelera-
tion at time t is a(t) = −5t in/sec2. If the object’s velocity at time 2 is 3 in/sec,
what is its velocity at time 5?

34. Suppose a bee is moving along a number line so that its velocity at time t is
v(t) = t2 + 3 cm/sec. If at time 1 the bee is at position −4, what is its position
at time 4?

35. Suppose a bug is crawling along a number line so that its acceleration at time

t is a(t) = 1
10 cos t meters per hour squared.

a) If its velocity at time 0 is
1
5 meters per hour and its position at time 0 is

1, what is its position at time π?

b) If its velocity at time 0 is 1 meter per hour and its position at time 0 is 0,
what is its position at time

π

3 ?

36. Suppose f is a function such that the slope of the line tangent to f at x is
4x− 1. If f passes through the point (4, 0), what is f(−2)?

In Problems 37-42, use Mathematica to compute the indicated integrals (write the
answers as you would write them by hand).

Note: Mathematica computes integrals using the Integrate command. For exam-
ple, to compute the definite integral

∫ 4
2 x2 dx using Mathematica, execute

Integrate[xˆ2, {x, 2, 4}]

and to compute the indefinite integral
∫

x2 dx using Mathematica, execute

Integrate[xˆ2, x]

(The x in the command is necessary and corresponds to the dx in the integral.) You
can also get an integral sign on the Basic Math Assistant.

37.
∫

sec x dx

Note: When you compute an indefinite integral using Mathematica, something
important is missing from its answer.

38.
∫

ln x dx 39.
∫ π/4

0
tan x dx
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40.
∫ 1

0
arctan x dx

41.
∫

x3e−x dx

42.
∫ 3

x2 − x
dx

Exercises from Sections 10.2 to 10.4

In Problems 43-47, you are given a definite integral and a u-substitution. Perform
the u-substitution to rewrite the integral as a simpler integral (be sure to change
the limits from x-values to u-values). You do not need to evaluate the integral.

43.
∫ 3

−2

2x

x2 + 5 dx; u = x2 + 5

44.
∫ 7

3
e8x dx; u = 8x

45.
∫ 1

0
20(x7 + 3)x6 dx; u = x7 + 3

46.
∫ π/4

0
sin3 x cos x dx; u = sin x

47.
∫ ln 4

0

ex

ex + 1 dx; u = ex + 1

In Problems 48-66, compute the indicated integral:

48.
∫ 8

1

√
2
x

dx

49.
∫

(2− x)
√

x dx

50.
∫ x2 + 2− 3x3 + 1

x4 dx

51.
∫ 2

0
(x + 1)(3x− 2) dx

52.
∫ 5− ex

e2x
dx

53.
∫ (ln x)2

x
dx

54.
∫ √

3− x2(−2x) dx

55.
∫

x3(x4 − 1)5 dx

56.
∫ 3

2 + 7x
dx

57.
∫

5x
3
√

1− x2 dx

58.
∫ 6x2

1 + x3 dx

59.
∫ 3

2

6x2

(1 + x3)3 dx

60.
∫

sin πx dx

61.
∫

cos 2x dx

62.
∫ 3

4 cos x

2 dx

63.
∫

tan4 x sec2 x dx

64.
∫ π/2

π/6
cot x dx

65.
∫

3e2x dx

66.
∫ 9

1

1√
x(1 +

√
x)2 dx
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67. Suppose that the rate of fuel consumption of a motor at time t is te−t2 L/min.
Compute the amount of fuel consumed by the motor in the first minute of
operation.

68. Find the area under the graph of y = x(x2 + 1)3 from x = 0 to x = 1.

69. Suppose that an object is moving back and forth along a number line so that
its velocity at time t is v(t) = 4t2√t3 + 1 ft/sec. What is the object’s displace-
ment from time 1 sec to time 2 sec?

Answers

1. Wrong (missing the +C)

2. Wrong

3. Correct

4. Wrong

5. Correct

6. Correct

7.
1
2 sin 2x + C

8.
1
3 ln(3x− 4) + C

9. − cot x + C

10.
1
3e3x + C

11. −8e−x/4 + C

12.
1
8 sin4 2x + C

13. C

14. 10

15. 8

16. 2x2 + C

17.
1
2x2 + 3x + C

18.
3
5

19. 5e4 − 5 gal

20. 4 ln 9− 4 ln 2

21.
1
2x4 − 1

2x2 + C

22. tan x + 7 cos x + C

23. −3
x
− cot x + C

24. 4− 2
√

2 J

25. 3

26.
ex

4 + C

27. 12
√

x + ln |x|+ C

28.
2
5x5/2 + 2x2 + 2x + C

29. −2
3

30. x + C

31. 2x + csc x + C

32.
1
4x4 + 4 sin x + C

33.
−99

2 in/sec

34. 26

35. a)
π + 6

5

b)
1
20 + π

3
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36. −18

37. − ln[cos(x/2)− sin(x/2)]
+ ln[cos(x/2) + sin(x/2)] + C

38. −x + x ln x + C

39.
ln 2
2

40.
1
4(π − ln 4)

