
Important facts to memorize in calculus
Limits worth memorizing:

lim
x→∞

arctan x = π
2 lim

x→∞
ln x =∞ lim

x→∞

(
1 + 1

x

)x
= e lim

x→0+
ln x = −∞

Differentiation and integration rules:

DERIVATIVE RULE(S) INTEGRAL RULE(S)

CONSTANTS d
dx

(C) = 0
∫

0 dx = C

POWERS d
dx

(xn) = nxn−1 (n 6= 0)
∫
xn dx = xn+1

n+1 + C (n 6= −1)
d
dx

(mx+ b) = m
∫
mdx = mx+ C

d
dx

(
√
x) = 1

2
√
x

∫ 1
2
√
x
dx =

√
x+ C

d
dx

(
1
x

)
= −1

x2

d
dx

(x2) = 2x
TRIG d

dx
(sin x) = cos x

∫
cosx dx = sin x+ C

d
dx

(cosx) = − sin x
∫

sin x dx = − cosx+ C
d
dx

(tan x) = sec2 x
∫

sec2 x dx = tan x+ C
d
dx

(cotx) = − csc2 x
∫

csc2 x dx = − cotx+ C
d
dx

(secx) = sec x tan x
∫

secx tan x dx = secx+ C
d
dx

(cscx) = − cscx cotx
∫

cscx cotx dx = − cscx+ C

EXPONENTIALS d
dx

(ex) = ex
∫
ex dx = ex + C

d
dx

(erx) = rerx
∫
erx dx = 1

r
erx + C

d
dx

(bx) = bx ln b
∫
bx dx = 1

ln bb
x + C

LOGS d
dx

(ln x) = 1
x

∫ 1
x
dx = ln |x|+ C

INVERSE TRIG d
dx

(arctan x) = 1
x2+1

∫ 1
x2+1 dx = arctan x+ C∫ 1
x2+a2 dx = 1

a
arctan x

a
+ C

d
dx

(arcsin x) = 1√
1−x2

∫ 1√
1−x2 dx = arcsin x+ C

Reversal of integration limits:
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx

Integration by parts:
∫
r ds = rs−

∫
s dr



Geometric Series Test:

Consider a geometric series written in the standard form
∞∑
n=0

arn. Then:

1. The series converges if and only if |r| < 1 (or if a = 0).

2. The series diverges if and only if |r| ≥ 1.

Furthermore, if the series converges, its sum is
∞∑
n=0

arn = a

1− r .

Ratio Test:
Suppose

∑
an is an infinite series and let ρ = lim

n→∞

|an+1|
|an|

. Then:

1. If ρ < 1, then
∑
an converges absolutely.

2. If ρ > 1, then
∑
an diverges.

3. If ρ = 1, or if ρ DNE, then this test tells you nothing.

The "big six" Taylor series:

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2 + x3

3! + ... (holds for all x)

sin x =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)! = x− x3

3! + x5

5! −
x7

7! + ... (holds for all x)

cosx =
∞∑
n=0

(−1)nx2n

(2n)! = 1− x2

2 + x4

4! −
x6

6! + ... (holds for all x)

1
1− x =

∞∑
n=0

xn = 1 + x+ x2 + x3 + ... (holds for x ∈ (−1, 1))

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x− x2

2 + x3

3 −
x4

4 + ... (holds for x ∈ (−1, 1])

arctan x =
∞∑
n=0

(−1)n

2n+ 1x
2n+1 = x− x3

3 + x5

5 −
x7

7 + ... (holds for x ∈ [−1, 1])

Fourier series: If f has period T , then

f(x) = 1
T

∫ T

0
f(x) dx+

∞∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]

where

cn = 2
T

∫ T

0
f(x) cos

(2πn
T

x
)
dx and sn = 2

T

∫ T

0
f(x) sin

(2πn
T

x
)
dx.
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Chapter 1

Review of Calculus 1

Big picture issues

To get our feet wet, let’s use what we remember from Calculus 1 to address these
questions:

1. What is calculus?

Put another way, what is the difference between a math problem that is a
calculus problem and a math problem that is NOT a calculus problem?

2. What are some typical kinds of problems you learn how to solve, or mathe-
matical procedures you learn how to do, in Calculus 1? (Brainstorm a list.)

7



Most of the theory you learn in Calculus 1, in one chart

CALCULUS
OBJECT DERIVATIVE INTEGRAL

MOTIVATING
PROBLEM(S)

HOW THE
SOLUTION IS

APPROXIMATED

f

h

x x+h
x

f (x)

f (x+h)

y

slope of secant line

f

a ck b
x

f (ck)

y

Riemann sum
= area of rectangles

HOW THE
APPROXIMATION

IMPROVES
THEORETICAL

SOLUTION OF THE
MOTIVATING
PROBLEM(S)

f ′(x) =
∫ b

a
f(x) dx =

HOW THIS
THEORETICAL

SOLUTION
IS COMPUTED
IN PRACTICE

Memorize some derivatives
& differentiation rules:
- Power Rule
- Product Rule
- Quotient Rule
- Chain Rule

etc.

Fundamental Theorem
of Calculus:∫ b

a

f(x) dx = ′f(x)|ba
where ′f is any

antiderivative of f

APPLICATIONS

- slopes of tangent lines
- velocity / acceleration
- analysis of graphs

(increasing/decreasing;
concave up/down)

- optimization
- linear approximation
- L’Hôpital’s Rule
- Newton’s method
- related rates

- area
- displacement
- ?

8



1.1. Limits

What is calculus? What is the difference between a math problem that is a
calculus problem and a math problem that is NOT a calculus problem?

Calculus is the study of limits. A limit is a tool to compute exact solutions of
problems by way of “better and better” approximating those solutions. A calculus
problem is one that contains a limit; a non-calculus problem contains no limit.

A calculus road map

LIMIT

DERIVATIVE

INTEGRAL

APPLICATIONS

APPLICATIONS

??

MATH 220 (Calc 1)

MATH 230 (Calc 2)

1.1 Limits
Recall: To say

lim
x→a

f(x) = L

means that as x gets closer and closer to a, then f(x) gets closer and closer to L.
This suggests that the graph of f looks like one of the following three pictures:

a

L = f (a)

a

L

f (a)

a

L

The graph on the left is “continuous” at a; the other two graphs are not. More
precisely,

9



1.1. Limits

Definition 1.1 A function f : R → R is continuous at a if lim
x→a

f(x) = f(a). f is
called continuous if it is continuous at every point in its domain.

Theorem 1.2 Any function which is the quotient of functions made up of powers of
x, sines, cosines, arcsines, arctangents, exponentials and/or logarithms is continuous
everywhere except where the denominator is zero.

This theorem suggests that to evaluate most limits, you should start by plug-
ging in a for x. If you get a number, that is usually the answer.

EXAMPLE 1
Evaluate each limit:

a) lim
x→π/3

(3 sin 2x)

Solution: lim
x→π/3

(3 sin 2x) = 3 sin 2 · π3 = 3 sin 2π
3 = 3

√
3

2 .

b) lim
x→4

x+3
x−2

Solution: lim
x→4

x+3
x−2 = 4+3

4−2 = 7
2 .

c) lim
x→2+

x−5
x−2

d) lim
x→5

x2−3x−10
x−5

In a limit, when you plug in a for x and you get 0 in a denominator, you have to
work a bit harder to determine the answer.

10



1.1. Limits

nonzero
0 in limits:

When computing a limit, and you encounter an expression of the form

3
0 or

−5
0 or

1
0 or

∞
0 or anything else of the form

nonzero
0 ,

that expression will evaluate to ±∞ (you need careful analysis to determine
whether it is∞ or −∞).

In Example 1 (c), lim
x→2+

x−5
x−2 = 2−5

2−2 = −3
±0 =

0
0 in limits:

When computing a limit, and you encounter an expression of the form 0
0 ,

that expression is indeterminate, meaning that it might work out to be any-
thing (including 0 , a positive number, a negative number, or±∞, and it might
not even exist). To evaluate such an expression:

• factor and cancel;
• conjugate square roots;
• clear denominators of “inside” fractions;
• or use L’Hôpital’s Rule.

Theorem 1.3 (L’Hôpital’s Rule) Suppose f and g are differentiable functions. Sup-
pose also that either

lim
x→a

f(x) =lim
x→a

g(x) = 0 or lim
x→a

f(x) =lim
x→a

g(x) = ±∞.

Then:
lim
x→a

f(x)
g(x)

L= lim
x→a

f ′(x)
g′(x) .

Let’s solve Example 1 (d) by factoring and cancelling:

lim
x→5

x2 − 3x− 10
x− 5 =

Now let’s redo Example 1 (d) using L’Hôpital’s Rule:

lim
x→5

x2 − 3x− 10
x− 5 =

11



1.1. Limits

Limits at infinity

We can also take a limit of a function as x → ∞. To say lim
x→∞

f(x) = L means that
as x grows larger and larger without bound, then f(x) approaches L. Graphically,
this means f has a horizontal asymptote (HA) y = L:

f
L

f
L

Although ∞ is not a number, it can be manipulated in some ways as if it is a
number, so one can evaluate infinite limits by “plugging in∞ for x” and applying
the following arithmetic rules for∞:

Adding/subtracting a finite amount to ±∞ doesn’t change it: .
For any c ∈ R,∞± c =∞.

Multiplying/dividing ±∞ by positive constant doesn’t change it: .
For any c > 0, c · ∞ = ∞

c
=∞. (This includes∞ ·∞ =∞.)

Multiplying/dividing ±∞ by negative constant reverses it: .
For any c < 0, c · ∞ = ∞

c
= −∞. (This includes −∞ ·∞ = −∞.)

Dividing a number by infinity gives 0: .
For any c ∈ R, c

∞ = 0.

Natural exponentials and logs of∞ are∞: .
e∞ =∞ and ln∞ =∞.

Positive powers of∞ are∞; .
If c > 0, then∞c =∞. (This includes

√
∞ =∞ and n

√
∞ =∞.)

Negative powers of∞ are zero: .
If c < 0, then∞c = 0.

12



1.1. Limits

WARNING: Here are some expressions that we haven’t covered with the rules
on the previous page. They are called indeterminate forms because they work
out to different things depending on the particular limit you are evaluating.

0
0

∞
∞

∞−∞ 0 · ∞ ∞0 00 1∞

When you encounter an indeterminate form in a limit, that doesn’t mean you
are done–you have to do some work to figure out what the limit is.

EXAMPLE 2
Evaluate each limit:

a) lim
x→∞

lnx
x

b) lim
x→∞

4x3+2x+1
2x3+x2+2

Example 2 (b) above generalizes into the following useful principle:

Theorem 1.4 (Limits at infinity for rational functions) Suppose f is a rational
function, i.e. has form

f(x) = amx
m + am−1x

m−1 + am−2x
m−2 + ...+ a2x

2 + a1x+ a0

bnxn + bn−1xn−1 + bn−2xn−2 + ...+ b2x2 + b1x+ b0
.

Then:

1. If m < n (i.e. largest power in numerator < largest power in denominator),
then lim

x→∞
f(x) = 0.

2. If m > n (i.e. largest power in numerator > largest power in denominator),
then lim

x→∞
f(x) = ±∞.

3. If m = n (i.e. largest powers in numerator and denominator are equal), then
lim
x→∞

f(x) = am
bn

.

13



1.2. Derivatives

1.2 Derivatives
Definition 1.5 (Limit definition of the derivative) Let f : R → R be a function
and let x be in the domain of f . If the limit

lim
h→0

f(x+ h)− f(x)
h

exists and is finite, say that f is differentiable at x. In this case, we call the value of
this limit the derivative of f at x and denote it by f ′(x) or df

dx
or dy

dx
or Df(x).

Differentiable functions have graphs that are smooth, meaning that they are con-
tinuous and do not have sharp corners, vertical tangencies or cusps.

Assuming it exists, the derivative f ′(x) computes:

• the slope of the line tangent to f at x;

• the slope of the graph of f at x;

• the instantaneous rate of change of the output y with respect to the input x;

• and the instantaneous velocity at time x

(under the assumption that f is the object’s position at time x).

Definition 1.6 Let f : R→ R be a function.

• The zeroth derivative of f , sometimes denoted f (0), is just the function f itself.

• The first derivative of f , sometimes denoted f (1) or dy
dx

, is just f ′.

• The second derivative of f , denoted f ′′ or f (2) or d2y
dx2 , is the derivative of f ′:

f ′′ = (f ′)′.

• More generally, the nth derivative of f , denoted f (n) or dny
dxn

,is the derivative of
f (n−1):

f (n) = ((((f ′)′) · · ·′)′

The first derivative of a function measures its tone (i.e. whether it is increasing
or decreasing). The second derivative of a function measures its concavity (i.e.
whether its graph smiles or frowns). In MATH 230, we will learn what the higher-
order derivatives of f have to do with the function.

14



1.2. Derivatives

Differentiation rules

We don’t compute derivatives using the limit definition. Instead, we use differen-
tiation rules, meaning that first, we memorize a bunch of derivatives of common
functions:

CLASS OF FUNCTION MEMORIZED DERIVATIVE(S)
d

dx

d

dx
( ) =

d

dx

d

dx
( ) =

d

dx
( ) = d

dx
( ) =

d

dx
( ) = d

dx
( ) =

d

dx

d

dx
( ) =

d

dx
( ) =

d

dx
( ) =

d

dx
( ) =

d

dx
( ) =

d

dx
( ) =

d

dx

d

dx
( ) =

d

dx
( ) =

d

dx
( ) =

d

dx

d

dx
( ) =

d

dx

d

dx
( ) =

d

dx
( ) =

15



1.2. Derivatives

Then, we learn rules telling us how to differentiate more complicated functions in
terms of the derivatives we memorize:

DIFFERENTIATION RULE FORMULA

Constant Multiple Rule (cf)′(x) = c f ′(x)
Sum Rule (f + g)′(x) = f ′(x) + g′(x)
Difference Rule (f − g)′(x) = f ′(x)− g′(x)

d

dx

d

dx
( ) =

d

dx

d

dx
( ) =

d

dx

d

dx
( ) =

EXAMPLE 3

a) Suppose f(x) = 3x6 sin x. Compute f ′(x).

b) Suppose y = 4
x2 − 2 ln x+ 9e2x. Compute dy

dx
.

c) Compute the slope of the line tangent to f(x) = 4 cosx+ 2 sin x at x = π
3 .

Solution: The slope of the tangent line at π
4 is given by f ′(π3 ). By usual rules,

f ′(x) = 4 · − sin x+ 2 cosx

f ′
(
π

3

)
= −4 sin π3 + 2 cos π3

= −4 ·
√

3
2 + 2 · 1

2 = −2
√

3 + 1 .
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1.2. Derivatives

Tangent line approximation

Derivatives have many applications. The most important (for MATH 230 pur-
poses) is that given a differentiable function f , you can approximate values of f
near a using the tangent line to f at a:

Definition 1.7 Given a differentiable function f and a number a at which f is differ-
entiable, the tangent line to f at a is the line whose equation is

y = f(a) + f ′(a)(x− a) (a.k.a. L(x) = f(a) + f ′(a)(x− a)).

For values of x near a, f(x) ≈ L(x); approximating f(x) via this procedure is called
linear approximation.

EXAMPLE 3(c) (FROM EARLIER)
Compute the equation of the line tangent to f(x) = 3 cosx+ 2 sin x at x = π

3 .

Solution: Earlier, we found that f ′(π3 ) = −2
√

3 + 1.
Now, we compute f(π3 ) = 4 cos π

3 + 2 sin π
3 = 4(1

2) + 2(
√

3
2 ) = 2 +

√
3.

So by the equation in Definition 1.7, we have

y = f(a) + f ′(a)(x− a)

y = 2 +
√

3 + (−2
√

3 + 1)
(
x− π

3

)
.

EXAMPLE 4
Approximate

√
88 using tangent line approximation.

Solution: Let f(x) =
√
x, let x = 88 and we choose a = 81 (since 81 is close to x = 88

and 81 is “easy to work with”). Then f(a) =
√

81 = 9 and f ′(a) = 1
2
√

81 = 1
18 . So by

the linear approximation formula,
√

88 = f(x) ≈ L(x) = f(a) + f ′(a)(x− a)

= 9 + 1
18(88− 81) = 9 + 7

18 = 169
18 .

Graphical picture: Zoomed in near x = 88:

f

L

81 88

9
88 ≈L(88)

f

L

f (88)= 88

L(88)=
169

18

86 87 88

P.S.
√

88 ≈ 9.381 and 169
18 ≈ 9.389, so this estimate is correct to .08% error.
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1.3. The definite integral

1.3 The definite integral
Definition 1.8 Given function f : [a, b]→ R, the definite integral of f from a to b
is ∫ b

a
f(x) dx = lim

||P||→0

n∑
k=1

f(ck)∆xk,

where the expression inside the limit is a Riemann sum for f .

Note: In MATH 230, the limit above always exists (but it doesn’t always exist
for crazy functions f ... take MATH 430 to learn more about this).

The definite integral of a function is a number which is supposed to give the
signed area of the region between the graph of f and the x-axis. Area above the
x-axis is counted as positive area; area below the x-axis is counted as negative area.

As with derivatives, we don’t compute integrals with this limit definition. We
use the following important circle of ideas:

Definition 1.9 Given function f , an antiderivative of f is a function ′f (prononced
“f antiprime”) such that (′f)′ = f .

EXAMPLE
′f(x) = sin x is an antiderivative of f(x) = cos x.

Every continuous function has an antiderivative (although you may not be able
to write its formula down); any two antiderivatives of the same function must
differ by a constant (so if you know one antiderivative, you know them all by
adding a +C to the one you know).

Definition 1.10 Given function f , the indefinite integral of f , denoted∫
f(x) dx,

is the set of all antiderivatives of f .

EXAMPLE∫
cosx dx = sin x+ C.
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1.3. The definite integral

Theorem 1.11 (Fundamental Theorem of Calculus Part II) Let f be continuous
on [a, b]. Suppose ′f is any antiderivative of f . Then

∫ b

a
f(x) dx = ′f(x)|ba = ′f(b)− ′f(a).

EXAMPLE∫ π/2

0
cosx dx = sin x|π/2

0 = sin π2 − sin 0 = 1− 0 = 1 .

Despite the similar notation,
∫
f(x) dx and

∫ b

a
f(x) dx are very different objects.

The first object is a set of functions; the second object is a number.

In MATH 230, we’ll start by reviewing the methods of computing integrals you
learn in Calculus 1, and then proceeding to more advanced integration techniques.
That is the subject matter of Chapter 2.
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1.4. Homework exercises

1.4 Homework exercises
General ground rule in MATH 230: At any time you may be asked to compute a
quantity which equals ±∞ or does not exist. You are responsible for identifying
these situations.

Exercises from Section 1.1

In Exercises 1-11, evaluate each given limit.

1. a) lim
x→1

x−1
x2+1

b) lim
x→4

7

2. a) lim
x→3

x2−9
x2+x−12

b) lim
x→2+

x+2
x2−4

3. a) lim
x→∞

e−x

b) lim
x→−3

1
x

+ 1
3

1
x+2 +1

4. a) lim
x→∞

2x

b) lim
x→∞

3x
x2+2

5. a) lim
x→∞

−2
x

b) lim
x→∞

4x2−3x+1
3−2x2

6. a) lim
x→∞

4x2

ex−2

b) lim
x→0

e2x−1
x

7. a) lim
x→0

sinx
x

b) lim
x→∞

ln x

8. a) lim
x→0+

ln x

b) lim
x→0

ex

9. a) lim
x→0+

e1/x

b) lim
x→∞

sin x

10. a) lim
x→∞

arctan x

b) lim
x→0+

e−1/x

11. a) lim
x→1+

f(x), where

f(x) =
{
x2 x ≤ 1
5x x > 1

b) lim
x→0

|x|
x

Exercises from Section 1.2

In Exercises 12-19, compute the derivative of each indicated function.

12. a) f(x) = 1
x

b) f(x) = 5x+ 7

13. a) f(x) =
√

sin x
b) f(x) = x2−1

x

14. a) g(x) = 3
√
x− x3/7 + 2

x8

b) f(x) = 4
3√
x2

15. a) f(x) = x2−3x+4
2x3+1

b) r(x) = x3 − 3x4 + 2

16. a) g(x) = 2 tan x− 3 cosx
b) h(w) = w

tanw

17. a) f(x) = 4 cotx+ 2 secx− 1
b) y = xex
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1.4. Homework exercises

18. a) f(t) = 2e4t

b) F (x) = x ln(3x2 + 1)

19. a) y = 1
4 arctan t

2

b) g(x) = x3e−x sinx + cos
√

sin x

20. a) If f(x) = 2x4 − 3x2 + 5x+ 7, compute f ′(−1).

b) Compute f ′(8) if f(x) = 4
3√x .

c) Compute f ′(0) if f(x) = |x|.

21. a) If f(x) = 3 ln x+ ex

5 , compute f ′′(x).

b) Let f(x) = 7ex − sinx
4 . Compute the fourth derivative of f .

22. a) Compute the second derivative of f(x) = cos(3x2).

b) Suppose f(x) = 3 sin 2x. What is f (199)(x)?

c) Compute the zeroth derivative of f(x) = 8x7 + 2 cot 4x.

23. Compute the slope of the line tangent to y = 2x3 − 3x when x = 2.

24. Compute the equation of the line tangent to y = 4x(x2 − 3)4 when x = 2.

25. Estimate
√

150 using tangent line approximation.

26. Estimate sin 1
4 using tangent line approximation.

27. Suppose that the position of an object at time t (measured in seconds) is given
by f(t) = (3 ln t)2 cm. Compute the velocity and acceleration of the object at
time t = e sec.

28. a) Let y = 4x2. Compute dy.

b) Let y = 2 sin 3x. Compute dy.

Exercises from Section 1.3

In Exercises 29-33, evaluate each given integral.

29. a)
∫ 1

0
2x3 dx

b)
∫ 2

−1

(
9x2 − 2x3 + 5

)
dx

30. a)
∫ (√

x

3 + 5
x4 + 2

x

)
dx

b)
∫ 5

−3
(4ex + 1) dx

31. a)
∫

0 dx

b)
∫ π/2

0
3 cosx dx

32. a)
∫

(secx tan x+ cscx cotx) dx

b)
∫ 3

1

(
3t−1 − t

)
dt

33. a)
∫ π/4

π/3
6 sec2 x dx

b)
∫ −6
x2 + 1 dx
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1.4. Homework exercises

34. Compute each of these integrals by thinking about the shape of the graph of
the integrand:

a)
∫ 3

0

√
9− x2 dx. b)

∫ 4

−3
|x− 2| dx.

35. Compute the derivative of f(x) = x2 sin x. What does your answer tell you
about the value of ∫ π

0

(
2x sin x+ x2 cosx

)
dx?

36. Compute the derivative of the function F (x) =
∫ x

2
3t2 dt.

Hint: Use the part of the Fundamental Theorem of Calculus not mentioned
in these notes.

37. Compute the area under the graph of the function f(x) = 8√
x

from x = 1 to
x = 9.

38. Suppose that an object’s velocity at time t is given by v(t) = 4 sin t in/min.
Compute the displacement of the object between times 0 and 2π

3 .

39. Suppose that the acceleration of an object is given by a(t) = 48t m/sec2. If
the velocity of the object at time 0 is 12 m/sec and the position of the object
at time 0 is 10 m, what is the position of the object at time 3?

Answers

WARNING: I found all answers in these lecture notes by hand, so there may be
errors.

1. a) 0
b) 7

2. a) 6
7

b) ∞

3. a) 0
b) 1

9

4. a) ∞
b) 0

5. a) 0
b) −2

6. a) 0
b) 2

7. a) 1
b) ∞

8. a) −∞
b) 1

9. a) ∞
b) DNE

10. a) π
2

b) 0

11. a) DNE

b) DNE

12. a) −1
x2

b) 5

13. a) 1
2
√

sinxcosx
b) 1 + 1

x2

14. a) 3
2
√
x
− 3

7x
−4/7 − 16x−9

b) −8
3x
−5/3

15. a) (2x−3)(2x3+1)−(6x2)(x2−3x+4)
(2x3+1)2
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1.4. Homework exercises

b) 3x2 − 12x3

16. a) 2 sec2 x+ 3 sin x
b) tanw−w sec2 w

tan2 w

17. a) −4 csc2 x+ 2 secx tan x

b) ex + xex

18. a) 8e4t

b) ln(3x2 + 1) + 6x2

3x2+1

19. a) 1
8

1
(t/2)2+1

b) 3x2e−x sinx + x3e−x sinx (− sin x− x cosx)− sin
√

sinx
2
√

sinx cosx

20. a) 3
b) −1

12

c) DNE

21. a) −3
x2 + ex

5

b) 7ex − sinx
4

22. a) −6 sin(3x2)− 36x2 cos(3x2)
b) −3 · 2199 cos 2x
c) 8x7 + 2 cot 4x

23. 21

24. y = 8 + 132(x− 2)

25. 49
4

26. 1
4

27. v(e) = 18
e

cm/sec;

a(e) = 0 cm/sec2

28. a) dy = 8x dx
b) dy = 6 cos 3x dx

29. a) 1
2

b) 69
2

30. a) 2
9x

3/2 − 5
3x
−3 + 2 ln x+ C

b) 4e5 − 4e−3 + 8

31. a) C

b) 3

32. a) secx− cscx+ C

b) 3 ln 3− 4

33. a) 6− 6
√

3
b) −6 arctan x+ C

34. a) 9π
4

b) 29
2

35. f ′(x) = 2x sin x+ x2 cosx;

this tells you that the value of the integral is [x2 sin x]π0 = 0.

36. 3x2 37. 32 38. 6 in 39. 262 m
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Chapter 2

Integration techniques

2.1 Basic integration rules
REVIEW EXERCISE

Let f : R→ R. Describe what is meant by each phrase below:

• antiderivative (of f )

• indefinite integral (of f )

• definite integral (of f )

24



2.1. Basic integration rules

EXAMPLE 1
We know that d

dx
(x7) = 7x6. Therefore:

a) An antiderivative of f(x) = 7x6 is

b) Two other antiderivatives of f(x) = 7x6 are

c) The indefinite integral
∫

7x6 dx =

d) The definite integral
∫ 3

−1
7x6 dx =

EXAMPLE 2
We know that d

dx
(arctan x) = 1

x2+1 . Therefore:

a) If f(x) = 1
x2+1 , then ′f(x) =

b)
∫ 1
x2 + 1 dx =

c)
∫ 2

0

1
x2 + 1 dx =

Examples 1 and 2 illustrates the following theoretical concepts:

Theorem 2.1 (Antiderivative Theorem) Any two antiderivatives of a function can
differ by at most a constant. So if ′f is an antiderivative of f , then∫

f(x) dx = ′f(x) + C.

Theorem 2.2 (Fundamental Theorem of Calculus Part II) Let f be continuous
on [a, b]. Suppose ′f is any antiderivative of f . Then

∫ b

a
f(x) dx = ′f(x)|ba = ′f(b)− ′f(a).

This theory means that we learn how to compute basic integrals by “reversing” the
differentiation rules we learn in Calculus 1.
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2.1. Basic integration rules

EXERCISE

Without looking anything up, evaluate each of the following indefinite integrals, if
they are “easy” to solve. If the integral isn’t easily solved, put a “?”. The idea here is
that an integral which is “easy” should use facts from algebra regarding exponents,
logarithms, etc. and the rules memorized in Calculus 1. “Easy” integrals do not
use sophisticated calculus techniques or trig identities.

1.
∫

0 dx =

2.
∫

1 dx =

3.
∫

5 dx =

4.
∫
x4 dx =

5.
∫
x dx =

6.
∫ 1
x
dx =

7.
∫ 1
x3 dx =

8.
∫
x−5 dx =

9.
∫ 1
x2+1 dx =

10.
∫ 1
x3+1 dx =

11.
∫ √

x dx =

12.
∫

3
√
x dx =

13.
∫ 3
√
x2 dx =

14.
∫
x2/5 dx =

15.
∫
x−1/2 dx =

16.
∫ 1

5√x dx =

17.
∫

sin x dx =

18.
∫

cosx dx =

19.
∫

tan x dx =

20.
∫

secx dx =

21.
∫

cscx dx =

22.
∫

cotx dx =

23.
∫

sin2 x dx =

24.
∫

cos2 x dx =

25.
∫

sec2 x dx =

26.
∫

csc2 x dx =

27.
∫

tan2 x dx =

28.
∫

cot2 x dx =

29.
∫

secx tan x dx =

30.
∫

secx cotx dx =

31.
∫

cscx tan x dx =

32.
∫

cscx cotx dx =

33.
∫

cscx tan x dx =

34.
∫

cscx secx dx =

35.
∫
ex dx =

36.
∫
ex

2
dx =

37.
∫

2x dx =

38.
∫

ln x dx =

39.
∫

log10 x dx =

40.
∫

arctan x dx =

41.
∫

arcsin x dx =
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2.1. Basic integration rules

Theorem 2.3 (Integrals that we memorize)

CONSTANTS:
∫

0 dx = C∫
M dx = Mx+ C

POWERS:
∫
xn dx = xn+1

n+ 1 + C whenever n 6= −1∫
x−1 dx =

∫ 1
x
dx = ln |x|+ C

(I don’t care so much about the | | here)

TRIG:
∫

sin x dx = − cosx+ C∫
cosx dx = sin x+ C∫
sec2 x dx = tan x+ C∫
csc2 x dx = − cotx+ C∫
secx tan x dx = secx+ C∫
cscx cotx dx = − cscx+ C

EXPONENTIALS:
∫
ex dx = ex + C∫
bx dx = 1

ln bb
x + C

INVERSE TRIG:
∫ 1
x2 + 1 dx = arctan x+ C∫ 1√

1− x2
dx = arcsin x+ C

One rule that might be new here is∫
bx dx = 1

ln bb
x + C.

Let’s see where that comes from:
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2.1. Basic integration rules

Linearity rules

We also learn the following rules which allow us to split integrals into pieces:

Theorem 2.4 (Linearity of Integration) Suppose f and g are integrable functions.
Then: ∫ b

a
[f(x)± g(x)] dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx;∫ b

a
[k · f(x)] dx = k

∫ b

a
f(x) dx for any constant k;

∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx;∫

[k · f(x)] dx = k
∫
f(x) dx for any constant k.

WARNING: Integration is neither multiplicative nor divisive:∫
f(x)g(x) dx 6=

(∫
f(x) dx

)
·
(∫

g(x) dx
)

∫ (
f(x)
g(x)

)
dx 6=

∫
f(x) dx∫
g(x) dx

EXAMPLE 3
Evaluate each integral:

a)
∫ −1

4 cosx dx

b)
∫ 1

0

(
2− x

3 + x9
)
dx

c)
∫ (

4 sec2 x− 2x4 + 7ex
)
dx = 4 tan x− 2

5x
5 + 7ex + C .

d)
∫ (

4
3
√
x
− 8
x

)
dx
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2.2. Linear Replacement Principle

2.2 Linear Replacement Principle
Let’s start with some integral you “know”. Call this integral a prototype:

Specific example General situation∫
sec2 x dx =

∫
f(x) dx = ′f(x) + C

We want to look at what happens when you replace each x in the prototype
integral with a linear expression of the form mx+ b:

Specific example General situation∫
sec2(5x− 7) dx . .

∫
f(mx+ b) dx

The big idea here is that if you remember how this general situation works, you
can quickly integrate lots of functions of the form f(mx+ b). These integrals come
up often in applications and in advanced math courses, so it is useful to integrate
them without actually writing out a u-substitution.

Theorem 2.5 (Linear Replacement Principle (LRP)) Suppose you know a “pro-
totype” integral formula ∫

f(x) dx = ′f(x) + C.

Then for any constants m and b (with m 6= 0),∫
f(mx+ b) dx = 1

m
′f(mx+ b) + C.
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2.2. Linear Replacement Principle

EXAMPLE 4
In each integral given below, determine if the Linear Replacement Principle can be
used to evaluate the integral. If so, give the prototype integral formula, the values
of m and b, and evaluate the integral.

m = ?
b = ?

PROTOTYPE /
SOLUTION .

a)
∫ 2

0
e3x dx

m =
b =

b)
∫

cos x9 dx
m =
b =

c)
∫

(5x− 2)12 dx
m =
b =

d)
∫

(4x2 + 1)8 dx
m =
b =

e)
∫

sin2 x dx
m =
b =

f)
∫ 1

4− x dx
m =
b =

EXAMPLE 5
Evaluate each integral:

a)
∫ 20

−5
e−x/5 dx
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2.2. Linear Replacement Principle

b)
∫

2e5−4x dx

c)
∫ 4

5 + 3x dx

d)
∫ [

(x+ 7)8 − 2
√
x

3 − 2
]
dx

e)
∫ (

4
3
√

5− 4x
− 6 cos x− 3

4

)
dx

f)
∫ 3 csc2 4x

5 dx

Solution:
∫ 3 csc2 4x

5 dx = 3
5 · 14 (− cot 4x) + C = − 3

20 cot 4x+ C .

g)
∫ π/2

π/3
sin 3x dx

Solution:
∫ π/2

π/3
sin 3x dx = 1

3(− cos 3x)
∣∣∣∣π/2

π/3
= −1

3 cos 3π
2 + 1

3 cos π = 0− 1
3 = −1

3 .
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2.3. Rewriting the integrand

2.3 Rewriting the integrand
It is often useful to rewrite the integrand using algebra, a log rule or a trig identity.
Sometimes, after rewriting, the LRP can be helpful.

EXAMPLE 6
Evaluate each integral:

a)
∫

tan2 x dx

b)
∫ 3

2

(x2 − 1)2

x
dx

c)
∫

ln(2x) dx
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2.3. Rewriting the integrand

d)
∫

sin2 x dx

e)
∫ 1
x2 + a2 dx

Here, treat a as a constant.
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2.3. Rewriting the integrand

Comments on the last two examples

Here are two identities which are useful for integrating even powers of sine and/or
cosine (for instance, part (d) of Example 6 above):

Theorem 2.6 (Power reducing identities)

sin2 x = 1− cos 2x
2 cos2 x = 1 + cos 2x

2

EXAMPLE 7

Evaluate
∫

cos4 x dx by writing the integrand as (cos2 x)(cos2 x), then applying the
power reducing identities, FOILING, and applying the power reducing identity
one more time.

The method of Example 6 part (e) led to this general formula, which I think is
useful to memorize:

Theorem 2.7 (General arctan integral formula)∫ 1
x2 + a2 dx = 1

a
arctan x

a
+ C.

EXAMPLE 8
Evaluate each integral:

a)
∫ 2
x2 + 25 dx

b)
∫ 1

3x2 + 18 dx
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2.4. Elementary u-substitutions

2.4 Elementary u-substitutions
In Calculus 1 we learn how to compute integrals using a u−substitution:

Theorem 2.8 (Integration by u−substitution - Indefinite Integrals)∫
f(g(x)) · g′(x) dx =

∫
f(u) du

by setting u = g(x).

Theorem 2.9 (Integration by u−substitution - Definite Integrals)

∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(u) du

by setting u = g(x).

For these formulas to work, notice the integrand must have the form

∫
f
(
g(x)

)
·

D
$$

g′(x) dx

u↗

The arrow with the “D” represents the idea that the derivative of the green box is,
up to a constant multiple, the thing in the red box. The green box, where the “D
arrow” starts, is what we set equal to u.

Restated, for an elementary u−substitution to be a valid integration technique,
the integrand must consist of two terms multiplied together, where one term is,
up to a constant multiple, the derivative of part of the other term.

EXAMPLE 9
Evaluate each integral:

a)
∫

5x3 cosx4 dx

35



2.4. Elementary u-substitutions

b)
∫ π/3

0
ecosx sin x dx

c)
∫ 5

1

x

x2 + 1 dx

Remark: Suppose we flipped the fraction in (c) upside-down. What then?

∫ 5

1

x2 + 1
x

dx

WARNING! Similar-looking integrals don’t necessarily work the same way.
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2.4. Elementary u-substitutions

d)
∫ (4
√
x+ 5)3/4
√
x

dx

e)
∫

tan x dx

Hint: Rewrite, then perform a u-sub.
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2.5. More complicated u-substitutions

2.5 More complicated u-substitutions
We have seen how to perform a u−sub when the integral consists of two terms

multiplied together.

∫
f
(
g(x)

)
·

D
$$

g′(x) dx

u↗

In some cases, we can also perform a u−sub when the integral consists of three
terms multiplied together, so long as one term is the derivative of part of one of
the other terms.

∫
f
(
g(x)

)
·

D
%%

g′(x) · h(x) dx

u↗

The key here is to take the third term (the orange one in the diagram above) and
rewrite it in terms of u, starting with the formula for u you write down in the u-sub.

EXAMPLE 10∫
x3√x2 + 1 dx
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2.5. More complicated u-substitutions

EXAMPLE 11∫
x2√x+ 3 dx

At this point, the integral is∫
(u− 3)2√u du =

∫
(u2 − 6u+ 9)

√
u du

=
∫ (

u5/2 − 6u3/2 + 9
√
u
)
du

=

General principle (behind Examples 10 and 11)

To evaluate integrals of the form∫
xn(mx± b)q dx

where n is an integer but q is not a positive integer, use the u−sub u = mx± b.
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2.5. More complicated u-substitutions

EXAMPLE 12

∫ 4

1

x+ 5
2x+ 1 dx

EXAMPLE 13

∫ 2

0

x2 + 4
x+ 2 dx

Solution: Think of the integral as∫ 2

0
(x2 + 4) · 1

x+ 2 · 1 dx

So the u-sub is

u = x+ 2 ⇒ x = u− 2⇒ x2 + 4 = (u− 2)2 + 4
du = 1 dx

Substituting in (don’t forget to change the limits), we get∫ 2

0
(x2 + 4) · 1

x+ 2 · 1 dx =
∫ 4

2

[
(u− 2)2 + 4

] 1
u
du.
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2.5. More complicated u-substitutions

Now FOIL the integrand, rewrite with algebra and integrate:∫ 4

2

[
(u− 2)2 + 4

] 1
u
du =

∫ 4

2

[
u2 − 4u+ 4 + 4

] 1
u
du

=
∫ 4

2

u2 − 4u+ 8
u

du

=
∫ 4

2

(
u− 4 + 8

u

)
du

=
[1
2u

2 − 4u+ 8 ln u
]4

2

=
[1
2(16)− 16 + 8 ln 4

]
−
[1
2(4)− 8 + 8 ln 2

]
= 8 ln 4− 8 ln 2− 2 .

Sometimes you can use trig identities to rewrite an integrand before using a com-
plicated u−substitution:

EXAMPLE 14∫
sin4 x cos3 x dx

The rest of the integral is straight-forward:∫
u4(1− u2) du =

∫
(u4 − u6) du

= 1
5u

5 − 1
7u

7 + C

=

Integrals with powers of tangent and secant, or powers of cosecant and cotangent,
are handled similar to Example 14.
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2.6. Integration by parts

2.6 Integration by parts
Consider the region R of points which is above the x-axis, and below the graph

of y = sin x between x = 0 and x = π:

R

π
2

π

1

Imagine thatR is the shape of some physical object (like a sheet of metal). Many
engineering applications require you to know where something called the center of
mass of this object is (more on what that means in Chapter 4). To compute this
center of mass, we will see that you have to evaluate this integral:∫ π

0
x sin x dx.

Integrals like this (where the integrand is x times a trigonometric or exponential
function) also arise in actuarial science and mathematical finance, because they
can be used to compute “expected” or “average” times until certain events happen
(like an insurance policyholder being in an accident or a stock price hitting a cer-
tain value).

Question: How would we actually compute
∫ π

0
x sin x dx?

• We can’t “just do it” (meaning immediately write the answer);

• we can’t “split it” (no + or − sign in the integrand);

• the LRP doesn’t apply (no mx± b present);

• there’s no useful way to rewrite the integrand; and

• no u-sub seems to help

(the integrand is not a product of related terms).

To compute this integral, we will need a new method called integration by parts.
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2.6. Integration by parts

Background on integration by parts

The Product Rule for differentiation tells us

(fg)′(x) =

Theorem 2.10 (Integration by Parts (IBP) (“Parts”) Formula)∫
r ds = rs−

∫
s dr.

Other textbooks and instructors (and my past exams) use u and v instead of r
and s in this formula. We won’t do this, because u and v can be hard to tell apart
when written by hand.

How to use the parts formula:

1. Choose r and ds so that your integral is
∫
r ds.

(The dx in the integral has to be part of the ds.)

2. Solve for dr (by differentiating r) and s (by integrating ds).

3. Apply the parts formula. If you’ve done everything right, then the inte-

gral s dr you are left with should be easier than the integral
∫
r ds you

started with.
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2.6. Integration by parts

For reference, the parts formula is
∫
r ds = rs−

∫
s dr.

EXAMPLE 15 (REPEATED) ∫ π

0
x sin x dx

Thought Process:

Solution:
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2.6. Integration by parts

EXAMPLE 16∫
x2ex dx

More generally, to handle integrals like
∫
xnf(x) dx where f(x) is exponen-

tial, sine or cosine, you would (at least theoretically) use integration by parts n
times.

Each time you use the part formula, the power on the x drops by 1.
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2.6. Integration by parts

EXAMPLE 17∫
ln x dx

Remark:
∫

arctan x dx and
∫

arcsin x dx are similar to Example 17.

Parts vs. u-substitutions

Question: How do you choose between a u-sub or integration by parts?∫
x sin x dx vs.

∫
sin x cosx dx
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2.6. Integration by parts

How to choose r and ds

Suppose you know you want to use integration by parts. How do you decide
which part of the integral should be r and which should be ds?

General principle:

The integral
∫
s dr should be easier than

∫
r ds. So think ahead!

Specific guidelines for choosing r:

HIGH PRIORITY r (choose these to be r if possible):

MEDIUM PRIORITY r:

LOW PRIORITY r (avoid choosing these as r if possible):

EXAMPLE 18
For each integral, decide if integration by parts is an appropriate method. If so,
write what you would choose for r and ds:

a)
∫

16x3(2x4 + 3)2 dx

b)
∫

16x4(2x4 + 3)2 dx

c)
∫

3x2 arctan x dx

d)
∫
x ln x dx

e)
∫ ln x

x
dx

f)
∫

ln x dx
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2.7. Undetermined coefficients

g)
∫ ln x

x2 dx

h)
∫

2x sin 4x dx

i)
∫

4x3e2x dx

j)
∫

26e3x cos 2x dx

2.7 Undetermined coefficients
In this section, we introduce a method of solving math problems that may

not seem “valid” or “rigorous”. But it is actually very important: you’ll see it
in MATH 330, and mathematicians in industry or academia often approach chal-
lenging problems this way.

Informally, this method is “guessing and checking”. Formally, it’s called the
method of undetermined coefficients:

Method of undetermined coefficients

1. Guess the general form of the answer. This general form should have
some unknown constants in it.

(These constants are the “undetermined coefficients”.)

2. Determine what the constants are by working backwards from your guess
to the original problem.

EXAMPLE 19

Without the LRP or a u-sub, compute
∫
e8x dx.
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2.7. Undetermined coefficients

EXAMPLE 20 (PART (i) OF EXAMPLE 18)∫
4x3e2x dx

Thought process:

Guess the answer:

Determine the constants:
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2.7. Undetermined coefficients

EXAMPLE 21 (PART (j) OF EXAMPLE 18)∫
26e3x cos 2x dx

Thought process:

Guess the answer:

Determine the constants:

d

dx
(guess) =

[
3Ae3x cos 2x− 2Ae3x sin 2x

]
+
[
3Be3x sin 2x+ 2Be3x cos 2x

]

= [3A+ 2B] e3x cos 2x+ [−2A+ 3B] e3x sin 2x.

To make this match the integrand 26e3x cos 2x, we need


Solve this system to get A = 6, B = 4. Therefore the answer is

6e3x cos 2x+ 4e3x sin 2x+ C .
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2.7. Undetermined coefficients

EXAMPLE 22∫
x2 cosx dx

Solution: We could do this with integration by parts twice, but let’s use unde-
termined coefficients. First, guess the answer. Similar to Example 22, it probably
has the following kind of terms in it:

x2 cosx x2 sin x x cosx x sin x cosx sin x

So we will guess the answer is

guess = Ax2 cosx+Bx2 sin x+ Cx cosx+Dx sin x+ E cosx+ F sin x.

Now let’s figure out the constants. Differentiate the guess:

d

dx
(guess) = 2Ax cosx− Ax2 sin x+ 2Bx sin x+Bx2 cosx+ C cosx− Cx sin x

+D sin x+Dx cosx− E sin x+ F cosx
= −Ax2 sin x+Bx2 cosx+ (2B − C)x sin x+ (2A+D)x cosx

+ (C + F ) cosx+ (D − E) sin x.

This must equal the original integrand x2 cosx, so by equating like terms we have

−A = 0
B = 1

2B − C = 0
2A+D = 0
C + F = 0
D − E = 0

=⇒



A = 0
B = 1
C = 2
D = 0
F = −2
E = 0

So the solution is x2 sin x+ 2x cosx− 2 sin x+ C .
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2.8. Partial fractions

2.8 Partial fractions
MOTIVATION

In large-scale surveying, we produce maps of regions of the Earth. While the Earth
is (roughly) spherical, maps are flat. This means we need to somehow “project” the
round Earth onto a flat surface. A classical way of doing this is called the Mercator
projection:

−→

Under this projection, horizontal distances get stretched (and vertical distances
may get stretched/shrunk as well to preserve the “shapes” of land masses):

θ
rEQUATOR

To account for this stretching and derive a formula that will allow us to determine
where a point on the Earth’s surface should end up on this map, we need to inte-
grate sec θ. Here’s how you might do this:∫

sec θ dθ =
∫ 1

cos θ dθ =
∫ cos θ

cos2 θ
dθ =

∫ cos θ
1− sin2 θ

dθ

Question: How we we integrate
∫ 1

1− u2 du?

• we can’t just do it;
• the integrand can’t be split;
• no u-sub seems to work (no product of related terms);
• maybe parts with r = 1

1−u2 , ds = du? (spoiler alert: this doesn’t work)
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2.8. Partial fractions

The new technique we need to do this: Consider the following expression:

2
x− 3 + 5

x− 1

These terms can be combined with algebra to get

2(x− 1)
(x− 3)(x− 1) + 5(x− 3)

(x− 1)(x− 3) = [2x− 2] + [5x− 15]
(x− 1)(x− 3) = 7x− 17

x2 − 4x+ 3 .

This means
∫ ( 2

x− 3 + 5
x− 1

)
dx =

∫ 7x− 17
x2 − 4x+ 3 dx.

Goal: Rewrite expressions like
7x− 17

x2 − 4x+ 3 as
2

x− 3 + 5
x− 1 .

Method: We’ll use a version of undetermined coefficients.

Terminology

Before we get to the details, however, we first need to develop some vocabulary
that will give us a way to formally state the procedure we are covering in this
section:

Definition 2.11 A polynomial in x is an expression of the form

a0 + a1x+ a2x
2 + ...+ anx

n

where a0, a1, ..., an are constants. The degree of a polynomial is the highest power
of x that appears. A polynomial is called irreducible if it cannot be factored into two
polynomials, both of lower degree.
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2.8. Partial fractions

EXAMPLES

• x4 − 3x+ 1 is a degree 4 polynomial

• x2 − 3x9 − 7x+ 5x6 is a degree 9 polynomial

• x7+2
x

,
√
x, 1

x
, sin x, 4xπ, ... are not polynomials

• x2 + A is an irreducible polynomial if A > 0

• x2 − 4 is not irreducible

• Ax±B is irreducible

Theorem 2.12 (Fundamental Theorem of Algebra) No polynomial of degree≥ 3
is irreducible.

Similar to how every whole number factors into a product of primes, we have:

Theorem 2.13 Every polynomial factors into a product of irreducibles.

Now we can precisely describe the problem we’re interested in solving:

Definition 2.14 Given a rational function p(x)
q(x) (a rational function is the quotient

of any two polynomials) with degree(p) < degree(q), write p(x)
q(x) as

p(x)
q(x) = p1(x)

q1(x) + p2(x)
q2(x) + ...+ pn(x)

qn(x)

where:
• degree(pj) < degree(qj) for all j; and
• every qj(x) is a power of an irreducible polynomial, i.e.

qj(x) = ax± b or qj(x) = (ax± b)r or

qj(x) = (ax2 ± bx± c)r where ax2 ± bx± c doesn’t factor

This procedure is called splitting p(x)
q(x) into partial fractions or finding the partial

fraction decomposition of p(x)
q(x) .
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2.8. Partial fractions

EXAMPLE 23

Find the partial fraction decomposition of
1

1− u2

(so that we can finish the integral
∫

sec θ dθ; recall u = sin θ).

STEP 1: Factor the denominator completely.

STEP 2: Guess the form of the decomposition.

STEP 3: Multiply through each term in your equation from Step 2 by the orig-
inal (common) denominator.

STEP 4: Find the unknowns A, B, C, ... (two methods)

METHOD 1 (quick, but sometimes fails): Plug in some carefully selected u (or
x)-values to the equation obtained in Step 3, and solve for the constants.
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2.8. Partial fractions

METHOD 2 (slow, but always works): Multiply out the right-hand side; com-
bine like powers of u (or x); equate coefficients on the powers of u (or x); solve the
resulting system of equations.

STEP 5: Write the answer.
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2.8. Partial fractions

Remark: There is no calculus in the partial fraction decomposition itself (you
do no limit, derivative or integral in Steps 1-6 above). This is really an algebraic
technique, whose most common use is to rewrite integrands.

If there’s an integral, you integrate after doing the partial fraction procedure.
Useful integration rules here include:∫ 1

x+ a
dx = ln(x+ a) + C

∫ 1
(x+ a)2 dx = −1

x+ a
+ C

∫ 1
x2 + a2 dx = 1

a
arctan x

a
+ C

EXAMPLE 24

∫ 3x2 + 10x− 24
x3 + 2x2 − 8x dx
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2.8. Partial fractions

EXAMPLE 25

Find the partial fraction decomposition of
2x3 − x2 − x+ 1

x2(x− 1)2 .

Attempted solution: Similar to what we’ve done before, let’s try

2x3 − x2 − x+ 1
x2(x− 1)2 = A

x2 + B

(x− 1)2 = A(x− 1)2 +Bx2

x2(x− 1)2

⇒ 2x3 − x2 − x+ 1 = A(x− 1)2 +Bx2

This is a problem! Can you see why?
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2.8. Partial fractions

EXAMPLE 25 (CONTINUED)
On the previous page, we obtained

2x3 − x2 − x+ 1 = Ax(x− 1)2 +B(x− 1)2 + Cx2(x− 1) +Dx2

and we figured out that B = 1 and D = 1, so now we have

2x3 − x2 − x+ 1 = Ax(x− 1)2 + (x− 1)2 + Cx2(x− 1) + x2

= Ax(x2 − 2x+ 1) + 1(x2 − 2x+ 1) + C(x3 − x2) + 1x2

= Ax3 − 2Ax2 + Ax+ x2 − 2x+ 1 + Cx3 − Cx2 + x2

= (A+ C)x3 + (−2A+ 2− C)x2 + (A− 2)x+ 1

which means, by considering the x terms, that

A− 2 = −1 ⇒ A = 1

and finally, by considering the x3 terms, that

2 = A+ C = 1 + C ⇒ C = 1.

All together, we have A = B = C = D = 1 so

2x3 − x2 − x+ 1
x2(x− 1)2 = 1

x
+ 1
x2 + 1

x− 1 + 1
(x− 1)2 .

P.S. This means∫ 2x3 − x2 − x+ 1
x2(x− 1)2 dx =

∫ [
1
x

+ 1
x2 + 1

x− 1 + 1
(x− 1)2

]
dx

= ln x− 1
x

+ ln(x− 1)− 1
x− 1 + C .
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2.8. Partial fractions

How to guess the partial fraction decomposition

It is hard to write down a “one-size fits all” rule that tells you what your guess
needs to be. It’s easier to look at some examples to see the pattern:

p(x)
q(x)

GUESSED FORM OF
DECOMPOSITION

D
IS

T
IN

C
T

LI
N

EA
R

FA
C

TO
R

S 6x−1
(x−5)(x+2)

A
x−5 + B

x+2

−4
x(x−3)(x+4)

A
x

+ B
x−3 + C

x+4

R
EP

EA
TE

D
LI

N
EA

R
FA

C
TO

R
S

2
(x−4)2(x+6)

7
x4(x−1)3(x+2)

A
x

+ B
x2 + C

x3 + D
x4 + E

x−1 + F
(x−1)2 + G

(x−1)3 + H
x+2

U
N

FA
C

TO
R

A
BL

E
Q

U
A

D
R

A
TI

C
FA

C
TO

R
S

x−1
(x2+5)(x−2)

x3−3x+4
(x2+1)3x2(x−7)(x2+6)

Ax+B
x2+1 + Cx+D

(x2+1)2 + Ex+F
(x2+1)3 + G

x
+ H

x2 + I
x−7 + Jx+K

x2+6

General guidelines for guessing form of partial fraction decomposition:

1. Make sure the denominator is factored completely first.
2. For every linear term (x±a)r in the denominator, the guessed form needs
r terms of the form

A

x± a
+ B

(x± a)2 + C

(x± a)3 + ...+ const

(x± a)r

3. For every unfactorable quadratic (x2 + ax + b)r in the denominator, the
guessed form needs r terms of the form

Ax+B

x2 + ax+ b
+ Cx+D

(x2 + ax+ b)2 + Ex+ F

(x2 + ax+ b)3 + ...+ const x+ const

(x2 + ax+ b)r
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2.8. Partial fractions

Partial fractions is a useful for evaluating integrals in these situations:

1. The integrand must be a rational function (i.e. contain only nonnegative
powers of x and no trig/exp/log functions).

2. The degree of the numerator must be less than the degree of the denom-
inator.

3. The denominator must be easily factored.
4. The numerator must be “sufficiently complicated” (see Example 26 be-

low).

EXAMPLE 26 ∫ x

(x− 2)3 dx

Solution # 1: Use partial fractions:

x

(x− 2)3 = A

x− 2 + B

(x− 2)2 + C

(x− 2)3

x

(x− 2)3 = A(x− 2)2

(x− 2)3 + B(x− 2)
(x− 2)3 + C

(x− 2)3

x = A(x− 2)2 +B(x− 2) + C

x = A(x2 − 4x+ 4) +Bx− 2B + C

x = Ax2 + (B − 4A)x+ (4A− 2B + C)

Thus A = 0, B − 4A = 1 and 4A− 2B + C = 0. That means B = 1 and C = 2. So

∫ x

(x− 2)3 dx =
∫ (

1
(x− 2)2 + 2

(x− 2)3

)
dx = −1

x− 2 + −1
(x− 2)2 + C .