41. e−x(−6− 6x− 3x2 − x3) + C

42. 3(ln(1− x)− ln x) + C

43.
∫ 14

9

1
u

du

44.
∫ 56

24

1
8eu du

45.
∫ 4

3

20
7 u du

46.
∫ √

2/2

0
u3 du

47.
∫ 5

2

1
u

du

48. 8−
√

8

49.
4
3x3/2 − 2

5x5/2 + C

50. −x−3 − x−1 − 3 ln x + C

51. 6

52.
−5
2 e−2x + e−x + C

53.
1
3(ln x)3 + C

54.
2
3(3− x2)3/2 + C

55.
1
24(x4 − 1)6 + C

56.
3
7 ln(2 + 7x) + C

57.
−15

8 (1− x2)4/3 + C

58. 2 ln(x3 + 1) + C

59.
−1
282 + 1

81

60.
−1
π

cos πx + C

61.
1
2 sin 2x + C

62.
3
2 sin x

2 + C

63.
1
5 tan5 x + C

64. ln 2

65.
3
2e2x + C

66.
1
2

67.
e− 1

2e
L

68.
15
8

69. 24− 16
9
√

2 ft
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Appendix A

Mathematica reference

A.1 What is Mathematica?
Mathematica is an extremely useful and powerful software package / program-

ming language invented by a mathematician named Stephen Wolfram. Early ver-
sions of Mathematica came out in the late 1980s and early 1990s; as of 2023, the most
recent version available to you is Mathematica 13.

Mathematica does symbolic manipulation of mathematical expressions; it solves
all kinds of equations; it has a library of important functions from mathemat-
ics which it recognizes while doing computations; it does 2− and 3−dimensional
graphics; it has a built-in word processor tool; it works well with Java and C++;
etc. One thing it doesn’t do is prove theorems, so it is less useful for a theoretical
mathematician than it is for an engineer or college student.

A bit about how Mathematica works: When you use the Mathematica program,
you are actually running two programs. The “front end” of Mathematica is the part
that you type on and the part you see. The “kernel” is the part of Mathematica
that actually does the calculations. If you type in 2 + 2 and hit [ENTER] (actually
[SHIFT]+[ENTER]; see below), the front end “sends” that information to the kernel
which actually does the computation. The kernel then “sends” the result back to
the front end, which displays 4 on the screen.

About Mathematica notebooks and cells: The actual files that Mathematica
produces that you can edit and save are called notebooks and carry the file designa-
tion *.nb; they take up little space and can easily be saved to Google docs or on a
flash drive, or emailed to yourself if you want them somewhere you can retrieve
them.

Suggestion: when saving any file, include the date in the file name (so it is
easier to remember which file you are supposed to be open).
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A Mathematica notebook is broken into cells. A cell can contain text, input, or
output. A cell is indicated by a dark blue, right bracket (a “]”) on the right-hand
side of the notebook. To select a cell, click that bracket. This highlights the “]”
in blue. Once selected, you can cut/copy/paste/delete cells as you would high-
lighted blocks of text in a Word document.

To change the formatting of a cell, select the cell, then click “Format / Style” and
select the style you want. You may want to play around with this to see what the
various styles look like. There are three particularly important styles:

• input: this is the default style for new cells you type
• output: this is the default style for cells the kernel produces from your com-

mands
• text: changing a cell to text style allows you to make comments in between

the calculations

To execute an input cell, put the cursor anywhere in the cell and hit [SHIFT]+[ENTER]
(or the [ENTER] on the numeric keypad at the far-right edge of the keyboard). The
[ENTER] next to the apostrophe key (a.k.a. [RETURN]) gives you only a carriage
return.
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A.2 Important general concepts re: Mathematica syntax
Executing mathematical commands: To execute an input cell, put the cursor any-

where in the cell and hit [SHIFT]+[ENTER] (or the [ENTER] on the numeric
keypad at the far-right edge of the keyboard). The [ENTER] next to the apos-
trophe key (a.k.a. [RETURN]) gives you only a carriage return.