Solution # 2:
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2.8. Partial fractions

EXAMPLE 27

∫ 5x2 + 20x+ 6
x3 + 2x2 + x

dx
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2.9. Adventures in integration

2.9 Adventures in integration
In the previous eight sections, we’ve seen “standard” ways of computing inte-

grals.

In this section, we are going to do some examples that illustrate some more
exotic techniques of integration.

One of the things I want you to take from this section is that when you are faced
with a hard problem, “try something”. If it doesn’t work, try something else.

That said, I won’t ask you any integrals like this on an exam (except perhaps
for extra credit).

Desperado substitutions
EXAMPLE 28

∫ 1
x
√
x− 1

dx
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2.9. Adventures in integration

EXAMPLE 29 ∫ √
9−
√
x dx

At this point the integral can be done by distributing and using the Power Rule:∫ √
u · 2(u− 9) du =

∫ [
2u3/2 − 18u1/2

]
du = 4

5u
5/2 − 12u3/2 + C.

Last, back-substitute to get
4
5(9−

√
x)5/2 − 12(9−

√
x)3/2 + C .

EXAMPLE 30 ∫ 1
ex + 1 dx

At this point, we can use partial fractions (work omitted):∫ 1
u(u− 1) du =

∫ [−1
u

+ 1
u− 1

]
du = − ln u+ ln(u− 1) + C.

Last, back-substitute and simplify:

− ln(ex + 1) + ln(ex + 1− 1) + C = − ln(ex + 1) + ln ex + C

= − ln(ex + 1) + x+ C .
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Insane rewrites
EXAMPLE 31

∫ 1
x2 + 8x+ 19 dx

EXAMPLE 32 ∫
secx dx

EXAMPLE 30 (REPEATED FROM BEFORE)

∫ 1
ex + 1 dx
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EXAMPLE 33

∫ 2
(x2 + 1)2 dx
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2.9. Adventures in integration

SOHCAHTOA substitutions
EXAMPLE 34 ∫ √

16− x2 dx

We end up with∫
4 cosu · 4 cosu du =

∫
16 cos2 u du

= 16
(1 + cos 2u

2

)
du

=
∫

(8 + 8 cos 2u) du

= 8u+ 4 sin 2u+ C

= 8u+ 4(2 sin u cosu) + C (by trig identity sin 2u = 2 sin u cosu)
= 8u+ 8 sin u cosu+ C.

Finally, back-substitute using SOHCAHTOA in our triangle to get

8u+ 8 sin u cosu+ C = 8 arcsin x4 + 8
(
x

4

)(√16− x2

4

)
+ C

= 8 arcsin x4 + 1
2x
√

16− x2 + C .
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2.10 Summary of integration techniques
1. Just do it: check to see if the integral is one you can “just write the answer

to”.

2. Split it: if the integrand contains terms which are added or subtracted, con-
sider using linearity rules to split the integrand into pieces you can “just write
the answer to”.

3. Linear Replacement Principle: if the integrand is a function you can inte-
grate by hand with a mx± b instead of an x, use the LRP.

4. Rewrite it: see if you can rewrite the integrand using algebra, log rules or a
trig identity.

5. u-sub: if the integrand contains terms which are multiplied together, where
one part is the derivative of something in the other part (up to a constant),
try a u−sub.

6. Parts: if the integrand has terms multiplied together which are unrelated, try
parts.

7. Partial fractions: If the integrand is a rational function where the denomina-
tor factors (and the degree of the denominator is greater than the degree of
the numerator), use partial fractions to decompose the integrand.

8. Use a computer: Mathematica commands are as follows:

TASK COMMAND
Indefinite integral∫

f(x) dx Integrate[function, x]

Definite integral∫ b

a
f(x) dx

Exact value:
Integrate[function, {x,a,b}]

Numerical approximation:
NIntegrate[function, {x,a,b}]

Partial fraction
decomposition

(without integrating)
Apart[expression]

9. Undetermined coefficients: guess the answer with unknown constants, and
then try to figure out what the constants are.

10. Get creative: try a complicated u-sub and/or creatively rewrite the inte-
grand.
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2.11 Homework exercises
Exercises from Section 2.1

1. Suppose that an antiderivative of function f is ′f(x) = x ln (tan x+ 1).

a) Write down two other antiderivatives of f .

b) Evaluate
∫
f(x) dx.

c) Evaluate
∫ π/4

0
f(x) dx.

d) What is f(x)?

2. Suppose that you know
∫
f(x) dx = F (x) + C and

∫
g(x) dx = G(x) + C.

For each given expression, determine if you can write the answer in terms of
F and/or G (together with other stuff you know). If so, write the answer in
terms of F and/or G.

a)
∫

3f(x) dx

b)
∫

[g(x)− 2f(x)] dx

c)
∫
f(x)g(x) dx

d)
∫ [

g(x) + 6x2
]
dx

e)
∫ f(x)

4 dx

f)
∫ 4
f(x) dx

g)
∫ g(x)
f(x) dx

h)
∫

[5f(x) + 3g(x)− 1] dx

i)
∫
xf(x) dx

j)
∫
f(g(x)) dx

In Exercises 3-8, evaluate each integral by hand:

3.
∫ (

2ex − sin x
5 + 1

)
dx

4.
∫

4x dx

5.
∫ (

4√
1− x2

+ 8 sec2 x+ 12
√
x

)
dx

6.
∫ (

7e3t + cos t− 5t
)
dt

7.
∫ 2

1

(
12w2 + 9√

w
− 3w5/2

)
dw

8.
∫ π/4

π/6
3 secx tan x dx
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Exercises from Section 2.2

In Exercises 9-18, evaluate each integral by hand:

9.
∫
e7−3x dx

10.
∫ 5

3

1
7x+ 1 dx

11.
∫

sin 4x dx

12.
∫

cos x3 dx

13.
∫ (

cos
(3

7x
)

+ 4
x

)
dx

14.
∫ π/9

0
2 sec2 3x dx

15.
∫ 10

−4

(
ex/2 + 3x

)
dx

16.
∫

csc πx cotπx dx

17.
∫ (

1
(4x+ 5)3 + 2√

2− 3x

)
dx

18.
∫ (

e2s + e−s/2
)
ds

19. Suppose you know
∫
f(x) dx = F (x) + C. For each given expression, deter-

mine if you can write the answer in terms of F ; if so, write the answer.

a)
∫

6f(x) dx

b)
∫
f(3x) dx

c)
∫

2f
(
x

2

)
dx

d)
∫ f(4x+ 1)

8 dx

e)
∫
f
(

1− 2x
9

)
dx

f)
∫
f
(3
x

)
dx

20. Suppose you know
∫ 12

0
f(x) dx = 5.

a) Do you know the value of
∫ 12

0
4f(x) dx? If so, what is it?

b) Do you know the value of
∫ 12

0
f(4x) dx? If so, what is it?

c) For what b do you know the value of
∫ b

0
f(4x) dx?

d) For the value of b that works in part (c), what is
∫ b

0
f(4x) dx?
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Exercises from Section 2.3

In Exercises 21-32, evaluate each integral by hand:

21.
∫
t2
(
t− 2

t

)
dt

22.
∫ 4

0
(3− x)

√
x dx

23.
∫

(1 + 2x2)2 dx

24.
∫

cos2 3x dx

25.
∫
x
(

1 + 1
x

)2
dx

26.
∫ (x− 7)2

x
dx

27.
∫

sin2 x

4 dx

28.
∫ π/3

π/4
3 cot2 x dx

29.
∫

sin4 θ dθ

30.
∫ 8
x2 + 16 dx

31.
∫ ( 1

6x2 + 48 + x4
)
dx

32.
∫

cosx secx dx

33. Consider the integral
∫

34x dx.

a) Compute this integral by rewriting it in the form
∫
bx dx, and then eval-

uating that integral. In particular, what is the value of b?

b) Compute this integral by using the Linear Replacement Principle, to-

gether with the rule for
∫

3x dx.

c) Reconcile the apparently different-looking answers you obtain in parts
(a) and (b) of this question.

Exercises from Section 2.4

In Exercises 34-43, evaluate each integral by hand:

34.
∫
x2√x3 − 1 dx

35.
∫ x2 + 1
x3 + 3x− 2 dx

36.
∫ e2x

e2x + 1 dx

37.
∫ 3

0

e2x + 1
e2x dx

38.
∫

cotx dx

39.
∫ 3

1
x 2x2−1 dx

40.
∫ sinw√

cosw dw

41.
∫ (

cos3 x sin x− sin 2x
)
dx
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2.11. Homework exercises

42.
∫ cos

√
x√

x
dx 43.

∫
sin4 2x cos 2x dx

Exercises from Section 2.5

In Exercises 44-53, evaluate each integral by hand:

44.
∫ 3x+ 2

5x− 1 dx

45.
∫ −2

−3

x2

x− 1 dx

46.
∫ ( 2x

x− 4 + 3
2x− 1

)
dx

47.
∫ 1

0
t
√
t+ 1 dt

48.
∫
x2(x+ 3)8 dx

49.
∫

sin5 x dx

50.
∫ π/6

0
cos8 x sin3 x dx

51.
∫

tan7 x sec4 x dx

52.
∫

3lnw dw

53.
∫ ln x2

x
dx

54. a) Evaluate the integral
∫

sin x cosx dx by performing the u−substitution
u = sin x.

b) Evaluate the integral of part (a) by performing the u−substitution u =
cosx.

c) Reconcile the (apparently) different answers you get to parts (a) and (b)
of this question.

Exercises from Section 2.6

In Exercises 55-65, evaluate each integral by hand.

55.
∫
xe7x dx

56.
∫ 4x
ex
dx

57.
∫
x3ex

4
dx

58.
∫
x ln(x+ 5) dx

59.
∫ ln x

x4 dx

60.
∫ (

x cosx+ x cosx2
)
dx

61.
∫ π/2

0
(x sin 2x+ sin 3x) dx

62.
∫ 1

0
2xe−x/2 dx

63.
∫

arctan x dx

64.
∫

log x dx

65.
∫
x arctan x dx
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2.11. Homework exercises

In Exercises 66-75, determine whether it is better to use parts or a u−substitution
to evaluate the integral. If parts are better, write “PARTS” and give your choices of
r and ds. Otherwise, write “u−SUB” and give your choice of u. You do not have to
evaluate these integrals.

66.
∫ x√

2 + 3x
dx

67.
∫
x2 cosx dx

68.
∫
x ln2 x dx

69.
∫

arcsin x dx

70.
∫

sin x cosx dx

71.
∫
x34x dx

72.
∫ arctan x

x2 + 1 dx

73.
∫

3x2e2x−1 dx

74.
∫ 1
x ln x dx

75.
∫
ex cos 3x dx

Exercises from Section 2.7

In Exercises 76-78, evaluate each integral by hand.

76.
∫
x4ex dx

77.
∫

3x2 sin x2 dx

78.
∫

(−9ex cos 2x− 7ex sin 2x) dx

79. Use the method of undetermined coefficients to find a function y = f(x) so
that y′ − 7y = 2e3x.

Hint: Guess that the answer is of the form y = Ae3x; plug this guess into the
left-hand side of the given equation and figure out what A has to be so that
you come out with 5e3x.

80. Use the method of undetermined coefficients to find a function y = f(x) so
that y′ + 3y = − cosx.

81. Use the method of undetermined coefficients to find a function y = f(x) so
that y′′ + 3y′ − 5y = 14e−2x.

82. Find a nonzero function y = f(x) so that y′′ = y2.

Hint: A creative method of undetermined coefficients may be helpful here.
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Exercises from Section 2.8

In Exercises 83-86, write the “guessed” form of the partial fraction decomposition
of the given expression. You do not need to solve for the constants.

Example:
1

x2 − 1 Solution:
1

x2 − 1 = A

x− 1 + B

x+ 1
83.

4
x2 − 3x

84.
7x+ 2

x3 − 5x2 − 24x

85.
3x

x2 + 4x− 5

86.
2

3x2 + 9x− 54
In Exercises 87-90, evaluate each integral by hand.

87.
∫ 1
x2 − 16 dx

88.
∫ 3
x2 + x− 2 dx

89.
∫ 5− x

2x2 + x− 1 dx

90.
∫ 5x2 − 12x− 12

x3 − 4x dx

In Exercises 91-96, write the “guessed” form of the partial fraction decomposition
of the given expression. You do not need to solve for the constants.

91.
2x+ 3
x(x2 + 1)

92.
4

(x− 3)(x+ 2)2

93.
5− x2

x3(x− 1)2

94.
1

(x− 2)2(x2 + 4)2

95.
x+ 1

x3(x2 + x+ 1)(x− 7)

96.
7

(x+ 4)3

In Exercises 97-102, evaluate each integral by hand.

97.
∫ 4x2 + 2x− 1

x3 + x2 dx

98.
∫ x2

x4 − 2x2 − 8 dx

99.
∫ 1

−1

x

(x+ 2)5 dx

100.
∫ x2 − x+ 9

(x2 + 9)2 dx

101.
∫ 5

1

x− 1
x2(x+ 1) dx

102.
∫ 3x+ 4
x3 + 2x2 + 10x dx

103. a) Evaluate the integral
∫ 2x−3

(x−1)3 dx by performing a u−substitution.

b) Evaluate the integral from part (a) via partial fractions.
c) Verify that the answers you get to parts (a) and (b) are equal.
d) Evaluate the integral using Mathematica. Which method do you think

Mathematica used to compute the integral?
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Exercises from Section 2.9

These exercises should be considered examples of questions that would be bonus
questions on an exam (so they aren’t mandatory). In each exercise, evaluate the
integral.

104.
∫ 1

1 +
√
x
dx

105.
∫ 1 + sin x

cosx dx

106.
∫ 1

cos t− 1 dt

107.
∫

cscx dx

108.
∫

sin v cos 2v dv

109.
∫ 8
x2 − 12x+ 50 dx

110.
∫ √x2 + 4

x4 dx

111.
∫

sin(ln x) dx

112.
∫ (cosx

x3 −
3 sin x
x4

)
dx

113.
∫

arcsin
√
x dx

Answers

Note: with indefinite integrals, answers can sometimes vary a little bit.

1. a) Answers include
′f(x) = x ln(tan x+ 1) + 1;
′f(x) = x ln(tan x+ 1) + 2

√
6;

′f(x) = x ln(tan x+ 1)− 3.7;
etc.

b) x ln(tan x+ 1) + C

c) π ln 4
2

d) f(x) = ln(tan x+ 1) + x sec2 x
tanx+1

2. a) 3F (x) + C

b) G(x)− 2F (x) + C

c) cannot determine

d) G(x) + 2x3 + C

e) 1
4F (x) + C

f) cannot determine

g) cannot determine

h) 5F (x) + 3G(x)− x+ C

i) cannot determine
j) cannot determine

3. 2ex + 1
5 cosx+ x+ C

4. 1
ln 44x + C

5. 4 arcsin x+ 8 tan x+ 8x3/2 + C

6. 7
3e

3t + sin t− 5
2t

2 + C

7. 76
7 + 39

7

√
2

8. 3
√

2− 2
√

3

9. −1
3 e

7−3x + C

10. 1
7(ln 36− ln 22)

11. −1
4 cos 4x+ C

12. 3 sin x
3 + C

13. 7
3 sin 3x

7 + 4 ln x+ C

14. 2
√

3
3
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2.11. Homework exercises

15. 2e5 − 2e−2 + 126

16. −1
π

csc πx+ C

17. −4
3
√

2− 3x− 1
8(5 + 4x)−2 + C

18. 1
2e

2s − 2e−s/2 + C

19. a) 6F (x) + C

b) 1
3F (3x) + C

c) 4F
(
x
2

)
+ C

d) 1
32F (4x+ 1) + C

e) −9
2F

(
1− 2x

9

)
+ C

f) cannot determine

20. a) Yes; 20
b) No

c) b = 3
d) 5

4

21. 1
4t

4 − t2 + C

22. 16
5

23. 4
5x

5 + 4
3x

3 + x+ C

24. 1
2x+ 1

12 sin 6x+ C

25. 1
2x

2 + 2x+ ln x+ C

26. 1
2x

2 − 14x+ 49 ln x+ C

27. 1
2x− sin x

2 + C

28. 3−
√

3− π
4

29. 3
8θ −

1
4 sin 2θ + 1

32 sin 4θ + C

30. 2 arctan x
4 + C

31. 1
6
√

8 arctan x√
8 + 1

5x
5 + C

32. x+ C

33. a) b = 81;∫
34x dx =

∫
81x dx = 1

ln 8181x+
C

b)
∫

34x dx = 1
4 ·

1
ln 334x + C

c) Since 4 ln 3 = ln 34 = ln 81,
these answers are the same.

34. 2
9(x3 − 1)3/2 + C

35. 1
3 ln(x3 + 3x− 2) + C

36. 1
2 ln(e2x + 1) + C

37. 7
2 −

1
2e
−6

38. ln(sin x) + C

39. 255
2 ln 2

40. −2
√

cosw + C

41. −1
4 cos4 x+ 1

2 cos 2x+ C

42. 2 sin
√
x+ C

43. 1
10 sin5 2x+ C

44. 3
25(5x− 1) + 13

25 ln(5x− 1) + C

45. ln 3− ln 4− 3
2

46. 2x+ 8 ln(x− 4) + 3
2 ln(2x− 1) + C

47. 4
15 + 4

15

√
2

48. 1
11(x+3)11− 3

5(x+3)10 +(x+3)9 +C

49. −1
80 cos 5x+ 5

48 cos 3x− 5
8 cosx+ C

50. 2
99 −

153
√

3
22528

51. 1
10 tan10 x+ 1

8 tan8 x+ C

52. 1
ln 3+1w

ln 3+1 + C

53. ln2 x+ C
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2.11. Homework exercises

54. a) 1
2 sin2 x+ C

b) −1
2 cos2 x+D

c) Set the two answers equal to one another; rewriting this equation gives
1
2 = D − C so since C and D are arbitary constants, as long as they are
related by 1

2 = D − C, the answers reconcile.

55. 1
7xe

7x − 1
49e

7x + C

56. −4xe−x − 4e−x + C

57. 1
4e
x4 + C

58. −1
4 x

3 + 5
2x+ 1

2x
2 ln(x+ 5)−

25
2 ln(x+ 5) + C

59. −1
9 x
−3 − 1

3x
−3 ln x+ C

60. cosx+ x sin x+ 1
2 sin x2 + C

61. 1
3 + π

4

62. 8− 12e−1/2

63. x arctan x− 1
2 ln(1 + x2) + C

64. 1
ln 10 (x ln x− x) + C

65. 1
2x

2 arctan x+ 1
2 arctan x− x

2 + C

66. u-SUB; u = 2 + 3x

67. PARTS; r = x2; ds = cosx dx

68. PARTS; r = ln2 x; ds = x dx

69. PARTS; r = arcsin x; ds = dx

70. u-SUB; u = sin x or u = cosx

71. PARTS; r = x3; ds = 4x dx

72. u-SUB; u = arctan x

73. PARTS; r = 3x2; ds = e2x−1 dx

74. u-SUB; u = ln x

75. PARTS; r = ex; ds = cos 3x dx
(or vice versa)

76. x4ex − 4x3ex + 12x2ex − 24xex+
24ex + C

77. −6x2 cos x
2 +24x sin x

2 +48 cos x
2 +C

78. ex cos 2x− 5ex sin 2x+ C

79. y = −1
2 e

3x

80. y = −3
10 cosx− 1

10 sin x

81. y = −2e−2x

82. y = 6x−2

83. A
x

+ B
x−3

84. A
x

+ B
x−8 + C

x+3

85. A
x+5 + B

x−1

86. A
x+6 + B

3x−9

87. 1
8 ln(x− 4)− 1

8 ln(x+ 4) + C

88. ln(x− 1)− ln(x+ 2) + C

89. 3
2 ln(2x− 1)− 2 ln(x+ 1) + C

90. 3 ln x− 2 ln(x− 2) + 4 ln(x+ 2) +C

91. A
x

+ Bx+C
x2+1

92. A
x−3 + B

x+2 + C
(x+2)2

93. A
x

+ B
x2 + C

x3 + D
x−1 + E

(x−1)2

94. A
x−2 + B

(x−2)2 + Cx+D
x2+4 + Ex+F

(x2+4)2
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95. A
x

+ B
x2 + C

x3 + Dx+E
x2+x+1 + F

x−7

96. A
x+4 + B

(x+4)2 + C
(x+4)3

97. 1
x

+ 3 ln x+ ln(x+ 1) + C

98.
√

2
6 arctan x√

2 + 1
6 ln(x− 2)−

1
6 ln(x+ 2) + C

99. −14
81

100. 1
2(x2 + 9)−1 + 1

3 arctan x
3 + C

101. −4
5 + ln 25

9

102. 2
5 ln x+ 13

15 arctan x+1
3 −

1
5 ln(x2 + 2x+ 10) + C

103. a) −2(x− 1)−1 + 1
2(x− 1)−2 + C

b) 1
2(x− 1)−2 − 2(x− 1)−1 + C

c) They are clearly equal.

d) It isn’t clear, because Mathe-
matica simplifies the answer
so much.

104. 2
√
x− 2 ln(1 +

√
x) + C. Hint: use a u-sub u = 1 +

√
x.

105. − ln(1− sin x) + C. Hint: first, rewrite the integrand by multiplying through
the numerator and denominator by (1− sin x).

106. csc t+ cot t+C. Hint: first, rewrite the integrand by multiplying through the
numerator and denominator by (cos t+ 1).

107. − ln cos x
2 + ln sin x

2 + C. Hint: first, rewrite the integrand by multiplying
through the numerator and denominator by cscx+ cotx.

108. cos v − 2
3 cos3 v + C. Hint: first, rewrite the integrand using the trig identity

cos 2v = 2 cos2 v − 1.

109. 8√
14 arctan x−6√

14 + C. Hint: complete the square in the denominator.

110. − (x2+4)3/2

12x3 + C. Hint: use the SOHCAHTOA substitution u = arctan x
2 (a.k.a.

x = 2 tan u).

111. 1
2 [x sin(ln x)− x cos(ln x)] +C. Hint: use integration by parts twice to recover
the original integral.

112. sinx
x3 + C. Hint: Combine the two terms in the integrand and write them with

a denominator of x6.

113. x arcsin
√
x + 1

2 arcsin
√

1− x + 1
2

√
x− x2. Hint: start with the u-sub u =

√
x;

then use parts; then a SOHCAHTOA substitution w = sin u. (This is pretty
much the hardest integral I know how to do!)
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Chapter 3

Improper integrals

Recall: Let f be continuous and let a, b ∈ R. Then
∫ b

a
f(x) dx gives the area under

f from x = a to x = b.

Since f is continuous on [a, b], it must be that the graph of f encloses a bounded
region (in the sense that one can draw a box around it):

f

a b

This guarantees that
∫ b

a
f(x) dx <∞.

New question: Can you compute the area of an unbounded region?

A typical unbounded region has infinite area:
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But some unbounded regions have finite area! Here is an example:

1 1

1

Notice: in the previous picture, while the region obtained is unbounded, in the
direction it is unbounded, the width/thickness of the region decreases to zero.
Another situation where the width/thickness of an unbounded region decreases
to zero is when the region is described by a graph with an asymptote:

f

a

f

a b

“Horizontally unbounded region” “Vertically unbounded region”

Of these two types, horizontally unbounded regions are far more important.

Next question: How are such unbounded regions described?
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3.1. Horizontally unbounded regions

3.1 Horizontally unbounded regions
Definition 3.1 (Improper integrals - horizontally unbounded regions) Let f be
continuous on [a,∞). Define the improper integral

∫ ∞
a

f(x) dx to be

∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a
f(x) dx.

If this limit exists and is equal to a finite number L, we write
∫ ∞
a

f(x) dx = L and

say
∫ ∞
a

f(x) dx converges (to L). If this limit does not exist or is equal to ±∞, we

say
∫ ∞
a

f(x) dx diverges.

A picture to explain the definition:

f

a b

Remark: If
∫ ∞
a

f(x) dx converges for a nonnegative function f (i.e. f(x) ≥ 0
for all x), it must be the case that

lim
x→∞

f(x) = 0.

That way, the region whose area you are considering gets narrower in the un-
bounded direction.

HOWEVER, the converse of this statement is false (see Example 1 below):
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3.1. Horizontally unbounded regions

EXAMPLE 1

∫ ∞
1

1
x
dx

f

1 b

1

2

3

EXAMPLE 2

∫ ∞
1

1
x2 dx.

1 b

1

2
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3.1. Horizontally unbounded regions

p-integrals

Let’s generalize the results of Examples 1 and 2 above:

EXAMPLE 3
Let p > 0 be a constant. Compute the following improper integral:∫ ∞

1

1
xp
dx.

1

We already know:

from Example 1: When p = 1,
∫ ∞

1

1
x1 dx =

∫ ∞
1

1
x
dx diverges,

meaning the area under the curve is infinite.

from Example 2: When p = 2, the integral
∫ ∞

1

1
x2 dx converges to 1,

meaning the area under the curve is 1.

Solution for p 6= 1, p > 0:
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3.1. Horizontally unbounded regions

The results of the previous examples are summarized in the following theorem,
which should be memorized:

Theorem 3.2 (Convergence/divergence of p-integrals) The improper integral∫ ∞
1

1
xp
dx

converges to
1

p− 1 if p > 1, but diverges if p ≤ 1.

f (x) =
1
x p

p<1
p=1
p>1

1

1

EXAMPLE 4
Determine whether or not the following improper integral converges or diverges:∫ ∞

e

1
x ln3 x

dx
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3.1. Horizontally unbounded regions

In Example 4, we started our computation by rewriting the improper integral
as a limit of a definite integral:

∫ ∞
e

1
x ln3 x

dx = lim
b→∞

∫ b

e

1
x ln3 x

dx.

In practice, we don’t actually do this. We just leave the “∞” in the integral, and do
the limit process in our head. This is technically “wrong”, but it’s OK because it
shouldn’t lead you to the wrong answer.

Solution of Example 4 (shorthand):

Let u = ln x so that du = 1
x
dx. Then, after this u-sub, the integral becomes

∫ ∞
e

1
x ln3 x

dx =
∫ ∞

1

1
u3 du

= −1
2 u−2

∣∣∣∣∞
1

= −1
2(∞2) −

−1
2(12)

= −1
∞

+ 1
2

= 0 + 1
2

= 1
2 .

One situation where you need to be careful is if you get an indeterminate form
like ∞∞ in a computation like this. In this case, you need to write out the limit and
evaluate it using L’Hôpital’s Rule (see Example 5 on the next page).
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3.1. Horizontally unbounded regions

EXAMPLE 5
Determine whether or not the following improper integral converges or diverges:

∫ ∞
1

ln x
x2 dx

Solution: To integrate this function, we use parts: Let r = ln x
Let ds = 1

x2 dx
=⇒

 dr = 1
x
dx

s = −1
x

Therefore, by the parts formula, we get

∫ ∞
1

ln x
x2 dx =

∫ ∞
1

r ds = [rs]∞1 −
∫ ∞

1
s dr

=
[
− ln x
x

]∞
1
−
∫ ∞

1

−1
x2 dx

=
[
− ln∞
∞

]
−
[
− ln 1

1

]
+
∫ ∞

1

1
x2 dx

=
[
− ln∞
∞

]
− 0 + 1

2− 1 (p-integral, p = 2)

=
[
− ln∞
∞

]
+ 1

So really, the expression above needs to be evaluated as

lim
b→∞

− ln b
b

+ 1 = ”
∞
∞

” + 1

L= lim
b→∞

−1/b
1 + 1

= 0
1 + 1 = 1 .

(In other words, the integral converges to 1 .)
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3.2. Vertically unbounded regions

3.2 Vertically unbounded regions
When the region under consideration is unbounded in a vertical direction, we need
to be more careful in rewriting the improper integral as a limit. There are three
situations:

Definition 3.3 (Improper integrals - vertically unbounded regions) .

VA on right edge of region: Let f be cts on [a, c) where lim
x→c−

f(x) = ±∞. Then

∫ c

a
f(x) dx = lim

b→c−

∫ b

a
f(x) dx.

VA on left edge of region: Let f be cts on (a, c] where lim
x→a+

f(x) = ±∞. Then

∫ c

a
f(x) dx = lim

b→a+

∫ c

b
f(x) dx.

In either of these cases, if the limit exists and is equal to a finite number L, we write∫ c

a
f(x) dx = L and say the improper integral

∫ c

a
f(x) dx converges (to L). If

this limit does not exist or is equal to ±∞, we say
∫ c

a
f(x) dx diverges.

VA in middle of region: Let f be cts on [a, c] except at a single point b ∈ (a, c),

where lim
x→b+

f(x) = lim
x→b−

f(x) = ±∞. Then the improper integral
∫ c

a
f(x) dx

is said to converge only if
∫ b

a
f(x) dx and

∫ c

b
f(x) dx converge (in the sense of

the definitions given above). In this case we set

∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx

where the two integrals on the right side are defined as above.

Pictures to explain:

f

a b c

f

a b c

f

a b c
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3.2. Vertically unbounded regions

Key concept: if the VA is in the middle of the region of integration, you must
consider the two regions above separately.

EXAMPLE 6
Determine whether the following improper integral converges or diverges:

∫ π/2

0
tan x dx

We’ve seen how to integrate tan x before; as a reminder, we rewrite the inte-
grand as

∫ π/2

0
tan x dx =

∫ π/2

0

sin x
cosx dx =

∫ π/2

0
sin x · 1

cosx dx.

Now use the u-sub u = cosx ⇒ du = − sin x dx
−du = sin x dx

to get

∫ π/2

0
tan x dx =

∫ π/2

0

sin x
cosx dx =

∫ 0

1
−1
u
du

=
∫ 1

0

1
u
du

= ln u]10
= ln 1− ln 0
= 0− ( )
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EXAMPLE 7
Determine whether the following improper integral converges or diverges:∫ ∞

0

1√
x(x+ 1) dx

After this u-sub, the first integral becomes∫ 1

0
2 · 1

u2 + 1 du = 2 arctan u|10 = 2
(
π

4

)
− 2(0) = π

2 .

For the integral
∫ ∞

1

1√
x(x+ 1) dx, use the same u-sub:

∫ ∞
1

1√
x(x+ 1) dx =

∫ ∞
1

2
u2 + 1 du = 2 arctan u|∞1

= 2 arctan∞− 2 arctan 1

= 2
(
π

2

)
− 2

(
π

4

)
= π

2 .

Last, since
∫ 1

0

1√
x(x+ 1) dx and

∫ ∞
1

1√
x(x+ 1) dx both converge,

∫ ∞
0

1√
x(x+ 1) dx =

∫ 1

0

1√
x(x+ 1) dx+

∫ ∞
1

1√
x(x+ 1) dx = π

2 + π

2 = π .
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3.3 Theoretical approaches
Frequently in mathematics we encounter quantities (such as improper inte-

grals) where it is just as important (if not moreso) to determine whether or not
the quantity converges than it is to determine what number the quantity con-
verges to. It is useful to know some “tricks” based on theoretical concepts which
help tell us whether or not an improper integral converges.

The first “trick” is that when integating over a horizontally unbounded region,
the starting index of the integral doesn’t affect whether or not the integral con-
verges.

Theorem 3.4 (Starting index is irrelevant to convergence/divergence) Suppose
a1 < a2 and f is continuous on [a1, a2]. Then:

1. if
∫ ∞
a1

f(x) dx converges, so does
∫ ∞
a2

f(x) dx;

2. if
∫ ∞
a1

f(x) dx diverges, so does
∫ ∞
a2

f(x) dx.

A picture to explain:

a1 a2

f

WARNING: Theorem 3.4 does not say that∫ ∞
a1

f(x) dx =
∫ ∞
a2

f(x) dx.

If f is positive and a1 < a2, then (assuming these integrals converge) it is clear
that ∫ ∞

a1
f(x) dx >

∫ ∞
a2

f(x) dx

because you are integrating a positive function over a larger region.
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3.3. Theoretical approaches

The next set of results describe how one can “split up” improper integrals whose
integrands are composed of terms added/subtracted together:

Theorem 3.5 (Linearity of improper integrals I) Suppose
∫ ∞
a

f(x) dx = L and∫ ∞
a

g(x) dx = M . Then:

1.
∫ ∞
a

[f(x) + g(x)] dx = L+M ;

2.
∫ ∞
a

[f(x)− g(x)] dx = L−M ;

3.
∫ ∞
a

kf(x) dx = kL for any constant k.

Theorem 3.6 (Linearity of improper integrals II) Suppose
∫ ∞
a

f(x) dx = L but∫ ∞
a

g(x) dx diverges. Then:

1.
∫ ∞
a

[f(x) + g(x)] dx diverges;

2.
∫ ∞
a

[f(x)− g(x)] dx diverges;

3.
∫ ∞
a

kg(x) dx diverges, for any constant k 6= 0.

Theorem 3.7 (Linearity of improper integrals III) Suppose that both
∫ ∞
a

f(x) dx

and
∫ ∞
a

g(x) dx diverge. Then you know nothing about whether or not the improper

integrals
∫ ∞
a

[f(x) + g(x)] dx and
∫ ∞
a

[f(x)− g(x)] dx converge or diverge.

The preceding three theorems can be summarized in the following three “morals”,
which we will see again and which hold throughout mathematics:

1.

2.

3.
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3.3. Theoretical approaches

EXAMPLE 8
Determine whether the following improper integrals converge or diverge:

a)
∫ ∞

1

(
3√
x

+ 2
x3

)
dx

b)
∫ ∞

6

( 1
5x2 −

3
x3/2

)
dx

Our last theoretical result is based on a very important and very general mathe-
matical idea of reasoning by way of inequalities:

Theorem 3.8 (Comparison Test for Improper Integrals) Suppose that

0 ≤ f(x) ≤ g(x)

for all x ≥ a. Then:

1. if
∫ ∞
a

g(x) dx converges, so does
∫ ∞
a

f(x) dx;

2. if
∫ ∞
a

f(x) dx diverges, so does
∫ ∞
a

g(x) dx.

A picture to explain:

gf

a
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3.3. Theoretical approaches

EXAMPLE 9
Determine whether the following improper integral converges or diverges:∫ ∞

1

3
x5 + 2x+ 2 dx

EXAMPLE 10
Determine whether the following improper integral converges or diverges:∫ ∞

12

2√
x− 7

dx

EXAMPLE 11
Determine whether the following improper integral converges or diverges:

∫ ∞
2

sin x2 + 3
x8 dx
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3.3. Theoretical approaches

General principles to help construct inequalities

1. Addition in the denominator: suppose the integrand is of the form

�
4+ ?

where �, 4 and ? are all positive quantities. Then, we can start with one of
these two inequalities

�
4+ ?

≤ �
4

or
�
4+ ?

≤ �
?

and try to apply the Comparison Test.

REASON: removing positive terms from the denominator makes the denom-
inator smaller, which makes the entire fraction bigger.

2. Subtraction in the denominator: suppose the integrand is of the form

�
4− ?

where �, 4 and ? are all positive quantities. Then, one can start with this
inequality:

�
4− ?

≥ �
4

and try to apply the Comparison Test.

REASON: removing negative terms from the denominator makes the denom-
inator bigger, which makes the entire fraction smaller.

3. Terms containing sines or cosines: suppose the integrand contains some
expression of the form cos� or sin� where � is some expression. Then, one
can start with the inequality

−1 ≤ cos� ≤ 1 ( or − 1 ≤ sin� ≤ 1)

and try to apply the Comparison Test.

94



3.3. Theoretical approaches

Be careful with the logic!

Think of
∫ ∞
a

f(x) dx as the “small integral” and
∫ ∞
a

g(x) dx as the “big integral”:

What you can do with the Comparison Test:
• You can conclude that the small integral converges.
• You can conclude that the big integral diverges.

What you cannot do with the Comparison Test:
• The Comparison Test never allows you to conclude that the big integral con-

verges.
• The Comparison Test never allows you to conclude that the small integral

diverges.
• The Comparison Test never tells you the value of the small integral, even if it

tells you that the small integral converges.

We use the Comparison Test with improper integrals that are similar to a “sim-
pler” integral (often, but not always, a p−integral). In general, the reasoning is as
follows:

the
given

integral
≤

the
“simpler”

integral

the
“simpler”

integral
≤

the
given

integral

the “simpler”
integral

converges

Conclusion:
By the Comparison

Test, the given integral
converges.

No conclusion can
be drawn from the
Comparison Test

the “simpler”
integral
diverges

No conclusion can
be drawn from the
Comparison Test

Conclusion:
By the Comparison

Test, the given integral
diverges.
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3.4. Gamma integrals

3.4 Gamma integrals
Actuarial scientists sometimes encounter integrals of the form∫ ∞

0
xre−λx dx,

where r ≥ 0 and λ > 0 are constants. These integrals are called gamma integrals
and they help describe, among other things, the expected amount of time that
should pass before a policyholder files a certain number of claims.

Definition 3.9 For r ≥ 0 and λ > 0, let

γ(r, λ) =
∫ ∞

0
xre−λx dx.

(γ is the Greek letter “gamma”.)

In this section, we’ll show that these gamma integrals converge, and find a formula
for what they converge to when r is a non-negative integer (i.e. r ∈ {0, 1, 2, 3, ...}).
Here’s the strategy for deriving this formula:

1. We’ll compute γ(0, 1).

2. We’ll develop a formula for γ(r + 1, 1) in terms of γ(r, 1).

3. We’ll use this to find a general formula for all γ(r, 1).

4. We’ll figure out what γ(r, λ) is.

Remark: In MATH 414, we discuss what happens if r isn’t a non-negative integer
(r = 2

3 , r = π, etc.). But that’s beyond the scope of this class.

Step 1: compute γ(0, 1)

γ(0, 1) =
∫ ∞

0
x0e−1x dx =

∫ ∞
0

e−x dx

= −e−x
∣∣∣∞
0

= −e−∞ −
(
−e−0

)
=
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3.4. Gamma integrals

Step 2: find formula for γ(r + 1, 1) in terms of γ(r, 1)

γ(r + 1, 1) =
∫ ∞

0
xr+1e−1x dx

Step 3: use formula from Step 2 to find general formula for γ(r, 1)
From Step 1, we know γ(0, 1) = 1.

From Step 2, we know γ(r + 1, 1) = (r + 1) γ(r, 1). In particular, this means

γ(1, 1) =

γ(2, 1) =

γ(3, 1) =

γ(4, 1) =
...

γ(r, 1) =

We have shown:

Theorem 3.10 For any non-negative integer r,

γ(r, 1) =
∫ ∞

0
xre−x dx = r!.

97



3.4. Gamma integrals

Step 4: find general formula for γ(r, λ)

γ(r, λ) =
∫ ∞

0
xre−λx dx

We have shown the following formula (very useful in MATH 414):

Theorem 3.11 (Gamma Integral Formula) Let r ≥ 0 be an integer and let λ > 0.
Then ∫ ∞

0
xre−λx dx = r!

λr+1 .

EXAMPLE 12
Compute each improper integral:

a)
∫ ∞

0
5x4e−3x dx

b)
∫ ∞

0
x6e−x/2 dx

c)
∫ ∞

0
(wx)3e−2cx dx
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3.5. Homework exercises

3.5 Homework exercises
Exercises from Section 3.1

In Exercises 1-6, evaluate the improper integral (if the integral diverges, say so).

1.
∫ ∞

1
x−4 dx

2.
∫ ∞

8

1
3
√
x
dx

3.
∫ ∞

0
xe−x dx

4.
∫ ∞

1

2
x2 + 1 dx

5.
∫ ∞

1

ln x
x

dx

6.
∫ ∞

3

2
(x+ 3)5/3 dx

7. In class we showed that
∫ ∞

1

1
x
dx diverges. Have Mathematica evaluate this

integral. Does Mathematica recognize that this integral diverges?

Exercises from Section 3.2

In each of Exercises 8-15, write the indicated integral as a limit or as a sum of limits.
Here are two examples:

Example A:
∫ ∞

2
e−x dx Solution: lim

b→∞

∫ b

2
e−x dx

Example B:
∫ 4

0

2
x− 1 dx Solution: lim

b→1−

∫ b

0

2
x− 1 dx+ lim

B→1+

∫ 4

B

2
x− 1 dx

Then, sketch a picture (similar to those on pages 78 and 84) which reflects how the
limit is being used to evaluate the improper integral.

8.
∫ 2

1

1
x ln x dx

9.
∫ 1

0

x

x2 − 1 dx

10.
∫ ∞

4

3
ex + x2 dx

11.
∫ ∞

0

1
xex

dx

12.
∫ 5

3

1
(x− 5)2 dx

13.
∫ π

π/2
secx dx

14.
∫ ∞

0

1
ex − 1 dx

15.
∫ 5

1

1
(x− 3)2 dx

In Exercises 16-21, evaluate the improper integral (if the integral diverges, say so).

16.
∫ 1

0

1
x2 dx 17.

∫ 1

0
x ln x dx
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3.5. Homework exercises

18.
∫ e

0
ln x2 dx

19.
∫ 4

2

1√
4− x

dx

20.
∫ ∞

1

1
x ln x dx

21.
∫ 3

1

1
x2 − 1 dx

Exercises from Section 3.3

In Exercises 22-31, determine whether the improper integral converges or diverges
(you do not necessarily need to evaluate the integral if it converges).

Note: the intent here is for you to use theory, not to perform lots of computations.

22.
∫ ∞

1

5
x8 dx

23.
∫ ∞

6

2
x4 + 1 dx

24.
∫ ∞

3

1√
x− 1

dx

25.
∫ ∞

2
4x−3/2 dx

26.
∫ ∞

1

1
ex + x

dx

27.
∫ ∞

1

cos(πx) + 3
x4 dx

28.
∫ ∞

1

(3
x
− 2
x2

)
dx

29.
∫ ∞

2

( 2
x3 + 5

x4

)
dx

30.
∫ ∞

3

sin(2x+ 1) + 4√
x

dx

31.
∫ ∞

8

1
2x− 1 dx

Exercises from Section 3.4

In Exercises 32-37, compute the improper integral.

32.
∫ ∞

0
x9e−x dx

33.
∫ ∞

0
4x5e−x/3 dx

34.
∫ ∞

0
(2x)3e1−4x dx

35.
∫ ∞

0
y(wx)4e−6x dx

36.
∫ ∞

0
w5x8e−wx−w dx

37.
∫ ∞

4
(x− 4)3e−2x dx
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3.5. Homework exercises

Answers

1. 1
3

2. diverges

3. 1

4. π/2

5. diverges

6. 31/3

22/3

7. Yes, Mathematica recognizes that this
integral diverges.

8.
∫ 2

1

1
x ln x dx = lim

b→1+

∫ 2

b

1
x ln x dx

(Picture looks like the left one on page 84, with the VA at x = 1)

9.
∫ 1

0

x

x2 − 1 dx = lim
b→1−

∫ b

0

x

x2 − 1 dx

(Picture looks like the left one on page 84, with the VA at x = 1)

10.
∫ ∞

4

3
ex + x2 dx = lim

b→∞

∫ b

4

3
ex + x2 dx

(Picture looks like the one on page 78, with the HA at y = 0)

11.
∫ ∞

0

1
xex

dx = lim
b→0+

∫ 1

b

1
xex

dx+ lim
B→∞

∫ B

1

1
xex

dx

(Picture looks like the one in Example 7, with the VA at x = 0 and the HA at
y = 0)

12.
∫ 5

3

1
(x− 5)2 dx = lim

b→5−

∫ b

3

1
(x− 5)2 dx

(Picture looks like the left one on page 84, with the VA at x = 5)

13.
∫ π

π/2
secx dx = lim

b→π
2

+

∫ π

b
secx dx

(Picture looks like the middle one on page 84, with the VA at x = π
2 )

14.
∫ ∞

0

1
ex − 1 dx = lim

b→0+

∫ 1

b

1
ex − 1 dx+ lim

B→∞

∫ B

1

1
ex − 1 dx

(Picture looks like the one in Example 7, with the VA at x = 0 and the HA at
y = 0)

15.
∫ 5

1

1
(x− 3)2 dx = lim

b→3−

∫ b

1

1
(x− 3)2 + lim

B→3+

∫ 5

B

1
(x− 3)2 dx

(Picture looks like the right one on page 84, with the VA at x = 3)
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16. diverges

17. −1
4

18. 0

19. 2
√

2

20. diverges

21. diverges

22. converges

23. converges

24. diverges

25. converges

26. converges

27. converges

28. diverges

29. converges

30. diverges

31. diverges

32. 9!

33. 4 · 36 · 5!

34. 8e · 4!
44 = 3

4e

35. yw4 · 4!
65

36. w5e−w · 8!
w9

37. e8 · 3!
24 = 3

8e
−8
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Chapter 4

Applications of integrals

4.1 Area
Definite integrals were invented (in part) for the purpose of finding areas of re-
gions. However, there is a slight difference between computing an integral and
finding an area, because integrals can be negative (whereas areas are never nega-
tive). Formally speaking, integrals compute signed areas.

For example, suppose we are asked to compute the area between the graphs of f
and g between x = a and x = b where f and g are as in the following picture:

f

�

a b

This area is
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4.1. Area

Here is another example; the problem is to compute the total area enclosed by the
graphs of f and g:

f

�

a b c

EXAMPLE 1
Compute the area between the graphs of f(x) = x2 +2 and g(x) = −x−3 on [−2, 3].

Mathematica code that will solve Example 1:
In: f[x_] = x^2 + 2
In: g[x_] = -x - 3
In: Integrate[Abs[f[x]-g[x]], {x,-2,3}] ←− for exact answer
Out: 235

6
In: NIntegrate[Abs[f[x]-g[x]], {x,-2,3}] ←− for decimal approx.
Out: 39.1667
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4.1. Area

EXAMPLE 2
Compute the area of the region enclosed by the graphs of f(x) = 2 − x2 and
g(x) = x.
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4.1. Area

EXAMPLE 3
Compute the area of the region enclosed by the graphs of f(x) = x3 + x2 − 6x and
g(x) = −x3 + 5x2.

Solution: Start by finding the intersection points of the graphs:

x3 + x2 − 6x = −x3 + 5x2

2x3 − 4x2 − 6x = 0
2x(x2 − 2x− 3) = 0

2x(x+ 1)(x− 3) = 0
x = 0, x = −1, x = 3 -1 3
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4.1. Area

EXAMPLE 4
Find the area of the region which is above the x−axis, below y = 4, to the left of
y = (x− 1)2 and to the right of y = 2x. (The region is pictured below.)

y=2x

y=0

y=4

y=(x-1)2

-1 1 2 3 4

1

2

3

4

Area =
∫ 3

0
(top− bottom) dx =

=

= 1 +
[
4− 1

3

]
− [1− 0] +

[
12− 8

3

]
−
[
8− 1

3

]
= 1 + 8

3 + 5
3

= 16
3 .
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4.1. Area

EXAMPLE 4, REPEATED

y=2x

y=0

y=4

y=(x-1)2

-1 1 2 3 4

1

2

3

4

-1 1 2 3 4

1

2

3

4
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4.1. Area

EXAMPLE 5
Write an integral with respect to the variable x which gives the area enclosed by
the graphs of y =

√
x and y = 1

6x. Write another integral with respect to y that
gives the same area.

Solution: Start by finding the intersection points of the graphs:

√
x = 1

6x
6
√
x = x

(6
√
x)2 = x2

36x = x2

0 = x2 − 36x
0 = x(x− 36)
⇒ x = 0, x = 36 36

6

Integration with respect to x Integration with respect to y

Let’s check that these integrals work out to the same thing:∫ 36

0

(√
x− x

6

)
dx =

[
2
3x

3/2 − x2

12

]36

0
. .

∫ 6

0
(6y − y2) dy =

[
3y2 − 1

3y
3
]6

0

= 2
3(63)− 362

12 = 3(36)− 1
3(63)

= 144− 108 = 108− 72
= 36 = 36 .
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4.2. Volume

4.2 Volume
In the previous section we talked about area, which is a 2-dimensional problem:

top(x)

bot(x)

l x r
x

y

A way to think about the computation of these areas is as follows:

1. Let x run from l to r (from the left edge to the right edge).

We think of this as choosing the “x-direction” as the “direction of integra-
tion”.

(You can also choose the y-direction, but we won’t review that on this page.)

2. At each x, think of an infinitely narrow rectangle. These rectangles are called
cross-sections for the region.

Note: the cross-sections are perpendicular to the direction of integration.

3. Find the length of this rectangle (call this length L(x)).

• the length depends on x

• the length is usually top(x)− bot(x), where top (a.k.a. t) is the “top func-
tion” and bot (a.k.a. b) is the “bottom function”

4. The rectangles’ width is dx, so the area of the narrow rectangle is

(length)(width) =

5. “Add up” the areas of these rectangles to get the area of the region:

A =
∫ r

l
L(x) dx

=
∫ r

l
[top(x)− bot(x)] dx

=
∫ r

l
[t(x)− b(x)] dx.
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4.2. Volume

We can modify the reasoning on the previous page to compute volumes of 3-
dimensional solids:

Think of “slicing a potato into potato chips”.

1. Let x run from l (the left edge of the solid) to r (the right edge of the solid),
i.e. choose a direction of integration.

(You can also choose the y-direction; more on that later.)

2. At each x, think of an infinitely thin plane figure perpendicular to the x−axis.
These shapes are called cross-sections of the solid.

Note: the cross-sections are perpendicular to the direction of integration.

3. Find the area of this shape (call this area A(x)).

• the area depends on x

• use geometry formulas (area of circle, square, etc.)

• you could have to use an integral to find A(x) (especially in MATH 320)

4. The thickness of the cross-sections is dx, so the volume of each thin cross-
section is

(area)(thickness) =

5. “Add up” the volumes of these cross-sections to get the volume of the solid:

V =
∫ r

l
A(x) dx.
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4.2. Volume

Generic volume formula: If A(x) = area of the cross-section at x, and the solid
runs from x = l to x = r, then the volume of the solid is

� = direction of integration
l x

a variable between � and �
left-most point

right-most point

cross-section at �

(MUST be ⊥ to direction of integration)

area is �(�) (depends on �)

r

V =
∫ r

l
A(x) dx.

EXAMPLE 6
Consider a solid whose base consists of the region between the y-axis and the right-
half of the circle x2 + y2 = 16. Cross-sections of the solid parallel to the y-axis are
squares with bases in the xy-plane. Find the volume of the solid.

Solution: To get started, let’s draw some pictures:

BASE (top view) 3-D PICTURE CROSS-SECTION (at x)

1 2 3 4

-4

-3

-2

-1

1

2

3

4
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4.2. Volume

We especially want to compute the volume of solids that are obtained by revolving
a two-dimensional region around some axis. We will discuss three methods to do
this: the disc method, the washer method, and the shell method.

Volume of solids of revolution: the disc method
EXAMPLE 7

The region R between the graph of f(x) = 1
2x

2 + 1 and the x−axis on [−1, 2] is
revolved around the x−axis to produce a solid. Find the volume of the solid.

REGION 3-D PICTURE
BEING REVOLVED OF THE SOLID CROSS-SECTION

y=
x2

2
+1

�-axis (�=0)-1 2

1

2

3

V =
∫ r

l

A(x) dx =

= π

[
x5

20 + x3

3 − x
]2

−1

= π

[
32
20 + 8

3 − 2
]
− π

[
−1
20 + −1

3 − (−1)
]

= 153
20 π .

The disc method

If you take the region between the graph of f and the x−axis between x = l
and x = r and revolve that region around the x−axis to produce a solid, the
volume of the solid generated is

V =
∫ r

l
π[f(x)]2 dx.

This formula is called the disc method because cross-sections are circles/disks.
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4.2. Volume

Volume of solids of revolution: the washer method
EXAMPLE 8

Write an integral which, when computed, would give the volume of the solid ob-
tained by revolving the region enclosed by the graphs of f(x) = x2 and g(x) = x
about the line y = 3.

The washer method

If a region is revolved around a line to produce a solid with a hole (like a
donut), the cross-sections are washers and the volume is:

V =
∫ r

l

(
πR2 − πr2

)
dx.

This formula is called the washer method because cross-sections are washer-
shaped.
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4.2. Volume

You can do y−integration with volume as well:

EXAMPLE 9
The region between y =

√
x and y = 1

4x is revolved around the y−axis to produce
a solid. Find its volume.

This integral evaluates as

V =
∫ 4

0

[
16πy2 − πy4

]
dy =

[16
3 πy

3 − π

5 y
5
]4

0
= 2048

15 π .
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4.2. Volume

EXAMPLE 10
A solid is formed by revolving the region enclosed by the graphs of y = 1

3x
3+2x− 7

3 ,
x = 3 and the x−axis about the y−axis. Find its volume.

y=
x3

3
+2x-

7

3

1 3

38
3

First attempt at at solution: use washer method, integrate with respect to y.

Problem with this method:

We need a new method, which is called the shell method or cookie-cutter
method or toilet paper roll method.

We will integrate “inside-out” with respect to x, and take cylindrical cross-
sections.
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4.2. Volume

EXAMPLE 11
The region enclosed by y =

√
x, y = 2 and x = 0 is revolved around the line y = −1

to produce a solid. Compute the volume of this solid.

These integrals work out to be the same thing:

V =
∫ 4

0

[
π · 32 − π(

√
x+ 1)2

]
dx =

∫ 2

0
2π(y + 1)y2 dy = 40

3 π .

The various methods of finding volumes of solids formed by revolution of a region
about a horizontal or vertical line are summarized in the chart on the next page:
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4.2. Volume

INTEGRAL W/ RESPECT TO x INTEGRAL W/ RESPECT TO y
(Solve eqns for y in terms of x) (Solve eqns for x in terms of y)
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4.3. General principles behind all applications of integration

4.3 General principles behind all applications of integration
Before turning to our next application of integration, something more general. All
applications of integration are based on the same principle:

Theorem 4.1 (General principle of application of integration) Suppose that A
and Q are two quantities such that if quantity Q is constant, then A is obtained from
Q by multiplying Q by the change in another quantity x, i.e.

A = Q ·∆x when Q is constant.

Then, when Q becomes a quantity that depends on x, we have

A =
∫ b

a
Q(x) dx.

Here are some examples, most of which we have seen before, where this general
principle is at work:

A Q
formula when
Q is constant integral formula

displacement d velocity v d = v ·∆t
(t = time) d =

∫ b

a
v(t) dt

area A cross-sectional
height h

A = h ·∆x
(x = length)

x
h

Δx

A =
∫ b

a
h(x) dx

x
h(x)

xa b

volume V cross-sectional
area A

V = A ·∆x
(x = length)

A

x

Δx

V =
∫ b

a
A(x) dx

A(x)
x

xa b

work W
(energy) force F W = F ·∆x

(x = distance) W =
∫ b

a
F (x) dx

charge q current I q = I ·∆t
(t = time) q =

∫ b

a
I(t) dt

In the next few sections, we will use this general principle to develop formulas
which give more applications of integration.
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4.4. Arc length

4.4 Arc length
Goal: Find the length of curves which are pieces of the graph of a function y =
f(x).

We denote these lengths by the letter s, perhaps because the Latin word for
distance is spatium.