Multiplication: use a star or a space: 2 * 3 or 2 3 will multiply numbers; a x means
a times x; ax means the variable ax (in Mathematica, variables do not have to
be named after one letter; they can be named by words or other strings of
characters as well).

Parentheses: used for grouping only. Parentheses mean “times” in Mathematica.

Brackets: used to enclose all functions and Mathematica commands. For example,
to evaluate a function f(x), you would type f[x]; for sin x you type Sin[x]; etc..
Brackets mean “of” in Mathematica and cannot be used for multiplication.

Capitalization: All Mathematica commands and built-in functions begin with cap-
ital letters. For example, to find the sine of π, typing sin(pi) does you no good
(this would be the variable “sin” times the variable “pi”). The correct syntax
is Sin[Pi].

Spaces: Mathematica commands do not have spaces in them; for example, the
inverse function of sine is ArcSin, not Arc Sin or Arcsin.

Pallettes: Lots of useful commands are available on the Basic Math Assistant
Pallette, which can be brought up by clicking “Pallettes / Basic Math Assistant”
on the toolbar. If you click on a button in the pallette, what you see appears
in the cell.

Commands Mathematica knows: Sqrt, Sin, Cos, Tan, Csc, Cot, Sec, ArcSin, ArcCos,
ArcTan, ArcCsc, ArcSec, ArcCot, ! (for factorial). It knows what Pi and E are
(but not pi or e).

Logarithms: Log[ ] means natural logarithm (base e); Log10[ ] means common
logarithm (base 10).

% refers to the last output (like ANS on a TI-calculator).

Exact answers versus decimal approximations: Mathematica gives exact answers
for everything if possible. If you need a decimal approximation, click “numerical
value" or use the command N[ ]. For example, N[Pi] spits out 3.14159...

To solve an equation: make sure there are two equals signs (“==”) in your equa-
tion.
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Getting help from the program: To get help on a command, type ? followed by
the command you don’t understand (with no space between the ? and the
command).

To export graphics: Once Mathematica produces a graphic, you can right-click the
graphic, and select “Copy Graphic”. Then you can go in a Word document or
a PowerPoint, and paste the graphic. You can subsequently resize it and/or
move it around as you see fit.

Troubleshooting: For a command to run correctly, you usually want everything
in your command to be black. If anything is purple or red, that suggests
where the problem is. Variables that don’t have values should be blue. Next,
check that everything is capitalized appropriately. Next, check that you aren’t
missing a space if you are trying to multiply two variables. Next, if you are
using variables in your code, try clearing the variables by executing some-
thing like Clear[x] (if your variable is x). Then re-run the command that is
giving you trouble.

If Mathematica freezes up in the middle of a calculation and you see “Running..."
at the top of your screen, click “Evaluation / Abort Evaluation” on the toolbar.
If this doesn’t help, kill the program and restart it.

To get help: Email me, and attach your Mathematica file to your email. I can trou-
bleshoot things pretty quickly if the file is attached. If the file isn’t attached,
it is hard for me to figure out what you are doing wrong. Alternatively, seek
assistance from another math major who has experience with Mathematica.
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A.3 Mathematica quick reference guides
General tasks

TASK MATHEMATICA SYNTAX

To call the preceding output %
To get a decimal approximation to the N[%]

preceding output (or click numerical value)

Algebraic manipulations

TASK MATHEMATICA SYNTAX

To factor an expression Factor[ ]
To multiply out an expression Expand[ ]

(i.e. FOIL an expression)
Partial fraction decomposition Apart[ ]
To combine rational terms Together[ ]

(i.e. “undo” a partial fraction decomp)
To simplify an answer Simplify[ ] (or FullSimplify[ ])

Solving equations

GOAL MATHEMATICA SYNTAX

Find exact solution(s) to equation Solve[lhs == rhs, x]
of form lhs = rhs (two equals signs)

(assuming the variable is x) (works only with polynomials or other
relatively “easy” equations)

Find decimal approx. to solutions NSolve[lhs == rhs, x]
of equation lhs = rhs (two equals signs)

(works only with “easy” equations)
Find decimal approx. to solutions FindRoot[lhs == rhs, {x, guess}]
of equation lhs = rhs (two equals signs)
Solve two (or more) equations Solve[{lhs1==rhs1, lhs2==rhs2}, {x,y}]
together, like lhs1 = rhs1

lhs2 = rhs2

(assuming variables are x and y)
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Precalculus operations