Question: What exactly does one mean by length?

f

a b

So phrased more precisely, our problem is to determine the length s of the piece of
the graph of y = f(x) between x = a and x = b.

Solution: Let’s suppose first that the slope of y = f(x) is constant (so that the
slope is going to be like the Q of the chart on the previous page). That means we
are assuming f(x) is...

Thus

s =
√

(∆x)2 + (∆y)2

=
√

(∆x)2 + (m∆x)2

=
√

(∆x)2(1 +m2)
=
√

1 +m2 ∆x.
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4.4. Arc length

On the previous page, we found that when the slope m is constant, the arc length
from x = a to x = b is

s =
√

1 +m2 ∆x.
That means, by applying the general principle of integration applications from the
previous section, that if the slope of y = f(x) is nonconstant (and depends on x),
the arc length from x = a to x = b is

s =

We have derived the following theorem:

Theorem 4.2 (Arc length formula) Let f be a differentiable function on [a, b]. Then
the length of the graph of y = f(x) from x = a to x = b is

s =
∫ b

a

√
1 + [f ′(x)]2 dx.

EXAMPLE 12
Write an integral which computes the length of the curve y = sin x from x = 0 to
x = π/2.

Mathematica commands to evaluate this integral:
In: NIntegrate[Sqrt[1 + Cos[x]^2], {x,0,Pi/2}]
Out: 1.9101

EXAMPLE 13
Write an integral which computes the length of the curve y = ln x from x = 1 to
x = 5.

Mathematica commands to evaluate this integral:
In: NIntegrate[Sqrt[1 + (1/x)^2], {x,1,5}]
Out: 4.36749
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4.4. Arc length

EXAMPLE 14
Find the length of the curve y = (4− x2/3)3/2 from x = 1 to x = 3.

Note: Observe that in order to get an arc length integral that you can actually
work out, you have to start with a weird function.

This is your first exposure to the notion that integrals representing lengths of
curves are harder to compute exactly than those representing areas or volumes. In fact
there is an entire branch of math research devoted to studying integrals which
represent the lengths of curves; this is the theory of elliptic integrals.
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4.5. One-dimensional moments and centers of mass

4.5 One-dimensional moments and centers of mass
This section deals with the computation of the center of mass of a physical system
(and related topics).

What do we mean by “center of mass”?

Imagine you had to balance a weirdly-shaped thin sheet of metal on the top of a
pyramid:

The center of mass of the piece of metal is the place where you would have to put
the point of the pyramid to balance it.

If the sheet of metal is circular and made of a uniform material, this is easy. You
just put the center of the table on top of the pyramid. But if the tabletop isn’t round
(or otherwise symmetric) and/or if the tabletop has nonuniform density (i.e. it is
made from a porous material with varying amounts of air pockets in it), it isn’t so
easy to see immediately where the center of mass is. Our first goal in this section
is to determine how to find the center of mass in these situations.

Why do we care about this?

If you are studying the motion of a large object (like a comet or a space station
orbiting the earth), you can treat the object as a single point (which is easier to
study mathematically than a large blob) so long as the point you use is the center
of mass of the object.

Centers of mass are also used to compute stresses on beams, and are applied in
astronomy and kinesiology.
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4.5. One-dimensional moments and centers of mass

Discrete masses along a line

We will start by considering the problem of finding the center of mass for a one-
dimensional physical system (that is, where the mass is distributed along a line,
i.e. instead of a tabletop we are thinking of a pencil or metal bar or stick, etc.).

Place some individual masses m1,m2, ...,mn at certain points x1, x2, ..., xn along a
number line, and imagine that the number line is supported at some point x called
the fulcrum:

m1= 15kg m2= 5kg m3= 10kg

x1=0cm x x2=10cm x3=16cm

Physics tells us that each mass exerts torque (i.e. rotational force) on the system,
causing the system to want to rotate about the fulcrum. Masses on opposite sides
of the fulcrum exert torque in opposite directions. In particular, from physics we
have

torque created by jth mass = (force) · (distance from fulcrum)
= (weight) · (distance from fulcrum)
= (mass)(acceleration)(distance from fulcrum)
= mj (9.8m/sec2) (xj − x)

Adding the torque for each of the masses in the system gives the total torque T of
the system:

T =
n∑
j=1

mj(9.8)(xj − x)

In our picture above,

T =

=

Remark on units: By the formula above, we see that the standard unit of torque
would be kg·m2

sec2 . However, in the SI system, one Newton (1 N) is defined to be 1kg·m
sec2 ,

so torque can also be expressed in Newton meters (Nm).
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4.5. One-dimensional moments and centers of mass

location of
fulcrum total torque T

x = 8

x = 5 T = 2058− 294(5) = 588 Nm
T > 0 ⇒ system will rotate clockwise

x = 7

T = 2058− 294(7) = 0 Nm
T = 0 ⇒ system is in equilibrium

(balanced), i.e.
x = 7 is the center of mass

When the total torque is zero, we say the system is at equilibrium and the corre-
sponding location of the fulcrum is called the center of mass of the system and is
denoted x. (In our example, x = 7.)

Now let’s do the same example without using numbers. Suppose individual masses
m1,m2, ...,mn at certain points x1, x2, ..., xn along a number line. What is x?
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4.5. One-dimensional moments and centers of mass

We have derived the following formulas:

Theorem 4.3 (Center of mass for discrete masses along a line) Suppose discrete
masses m1,m2, ...,mn are located at respective points x1, x2, ..., xn along a number
line. Then:

1. The moment about the origin of this system is M0 =
n∑
j=1

mjxj .

2. The total mass of this system is M =
n∑
j=1

mj .

3. The center of mass of the system is x = M0

M
.

Continuous mass along a line

Consider a wire (or a bar or a stick) situated along the x−axis with varying density
ρ(x) (ρ is the Greek letter “rho”; sometimes density is denoted by δ(x)).

l r

Question: What is x?

If the density ρ is constant, then the total mass is M = (density)(length) = ρ ·∆x.

That means, by the general principle of applications of integration, that if the den-
sity is a nonconstant function ρ(x), the total mass is

M =

Note the similarity to the discrete case, where M was
n∑
j=1

mj . Essentially, the sum-

mation is replaced by an integral and the masses mj are replaced by the density
function ρ(x). In the same way, the moment about the origin should be

M0 =

Summarizing, we have:
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4.5. One-dimensional moments and centers of mass

Theorem 4.4 (Center of mass for continuously distributed mass on a line) If a
mass is distributed along a line, running from x = l to x = r, such that the density of
the mass at position x is ρ(x), then:

1. The moment about the origin of this mass is M0 =
∫ r

l
x ρ(x) dx.

2. The total mass of this mass is M =
∫ r

l
ρ(x) dx.

3. The center of mass of this system is x = M0

M
=

∫ r

l
x ρ(x) dx∫ r

l
ρ(x) dx

.

EXAMPLE 15
Find the center of mass of a thin rod of length 2 cm, whose density x units from
the left edge of the rod is ρ(x) = x2 + x mg/cm.

EXAMPLE 16
A wire runs from x = −3 to x = 6 (measured in inches) along the x-axis. If the
density of the wire at point x is ρ(x) = 1

x2+1 g/in, compute the mass of the wire,
and compute the center of mass of the wire.

Solution: The mass of the wire is

M =
∫ r

l
ρ(x) dx =

∫ 6

−3

1
x2 + 1 dx = arctan x|6−3 = arctan 6− arctan(−3) g .

The moment about the origin of the wire is

M0 =
∫ r

l
xρ(x) dx =

∫ 6

−3

x

x2 + 1 dx =
∫ 37

10

1
2u du = 1

2 ln u
∣∣∣∣37

10
= 1

2 ln 37− 1
2 ln 10 g · in .

Finally, the center of mass of the wire is

x = M0

M
=

1
2 ln 37− 1

2 ln 10
arctan 6− arctan(−3) in ≈ .246419 in.
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4.6. Two-dimensional moments and centers of mass

4.6 Two-dimensional moments and centers of mass
Discrete masses in a plane

Now, we start considering two-dimensional objects (like slabs and tabletops). We
start with point masses in a plane; this situation is similar to the situation in the
previous section, except that you need to consider x− and y−coordinates sepa-
rately. The center of mass will be a point (x, y).

Consider first a single mass m located at point (x, y).

TOP VIEW 3-D VIEW
y

x

mass m

(x,y)

x

y
xxxxxxx

y

x

mass m
(x,y)

(1) Consider the x−axis as an axis of rotation:

x

(x,y)

⇒Moment about x−axis of this particle is Mx = my.

(2) Now, consider the y−axis as an axis of rotation:

y

(x,y)

⇒Moment about y−axis of this particle is My = mx.

Now, suppose you have a bunch of masses in a plane:

(x j,y j)
mass m j

128



4.6. Two-dimensional moments and centers of mass

Theorem 4.5 (Center of mass for discrete masses in a plane) Suppose that dis-
crete massesm1,m2, ...,mn are located at respective points (x1, y1), (x2, y2), ..., (xn, yn)
in a plane. Then:

1. The moment about the x−axis of this system is Mx =
n∑
j=1

mjyj

2. The moment about the y−axis of this system is My =
n∑
j=1

mjxj .

3. The total mass of this system is M =
n∑
j=1

mj .

4. The center of mass of the system is (x, y) where x = My

M
and y = Mx

M
.

Continuous mass in a plane

Setup: R

l r
x

b

t

y

Question: What is the center of mass (x, y) for a (flat) slab R in the plane,
possibly with nonconstant density?

The formulas x = My

M
, y = Mx

M
still work. But what are Mx, My and M?

One important restriction: We assume in MATH 230 that the density is either
constant, or depends only on x (i.e. the density is ρ(x), not ρ(x, y)). Otherwise
one would need machinery you learn in MATH 320.

To compute Mx, My and M , we take the formulas from the previous discussion
and adapt them in the same way that we adapted the formulas for discrete masses
along a line to get to the formulas for continuous mass along a line. This gives:
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4.6. Two-dimensional moments and centers of mass

Theorem 4.6 (Center of mass for continuously distributed mass in a plane) If
a planar region runs from x = l to x = r and has height L(x) at point x, and if the
density of this region at point (x, y) is ρ(x), then:

1. The moment about the y−axis of this system is My =
∫ r

l
xL(x) ρ(x) dx.

2. The total mass of this system is M =
∫ r

l
L(x) ρ(x) dx.

3. The center of mass of the system is (x, y) where x = My

M
and y = Mx

M
.

NOTE: there is no formula for Mx in the above theorem. This is because, when
you generalize the formula for Mx obtained earlier in this section, you get

Mx =
∫ t

b
y L(y) ρ(y) dy

and this is a problem because we are assuming the density depends on x, not
on y.

However, this problem is fixable, in the situation that the region lies between
the graphs of two functions (see the theorem on the next page).

EXAMPLE 17
Suppose that a slab of wood is described by the region between the graph of f(x) =
sin x and the x−axis, from x = 0 to x = π (x and y are in cm). If the density of the
wood at point (x, y) is sin x g/cm2, compute the total mass of the wood.
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4.6. Two-dimensional moments and centers of mass

Theorem 4.7 (Center of mass for continuously distributed mass in a plane) If
R is the region lying above function b and below function t for l ≤ x ≤ r,

b
t R

l r
x

y

and the density of R at point (x, y) is ρ(x), then:

1. The moment about the y−axis is My =
∫ r

l
x [t(x)− b(x)] ρ(x) dx.

2. The moment about the x−axis is Mx =
∫ r

l

1
2
(
[t(x)]2 − [b(x)]2

)
ρ(x) dx.

3. The total mass of R is M =
∫ r

l
[t(x)− b(x)] ρ(x) dx.

4. The center of mass of R is (x, y) where x = My

M
and y = Mx

M
.

We already have seen statements (1), (3) and (4) in the previous theorem.

To see why (2) is true, let’s consider the problem of finding the volume when the
region R shown below is revolved around the x-axis. (There are two ways to com-
pute the volume.)

R
y=b(x)
↔x=r(y)

y=t(x)
↔x=l(y)

l r

b

t
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4.6. Two-dimensional moments and centers of mass

EXAMPLE 18
Find the center of mass of the region enclosed by y = 4x−x2 and the x−axis, where
the density function is ρ(x) = x+ 1 kg/ft2 (and x and y are measured in feet).

y=4x-x2

40
x

y

Now, apply the formulas in the previous theorem:

M =
∫ r

l
[t(x)− b(x)]ρ(x) dx =

∫ 4

0
(4x− x2)(x+ 1) dx =

My =
∫ r

l
x[t(x)− b(x)]ρ(x) dx =

Mx =
∫ r

l

1
2
(
[t(x)]2 − [b(x)]2

)
ρ(x) dx =

Finally,

x = My

M
=

1088
15
32 = 34

15 ft and y = Mx

M
=

256
5

32 = 8
5 ft

so the center of mass is

(x, y) =
(34

15 ,
8
5

)
.

132



4.6. Two-dimensional moments and centers of mass

EXAMPLE 19
Find the center of mass of the region bounded by y = 9 − x2 and the x−axis,
assuming that the density is a constant ρ kg/cm2.

y=9-x2

3-3
x

y

First, find intersection points:

9− x2 = 0
(3− x)(3 + x) = 0

⇒ x = 3, x = −3

Next, apply the formulas:

M =
∫ r

l
[t(x)− b(x)]ρ(x) dx =

∫ 3

−3
(9− x2)ρ dx = ρ

[
9x− 1

2x
2
]3

−3

= ρ
[
27− 9

2

]
− ρ

[
−27− 9

2

]
= 54ρ kg .

My =
∫ r

l
x[t(x)− b(x)]ρ(x) dx =

∫ 3

−3
(9x− x3)ρ dx = ρ

[9
2x

2 − 1
4x

4
]3

−3

= ρ
[81

2 −
81
4

]
− ρ

[81
2 −

81
4

]
= 0 cm · kg .

Mx =
∫ r

l

1
2
(
[t(x)]2 − [b(x)]2

)
ρ(x) dx =

∫ 3

−3

1
2
[
(9− x2)2 − 02

]
ρ dx

= 1
2ρ
∫ 3

−3
(81− 18x2 + x4) dx

= 1
2ρ
[
81x− 6x3 + 1

5x
5
]3

−3

= 1
2ρ
[
243− 54 + 243

5

]
− 1

2ρ
[
−243 + 54− 243

5

]

= 648
5 ρ cm · kg .

Finally,

(x, y) =
(
My

M
,
Mx

M

)
=
(

0
54ρ,

648
5 ρ

54ρ

)
=

(
0, 12

5

)
cm .
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4.6. Two-dimensional moments and centers of mass

Note: the final answer to Example 19 didn’t depend on what ρ was. So we may as
well have assumed that ρ was 1. This situation (of constant density) arises fairly
often, so we invent the following terminology:

Definition 4.8 The centroid of a region is the center of mass of that region, assuming
it has constant density.

(To compute the centroid, just assume ρ = 1 and use the formulas already discussed.)

EXAMPLE 20
Write expressions involving one or more integrals that could be evaluated to find
the centroid of the region enclosed by y = x and y = x2 − 6.

y=x2-6

y=x

-6

x

y

P.S. These formulas work out to x = 1
2 and y = −2.
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4.7. Moments of inertia

4.7 Moments of inertia
Newton’s Second Law tells us that the force required to resist or alter the linear
motion of an object is proportional to the object’s mass:

This means, for example, that it takes more effort to slow down or change the
direction of a fully-loaded cart than it does to change the linear motion of an empty
cart.

However, the force required to resist or alter a rotational motion (here “force”
means torque) isn’t proportional to the object’s mass; rather, it’s proportional to
something called the moment of inertia of the object about the axis around which
the object is rotating:

In this section, we’ll learn how to compute moments of inertia for thin, flat plates
represented as regions in the xy-plane with constant density ρ = 1.

Definition 4.9 Suppose R is the region lying above function y = b(x) and below
function y = t(x) for l ≤ x ≤ r:

b
t R

l r
x

y

Then, the moment of inertia of R about the y-axis is Iy =
∫ r

l
x2 [t(x)− b(x)] dx.

Definition 4.10 Suppose R is the region lying to the left of function x = r(y) and to
the right of function x = l(y) for b ≤ y ≤ t:

l
r

R

x

b

t

y

Then, the moment of inertia ofR about the x-axis is Ix =
∫ b

t
y2 [r(y)− l(y))] dy.
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4.7. Moments of inertia

QUESTION

If x and y are measured in meters, what are the units of Iy (and Ix)?

Iy =
∫ r

l
x2 [t(x)− b(x)] dx

Notice that moments of inertia have nothing to do with the density or mass of the
shape–their units depend only on the units in which distances are measured. As
such, Ix and Iy are also called area moments of inertia.

Moments of inertia are also called second moments because of the x2 or y2 in their
calculation (Mx and My are the first moments since there is x = x1 and y = y1 in
those integrals).

We use the acronym MOI for moment(s) of inertia.

EXAMPLE 21
Compute the moments of inertia (a.k.a. MOI) about the x- and y-axes of this rect-
angle:

-4 4
x

-1

1

y
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4.7. Moments of inertia

On the previous page, we saw that for a 2× 8 rectangle centered at the origin,

Iy = 256
3 and Ix = 16

3 .

Question: Why is Iy so much greater than Ix, and what does that mean?

Suppose you have a beam whose cross-section is a rectangle, supported on both
ends. If you apply enough force to the center of the beam, it will sag:

FORCE

x

y

x x

FORCE

y

x

x

y

y

x

-4 4
x

-1

1

y

-1 1
y

-4

4

x

Since Iy > Ix, it will take a greater force to make the beam sag when it is aligned
vertically (in the right-hand column above). In other words, the beam is stronger
when it is turned vertically than it is when it is turned horizontally.

Enrichment from physics: You may be familiar with the formula for kinetic
energy of a moving object:

E = 1
2mv

2.

When an object is rotating (rather than moving linearly), the kinetic energy is

E = 1
2Iω

2

where ω is the object’s angular velocity and I is the object’s moment of inertia
about the axis of revolution. This means objects with greater MOI have greater
kinetic energy when they twist, bend or rotate (and require more energy to
start such movement).
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4.7. Moments of inertia

EXAMPLE 22
Textbooks in advanced engineering (technology) courses contain a chart with a
bunch of shapes and corresponding formulas for area moments of inertia. One
row of such a chart, corresponding to a semicircle, might look like this:

r

x

y

Ix = Iy = 1
8πr

4

Where do these formulas on the right-hand side come from?

After this substitution, the integral becomes

Iy =
∫ arcsin 1

arcsin(−1)

(
r2 sin2 u

)
(r cosu) r cosu du

=
∫ π/2

−π/2
r4 sin2 u cos2 u du

= r4
∫ π/2

−π/2

(
1− cos 2u

2

)(
1 + cos 2u

2

)
du

= 1
4r

4
∫ π/2

−π/2

(
1− cos2 2u

)
du

= 1
4r

4
∫ π/2

−π/2
sin2 2u du

= 1
4r

4
∫ π/2

−π/2

1− cos 4u
2 du

= 1
8r

4
[
u− 1

4 sin 4u
]π/2

π/2
= 1

8r
4
([π

2 − 0
]
−
[
−π
2 − 0

])
= 1

8r
4π .
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4.8 Probability
Finite probability

MOTIVATING EXAMPLE

Suppose you spin a spinner and it stops at a random location. You either win or
lose money depending on where the spinner lands:

-2

+4
+10

-8

Mathematically, we represent such a situation by an object called a random variable:

Definition 4.11 A random variable (r.v.) is a quantity X which depends on the
result of some random experiment.

Random variables model all kinds of things, and are studied in detail in MATH
414 and 416. Examples of problems approached with random variables include:

Gambling: outcomes from dice rolls, coin flips, or games of chance;

Actuarial science: the time until an insurance policy holder files a claim (or the
size of the claim);

Finance: the price of a stock (or other financial instrument);

Business: the number of customers that enter a store or visit a web site;

Manufacturing: the rate at which parts of a machine will fail;

Sports analytics: the batting average of a baseball player (during the next season);
the time it takes a runner to finish a race; etc.

Public health: the life expectancy of a human being; the number of COVID pa-
tients in a hospital; etc.

Biology: heights or weights of plants and animals; the population of a bacteria
colony; amount of food a wolf eats in a year; etc.

Environmental science: future sea levels; amount of carbon emitted at some fu-
ture time; etc.

Signal processing: noise (static) in communication systems and cryptology;

Physics: velocities of gas molecules moving around in a chamber.
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4.8. Probability

In the spinner example, X is the amount you win/lose (i.e. X is the number on
which the spinner lands). To describe X (i.e. distinguish X from other random
variables), we need to know two things about it:

1.

2.

NOTE: There’s a difference between X and x. X is a random quantity, and x
is a value (i.e. a constant) that might be taken by the random variable X .

In the spinner example, this information can be conveyed by means of a table:

x f(x) = P (X = x) = probability that r.v. X takes value x

10

4

−8

−2

Note: The values that X takes (i.e the range of X) are the numbers in the left-hand
column, and the probability of each value of X is in the right-hand column.

Observe that all these spinners generate the same r.v. as our X , because they lead
to the same chart as above:

-2

+4
+10

-8 -2

+4

+10

-8

-2

+4
+10

-8
-2

-2

-2

+4

+4

+10

-8

But these would lead to r.v.s that are all different from ourX , and all different from
each other:

-2

+4
+12

-8 -2

+4

+10

-8

-2

+4

0+10

-8
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4.8. Probability

In fact, this f is a function, so we can visualize f by means of a graph. For our
original spinner, this graph is

x

f (x)=P(X=x)

1/8

1/4

1/2

-8 -2 4 10

EXAMPLE 23
In the context of this spinner, let X be the number spun. What is the probability
that X ≥ 0 (in symbols, we are asking for P (X ≥ 0))?

Solution:

The preceding example illustrates the following general concept:

Theorem 4.12 Let X be a random variable taking only the values x1, x2, ..., xn, with
respective probabilities f(x1), f(x2), ..., f(xn). Then for any setE, the probability that
X is in E is

P (E) = P (X ∈ E) =
∑
xj∈E

f(xj).

In other words, for random variables that only take finitely many different values,
probabilities are computed via addition.
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4.8. Probability

EXAMPLE 24
Suppose X is a random variable described by the following chart:

x 5 8 11 12
f(x) = P (X = x) .3 .2 .1 p

1. What is the range of X? (In other words, what values are taken by X?)

2. What is p?

3. What is the probability that X is even?

4. What is the probability that X is less than 3?

5. Compute P (X < 11).
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Expected value
NEW QUESTION

Suppose you spin the spinner 800 times. How much would you expect to be ahead
or behind after these 800 spins?

-2

+4
+10

-8

This example generalizes in the following formula:

Definition 4.13 LetX be a random variable taking only the values x1, x2, ..., xn, with
respective probabilities f(x1), f(x2), ..., f(xn). The expected value of X , denoted
EX , is

EX =
n∑
j=1

xjf(xj).

The expected value of a random variable is the amount you would expect the r.v.
to average if you repeat the experiment over and over.
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Continuous random variables

The random variable X coming from the spinner in the preceding section is called
finite-valued because there are only finitely many possible values of X (namely
−8,−2, 4 and 10).

Many real world r.v.s are not necessarily finite-valued. For example, suppose you
want to consider X to be some random amount of time, such as:

• X = amount of time until your cell phone rings next

• X = amount of time until a machine part fails

• X = amount of time until a customer is involved in a traffic accident

(Actuaries working for insurance companies are particularly interested in things
like the third X above.)

In all these examples, X is not finite-valued because X could be 1, 5, 100, 3.7, 19
3 ,√

π, etc. In this setting X takes values in an interval (the interval of values for X in
these examples is [0,∞) but it could be something different in general).

TRIVIAL QUESTION

Suppose X is the amount of time until your cell phone rings. What is the probabil-
ity that X = 34 minutes?

MORE INTERESTING QUESTION

Suppose X is the amount of time until your cell phone rings. What is the probabil-
ity that X ≥ 34 minutes?

Definition 4.14 A random variable X is called continuous if it takes values in an
interval, and if the probability that X takes any one particular value is zero.

Recall that we described finite-valued random variables by using a chart, or a func-
tion f where f(x) = P (X = x), or a graph (consisting only of some dots). How can
we describe a continuous random variable?
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EXAMPLE 25
Choose a real number from the interval from the interval [0, 5] “uniformly” (this
means that all real numbers should be “relatively equally likely" to be chosen).
What is the probability that X ∈ [1, 3] (this means the probability that X ≥ 1 and
X ≤ 3)?

Solution: Think geometrically:

Reinterpretation of this solution: Let f(x) =
{

1
5 if x ∈ [0, 5]
0 else .

f

1 3 5

1/5

This reinterpretation allows us to consider situations where all numbers are not
relatively equally likely. Suppose f : R → R is some function whose graph is like
this:

f

2 4 7 10
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4.8. Probability

The function f above is called a density function for the random variable X . More
generally:

Definition 4.15 Let X be a continuous random variable. A function f : R → R is
called a density function for X if for every a ≤ b, we have

P (X ∈ [a, b]) =
∫ b

a
f(x) dx.

The definition implies three things that must be true about the density function of
any random variable:

1.

2.

3.

Key principles

A continuous random variable X is completely described by specifying its
density function f .

Probabilities associated to the continuous r.v. X are computed by integrating
the density function.

In particular, for any number b,

P (X = b) = P (X ∈ [b, b]) =
∫ b

b
f(x) dx = 0

and

P (X ∈ (a, b]) = P (X ∈ [a, b])− P (X = a) = P (X ∈ [a, b])− 0 =
∫ b

a
f(x) dx

so for a continuous r.v. X ,

P (a < X < b), P (a ≤ X < b), P (a ≤ X ≤ b) and P (a < X ≤ b)

are all the same and all equal to

∫ b

a
f(x) dx.
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Expected value of a continuous random variable
QUESTION

Given continuous r.v. X with density function f , what is EX?

Answer: Recall that if X was finite-valued, EX =
n∑
j=1

xj f(xj).

This formula generalizes as an integral:

Definition 4.16 Let X be a continuous random variable with density function f .
Then the expected value of X , denoted EX , is

EX =
∫ ∞
−∞

x f(x) dx.

This is not entirely different from a concept we have already discussed. Suppose f
is a density function of a continuous r.v.

f

If you wanted to find the centroid of the region between the x-axis and the graph
of f , then the x-coordinate of this centroid would be

Even more, if you think of the density function f(x) of a continuous r.v. X as the
density of a 1-dimensional rod (i.e. ρ(x)), then

EX =
∫ ∞
−∞

x f(x) dx =

∫ ∞
−∞

x f(x) dx

1 =

∫ ∞
−∞

x f(x) dx∫ ∞
−∞

f(x) dx
=

∫ ∞
−∞

x ρ(x) dx∫ ∞
−∞

ρ(x) dx
= M0

M
= x.

This is why we call f the density function of the r.v. X . Essentially, expected value
is a probabilistic interpretation of the concept of center of mass (and in probability,
the total mass M must always equal 1).
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4.8. Probability

EXAMPLE 26 (TAKEN FROM AN OLD ACTUARIAL EXAM)
The amount of time (measured in months) until a driver causes an accident is a
continuous random variable whose density function is

f(x) =


25
12x

−3 if x ∈ [1, 5]
0 otherwise

1. Compute the probability that the driver will cause an accident within two
months.

2. Compute the expected amount of time until the driver causes an accident.
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EXAMPLE 27
Let X be a continuous random variable with density function

f(x) =
{
ce−2x if x ≥ 0

0 if x < 0

where c is some constant.

1. Compute c.

2. Compute P
(

1
2 < X < 5

2

)
.

3. Compute P (X ∈ [−4, 1)).

4. Compute P (X = 7).

5. Compute EX .

Solution:

1. .

2. P
(

1
2 < X < 5

2

)
=
∫ 5/2

1/2
f(x) dx =

∫ 5/2

1/2
2e−2x dx = −e−2x

∣∣∣5/2

1/2
= −e−5 + e−1 ≈

.3611.

3. P (X ∈ [−4, 1)) =
∫ 1

−4
f(x) dx =

∫ 0

−4
0 dx+

∫ 1

0
2e−2x dx =

4. P (X = 7) =

5. EX =
∫ ∞
−∞

xf(x) dx =
∫ ∞

0
x 2e−2x dx =

149
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4.9 Homework exercises
Exercises from Section 4.1

1. Compute the area of the region enclosed by the graph of f(x) = x2 − 6x and
the x−axis.

2. Compute the area of the region enclosed by the graphs of f(x) = x2 + 2x+ 1
and g(x) = 2x+ 5.

3. Compute the area of the region enclosed by the graphs of f(x) = x2 − 4x+ 3
and g(x) = −x2 + 2x+ 3.

4. Compute the area of the region enclosed by the graphs of f(x) = (x−1)3 and
g(x) = x− 1.

5. Compute the area of the region enclosed by the graphs of f(x) = 1+
√

3x and
g(x) = x+ 1.

6. Compute the area of the region lying between the graphs of f(x) = 2 sin x
and g(x) = tan x from x = −π3 to x = π

3 .

7. Compute the area of the region lying between the graphs of f(x) = cos x and
g(x) = 2− cosx from x = 0 to x = 2π.

8. Let R be the region of the xy−plane lying above the x−axis, below the line

y = 2
3x− 4, and above the curve y = 1

15x
2 − 2

3x+ 1. Compute the area of R.

9. a) Write down the equation of a circle of radius r, centered at the origin.

b) Write down an expression (in terms of one or more integrals) which will
give the area of this circle.

c) Use Mathematica to evaluate the expression you got in part (b).

d) Evaluate the integral from part (b) by hand. Hint: You need to rewrite
the integrand and then use the substitution u = arcsin x

r
.

10. An ellipse (centered at the origin) is the graph of an equation of the form
x2

a2 + y2

b2 = 1. Such an ellipse looks like an oval passing through the points
(a, 0), (−a, 0), (0, b) and (0,−b).

a) Write down an expression (in terms of one or more integrals) which will
give the area of this ellipse.

b) Use Mathematica to evaluate the expression you got in part (a).
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11. Consider the quadrilateral whose vertices are (in order) (0, 2), (4, 7), (6, 6)
and (2, 0) . Write down an expression involving integrals which gives the
area of this quadrilateral, and evaluate the expression to find the area of the
quadrilateral (you can use Mathematica or do the integrals by hand).

12. Let R be the region enclosed by the graphs of y = x and y =
√
x.

a) Sketch a picture of R, clearly indicating which graph is which.

b) Write a formula involving one or more integrals with respect to the vari-
able x which gives the area of R.

c) Write a formula involving one or more integrals with respect to the vari-
able y which gives the area of R.

d) Use Mathematica to evaluate the integrals from parts (b) and (c) (or do
them by hand), and verify that you get the same answer.

13. LetR be the region enclosed by the graphs of x = 0, 3x+y = 6 and y = x2−4.

a) Sketch a picture of R, clearly indicating which graph is which.

b) Write a formula involving one or more integrals with respect to the vari-
able x which gives the area of R.

c) Write a formula involving one or more integrals with respect to the vari-
able y which gives the area of R.

d) Use Mathematica to evaluate the integrals from parts (b) and (c) (or do
them by hand), and verify that you get the same answer.

14. Let R be the region enclosed by the graphs of y = log4 x, x = 16 and the
x-axis.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the area of R.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the area of R.

c) Use Mathematica to evaluate the integrals from parts (a) and (b) (or do
them by hand), and verify that you get the same answer.

15. Let R be the region enclosed by the graphs of y = 2 arcsin x
3 , x = 0 and y = 1.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the area of R.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the area of R.
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c) Use Mathematica to evaluate the integrals from parts (a) and (b) (or do
them by hand), and verify that you get the same answer.

16. Let R be the region enclosed by the graphs of y = ex and y = x
3 + 4. Use

Mathematica to compute the area of R.

Hint: you will first need to use Mathematica to find decimal approximations
of the intersection points of the graphs that describe R.

Exercises from Section 4.2

17. Consider a solid whose base is the triangle in the xy−plane whose vertices
are (0, 0), (0, 2) and (6, 0). Cross-sections of the solid are squares parallel to
the y−axis. Compute the volume of the solid.

18. Consider a solid whose base is the region in the xy−plane lying above y = x
and below y = 2 − x2, such that cross-sections of the solid parallel to the
y−axis are semicircles whose diameter lies in the xy−plane. Compute the
volume of the solid.

19. Consider a solid whose base is the interior of the circle x2 + y2 = 16 in the
xy−plane. If cross-sections of the solid parallel to the y−axis are rectangles
which are twice as high as they are wide, compute the volume of the solid.

20. Compute the volume of the solid obtained by revolving the region below the
graph of y = secx and above the x−axis between x = 0 and x = π

4 around
the x−axis.

21. Compute the volume of the solid obtained by revolving the region below the
graph of y = 2− x2 and above y = 0 around the x−axis.

In Problems 22-25, let R be the region in the xy−plane bounded by the graphs
y =
√
x, y = 0 and x = 4.

22. Let S1 be the solid obtained by revolving R around the x−axis.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S1.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S1.

c) Evaluate the integrals from parts (a) and (b) using Mathematica, and ver-
ify that you get the same answer.

23. Let S2 be the solid obtained by revolving R around the y−axis.
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a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S2.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S2.

c) Evaluate the integrals from parts (a) and (b) using Mathematica, and ver-
ify that you get the same answer.

24. Let S3 be the solid obtained by revolving R around the line x = 6.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S3.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S3.

25. Let S4 be the solid obtained by revolving R around the line y = −3.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S4.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S4.

In Problems 26-28, let Q be the region in the xy−plane lying to the right of the
y−axis, above the curve y = 2x2 and below the line y = 8.

26. Let S1 be the solid obtained by revolving Q around the x−axis.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S1.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S1.

27. Let S2 be the solid obtained by revolving Q around the line x = −4.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S2.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S2.

28. Let S3 be the solid obtained by revolving Q around the line y = 8.

a) Write a formula involving one or more integrals with respect to the vari-
able x which gives the volume of S3.

b) Write a formula involving one or more integrals with respect to the vari-
able y which gives the volume of S3.
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29. Use calculus to show that the volume of a sphere of radius r is 4
3πr

3.

Hint: You can visualize such a sphere by first thinking of a circle of radius r
in the plane, and building a solid over the base where the cross-sections of
the solid parallel to the y−axis are themselves circles. Write down an integral
which gives the volume, and evaluate the integral by hand (it’s not that hard)
to get 4

3πr
3.

30. (Challenge) Let R be the region of points in the first quadrant above the graph
of y = x2 but below the graph of y = x. Revolve R around the diagonal line
y = x to produce a solid. Compute the volume of this solid.

Hint: You should integrate in the direction of the diagonal line y = x, so your
cross-sections have to be perpendicular to this direction of integration. What
shape are these cross-sections (this isn’t so hard), and what is their area (this
is harder)?

Exercises from Section 4.3

31. Suppose a bird flies in a straight line so that its velocity at time t is 50t2 − 20t
mi/hr. Find the distance the bird travels between times t = 0 and t = 1.

32. If the acceleration a of an object is constant, then its change in velocity over
elapsed time t is ∆v = a · ∆t. Suppose an object experiences nonconstant
acceleration a(t) = 4e2t m/sec2 from time t = −1 sec to t = 2 sec. What is the
change in the object’s velocity from time t = −1 to time t = 2?

33. If the density of a metal rod is constant, then the mass of the metal rod is
equal to the density times the length of the rod. Suppose a metal rod has a
nonconstant density, where the density x units from the left edge of the rod
is 2x2 +x+ 1 grams/unit. Find the mass of the rod, if the wire is 3 units long.

34. If the force applied to an object is constant, then the work done by that force
is equal to the force times the distance the object moves. Suppose a force is
applied to an object where the force at position x is 2x+ 3 Newtons. Find the
work done in moving the object from position 5 meters to position 10 meters.

35. If the current i in an electric circuit is constant, then the charge q that builds
up in the circuit is equal to the current times the amount of time that the
current is in the circuit. Find the charge in an electric circuit if a current of
sin t + 2 cos 3t + 3 amperes is applied to the circuit from time 0 sec to time π

6
sec.

Note: An ampere times a second is a Coulomb, the SI unit of charge.
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Exercises from Section 4.4

36. Compute (by hand) the length of the curve y = 2
3x

3/2 + 1 from x = 0 to x = 1.

37. Compute (by hand) the length of the curve y = 2x3/2 − 2 from x = 0 to x = 8.

38. Write an integral which gives the length of the curve y = ln(sin x) between
x = π

4 and x = π
2 . Then, use Mathematica to evaluate the integral.

39. Write an integral which gives the length of the curve y = 3
√
x2 between the

points (1, 1) and (8, 4). Then, use Mathematica to evaluate the integral.

40. Write an integral which gives the length of the curve y = 1
x

from x = 1 to
x = 3. Then, use Mathematica to find a decimal approximation to this integral.

41. Write an integral which gives the length of the curve y = 2 sin 4x from x = 0
to x = π. Then, use Mathematica to find a decimal approximation to this
integral.

42. Find the total length (you can use Mathematica to do the integral) of the curve
x2/3 + y2/3 = 4 (the graph of this curve is found below):

x2/3+y2/3=4

-8 8

-8

8

43. Use calculus to show that the circumference of a circle of radius r is 2πr.
Hint: Write an equation for the top half of the circle; then use the arc length
formula to determine the length of half the circle (for the integral, rewrite it
so you can recognize arcsin as part of the answer). Then double that answer
to get the circumference.

Exercises from Section 4.5

44. Suppose a system consists of four objects, with respective masses 7 kg, 4 kg,
3 kg and 8 kg, located along an axis with respective positions −3,−2, 5 and 6
(measured in meters).

a) Compute the total mass of the system.

b) Compute the moment about the origin of the system.

c) Compute the center of mass of the system.
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45. Suppose a system consists of three objects of masses 6 g , 5 g and 3 g, located
at positions −5 cm, 1 cm and 3 cm respectively. Compute the center of mass
of this system.

46. Suppose two siblings sit on the ends of a see-saw; a brother, who weighs 75
pounds, and a sister, who weighs 50 pounds. If the seesaw is 12 feet long,
how far from the brother should the fulcrum be placed so that the see-saw is
balanced?

47. A metal rod of length 10 cm has density ρ(x) = 1 + x2 g/cm at a distance x
cm from the left end of the rod.

a) Compute the mass of the rod.

b) Determine how far from the left end of the rod its center of mass is.

48. A rod with density ρ(x) = 2 + sin x kg/unit is positioned along the positive
x−axis, with its left end at x = 0 and its right end at x = 3π

4 . Compute the
x−coordinate of the center of mass of the rod.

49. A wire with density ρ(x) = Cx + e−x runs from x = 0 to x = 2 along the
x-axis, where C is an unknown constant. If the center of mass of the wire is
x = 1, what must the value of C be?

50. A rod of length 8 in has density ρ(x) = 3
√
x mg/cm at a distance x cm from

the left end of the rod. If you want to cut the rod into two pieces of equal
mass, where should you cut it?

Exercises from Section 4.6

51. Suppose a system consists of three objects in a plane. The first mass is 5g,
located at (2, 2); the second mass is 1g, located at (−3, 1), and the last mass is
3g, located at (1,−4). Assume distances are measured in inches.

a) Compute the total mass of the system.

b) Compute the moment about the x-axis of the system.

c) Compute the moment about the y-axis of the system.

d) Compute the center of mass of the system.

52. Determine the center of mass of a system which consists of the following five
masses (distances measured in meters):

mass 3 kg 4 kg 2 kg 1 kg 6 kg

position (−2,−3) (5, 5) (7, 1) (0, 0) (−3, 0)
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53. Let R be the region in the xy−plane above the x−axis, below the graph of
y =
√
x and to the left of the line x = 9.

a) Assuming that R has constant density, compute the center of mass of R.

b) Assuming that the density of any point (x, y) in R is ρ(x) = x + 2, com-
pute the center of mass of R.

54. Let R be the region in the first quadrant between the graphs of y = x2 and
y = x3.

a) Assuming that R has constant density, compute the center of mass of R.

b) Assuming that the density of any point (x, y) in R is δ(x) = 2 − x2,
compute the center of mass of R.

55. Compute the centroid of the region bounded by the graphs of y = xe−x, y = 0
and x = 5. (Use Mathematica to evaluate the integrals.)

56. Compute the centroid of a semicircle of radius r (a picture is shown below,
but you have to figure out what graph is the top of the semicircle, and how
far to the left or right it goes).

r

x

y

57. Compute the centroid of a circle of radius r centered at the origin. Hint: there
is a more clever approach than doing a bunch of integrals.

58. Consider the region in the xy−plane bounded by the graphs of y = x2 and
y = b, where b > 0 is a positive constant.

a) What is the x−coordinate of the center of mass of this region?

b) Is the y−coordinate of the center of mass of this region greater than, or
less than b

2? Explain your reasoning.

Exercises from Section 4.7

59. Compute the moment of inertia about the y-axis for the region bounded by
the equations x = 0, x = 2, y = x2 and y = 2x2 + 3.

60. Compute the moments of inertia about the x- and y-axes for the region con-
sisting of points below the line y = 4x and above the curve y = x3.
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61. Let R be the region consisting of points below the graph of y = sin x
4 , to the

left of the line x = π, and above the x-axis.

a) Write a formula involving one or more integrals that can be used to com-
pute the moment of inertia of R about the x-axis.

b) Use Mathematica to evaluate the formula you wrote down in part (a).

c) Write a formula involving one or more integrals that can be used to com-
pute the moment of inertia of R about the y-axis.

d) Use Mathematica to evaluate the formula you wrote down in part (c).

62. Finish Example 22 by verifying that Ix = 1
8πr

4 for a semicircle of radius r
centered at the origin.

63. Let T be a triangle with vertices (0, 0), (b, 0) and (0, h). Compute, in terms of
b and/or h, the moments of inertia of T about the x- and y-axes.

64. Compute, in terms of the thickness t, the height h and the width w, the mo-
ment of inertia about the x-axis for the I-beam pictured below:

w

t

t

t

h
x

y

Exercises from Section 4.8

65. Let X be a finite-valued random variable whose probabilities are described
by the following chart, where p is some unknown constant:

x −3 −2 −1 0 1 2 3
f(x) = P (X = x) 1

20
3
20

1
10 p 1

10
3
20 2p

a) Compute the value of p.

b) Compute P (X = −2).

c) Compute P (X = 4).

d) Compute P (X < 0).

e) Compute P (X ≤ 0).

f) Compute P (X 6= 0).

66. Let X be a continuous random variable taking values in the interval [0, 1]. If
the density function of X is f(x) = cx2 + x, find the value of c.
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67. Let X be a continuous random variable taking values in the interval [0, 2]. If
the density function of X is f(x) = Ce−x/2, find the value of C.

68. Let X be a continuous random variable taking values in [0, 4] whose density
function is f(x) = 1

8x.

a) Find the probability that X > 2.

b) Find the probability that X = 3.

c) Find the probability that X ≤ 1.

d) Which is more likely, that X = 1 or X = 3?

e) Which is more likely, that X is very close to 1 or that X is very close to
3?

f) Find a number b such that P (X ≥ b) = 2
3 .

69. Let X be a continuous random variable whose density function is

f(x) =
{
Ce−3x for x ≥ 0

0 for x < 0 ,

where C is some constant.

a) What is the value of C?

b) Find the probability that X > 10.

c) Find the probability that 3 ≤ X ≤ 4.

70. Suppose that the lifespan of a certain organism, measured in years, is a con-
tinuous random variable X whose density function is{

f(x) = 4xe−2x for x ≥ 0
0 for x < 0 .

a) Compute the probability that the organism lives for less than one year.

b) Compute the expected lifespan of the organism.

71. Suppose that the lifetime (in months) of a light bulb is a continuous andom
variable X with density function

f(x) =
{

2x−3 for x ≥ 1
0 for x < 1 .

a) Compute the probability that the light bulb lasts more than four months.

b) Compute the expected lifetime of the lightbulb.
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c) If light bulbs of this type are replaced as soon as they burn out, how
many light bulbs would you expect to use in the next 88 months?

72. Find the expected value of a continuous random variable whose density
function is

f(x) =
{

1
2 sin x for 0 ≤ x ≤ π

0 else .

73. Suppose that the time (measured in years) until an insurance policyholder
files a claim is a continuous random variable X with density function

f(x) =
{
Cx3e−x/5 for x ≥ 0

0 for x < 0

where C is some constant.

a) What is the value of C?

b) Compute the average amount of time until the policyholder files a claim.

c) Write an integral which will compute the probability that the insurance
policyholder will file a claim within the next 8 years.

d) Use Mathematica to find a decimal approximation to your answer to part
(c).

74. Let X be a continuous random variable with density function f . The second
moment of X , denoted µ2, is defined by

µ2 =
∫ ∞
−∞

x2f(x) dx.

a) We noted in class that expected value is the probabilistic interpretation
of the concept of center of mass. What is the second moment the proba-
bilistic interpretation of?

b) Compute the second moment of the random variable described in Exer-
cise 68.

c) Compute the second moment of the random variable described in Exer-
cise 73.

75. The variance of a random variable X , denoted V ar(X), is given by the for-
mula

V ar(X) = µ2 − (EX)2.

The variance of a random variable measures how spread out its values are–
the larger the variance, the more spread out the values the random variable
takes. Compute the variance of the random variable described in Exercise 69.
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76. Let X be a continuous random variable taking values in some interval. The
median of X is a number m such that P (X ≤ m) = 1

2 . In each of these
examples, find the median of X , if X has the given density function:

a) f(x) =
{

4x3 for 0 ≤ x ≤ 1
0 else

b) f(x) =
{

2e−2x for x ≥ 0
0 else

Answers

1. 36

2.
32
3

3. 9

4.
1
2

5.
3
2

6. 2− ln 4

7. 4π

8.
103− 4

√
10

9

9. a) x2 + y2 = r2

b) A = 4
∫ r

0

√
r2 − x2 dx

c) πr2

d) πr2

10. a) A = 4
∫ a

0
b

√
1− x2

a2 dx

b) πab

11. A =
∫ 2

0

[
(5
4x+ 2)− (2− x)

]
dx+

∫ 4

2

[
(5
4x+ 2)− (3

2x− 3)
]
dx

+
∫ 6

4

[
(−1

2 x+ 9)− (3
2x− 3)

]
dx = 18

12. a)
R

y= x

y=x

1

1

b)
∫ 1

0
(
√
x− x) dx

c)
∫ 1

0
(y − y2) dy

d)
1
6

13. a)

R
y=6-3x

y=x2-4

x=0

2

-4

6

b)
∫ 2

0

[
(6− 3x)− (x2 − 4)

]
dx

c)
∫ 0

−4

√
y + 4 dy +

∫ 6

0
(2− y

3) dy
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d)
34
3

14. a)
∫ 16

1
log4 x dx

b)
∫ 2

0
[16− 4y] dy

c)
−15 + 16 ln 16

ln 4 = 32− 15
ln 4

(these are the same thing)

15. a)
∫ 1

0

[
2 arcsin 1

3 − 2 arcsin x3

]
dx

b)
∫ 2 arcsin 1

3

0
3 sin y2 dy

c) 6− 4
√

2

16. 25.8855

17. V =
∫ 6

0
[2− 1

3x]2 dx = 8

18. V =
∫ 1

−2

1
2π
(

2− x2 − x
2

)2

dx = 81
80π

19. V =
∫ 4

−4
8
(√

16− x2
)2

dx = 2048
3

20. V =
∫ π/4

0
π sec2 x dx = π

21. V =
∫ √2

−
√

2
π(2− x2)2 dx = 64

√
2

15 π

22. a) V =
∫ 4

0
πx dx

b) V =
∫ 2

0
2πy(4− y2) dy

c) 8π

23. a) V =
∫ 4

0
2πx
√
x dx

b) V =
∫ 2

0

[
π42 − π(y2)2

]
dy

c)
128
5 π

24. a) V =
∫ 4

0
2π(6− x)

√
x dx

b) V =
∫ 2

0

[
π(6− y2)2 − π(6− 4)2

]
dy

25. a) V =
∫ 4

0

[
π(
√
x+ 3)2 − π(0 + 3)2

]
dx

b) V =
∫ 2

0
2π(y + 3)[4− y2] dy

26. a) V =
∫ 2

0

[
π(8)2 − π(2x2)2

]
dx

b) V =
∫ 8

0
2πy

√
y

2 dy

27. a) V =
∫ 2

0
2π(x+ 4)[8− 2x2] dx

b) V =
∫ 8

0

[
π(
√
y

2 + 4)2 − π(0 + 4)2
]
dy

28. a) V =
∫ 2

0
π(8− 2x2)2 dx

b) V =
∫ 8

0
2π(8− y)[

√
y

2 ] dy
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29. V =
∫ r

−r
π(
√
r2 − x2)2 dx = 4

3πr
3

30.
41
30π

31.
20
3 mi

32. 2e4 − 2e−2 m/sec

33.
51
2 g

34. 90 Nm

35. 2 + 3π

36.
−2 + 2(2)3/2

3

37.
−2 + 2(73)3/2

27

38. s =
∫ π/2

π/4

√
1 + cot2 x dx = − ln(tan π8 )

39. s =
∫ 8

1

√
1 +

[1
2x
−1/2

]2
dx = 80

√
10− 13

√
13

27

40. s =
∫ 3

1

√
1 + [−x−2]2 dx ≈ 2.14662

41. s =
∫ π

0

√
1 + cos2 x dx ≈ 3.8202

42. 48

43. Let f(x) =
√
r2 − x2; then C = 2

∫ r

−r

√
1 + [f ′(x)]2 dx works out to be 2πr.

44. a) 22 kg
b) 34 kg·m

c) x = 17
11 m

45. x = −8
7 cm

46.
24
5 ft

47. a)
1030

3 g

b)
765
103 cm

48.
8
√

2 + 6π
√

2 + 9π2

16 + 8
√

2 + 24π
units

49. C = 3e−2

50. 4 3√2 cm from the left end

51. a) 9 g
b) Mx = −1 g·in

c) My = 10 g·in

d) (x, y) =
(10

9 ,
−1
9

)
in

52. (x, y) =
(10

21 ,
13
21

)
m

53. a) (x, y) =
(27

5 ,
9
8

)
b) (x, y) =

(1593
259 ,

45
37

)
54. a) (x, y) =

(3
5 ,

12
35

)
b) (x, y) =

(4
7 ,

13
42

)

55. (x, y) =
(
−37 + 2e5

−6 + e5 ,
−61 + e10)

8e5(−6 + e5)

)

56. (x, y) =
(

0, 4
3πr

)
57. (x, y) = (0, 0)
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58. a) x = 0
b) This should be greater than b

2 , since the region is wider at the top than it is at
the bottom.

59. My = 72
5

60. Mx = 256
5 ;My = 16

3

61. a) Ix =
∫ √2/2

0
y2 [π − 4 arcsin y] dy

b) Ix = 1
9
(
8− 5

√
2
)
≈ .103215

c) Iy =
∫ π

0
x2 sin x4 dx

d) Iy = −128 + 16π
√

2− 2
√

2(−32 + π2) ≈ 5.68034

62. Ix =
∫ r

0
y2
[√

r2 − y2 −
(
−
√
r2 − y2

)]
dy = 1

8πr
4

63. Ix = 1
12b

3h; Iy = 1
12bh

3

64. Ix =
∫ −h/2

−h/2−t
y2w dy+

∫ h/2

−h/2
y2t dy+

∫ h/2+t

h/2
y2w dy = 1

12 t
(
h3 + 6h2w + 12htw + 8t2w

)
65. a) p = 3

20

b) P (X = −2) = 3
20

c) P (X = 4) = 0

d) P (X < 0) = 3
10

e) P (X ≤ 0) = 9
20

f) P (X 6= 0) = 17
20

66. c = 3
2

67. C = e

2e− 2

68. a) P (X > 2) = 3
4

b) P (X = 3) = 0

c) P (X ≤ 1) = 1
16

d) They are equally likely (the probability of both is zero).

e) It is more likely that X is very close to 3 since f(3) > f(1).

f) b = 4√
3

.
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69. a) C = 3
b) P (X > 10) = e−30

c) P (3 ≤ X ≤ 4) = e−9 − e−12.

70. a) P (X < 1) = 1− 3e−2

b) EX = 1 year

71. a) P (X > 4) = 1
16

b) EX = 2 months

c) 44 light bulbs

72. EX = π

2

73. a) C = 1
3750

b) 20 years

c) P (X < 8) =
∫ 8

0

1
3750x

3e−x/5 dx

d) P (X < 8) = 1− 1711
375e8/5 ≈ .0788135

74. a) moment of inertia (about the y-axis)

b) 8
c) 500

75.
1
9

76. a) m = 2−1/4

b) m = 1
2 ln 2
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Chapter 5

Introduction to infinite series

5.1 Motivation and big-picture questions
Consider a 100m race between me and Usain Bolt1. Let’s assume Bolt runs 10m/s
and that I run 8m/s. However, I get a head start of 10 m.

Here is an argument that attempts to show why I will win this race:

ME

BOLT

0m 10m 100m
START FINISH

ELAPSED
TIME
(sec) �=0 �=1

So the distance I run in the lead is

1Usain Bolt is the world record holder and 3-time Olympic champion in the 100m.
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Here is an argument which attempts to show why I will not win the race:

QUESTION

How do you reconcile these two arguments?

GENERALIZING THIS RACE

Suppose two runners, a slow runner and a fast runner, are in a race.

The ratio of the runner’s speeds (slow runner to fast runner) is r. (In the Bolt
example, r = 8

10 .) So if the fast runner’s rate is v, the slow runner’s rate is .

But the slow runner gets a head start of h.

How far does the slow runner run before he is caught?

Solution from physics: the fast runner catches up when

position of fast runner = position of slow runner

So the amount the slow runner runs before being caught is
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5.1. Motivation and big-picture questions

Solution from mathematics: the amount the slow runner runs in the lead is

SLOW

FAST

h hr hr2 hr3 hr4

The physics and math solutions to this problem should coincide, so

h+ hr2 + hr3 + hr4 + hr5 + ... = h

1− r

h
(
1 + r2 + r3 + r4 + r5 + ...

)
= h

1− r

This formula works for any r ∈ [0, 1) (and we will justify this formally once we
have the right theory developed).

Question 1: What would happen if r ≥ 1?

Question 2: What would happen if r < 0?
We will return to Question 2 later, but for now, just be aware that

If r ∈ [0, 1), then 1 + r2 + r3 + r4 + r5 + ... = 1
1− r .
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EXAMPLE 1

Let r = 1
2 in the formula on the previous page. This yields

1 + 1
2 +

(1
2

)2
+
(1

2

)3
+
(1

2

)4
+ ... = 1 + 1

2 + 1
4 + 1

8 + 1
16 + ...

=

1

11

1

1/2

1/4

1/2

1
2

1
4

EXAMPLE 2
Let r = −1 in the formula on the previous page. This yields what is called the
Dirichlet series:

1 + (−1) + (−1)2 + (−1)3 + (−1)4 + (−1)5 + ...