EXPRESSION MATHEMATICA SYNTAX
SP

E
C

IA
L

SY
M

B
O

L
S

e E (not e) (or use Basic Math Assistant pallette)
π Pi (or use Basic Math Assistant)
∞ Infinity (or use Basic Math Assistant)

(or type [Esc] inf [Esc])
i =
√
−1 I (not i) (or use Basic Math Assistant)

A
R

IT
H

M
E

T
IC

3 + 4x 3 + 4x
5− 27 5 - 27

12x 12x or 12 x or 12 * x
xy x y (don’t forget the space)
x
y

x/y (or use Basic Math Assistant pallette)
(or type [CTRL]+/ to get □

□ )√
32 Sqrt[32]

(or use Basic Math Assistant)
(or type [CTRL]+2 for the√ sign)

4
√

40 40ˆ(1/4) (or use Basic Math Assistant)
|x− 3| Abs[x-3]

30! (factorial) 30!

T
R

IG

sin π Sin[Pi]
cos(x(y + 1)) Cos[x(y+1)]

cos 60◦ Cos[60 Degree]
(or use Basic Math Assistant)

cot
(

2π
3 + 3π

4

)
Cot[2 Pi/3 + 3 Pi/4]

sin2 x Sin[x]ˆ2 (not Sinˆ2[x])
arctan 1 ArcTan[1]

E
X

P
S

/
L

O
G

S

ln 3 Log[3]
log6 63 Log[6,63]
log 18 Log10[18] or Log[10, 18]

27y 2ˆ(7y) (or use Basic Math Assistant)
(or type [CTRL]+6 to get □□)

ex−5+x2 E^(x-5+xˆ2) or Exp[x-5+xˆ2]
(or use Basic Math Assistant)

300



A.3. Mathematica quick reference guides

Defining functions

CLASS OF FUNCTION SYNTAX TO DEFINE FUNCTION

Calculus 1 function f : R→ R
x

f7−→ y f[x_] = formula

(one equals sign, underscore after the x)
Ex: f(x) = 3 cos(x2−x) f[x_] = 3 Cos[xˆ(2-x)]

Algebraic operations on functions

All these commands assume you have previously defined the function(s) as out-
lined above.

EXPRESSION MATHEMATICA SYNTAX

Generate table of values for f Table[{x, f[x]}, {x, xmin, xmax, step}]
(put //TableForm after this command to

format the output in a table)
f(x + 3) f[x+3]
xf(2x)− x2f(x) x f[2x] - xˆ2 f[x]

(spaces important)
Composition (f ◦ g)(x) . f[g[x]]
Addition (f + g)(x) f[x] + g[x]
Multiplication (fg)(x) f[x] g[x]
Powers fn(x) (f[x])ˆn (or just f[x]ˆn)

Ex: sin2 x Sin[x]ˆ2
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Graphs

The basic command to graph a function is Plot[f(x), {x, xmin, xmax}]; the exam-
ples below describe how to adapt the Plot[ ] command:

GOAL HOW TO ADAPT THE Plot[ ] COMMAND

Plot multiple graphs at once Plot[{formula, formula, ..., formula},
{x, xmin, xmax}]

Plot the graph of f(x) = formula Plot[formula, {x, xmin, xmax},
with range of y−values specified PlotRange -> {ymin, ymax}]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with x- and y-axes on same scale PlotRange -> ymin,ymax,

AspectRatio -> Automatic]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with a red, dashed curve PlotStyle -> {Red, Dashed}]

Single-variable calculus

EXPRESSION MATHEMATICA SYNTAX

lim
x→4

f(x) Limit[f[x], x -> 4]
f ′(3) f’[3]
h′(x) D[h[x], x]

d
dx

(cos x) D[Cos[x], x]
g′′′(x) g’ ’ ’[x] or D[g[x], {x,3}]∫

x2 dx Integrate[xˆ2, x] (or use Basic Math Assistant pallette)

Note: answer will be missing the “+C”∫ 5

2
cos x dx For an exact answer:

Integrate[Cos[x], {x, 2, 5}]
(or use Basic Math Assistant)

For a decimal approximation:
NIntegrate[Cos[x], {x, 2, 5}]

12∑
k=1

f(k) Sum[f[k], {k, 1, 12}]

(or use Basic Math Assistant)
∞∑

n=3
blah Sum[blah, {n, 3, Infinity}]

(or use Basic Math Assistant)
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A.4 More on solving equations with Mathematica
There are three methods to solve an equation using Mathematica. They have

something in common: to solve an equation, the equation must be typed with two
equals signs where the = is. (A single equal sign is used in Mathematica to assign
values to variables, which doesn’t apply in the context of solving equations.)