= 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1...

Solution #1: 1− 1 + 1− 1 + 1− 1 + 1− 1 + ...

Solution #2: 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + ...

Solution #3:

Which (if any) of these solutions to the Dirichlet series is correct?

The Dirichlet series illustrates a major problem with trying to study infinite se-
ries. Irrespective of which of these solutions is correct, what we know is that they
cannot all be correct. This means that we definitely cannot legally rearrange or
regroup terms when adding up infinitely many numbers.
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5.1. Motivation and big-picture questions

In the grand scheme of things, we might want to add (or try to add) infinite lists of
numbers like

a1 + a2 + a3 + a4 + a5 + · · ·

that aren’t necessarily of the form

1 + r + r2 + r3 + r4 + · · ·

General questions in this context

1. Classification problem: Can you add a1 +a2 +a3 + · · · and get a finite
number for the answer?

2. Computation problem: If so, what is the numerical value of a1 +a2 +
a3 + · · · ?

3. Rearrangement problem: When, if ever, can you legally rearrange or
regroup the terms of the sum a1 + a2 + a3 + · · · ?

EXAMPLES TO PONDER

a) 1 + 1 + 1 + 1 + 1 + 1 + · · ·

b) 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + · · ·

c) 1 + 1
2 + 1

4 + 1
9 + 1

16 + 1
52 + 1

62 + · · ·

d) 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · ·
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5.1. Motivation and big-picture questions

Why these questions are hard

Formally speaking, addition is a binary operation, meaning that addition has two
inputs and one output:

Suppose you have to add six numbers together, like

3 + 8 + 4 + 7 + 2 + 9

The reason this procedure works is that you can add any two numbers at a time
and get the same answer (this is called the associative property of addition). For ex-
ample,

3 + 8 + 4 + 7 + 2 + 9

(3 + (8 + (4 + 7))) + (2 + 9) ((3 + 8) + (4 + 7)) + (2 + 9)

Secondly, adding two numbers from a list reduces the # of numbers left to add:

But, with an infinite list of numbers there are two problems with this approach:

1. .

2. .

Therefore we need a mechanism to add infinite lists of numbers which goes be-
yond basic arithmetic. It turns out that calculus can be used to address this prob-
lem.
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5.2. Convergence and divergence

5.2 Convergence and divergence
QUESTION

What does calculus have to do with adding infinite lists?

Recall: adding up an infinite list of numbers is hard because

1. when adding numbers two at a time, you never run out of numbers to add;
and

2. the associative property fails (i.e. regrouping and rearranging terms of an
infinite sum is generally illegal).

In calculus, we have encountered other problems which are difficult to solve:

PROBLEM
APPROXIMATION

OF THE
SOLUTION

HOW THE
APPROX.

IMPROVES

THEORETICAL
SOLUTION

Find slope of
the tangent

line to
function f

at x

f

h

x x+h
x

f (x)

f (x+h)

y

slope of secant line
f(x+h)−f(x)

h

As h→ 0

the derivative

f ′(x) =
lim
h→0

f(x+h)−f(x)
h

Find area
under the
graph of

function f
from a to b

f

a ck b
x

f (ck)

y

Riemann sum
n∑
k=1

f(ck)∆xk

As ||P|| → 0

(i.e. b−a
n
→ 0,

i.e. n→∞)

the integral

∫ b

a
f(x) dx =

lim
||P||→0

n∑
k=1

f(ck)∆xk

Find sum of
an infinite

list of
numbers

a1 + a2 + · · ·
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5.2. Convergence and divergence

Partial sums

Definition 5.1 Given an infinite series a1 + a2 + a3 + a4 + ..., and given any index
N , the N th partial sum of the series, denoted SN , is

SN = a1 + a2 + a3 + ...+ aN .

Note: SN is always defined, since it is a sum of finitely many numbers.

Remark: The indexing of an infinite series does not always start with the index 1.
In general, the N th partial sum of an infinite series is the sum of all terms in the
series whose index is ≤ N . For example, if your series is

a5 + a6 + a7 + a8 + a9 + ...,

then the seventh partial sum of this series is

In particular, to get SN , you add up terms until you get to index N (you don’t nec-
essarily add up N terms).

EXAMPLE 3
Find the second, fourth and fifth partial sums of each of the following infinite series
(assume that each series starts with the term a1):

a) 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·

b) 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · ·

Solution:
S2 = 1− 1

2 = 1
2 .

S4 = 1− 1
2 + 1

3 −
1
4 = 7

12 .

S5 = 1− 1
2 + 1

3 −
1
4 + 1

5 = 47
60 .
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Definitions of convergence and divergence

Definition 5.2 Let a1 + a2 + a3 + a4 + · · · be an infinite series. For each N , let

SN = a1 + a2 + ...+ aN

be the N th partial sum of the series. Then:

1. If L is a real number such that lim
N→∞

SN = L, then we say that the infinite series
a1 + a2 + a3 + · · · converges (to L) and we write

a1 + a2 + a3 + · · · = L.

In this setting L is called the sum of the series.

2. If lim
N→∞

SN = ±∞ or if lim
N→∞

SN DNE, then we say that the infinite series
a1 + a2 + a3 + · · · diverges.

General questions related to infinite series

1. Classification problem: Does the infinite series a1 + a2 + a3 + · · ·
converge or diverge?

2. Computation problem: If the infinite series a1 + a2 + a3 + · · · con-
verges, what is its sum?

3. Rearrangement problem: When, if ever, can you legally rearrange
or regroup the terms of the infinite series a1 + a2 + a3 + · · · without
affecting whether or not the series converges and without affecting
the sum of the series?

Before addressing these questions, we turn to issues with notation.
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5.3 Σ-notation
Writing a1 + a2 + a3 + ... over and over again is annoying. We shorthand this
expression by writing

∞∑
n=1

an

Using this notation,

• n is called the index of summation, a.k.a. the variable of summation;

• 1 is called the initial index, a.k.a. the starting index, a.k.a. the lower index;

• ∞ is called the end index, a.k.a. last index, a.k.a. upper index;

• the individual numbers a1, a2, a3, ... are called the terms of the series;

• and the number an is called the nth term.

(It is also OK to call the “first term” the first one you write down, but we
usually won’t do this.)

EXAMPLE 4
Write out the following series with + signs, and identify its second term:

∞∑
n=1

n

n+ 3

NOTE: We will see that some of the things we want to say about series do not
depend on the starting index of the series. In this setting, we will just write∑
an to represent the series. If you see

∑
an (without the upper and lower

indices indicated), this means one of two things:

1. The starting index was given earlier in the problem and is being omitted
solely for the sake of brevity (while this is “legal”, it is not recommended
that you do this), or

2. Some property of the series is being described which does not depend on
the starting index of the series (so the starting index is irrelevant to the
context).
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EXAMPLE 5
For each given infinite series:

a) Write the series out with + signs.
b) Identify the second term of the series.
c) Compute the third partial sum of the series.
d) Identify the ninth term of the series.

1.
∞∑
n=1

1
n

2.
∞∑
n=3

(−1)n
n2 + 2

3.
∞∑
n=0

n

Solution: (a)
∞∑
n=0

n = 0 + 1 + 2 + 3 + 4 + 5 + · · ·

(b) a2 = 2 .

(c) S3 = a0 + a1 + a2 + a3 = 0 + 1 + 2 + 3 = 6 .

(d) a9 = 9 .
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EXAMPLE 6
Write each of the following series in Σ-notation:

a)
5
7 + 5

8 + 5
9 + 5

10 + 5
11 + · · ·

b)
2
3 + 2

7 + 2
11 + 2

15 + 2
19 + · · ·

c)
7
8 + 10

16 + 13
25 + 16

26 + 19
27 + · · ·

d) 1− 1
5 + 1

9 −
1
13 + 1

17 −
1
21 + · · ·
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5.4 Elementary properties of convergence and divergence
First, we restate the definition of convergence using Σ−notation:

Definition 5.3 Let
∑
an be an infinite series. For each N , let SN be the N th partial

sum of the series; this is defined to be the sum of all the an for which n ≤ N . Then:

1. If L is a real number such that lim
N→∞

SN = L, then we say the infinite series
a1 + a2 + a3 + ... converges (to L) and write

∑
an = L. In this setting L is

called the sum of the series.

2. If lim
N→∞

SN = ±∞ or if lim
N→∞

SN DNE, then we say the infinite series
∑
an

diverges.

IMPORTANT: There is a big difference between saying “
∑
an converges” and

saying “an converges”.

In particular, you should never omit the Σ when describing whether or not
an infinite series converges.

Now, we list some elementary results about convergence of series. They should
remind you of similar results for improper integrals (which should make some
sense, since integration is like “continuous addition”).

Theorem 5.4 (Linearity I) Suppose
∑
an is an infinite series that converges to L

and
∑
bn is an infinite series that converges to M . Then:

1. The series
∑(an + bn) converges to L+M .

2. The series
∑(an − bn) converges to L−M .

3. For any constant k, the series
∑(k an) converges to kL.
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Theorem 5.5 (Linearity II) Suppose
∑
an is an infinite series that converges to L

and
∑
bn is an infinite series that diverges. Then:

1. The series
∑(an + bn) diverges.

2. The series
∑(an − bn) diverges.

3. For any constant k 6= 0, the series
∑(k bn) diverges.

Theorem 5.6 (Linearity III) Suppose
∑
an is an infinite series that diverges and∑

bn is an infinite series that diverges. Then:

1. The series
∑(an + bn) might converge or diverge.

2. The series
∑(an − bn) might converge or diverge.

Essential content of these three theorems

Linearity I: “convergent ± convergent = convergent”
“constant times convergent = convergent”

Linearity II: “convergent ± divergent = divergent"
“nonzero constant times divergent = divergent”

Linearity III: “divergent ± divergent = unknown"

(These are the same maxims that applied to improper integrals.)

Theorem 5.7 (Starting Index is Irrelevant) Suppose
∞∑

n=M1
an is an infinite series.

Then, so long as all the terms are defined, for any constant M2 we have:

1.
∞∑

n=M1
an converges if and only if

∞∑
n=M2

an converges.

2.
∞∑

n=M1
an diverges if and only if

∞∑
n=M2

an diverges.

NOTE: Suppose that
∞∑

n=M1
an converges. Then since the starting index is ir-

relevant, then
∞∑

n=M2
an also converges. But in general, these two series do not

converge to the same sum, as we see in the next example.
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EXAMPLE 7

We may see later why
∞∑
n=2

n

3n = 5
12 and

∞∑
n=2

n2

3n = 7
6 . Assuming these two facts,

compute the sum of each of these series:

a)
∞∑
n=0

n

3n

b)
∞∑
n=4

12n2

3n

c)
∞∑
n=2

(
4n− 3n2

3n

)

d)
∞∑
n=2

18n2

3n+3
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5.5 Changing indices
MOTIVATING EXAMPLE

Write out each of the following two series:

∞∑
n=2

1
n+ 3

∞∑
n=1

1
n+ 4

It is very useful to master the ability to change the starting index of a series (see
Example 12 two pages from now for one reason why).

EXAMPLE 8

Rewrite the infinite series
∞∑
n=3

(n− 1)4

3n so that its starting index is n = 1.

Solution # 1: Write the series out, then put it back into Σ-notation.

Solution # 2: Perform a substitution which replaces “old n” with “new n”.
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EXAMPLE 9

Rewrite the infinite series
∞∑
n=1

4(n+ 2)5

nn
so that its starting index is n = 0.

EXAMPLE 10

Rewrite the infinite series
∞∑
n=0

(−1)n
n4 + 1 so that its starting index is n = 2.

EXAMPLE 11

Rewrite the infinite series
∞∑
n=3

nn−1

2n2 + n
so that its starting index is n = 1.

Solution: the series used to start at 1 + 2 = 3 and now should start at 1.

So we want “new n” +2 = “old n”, i.e. we replace n with n+ 2.
Therefore

∞∑
n=3

nn−1

2n2 + n
=

∞∑
n+2=3

(n+ 2)n+2−1

2(n+ 2)2 + n+ 2 =
∞∑
n=1

(n+ 2)n+1

2(n+ 2)2 + n+ 2 .
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EXAMPLE 12
Earlier in this chapter, we found that

∞∑
n=0

(1
2

)n
=
∞∑
n=0

1
2n = 1 + 1

2 + 1
4 + 1

8 + · · · = 1
1− 1

2
= 2.

Use this fact to compute the following sums:

1.
∞∑
n=3

1
2n

Solution # 1: add/remove terms Solution # 2: change indices

2.
∞∑

n=−1

4
2n

∞∑
n=−1

4
2n

3.
∞∑
n=2

( 1
2n + 3

2n+1

) ∞∑
n=2

( 1
2n + 3

2n+1

)
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5.6 The Comparison Test for series
Using the same logic we used with improper integrals, we get the following theo-
rem:

Theorem 5.8 (Comparison Test) Suppose 0 ≤ an ≤ bn for all n. Then:

1. If the infinite series
∑

an diverges, then
∑

bn diverges.

2. If the infinite series
∑

bn converges, then
∑

an converges.

Remarks (these should remind you of similar remarks about the Comparison Test
for improper integrals):

1. The Comparison Test is only useful for series where all the terms are positive.
No subtraction allowed!

2. Be very careful with the logic!

Thinking of
∑

an as the “small series” and think of
∑

bn as the “big series”:

What you can do with the Comparison Test:

• You can conclude that the small series converges.
• You can conclude that the big series diverges.

What you cannot do with the Comparison Test:

• You cannot conclude that the big series converges.
• You cannot conclude that the small series diverges.

Idea: Use this test with series that are similar to a “simpler” series (usually the
simpler series is a p−series or a geometric series (see the next chapter)). Reason as
follows:

the
given
series

≤
the

“simpler”
series

the
“simpler”

series
≤

the
given
series

the “simpler”
series

converges

Conclusion:
By the Comparison

Test, the given series
converges.

No conclusion can
be drawn from the
Comparison Test

the “simpler”
series

diverges

No conclusion can
be drawn from the
Comparison Test

Conclusion:
By the Comparison

Test, the given series
diverges.
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Classes of series which suggest the use of the Comparison Test:

1. Series whose terms contain addition or subtraction in the denominator:

�
4+ ?

≤ �
4
,

�
4+ ?

≤ �
?

�
4− ?

≥ �
4

2. Series whose terms contain sines and cosines:

−1 ≤ cos� ≤ 1 − 1 ≤ sin� ≤ 1

EXAMPLE 13
Determine, with appropriate justification, whether the series

∞∑
n=1

5
2n + n3 + 4

converges or diverges.
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5.7 Harmonic and p-series
Terminology

Recall: When studying the improper integrals called p-integrals, we saw that

∫ ∞
1

1
xp
dx

{
converges if p > 1
diverges if p ≤ 1

Question: If we looked at similar-looking series
∞∑
n=1

1
np

, would these series have

the same behavior as the integrals?

Definition 5.9 An infinite series is called a p−series it is of the form
∑ 1

np
for some

constant p > 0.

The p-series with p = 1 has a special name:

Definition 5.10 The harmonic series is the infinite series

∞∑
n=1

1
n

= 1 + 1
2 + 1

3 + 1
4 + 1

5 + ...

A harmonic series is any infinite series of the form

∑ A

Bn+ C

where A,B and C are constants (with B 6= 0).

EXAMPLE 14
Determine if each given series is a p-series; if it is, give the value of p. Also deter-
mine if the series is harmonic.

a)
∞∑
n=1

1
n6

b)
∞∑
n=4

1√
n

c)
∞∑
n=3

n2

d)
∞∑
n=1

1
n

e)
∞∑
n=2

1
3n+ 1

f)
∞∑
n=2

1
4n
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Divergence of harmonic series

Theorem 5.11 The harmonic series
∞∑
n=1

1
n

diverges.

PROOF We will use the Comparison Test to argue this. Let bn = 1
n

so that

∞∑
n=1

1
n

=
∞∑
n=1

bn

= 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 + 1

9 + · · ·

= 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · ·+ 1
8 + 1

9 + · · ·+ 1
16 + 1

17 + · · · 1
32 + 1

25 + 1 + · · ·+ 1
26 + 1

26 + 1 + · · ·+ 1
27 + · · ·

>
1
2 + 1

2 + 1
4 + 1

4 + 1
8 + · · ·+ 1

8 + 1
16 + · · ·+ 1

16 + 1
32 + · · · 1

32 + 1
26 + · · ·+ 1

26 + 1
27 + · · ·+ 1

27 + · · ·

Notice that
∑

an =

Since 0 ≤ an ≤ bn, by the Comparison Test,
∞∑
n=1

1
n

also diverges. �

Theorem 5.12 Any harmonic series
∑ A

Bn+ C
diverges.

PROOF First, ∑ A

Bn+ C
=
∑ A

B(n+ C
B

)
= A

B

∑ 1
n+ C

B

.

Now, change indices by letting “new n” be “old n” +C
B

.

This turns the series into
A

B

∑ 1
n

.
We have a constant times the harmonic series, which diverges. �
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Convergence of p-series for p > 1

Theorem 5.13 When p > 1, the p-series
∞∑
n=1

1
np

converges.

PROOF We will again use the Comparison Test.
Suppose p > 1. Now, let r = 21−p. Since p > 1, 1− p < 0 so r = 21−p < 20 = 1.
Therefore

∞∑
n=0

rn = 1 + r + r2 + r3 + ... converges to
1

1− r .

(The above series will be our “
∑
bn” in the Comparison Test.)

Let an = 1
np

, so that

∞∑
n=1

1
np

=
∞∑
n=1

an

= 1 + 1
2p + 1

3p + 1
4p + 1

5p + 1
6p + 1

7p + 1
8p + 1

9p + · · ·

= 1 + 1
2p + 1

3p + 1
4p + · · ·+ 1

7p + 1
8p + · · ·+ 1

15p + 1
16p + · · · 1

31p + 1
(25)p + · · ·+ 1

(26 − 1)p + 1
(26)p + · · ·

< 1 + 1
2p + 1

2p + 1
4p + · · ·+ 1

4p + 1
8p + · · ·+ 1

8p + 1
16p + · · · 1

16p + 1
(25)p + · · ·+ 1

(25)p + 1
(26)p + · · ·

= 1 + 2
2p + 4

4p + 8
8p + 16

16p + 25

(25)p + 26

(26)p + · · ·

= 1 + 21−p + 41−p + 81−p + 161−p + (25)1−p + (26)1−p + · · ·

= 1 + 21−p +
(
22)1−p + (23)1−p + (24)1−p + (25)1−p + (26)1−p + · · ·

= 1 + 21−p +
(
21−p)2 +

(
21−p)3 +

(
21−p)4 +

(
21−p)5 +

(
21−p)6 + · · ·

= 1 + r + r2 + r3 + r4 + r5 + r6 + · · ·

=
∑

bn.

Therefore, by the Comparison Test, since
∑

bn converges and 0 ≤ an ≤ bn,
∞∑
n=1

1
n2 also converges as well. �
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The general p-series test

Theorem 5.14 (p-Series Test) If
∑

an =
∑ 1

np
is a p−series, then

1.
∑

an =
∑ 1

np
converges if p > 1.

2.
∑

an =
∑ 1

np
diverges if p ≤ 1.

PROOF The only thing we haven’t proven yet is the second statement.

We know
∑ 1

n
diverges (since it is harmonic).

If p ≤ 1, then np ≤ n1 = n, so 0 ≤ 1
n
≤ 1
np

.

So by the Comparison Test,
∑ 1

np
also diverges. �

Examples (some applying the Comparison Test)
EXAMPLE 15

Determine, with appropriate justification, whether each series converges or di-
verges:

a)
∑ −1

4n

b)
∑ 3

n
√
n

c)
∑( 7

5n3 −
2
n8

)

d)
∑( 4

n8 + 2
3n+ 5

)
Solution:

∑( 4
n8 + 2

3n+ 5

)
= 4

∑ 1
n8 +

∑ 2
3n+ 5 .

The first sum converges (it is a p-series with p = 8 > 1).

But, the second series diverges (it is harmonic).

So the entire series is the sum of a convergent and divergent series, which
diverges.
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e)
∑ 2 3
√
n

5
√
n

f)
∞∑
n=3

7
(n− 3)5

g)
∞∑
n=1

3n+ 7n2

12n6

Solution:
∑ 3n+ 7n2

12n6 =
∑(

3n
12n6 + 7n2

12n6

)
= 1

4
∑ 1

n5 + 7
12
∑ 1

n4

This is the sum of two convergent p-series (p = 5 > 1 for the first, p = 4 > 1
for the second), so this series converges.

h)
∞∑
n=1

5
n3 + 3n+ 8

i)
∞∑

n=10

2
3
√
n− 3
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j)
∞∑
n=1

3− cosn
n

k)
∞∑
n=1

( 1
n
− 1
n+ 4

)

l)
∞∑
n=0

n

n4 + 1

Solution: Notice 0 ≤ n

n4 + 1 ≤
n

n4 = 1
n3 .

∑ 1
n3 converges (it is a p-series with p = 3 > 1).

⇒
∑

an converges by the Comparison Test.
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5.8 Homework exercises
Exercises from Sections 5.2 to 5.3

1. Consider the infinite series
∞∑
n=1

1
n2 + n

.

a) Perform a partial fraction decomposition on the expression
1

n2 + n
.

b) Substitute your partial fraction decomposition from part (a) into the se-
ries. Then, write out the terms you would have to add to compute the
N th partial sum SN .

c) Simplify the expression for SN you found in part (b), by cancelling terms
and seeing what is left.

d) Compute the sum of this series.

2. Compute the sum of the series
∞∑
n=1

4
n2 + 2n .

Hint: Repeat the steps used in Exercise 1.

In Exercises 3-14, you are given an infinite series, written out with + signs. Write
each given series in Σ−notation.
Note: there are multiple correct answers to these questions.

3. 1− 1
3 + 1

5 −
1
7 + 1

9 − ...

4.
3
25 + 4

125 + 5
625 + 6

55 + 7
56 + ...

5. 1 + 1
3 + 1

9 + 1
27 + 1

81 + 1
35 + ...

6. −2 + 2− 2 + 2− 2 + 2− 2 + 2...

7.
4
8 + 7

15 + 10
22 + 13

29 + 16
36 + 19

43 + ...

8. −2
9 −

2
25 −

2
49 −

2
81 −

2
121 − ...

9.
1
16 −

1
64 + 1

44 −
1
45 + ...

10. 1 + 1 + 1
2 + 1

6 + 1
24 + 1

120 + 1
720 + ...

11.
1
14 + 1

17 + 1
20 + 1

23 + ...
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12.
1
2 + 2

4 + 3
8 + 4

16 + 5
32 + ...

13.
1
3 −

1
2 · 32 + 1

3 · 33 −
1

4 · 34 + ...

14.
1
2 + 1

6 + 1
12 + 1

20 + ...

In Exercises 15-22, you are given an infinite series in Σ−notation. For each series,
find the third term of the series (if it exists), find the ninth term of the series, and
find the fourth partial sum of the series.

15.
∞∑
n=1

2n− 1
n

16.
∞∑
n=0

[1 + (−1)n]

17.
∞∑
n=4

1
n

18.
∞∑
n=1

cos(πn)
n+ 1

19.
∞∑
n=0

n!

20.
∞∑
n=2

(−1)n 3
2n− 1

21.
∞∑
n=1

1
n2 + n

22.
∞∑
n=1

(−1)n
n

Exercises from Sections 5.4 to 5.5

In Exercises 23-30, you are given an infinite series. Rewrite each series in Σ−notation
such that the initial term of each rewritten series corresponds to the given index.

23.
∞∑
n=3

4
(n+ 1)(n+ 2) ; starting index 0

24.
∞∑
n=2

32n−1

n! ; starting index 4

25.
∞∑
n=1

(−1)n+1

n2n ; starting index 2

26.
∞∑
n=5

2n− 1
(n− 2)3 − n

; starting index 1

27.
∞∑
n=1

(−1)n 1
e−3n ; starting index 0

28. 18− 6 + 2− 2
3 + 2

9 −
2
27 + ...; starting index 3
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29. 2 + 2
3 + 2

5 + 2
7 + 2

9 + ....; starting index 4

30.
3
8 −

4
11 + 5

14 −
6
17 + 7

20 −
8
23 + ...; starting index 0

In Exercises 31-38, you are given an infinite series that converges to some number.
Then you are given a second infinite series which relates to the first series in some
way. Compute the sum of the second series.

31. Given
∞∑
n=0

1
n! = e, compute

∞∑
n=2

1
n! .

32. Given
∞∑
n=1

1
n2 = π2

6 , compute
∞∑
n=1

3
n2 .

33. Given
∞∑
n=0

(−1)nπ2n

(2n)! = −1, compute
∞∑
n=2

(−1)n3π2n

(2n)! .

34. Given
∞∑
n=0

e−22n
n! = 1, compute

∞∑
n=3

2n+3

n! .

35. Given
∞∑
n=0

5n
n! = e5, compute

∞∑
n=2

5n
(n+ 2)! .

36. Given
∞∑
n=0

1
2n = 2, compute

∞∑
n=−3

3
2n .

37. Given
∞∑
n=0

n
(1

2

)n
= 2, compute

∞∑
n=2

n
(1

2

)n+2
.

38. Given 1− 1
3 + 1

5 −
1
7 + 1

9 − ... = π

4 , compute
2
7 −

2
9 + 2

11 −
2
13 + 2

15 − ....

In Exercises 39-46, you are to assume that

∞∑
n=0

n2

4n = 7
27 and

∞∑
n=0

n

4n = 7
36 and

∞∑
n=0

1
7n = 7

6 .

Using these facts, compute each expression:

39.
∞∑
n=0

3n2 + 8
7n

40.
∞∑
n=2

3n
5 · 7n

41.
∞∑

n=−1

1
20 · 7n

42.
∞∑
n=0

(n+ 3)2

7n
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43.
∞∑
n=3

1
7n−2

44.
∞∑
n=0

n+ 4
7n+1

45.
∞∑
n=0

n2

7n+3

46.
∞∑
n=1

n3

7n −
∞∑
n=2

n3

7n

Exercises from Sections 5.6 to 5.8

In Exercises 47-60, determine whether each given series converges or diverges.
Be sure to adequately justify your reasoning, giving arguments like those in the
examples of this text.

47.
∞∑
n=1

3
n4

48.
∞∑
n=1

3
5n− 3

49.
∞∑
n=1

1√
n 3
√
n

50.
∞∑
n=1

−3
2
√
n 3
√
n 4
√
n

51.
∞∑
n=1

( 4
n5 + 2

n

)

52.
∞∑
n=2

(n− 1)−1/2

53.
∞∑
n=4

1
ln(2n)

54.
∞∑
n=1

2 + cos(3n)
n

55.
∞∑
n=0

3 + cos(2n)
4n2

56.
∞∑
n=0

3 + cos(2n)
4 3
√
n

57.
∞∑
n=2

3 + n3

n5 + 4

58.
∞∑
n=1

4 + sin(n2 + 2n)
3
√
n5 + 1

59.
∞∑
n=3

(
3

n
√
n

+
√
n

5n3

)

60.
∞∑
k=1

(1
k
− 1
k + 1

)

Answers

Note: there are multiple correct answers to numbers 3-12.