The Solve command

To solve an equation of the form lhs = rhs, execute

Solve[lhs == rhs, variable]

where variable is the name of the variable you want to solve for. For example, to
solve x2 − 2x− 7 = 0 for x, execute Solve[xˆ2 - 2x - 7 == 0, x].

You can solve an equation for one variable in terms of others: for example,
Solve[a x + b == c, x] solves for x in terms of a, b and c.

WARNING: The advantage of the Solve command is that it gives exact answers
(no decimals); this can be a pro or con (as sometimes the exact answers are horrible
to write down). The disadvantage is that it only works on polynomial, rational and
other “easy” equations. It won’t work on equations that mix-and-match trigonom-
etry and powers of x like x2 = cos x.

The NSolve command

NSolve works exactly like Solve, except that it gives decimal approximations to the
solutions. It has the same drawback as Solve in that it only works on reasonably
“easy” equations. The syntax is

NSolve[lhs == rhs, variable]

The FindRoot command

To find decimal approximations to equations that are too hard for the Solve and
NSolve commands, use FindRoot. This executes a numerical algorithm to estimate
a solution to an equation. The good news is that this command always works; the
bad news is that it requires an initial “guess” as to what the solution is (usually
you determine the initial guess by graphing both sides of the equation and seeing
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roughly where the graphs cross). For example, to find a solution to x2 = cos x near
x = 1, execute

FindRoot[xˆ2 == Cos[x], {x, 1}]

and to find a solution to the same equation near x = −1, execute

FindRoot[xˆ2 == Cos[x], {x, -1}]

(these probably won’t give the same solution). The general syntax for this com-
mand is

FindRoot[lhs == rhs,{variable, guess}]
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A.5 More on graphing with Mathematica
Defining a function in Mathematica

To graph a function y = f(x) on Mathematica, you usually start by defining the
function. For example, to define a function like f(x) = 3 cos 4x− x, execute

f[x_] = 3 Cos[4x] - x

You could just as well use a different letter for the independent variable. For ex-
ample, typing

f[t_] = 3 Cos[4t] - t

would accomplish the same thing as above. However, don’t mix and match! Typ-
ing

f[x_] = 3 Cos[4t] - t

doesn’t accomplish anything, because there is a x on the left-hand side, and a t on
the right-hand side.

The general syntax for defining a function is

function name[variable_] = formula

it is important to include the underscore after the variable to tell Mathematica you
are defining a function.

The basic Plot command

Immediately after defining a function as above, you will get (underneath your out-
put) a list of suggested follow-up commands. One of these is plot. If you click the
word plot, you will get a graph of the function you just defined. Here, Mathemat-
ica picks a range of x- and y-values it thinks will work well for the function you
defined. It is useful to remember the syntax of this Plot command:

Plot[formula, {variable, xmin, xmax}]

In this command:

• formula is the function you want the graph of. It could be an expression like
f[x] or f[t], or a typed-out formula like 3 Cos[4x] - x.

• variable is the name of the independent variable (usually x or t); this must
match the variable in the formula.
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• xmin and xmax are numbers which represent, respectively, the left-most and
right-most values of the independent variable shown on the graph. For ex-
ample, if your Plot command has {x,-3,5} in it, then the graph will go from
x = −3 to x = 5.

Here is an example, which plots f(x) = 3 cos 4x− x from x = −10 to x = 10:

Plot[3 Cos[4x] - x, {x, -10,10}]

-10 -5 5 10

-10

-5

5

10

Plotting multiple functions at once

Suppose you want to plot more than one function on the same set of axes. To do
this, you tweak the earlier Plot command by replacing the formula with a list of
formulas inside squiggly braces, separated by commas. Thus the command you
execute looks something like this:

Plot[{formula1,formula2,... }, {variable, xmin, xmax}]

For example, the following command plots sin 2x, 2 sin x and sin x + 2 on the same
set of axes:

Plot[{Sin[2x], 2 Sin[x], Sin[x] + 2}, {x, -2 Pi, 2 Pi}]

-6 -4 -2 2 4 6

-2

-1

1

2

3

In Mathematica 10, the first graph you type will be blue; the second graph you type
will be orange; the third graph you type is green; other graphs are in other colors.
To change the way the graphs look, consult the end of this section.
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Specifying a range of y-values

By default, Mathematica just chooses a range of y-values it thinks will make the
graph look good. If you want to force Mathematica to use a particular range of
y-values, then you have to insert a phrase in the Plot command called PlotRange .
This goes after the {x,xmin,xmax} and after another comma, but before the closing
square bracket. The general command is

Plot[{formulas}, {var,xmin,xmax}, PlotRange -> {ymin,ymax}]

and an example of the code, which plots sin x on the viewing window [−π, π] ×
[−2, 3] is

Plot[Sin[x], {x, -Pi, Pi}, PlotRange -> {-2,3}]

-3 -2 -1 1 2 3

-2

-1

1

2

3

Making the x- and y-axes have the same scale on the screen

Here is the graph of f(x) = 3 cos 4x − x that Mathematica produces with the com-
mand

Plot[3 Cos[4x] - x, {x, -10,10}]

-10 -5 5 10

-10

-5

5

10

If you look at this graph, the distance from the origin to (5, 0) looks a lot longer
than the distance from the origin to (0, 5). But in actuality, both these distances
are 5 units. The graph is distorted so that it fits nicely on your screen. To fix the
distortion (you might want to do this if you needed to estimate the slope of a graph
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accurately), insert the command AspectRatio -> Automatic into the Plot command
(similar to how you would insert a PlotRange command). This forces the number
of pixels on your screen representing one unit in the x direction to be equal to the
number of pixels on your screen representing one unit in the y direction. Here is
the general syntax:

Plot[{formulas}, {var,xmin,xmax}, AspectRatio -> Automatic]

This command can also be used with the PlotRange command:

Plot[{formulas,var,xmin,xmax}, PlotRange -> {ymin,ymax}]
AspectRatio -> Automatic]

Here is an example command:

Plot[3 Cos[4x] - x, {x, -10,10}, AspectRatio -> Automatic]

-10 -5 5 10

-10

-5

5

10

Changing the appearance of the curves

As mentioned earlier, by default Mathematica graphs all the functions with solid
lines, using different colors for different formulas on the same picture. To change
this, insert various directives into the Plot command using PlotStyle. Here are some
examples:

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Thick]
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-10 -5 5 10

-10

-5

5

10

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dashed]

-10 -5 5 10

-10

-5

5

10

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dotted]

-10 -5 5 10

-10

-5

5

10

If you are plotting more than one function at once, then after the PlotStyle ->,
you can type a list of graphics directives, separated by commas, enclosed by a set
of squiggly braces. The directives will be applied to each function you are graph-
ing, in the same order as they are typed after the PlotStyle ->. For example, this
command plots x, 2x and 3x, where x is thick and black, 2x is red and dotted, and
3x is blue and dashed:

Plot[{x,2x,3x}, {x, -3,3},
PlotStyle -> {{Thick, Black}, {Dotted, Red}, {Blue, Dashed}}]
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A.6 Code for Newton’s method
You need three lines of code, all in the same cell. For example, to implement

Newton’s method for the function f(x) = x2 − 2 where x0 = 3 and you want to
perform 6 iterations (to find x6), just type

f[x_] = xˆ2 - 2;
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton, 3, 6]

and execute (all three lines at once). The first line defines the function f , the second
line gives a name to the formula you iterate in Newton’s Method, and the last line
iterates the formula and spits out the results.

The resulting output for the code listed above is:

3, 1.83333, 1.46212, 1.415, 1.41421, 1.41421, 1.41421

These numbers are x0, x1, x2, ..., x6 so for example, x2 = 1.46212 and x4 = 1.41421...
and x6 = 1.41421 (the same as x4 to 5 decimal places).

To implement Newton’s method for a different function, different initial guess
and different number of iterations, simply change the formula for f , change the 3
to the appropriate value of x0 and the 6 to the number of times you want to iterate
Newton’s method.

A.7 Code for Riemann sums
In this section we discuss how to compute left- and right- Riemann sums us-

ing Mathematica. Ultimately, to do a Riemann sum you need to execute three com-
mands found later in this section; for now we explain where these commands come
from.

1. Defining the function f

First, recall that to define a function you use an underscore. For example, the
following command defines f to be the function f(x) = x2:
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f[x_] = xˆ2

2. Defining the partition P

Defining a partition in Mathematica is easy. Just use braces, and list the numbers

from smallest to largest. For example, to define the partitionP =
{

0, 1,
5
2 , 4, 7

}
, just

execute

P = {0, 1, 5/2, 4, 7}

We often use partitions which divide [a, b] into n equal-length subintervals. To
create such a partition in Mathematica, use the Range command. For example, to
define a partition of [0, 2] into 10 equal-length subintervals, execute the following:

P = Range[0, 2, (2-0)/10]

The 0 is a, the 2 is b, and the last number (2-0)/10 is
b− a

n
, the width of each

subinterval. In general, to split [a, b] into n equal-length subintervals, execute

P = Range[a,b,(b− a)/n]

3. How to get to the individual numbers in a partition P

Suppose you have defined a partitionP = {x0, x1, ..., xn} in Mathematica. To call
one of the elements of P , use double brackets as shown below. There is a catch:
in handwritten math notation, we write our partitions starting with index 0. But
Mathematica starts its partitions with index 1. So if P = {0, 1, 5/2, 4, 7} has been
defined in Mathematica, executing

P[[3]]

generates the output
5
2 , which we think of as x2, not x3.

In general, once you have typed in a partition P ,

• execute P[[j]] to get the (j − 1)th term xj−1, and

• execute P[[j+1]] to get the jth term xj .

4. How to do sums (not necessarily Riemann sums) in Mathematica
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Suppose you want to compute some sum which is written in Σ−notation. To

do this, open the Basic Math Assistant pallette and click the d
∫ ∑

button (located

under the phrase “Basic Commands”). In the first column of buttons, you will see a∑
which you can click on to put a

∑
in your cell. You will get boxes to type all

the pieces of the sum in.

5. An explanation of how to generate a Riemann sum for a function

First, remember that in any Riemann sum, ∆xj = xj − xj−1. From the remarks
earlier in this section, we know that in Mathematica this expression is P[[j+1]] - P[[j]].

Next, suppose we are doing a left-hand sum. Then the test points cj satisfy

cj = left endpoint of the jth subinterval
= left endpoint of [xj−1, xj]
= xj−1.

Therefore, cj = xj−1 should be P[[j]] in Mathematica code, and f(cj) is f[ P[[j]] ].

Putting this together, the right Mathematica code for a left-hand Riemann sum
(assuming you have defined your function f and your partition P) is

n∑
j = 1

f[ P[[j]] ] (P[[j + 1]] - P[[j]])

6. The final commands for left- and right-hand Riemann sums

From above, we came up with the following sequence of commands for com-
puting a left-hand Riemann sum:
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Syntax to compute a left-hand Riemann sum

To evaluate a left-hand Riemann sum, execute the following commands:

f[x_] = xˆ2
(or whatever your function is)

P = {0, 1/2, 3/4, 1}
(or whatever your partition is)

n∑
j=1

f[ P[[j]] ] (P[[j+1]] - P[[j]])

(n is the number of subintervals)

To evaluate a right-hand sum, the only thing that changes is the test point cj ,
which goes from the left endpoint xj−1 (i.e. P[[j]]) to the right endpoint xj (i.e.
P[[j+1]]). Thus the commands for computing a right-hand Riemann sum are simi-
lar:

Syntax to compute a right-hand Riemann sum

To evaluate a right-hand Riemann sum, execute the following commands:

f[x_] = xˆ2
(or whatever your function is)

P = {0, 1/2, 3/4, 1}
(or whatever your partition is)

n∑
j=1

f[ P[[j+1]] ] (P[[j+1]] - P[[j]])

(n is the number of subintervals)
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Σ-notation, 241
nth Derivative Test, 191
nth derivative, 126
u-substitution, definite integrals, 286
u-substitution, indefinite integrals, 280
Mathematica, defining functions in, 305
Mathematica, graphing with, 305

absolute maximum, 180
absolute maximum value, 180
absolute minimum, 180
absolute minimum value, 180
acceleration, 127
additivity property of integrals, 251
antiderivative, 254
Antiderivative Theorem, 255
arcsin x, derivative of, 164
arcsine, definition of, 23
arcsine, graph of, 24
arctan x, derivative of, 164
arctangent, definition of, 23
arctangent, graph of, 24
arithmetic with∞, 57
asymptote, horizontal, 43
asymptote, vertical, 42

Chain Rule, 152, 154
Chain Rule vs. Product Rule, 156
Chain Rule, Leibniz notation, 152
Chain Rule, prime notation, 154
composition (of functions), 12

concave down, 189
concave up, 189
concavity, 189
Concavity Test, 190
Constant Function Rule, 100
Constant Multiple Rule, 107
constrained optimization problem, 178
constraint, 178
continuous, 53
continuous at a point, 53
continuous functions, evaluating limit

of, 63
continuous on an interval, 53
CP, 183
critical point, 183
Critical Point Theorem, 183

decreasing, 188
definite integral, 247
definite integral, definition of, 247
definition of derivative, 80
definition of the definite integral, 247
derivative, 80
derivative of exponential function, 117
derivative of logarithmic function, 124
derivative of trig functions, 109, 150
derivative, definition of, 80
derivative, list of rules, 165
derivative, units of, 82
Difference Rule, 107
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differentiable (function), 76
differentials, 213
differentiate, 81
differentiation rules, summary, 165
differentiation, implicit, 158, 160
discontinuity, infinite, 54
discontinuity, jump, 54
discontinuity, oscillating, 54
discontinuity, removable, 54
discontinuous at a point, 53
displacement, 235
domain (of a function), 8

Exponent rules, 5
exponential function, derivative of, 117
extrema, 180

first derivative, 126
free optimization problem, 178
function, 8
functions in Mathematica, 305
functions, operations on, 12
Fundamental Theorem of Calculus Part

I, 255
Fundamental Theorem of Calculus Part

II, 257

global maximum, 180
global minimum, 180
graph (of a function), 11
graphing with Mathematica, 305
graphs of common functions, 14

higher-order derivative, 126
hole discontinuity, 54
horizontal asymptote, 43

implicit differentiation, 158, 160
increasing, 188
indefinite integral, 273
indeterminate form, 215
inequality properties of integrals, 251
infinite discontinuity, 54
infinite limits, 41

infinity, arithmetic rules with, 57
inflection point, 189
instantaneous velocity, 79, 82
integrable, 247
integral, additivity property of, 251
integral, definite, 247
integral, definite vs. indefinite, 273
integral, indefinite, 273
integral, inequality properties of, 251
integral, linearity properties of, 250
integration by u-substitution (definite

integrals), 286
integration by u-substitution (indefi-

nite integrals), 280
integration rules, 277
inverse sine, definition of, 23
inverse tangent function, definition of,

23
inverse trig functions, definition of, 23

jump discontinuity, 54

L’Hôpital’s Rule, 216
left Riemann sum, 244
left-hand limits, 38
Leibniz notation, 81
limit at infinity, 43
limit at infinity, evaluating, 59
limit, approximation via tables, 34
limit, formal definition, 37
limit, graphical interpretation, 33
limit, infinite, 41
limit, left-hand, 38
limit, one-sided, 38
limit, right-hand, 38
linear approximation, 207
Linear Function Rule, 101
Linear Replacement Principle, 284
local maximum, 180
local maximum value, 180
local minimum, 180
local minimum value, 180
logarithmic function, derivative of, 124
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lower Riemann sum, 245

Main Limit Theorem, 56
Max-Min Existence Theorem, 182
Max-Min Inequality, 251
maximum, absolute, 180
maximum, global, 180
maximum, local, 180
maximum, relative, 180
minimum, absolute, 180
minimum, global, 180
minimum, local, 180
minimum, relative, 180
monotone, 188
Monotonicity Law, 251
Montonicity Test, 189

Newton’s method, 221
Newton’s method, Mathematica code,

223, 310
Newton’s method, problems with, 224
norm (of a partition), 242

one-sided limits, 38
operations on functions, 12
optimization problem, 182
optimization problem, constrained, 178
optimization problem, free, 178
optimization procedure, 183, 185
oscillating discontinuity, 54

partition, 242
piecewise-defined function, 13
point-slope formula, 17
Positivity Law, 251
Power Rule, 104
Product Rule, 145
Product Rule vs. Chain Rule, 156
properties of arcsine and arctangent,

24

quadratic approximation, 210
Quotient Rule, 147

range (of a function), 8
relative maximum, 180
relative minimum, 180
removable discontinuity, 54
Riemann sum, 243
right Riemann sum, 244
right-hand limits, 38
rule (of a function), 9

second derivative, 126
Second Derivative Test, 191
second derivative, graphical interpre-

tation, 128
shifts on functions, 15
slope (of a curve), 82
slope (of a line), 16
slope-intercept formula, 17
subinterval, 242
sum, 241
Sum Rule, 106
summation notation, 241

tangent line, 76
tangent line approximation, 207
tangent line, equation of, 82
third derivative, 126
tone, 188
transformations on functions, 15
trig functions, derivative of, 109, 150
trigonometric functions, definition of,

18, 19
trigonometric identities, 20

units of the derivative, 82
upper Riemann sum, 245
utility, 177

variable (optimization problem), 177
velocity, instantaneous, 79, 82
vertical asymptote, 42
Vertical Line Test, 11

width (of a subinterval), 242

zeroth derivative, 126
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