1. a)
1

n2 + n
= 1
n

+ −1
n+ 1

b) SN =
(
1− 1

2

)
+
(

1
2 −

1
3

)
+
(

1
3 −

1
4

)
+ · · ·+

(
1
N
− 1

N+1

)
c) SN = 1− 1

N+1

d)
∞∑
n=1

1
n2 + n

= lim
N→∞

SN = 1
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2. 3

3.
∞∑
n=0

(−1)n
2n+ 1

4.
∞∑
n=3

n

5n−1

5.
∞∑
n=0

1
3n

6.
∞∑
n=1

2 · (−1)n

7.
∞∑
n=1

3n+ 1
7n+ 1

8.
∞∑
n=1

−2
(2n+ 1)2

9.
∞∑
n=2

(−1
4

)n

10.
∞∑
n=0

1
n!

11.
∞∑
n=1

1
3n+ 11

12.
∞∑
n=1

n

2n

13.
∞∑
n=1

(−1)n+1

n3n

14.
∞∑
n=1

1
n(n+ 1)

15. third term is
5
3 ; ninth term is

17
9 ; fourth partial sum is

71
12 .

16. third term is 0; ninth term is 0; fourth partial sum is 6.

17. third term is 0; ninth term is
1
9 ; fourth partial sum is

1
4 .

18. third term is
−1
4 ; ninth term is

−1
10 ; fourth partial sum is

−13
60 .

19. third term is 6; ninth term is 362880; fourth partial sum is 34.

20. third term is
−3
5 ; ninth term is

−3
17 ; fourth partial sum is

29
35

21. third term is
1
12 ; ninth term is

1
90 ; fourth partial sum is

4
5

22. third term is
−1
3 ; ninth term is

−1
9 ; fourth partial sum is

−7
12

23.
∞∑
n=0

4
(n+ 4)(n+ 5)

24.
∞∑
n=4

32n−5

(n− 2)!

25.
∞∑
n=2

(−1)n
(n− 1)2n−1

26.
∞∑
n=1

2n+ 7
(n+ 2)3 − n− 4

27.
∞∑
n=0

(−1)n+1 1
e−3n−3

28.
∞∑
n=3

(−1)n+1486
(1

3

)n

29.
∞∑
n=4

2
2n− 7

30.
∞∑
n=0

(−1)n n+ 3
3n+ 8

31. e− 2
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5.8. Homework exercises

32.
π2

2

33. −6 + 3
2π

2

34. 8e2 − 40

35.
1
25e

2 − 118
75

36. 48

37.
3
8

38.
π

2 −
26
15

39.
91
9

40.
13
420

41.
49
120

42.
322
27

43.
1
6

44.
25
36

45.
1

1323

46.
1
7

47. converges

48. diverges

49. diverges

50. converges

51. diverges

52. diverges

53. diverges

54. diverges

55. converges

56. diverges

57. converges

58. converges

59. converges

60. converges
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Chapter 6

Geometric series and the Ratio
Test

6.1 Definitions
By far, the most important class of infinite series are geometric series. We first en-
countered this class of series when we discussed the race between Usain Bolt and
me at the beginning of Chapter 5.

Definition 6.1 A series
∑
an is called geometric if there exists a real number r such

that an+1 = ran for all n. The number r is called the common ratio of the series.

Why is r called the “common ratio”?

Consequence: suppose the initial index of the geometric series is n = 0. Then, by
repeated application of the formula an+1 = ran, we see:

a0

a1 =

a2 =

a3 = .
...
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6.1. Definitions

On the previous page, we saw that for any geometric series with initial term a0 and
common ratio r, the nth term an is

an = a0r
n.

If we change notation and call the number a0 just “a”, we get the following impor-
tant characterization of geometric series:

Theorem 6.2 (Characterization of geometric series) Every infinite geometric se-
ries can be written in the standard form

∞∑
n=0

arn

where a is the initial term of the series and r is the common ratio of the series.

In other words, every geometric series is the sum of a constant times all the non-
negative powers of the common ratio.

If you are given a geometric series, you can always rewrite the series in the stan-
dard form given in the theorem above, where the starting index is n = 0.

To study a geometric series, your first step should almost always be to rewrite the
series in this standard form. To do this, simply write the terms out and factor out
the initial term of the series.

EXAMPLE 1
For each given series, determine if the series is geometric. If it is, write the series
in standard form and identify the common ratio of the series.

a)
∞∑
n=1

3 ·
(7

8

)n+1
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6.2. The Geometric Series Test

b) 2− 4
3 + 8

9 −
16
27 + 32

81 − ...

b) 1 + 1
2 + 1

3 + 1
4 + ...

6.2 The Geometric Series Test
TWO OF OUR BIG PICTURE QUESTIONS

Classification problem: When does a geometric series converge (or diverge)?

Computation problem: If a geometric series converges, what is its sum?

These questions are answered by a theorem called the Geometric Series Test:
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6.2. The Geometric Series Test

Theorem 6.3 (Geometric Series Test (GST)) Consider a geometric series written

in standard form
∞∑
n=0

arn. Then:

1. The series converges if and only if |r| < 1 (or if a = 0).

2. The series diverges if and only if |r| ≥ 1.

Furthermore, if the series converges, its sum is
a

1− r .

PROOF OF THE GEOMETRIC SERIES TEST

x There are several cases to consider:

x Case 1: a = 0

x

In this case, every term of the series is
xxx

x
.

Therefore the N th partial sum of the series is

SN =
N∑
n=0

arn =
N∑
n=0

0 = 0

and since lim
N→∞

SN = lim
N→∞

0 = xxx

x
, the series to

xxx

x
.

x Case 2: a 6= 0, r = 1

x
In this case, SN =

N∑
n=0

arn =
N∑
n=0

a1n =
N∑
n=0

a = a+ a+ ...+ a = xxxxxxx

x
.

Therefore lim
N→∞

SN = lim
N→∞

a(N + 1) = xxxxxx

x
so the series

∑
an diverges.

x Case 3: a 6= 0, r = −1

x

In this case, SN =
N∑
n=0

arn =
N∑
n=0

a(−1)n = a− a− a+ a− ...± a

x=



x
x

x
x
x
x
x
x

x

.

Therefore lim
N→∞

SN
xxxxxx

x
(SN alternates between 0 and a),

so the series
∑
an diverges.

x (proof continues on next page)
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6.2. The Geometric Series Test

x Case 4: a 6= 0, |r| 6= 1

x

Here,

SN =
N∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·+ arN

Therefore lim
N→∞

SN = lim
N→∞

a
1− rN+1

1− r = a

1− r lim
N→∞

(1− rN+1)

x =



x x if |r| < 1

x if |r| > 1

x =



x x if |r| < 1

x if |r| > 1

Therefore
∞∑
n=0

arn =


a

1− r if |r| < 1
diverges if |r| ≥ 1.

x This takes care of all possible cases, so the proof of the GST is complete. �
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6.2. The Geometric Series Test

Remarks on the proof of the Geometric Series Test

Remark 1: Since you can always factor a constant a out of a series, the simplest
way to state the content of the Geometric Series Test is as follows:

∞∑
n=0

rn

 = 1
1− r if |r| < 1

diverges if |r| ≥ 1
(i.e.

∞∑
n=0

arn = a

1− r for |r| < 1)

If you learn nothing else from me this semester, learn this fact above.

Remark 2: The geometric series with a = 1 and r = −1 is the Dirichlet series

∞∑
n=0

1(−1)n = 1− 1 + 1− 1 + 1− 1 + 1− 1 + ...

which we encountered in Chapter 5. According to the Geometric Series Test, the
Dirichlet series diverges (since |r| = | − 1| = 1), so none of the values for this sum
obtained earlier by various regrouping procedures are correct. This series diverges
and cannot be legally added.

Remark 3: In the context of proving the Geometric Series Test, we proved a for-
mula for the partial sums of a geometric series.

We restate this formula as a theorem, as this result will be used in examples that
follow.

In particular, this formula holds in any situation where r 6= 1 (even if |r| > 1):

Theorem 6.4 (Finite Sum Formula for a Geometric Series) Consider a geomet-

ric series written in standard form
∞∑
n=0

arn where r 6= 1. Then the N th partial sum

satisfies
N∑
n=0

arn = a[1 + r + r2 + r3 + ...+ rN ] = a(1− rN+1)
1− r .

If a = 1, the above formula reduces to

N∑
n=0

rn = 1 + r + r2 + r3 + ...+ rN = 1− rN+1

1− r .
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6.2. The Geometric Series Test

EXAMPLE 2
For each given (finite or infinite) series:

i. Determine if the series is geometric.
ii. If the series is geometric, determine if it series converges or diverges.

iii. If the geometric series converges, compute its sum.

a)
2
3 + 2

27 + 2
35 + 2

37 + ...

b) 4− 2 + 1− 1
2 + 1

4 −
1
8 + ...
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6.2. The Geometric Series Test

c) 2 + 6 + 18 + 54 + ...

d) 2 + 6 + 18 + 54 + ...+ 2 · 335

e)
15∑
n=2

4
(2

3

)n

f) 1− 1
2 + 1

3 −
1
4 + 1

5 − ...
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6.2. The Geometric Series Test

g)
∞∑
n=0

(−2
5

)n
Solution: This geometric series is already in standard form.

We have a = 1, r = −2
5 so this series converges to

a

1− r = 1
1− (−2/5) = 1

7/5 = 5
7 .

h)
∞∑
n=1

2 · 15n+3

72n−1

i)
∞∑
n=2

7(−1)n32n−1

5 · 24n+3

At this point, we have
∞∑
n=0

7 · 33

5 · 211

(−9
16

)n
= 7 · 33

5 · 211 ·
1

1−
(
−9
16

) = 7 · 33

5 · 211 ·
16
25 .
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6.3. Applications of geometric series

6.3 Applications of geometric series
Investments

EXAMPLE 3
Suppose you invest $1000 each year in an account which earns 5% interest each
year. How much will you have in your account after 30 years (assume that you
make your annual deposit on January 1, and that “after 30 years” means “on De-
cember 31 of the 30th year”)?

To answer this question, we first have to start with a side question.

Side question: Suppose you invest $P once into an account which pays interest
rate R, compounded once per time period. How much do you have after n time
periods?

Answer to side question:

After 0 time periods:

After 1 time period:

After 2 time periods:
...

After n time periods:

Back to the original problem:

Initial deposit:

Second deposit:

...

Last deposit:
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6.3. Applications of geometric series

Repeating decimals
EXAMPLE 4

Write the repeating decimal .243737373737... as a fraction in lowest terms.

= .24 + .0037 + .000037 + .00000037 + · · ·

= 24
100 + 37

104 + 37
106 + 37

108 + · · ·

= 24
100 +

∞∑
n=2

37
102n

= 24
100 + 37

∞∑
n=2

1
100n

= 24
100 + 37

1002

∞∑
n=0

( 1
100

)n

= 24
100 + 37

10000 ·
1

1− 1
100

= 24
100 + 37

10000 ·
100
99

= 24
100 + 37

9900

= 24 · 99 + 37
9900 = 2413

9900 .
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6.3. Applications of geometric series

Pharmacokinetics
EXAMPLE 5

Suppose you give a patient a 10 mg dose of a drug daily. If the patient’s bodily
functions remove 90% of whatever amount of that drug is in the patient’s body,

a) How much will be in the patient’s body after 14 days (just before he takes the
15th dose)?

b) How much will end up in the patient’s body (just before he takes each dose)
if he takes the dose indefinitely?
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6.3. Applications of geometric series

Fractal geometry
EXAMPLE 6

The Koch snowflake is a figure constructed by the following procedure: first, start
with an equilateral triangle of side length 1 (the area of such a triangle is

√
3

4 ).

Second, divide each side of the trangle into three segments of equal length and
attach an equilateral triangle to the middle of each segment. Then erase the middle
of each segment. After doing this, you get the following figure:

Third, repeat this procedure indefinitely. This means that at each stage, you take
each side of the figure, divide it into thirds, attach an equilateral triangle to the
middle third of each segment, and the erase the middle of each previous segment.
If you carry out this procedure, you get the following sequence of figures in the
next three steps:

→ → →

Repeating this procedure infinitely many times produces a figure called the Koch
snowflake.

a) What is the perimeter of the Koch snowflake?

b) What is the area enclosed by the Koch snowflake?

210



6.3. Applications of geometric series
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a) perimeter of Koch snowflake =

b) total area of Koch snowflake =
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6.4. The Ratio Test

6.4 The Ratio Test
Recall our three “big picture” questions with infinite series:

General questions related to infinite series

Given an infinite series
∑
an:

1. Classification problem: Does
∑
an converge or diverge?

2. Computation problem: If
∑
an converges, what is its sum?

3. Rearrangement problem: When, if ever, can you legally rearrange or
regroup the terms of

∑
an without affecting its convergence?

In this section we address (in part) the first of these questions - determining whether
or not a series converges.

Our overall approach to the classification problem is to develop a bunch of “tests”
which tell us whether or not certain series converge or diverge. The trick is to
figure out which test(s) to use on which series.

We have seen a few tests already: the GST, the p-series test, and the Comparison
Test. In this section we develop what is probably the most useful test, based on
reasoning coming from geometric series.

Developing the Ratio Test

Recall: a series
∑
an is called geometric if there exists a common ratio r, i.e.

a1

a0
= a2

a1
= a3

a2
= a4

a3
= · · · = r.

All geometric series can be rewritten as
∞∑
n=0

arn; by the GST we know

∞∑
n=0

arn

 = a

1− r if |r| < 1
diverges if |r| ≥ 1

.

Now let
∑
an be any (not necessarily geometric) infinite series. In this setting

a1

a0
,
a2

a1
,
a3

a2
,
a4

a3
, etc.
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6.4. The Ratio Test

are not likely to be the same number. However, it may be the case that these ratios
get closer and closer to some number ρ (this is the Greek letter “rho”), i.e.

lim
n→∞

an+1

an
= ρ.

This means that for large n,
an+1

an
≈ ρ so

∑
an should behave like a geometric series

with common ratio very, very close to ρ.

Consequences of this reasoning:

1. If ρ > 1, then
∑
an behaves like a geometric series with |r| > 1, i.e.

2. If ρ < 1, then
∑
an behaves like a geometric series with |r| < 1, i.e.

3. If ρ = 1, then
∑
an behaves like a geometric series with r ≈ 1.

The conclusion of all this logic is what is called the Ratio Test:

Theorem 6.5 (Ratio Test) Suppose
∑

an is an infinite series; let ρ = lim
n→∞

|an+1|
|an|

.

Then:

1. If ρ < 1, then
∑

an converges.

2. If ρ > 1, then
∑

an diverges.

3. If ρ = 1, or if ρ DNE, then this test tells you nothing.

Remarks:

1. Notice in this theorem we inserted absolute value signs around the terms;
this is a computational convenience that will help simplify some examples.

2. Since we are taking the limit of ratios which are positive, the value of ρ must
be nonnnegative. If you get ρ < 0, you have done something wrong (you
probably forgot the absolute values inside the limit).
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6.4. The Ratio Test

EXAMPLE 7

Determine whether or not the series
∞∑
n=1

5n
n7n converges or diverges.

Types of series for which the Ratio Test works well

Types of series for which the Ratio Test will NOT work well
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6.4. The Ratio Test

Remarks on simplifying expressions in the Ratio Test

The computation of ρ in the Ratio Test often contains either a simplification of
exponents of the form

cn+1

cn
= c or

cn

cn+1 = 1
c

etc.

or a simplification of factorials of the form

n!
(n+ 1)! = 1

n+ 1 or
(n+ 1)!
n! = n or

(2n)!
(2n+ 2)! = 1

(2n+ 2)(2n+ 1) etc.

When simplifying factorial expressions, it is often useful to write out the terms
being multiplied to see how they will be cancelled. For example, the last equal-
ity above comes from

(2n)!
(2n+ 2)! = 2n(2n− 1)(2n− 2) · · · 3 · 2 · 1

(2n+ 2)(2n+ 1)2n(2n− 1)(2n− 2) · · · 3 · 2 · 1

= 1
(2n+ 2)(2n+ 1) .

In general,
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6.4. The Ratio Test

EXAMPLE 8
Determine whether or not each series converges or diverges.

a)
∞∑
n=0

2n
n!
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6.4. The Ratio Test

b)
∞∑
n=0

(−1)nn224n

32n
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6.4. The Ratio Test

c)
∞∑
n=0

(2n)!
(n!)2

Solution: Since the series has only multiplication/division and contains fac-
torials, we use the Ratio Test:

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣∣(2(n+ 1))!
((n+ 1)!)2

∣∣∣∣∣∣∣∣∣∣(2n)!
(n!)2

∣∣∣∣∣
= lim

n→∞

(2(n+ 1))!
((n+ 1)!)2 ·

(n!)2

(2n)!

= lim
n→∞

(2n+ 2)!
(n+ 1)!(n+ 1)! ·

n!n!
(2n)!

= lim
n→∞
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6.4. The Ratio Test

d)
∞∑
n=0

(−1)nn!
nn
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6.4. The Ratio Test

e)
∞∑
n=2

2n
n2 − 1
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6.5. Homework exercises

6.5 Homework exercises
Exercises from Section 6.2

In Exercises 1-20, find the sum of each finite or infinite series (assuming the series
converges). If the series diverges, say so.

1.
∞∑
n=1

(1
5

)n

2.
∞∑
n=0

−3
6n

3. 9− 9
2 + 9

4 −
9
8 + 9

16 −
9
32 + ...

4.
17∑
n=3

2
5n

5.
11∑
s=2

( 3s
42s

)

6. 2 + 4 + 8 + 16 + ...+ 2100

7.
∞∑
n=3

(−4
3

)n

8.
∞∑
n=2

6n−1

7n+1

9.
∞∑
n=0

[ 3
2n +

(2
3

)n]

10.
∞∑
n=1

[
5

(−1)n3n −
(3

5

)n+2]

11. 80 + 40 + 20 + 10 + 5 + 5
2 + 5

4 + ...

12.
∞∑
t=0

3 · 8t
52t−3

13.
∞∑
n=2

2 · 32n−1

5 · 24n+3

14.
∞∑
y=0

3−y

15.
∞∑
n=1

(2
5

)−n

16.
∞∑
n=1

41−2n

17.
∞∑
n=1

3n − 5
6n

18.
∞∑
n=0

(1
3

)n [
2 +

(1
4

)n]

19.
∞∑
x=0

(1
8

)x+1 [
22x−3 − 4x+1

]

20.
∞∑
n=0

4n5−n

21. Suppose the initial term of a geometric series is 3 and that the series con-
verges to 2. What is the common ratio of the series?

22. A geometric series with common ratio 2
3 converges to 8. What is the initial

term of the series?
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6.5. Homework exercises

Exercises from Section 6.3

23. You invest $250 at the beginning of each month into an account paying 3%
interest, compounded monthly. How much will you have in the account
after 4 years (meaning at the end of 48 months, but before you make your
49th deposit)?

24. You want to invest a fixed amount annually into an account that earns 6%
interest, compounded annually. How much do you need to invest annually
so that you will have $250, 000 after 40 years (before you make your 41st de-
posit)?

25. Write the repeating decimal .71717171717... as a fraction in lowest terms.

26. Write the repeating decimal 1.314314314314... as a fraction in lowest terms.

27. Write the repeating decimal .256161616161... as a fraction in lowest terms.

28. Write the repeating decimal .132032032032032... as a fraction in lowest terms.

29. A ball is dropped from a height of 15 ft onto a concrete slab. Each time the
ball bounces, it rebounds directly to 2

3 of its previous height. Find the total
distance the ball travels before it comes to rest.

30. A worker puts in 16 units of effort on his first day at work. But he gets a little
lazier each day, and he only puts in 7

8 as much effort on each day as he did
the previous day.

a) What is the amount of effort the worker puts in on his 20th day at work?

b) What is the total amount of effort the worker puts in during his first 12
days at work?

c) If the worker continues to work every day forever, what is the total
amount of effort he puts in?

31. Suppose a patient takes 25 mg of a certain drug each day. If 80% of the drug
is excreted by bodily functions each day, how much of the drug will be in the
patient’s body immediately before she takes her 22nd dose of the medicine?

32. Suppose your drinking water contains poison, and as such you ingest 0.25
mg of the poison each day. Although your body gets rid of 10% of the poison
in your body each day, when you accumulate 2 mg of the poison in your
system you will be dead. How long do you have before you need to stop
drinking your water?
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6.5. Homework exercises

33. Suppose your drinking water contains poison, and as such you ingest 2 mg
of the poison each day. Suppose further that when you accumulate 250 mg
of the poison in your system you will be dead. What percent of the poison in
your system does your body need to excrete daily in order to never die from
the poison? (Assume that you will live forever if the poison doesn’t kill you.)

34. In the figure below, the triangle indicated by the solid lines is an isoceles right
triangle whose height is 1 unit. All the red dashed line segments drawn are
perpendicular to either the base of the triangle or the hypotenuse. If the red
dashed line segments continue indefinitely, find the total length of the red
dashed line segments.

1

1

35. The T-square is a shape similar to the Koch snowflake that is constructed as
follows:

• Stage 0: start with a 1 × 1 square (which is colored or filled in). See the
left-most picture below.

• Stage 1: at each corner of the square from Stage 0, draw a square of side
length 1

2 and color those squares in (see the second picture below).
• Stage 2: at each corner of the figure from Stage 2, draw a square of side

length 1
4 and color those squares in.

• Continue like this indefinitely: at Stage n, take the figure from Stage n−1
and draw a square of side length 1

2n ; color those squares in.

The colored region so obtained is called the T-square.

Stage 0 Stage 1 Stage 2 · · · T-square

1

1

1/2

1/2

1/4
1/4

· · ·

a) Let n ≥ 2. How many corners does the shape have after Stage n− 1?

b) How many squares will be drawn in Stage n?
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6.5. Homework exercises

c) How much new area is added to the shape from each new square drawn
in Stage n?

d) What is the total area added to the shape in Stage n?

e) Compute the area enclosed by the T-square.

f) How much net perimeter is added to the shape from each new square
drawn in Stage n?

g) What is the total net perimeter is added to the shape in Stage n?

h) Compute the perimeter of the T-square.

36. In this problem we construct an example of a set called a Cantor set. To do
this:

• Stage 0: start with the interval [0, 1].
• Stage 1: divide the interval [0, 1] into five equal-length pieces, and re-

move the middle piece (i.e. remove the middle fifth of the interval).
This leaves you with two intervals.

• Stage 2: take each interval left after Stage 1, divide that interval into five
equal-length pieces, and remove the middle fifth.

• Continue like this indefinitely: at Stage n, take each interval left from
Stage n−1, divide that interval into five equal-length pieces, and remove
the middle fifth.

The points that are never removed comprise a set called a Cantor set (not
“the” Cantor set).

a) Let n ≥ 1. After Stage n− 1, how many intervals are there?

b) Let n ≥ 1. After Stage n − 1, what is the length of each interval that is
left?

c) During Stage n, what is the length removed from each interval?

d) During Stage n, what is the total length removed?

e) What is the total length of the points in this Cantor set (meaning the
total length of the points that are not removed)?

37. Suppose you roll a fair six-sided die repeatedly.

a) On any one roll, what is the probability that you roll a 6?

b) On any one roll, what the probability that you do not roll a 6?

c) What is the probability that the first time you roll a 6 is on the fifth roll?
Hint: Multiply together the probabilities of what has to happen on each
of the first five rolls.

d) What is the probability that the first time you roll a 6 is on the nth roll?
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6.5. Homework exercises

e) What is the probability that you won’t roll a 6 in the first seven rolls, but
that you will roll a 6 within the first 18th roll?

38. A machine part will fail with probability 1
2000 on the first day it operates.

However, the part starts to wear, so that its probability that the part fails
on each subsequent day is 5% greater than its probability of failure on the
preceding day.

a) What is the probability that the part will fail within 60 days?

b) What is the longest the part will last before it fails for certain?

Exercises from Section 6.4

In Exercises 39-52, determine, with justification, whether or not each series con-
verges or diverges.

39.
∞∑
n=1

(−2)n2−n

40.
∞∑
n=4

7n
n85n

41.
∞∑
n=0

(n!)3

(3n)!

42.
∞∑
n=0

(−1)n42n

7n

43.
∞∑
n=0

nn

n3n!

44.
∞∑
n=0

n2014

1.01n

45.
∞∑
n=1

(−3)nn!
nn

46.
∞∑
n=1

en

n!

47.
∞∑
n=0

1
n! + n2

48.
∞∑
n=0

(−1)nn!2n!
(3n)!

49.
∞∑
n=0

n!(3n)!
[(2n)!]2

50.
∞∑
n=0

1
n(n2)

51.
∞∑
n=4

(2n)2n

(nn)2

52.
∞∑
n=1

[
2n
n! + n43n

5n

]

Answers

1.
1
4

2.
−18

5

3. 6

4.
1
50

[
1−

(1
5

)15]
5.

9
208

[
1−

( 3
16

)10]

6. 2(2100 − 1)
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6.5. Homework exercises

7. diverges

8.
6
49

9. 9

10.
−179
100

11. 160

12.
9375
17

13.
27

2240

14.
3
2

15. diverges

16.
4
15

17. 0

18.
45
11

19.
−31
32

20. 5

21. r = −1
2

22. a0 = 8
3

23. $26, 885.16

24. $1523.95

25.
71
99

26.
1313
999

27.
634
2475

28.
1319
9990

29. 75 ft

30. a) 16
(7

8

)19
units b) 16(8)

[
1−

( 7
8
)12
]

units c) 128 units

31. 6.25 mg

32. 14 days (on day 15, you’ll die).

33. .92%

34. 1 +
√

2

35. a) 4 · 3n

b) 4 · 3n

c)
3
4

( 1
2n
)2

d)
3n+1

4n
e) 10

f)
2
2n

g) 8
(3

2

)n
h) ∞

36. a) 2n−1

b)
(2

5

)n
c)

1
5

(2
5

)n

d) 2n−1
(1

5

)(2
5

)n
e)

1
2

37. a)
1
6

b)
5
6

c)
(5

6

)4 1
6

d)
(5

6

)n−1 1
6

e)
(5

6

)7 [
1−

(5
6

)11]

38. a)
( 1

2000

) 1− 1.0560

−.05
b) The part

will fail by
the 95th day.

39. diverges

40. diverges

41. converges

42. diverges

43. diverges

44. converges

45. diverges

46. converges

47. converges

48. converges

49. diverges

50. converges

51. diverges

52. converges
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Chapter 7

More on infinite series

Recall our general questions with infinite series:

General questions related to infinite series

Given an infinite series
∑
an:

1. Classification problem: Does
∑
an converge or diverge?

2. Computation problem: If
∑
an converges, what is its sum?

3. Rearrangement problem: When, if ever, can you legally rearrange or
regroup the terms of

∑
an without affecting its convergence?

This chapter is motivated by Question 1 above: determining whether or not a series
converges.

It turns out that we will discover the answer to Question 3 as we go along.

227



7.1. Returning to the classification problem

7.1 Returning to the classification problem
The nth-term Test

Idea:

Theorem 7.1 (nth Term Test) Suppose
∑
an is an infinite series. If lim

n→∞
an 6= 0,

then
∑
an diverges.

IMPORTANT:

Note: lim
n→∞

an = 0 if and only if lim
n→∞

|an| = 0. Therefore we can generalize the nth

Term Test as follows:

Theorem 7.2 (nth Term Test, restated) Suppose
∑
an is an infinite series. If

lim
n→∞

|an| 6= 0

(this includes when this limit is∞ or DNE), then
∑
an diverges.
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7.1. Returning to the classification problem

EXAMPLE 1
Determine whether or not the nth Term Test can be used to determine the conver-
gence or divergence of each series.

a)
∞∑
n=0

1
n2 + 1

b)
∞∑
n=1

5
6
√
n5

c)
∞∑
n=0

n+ 1
2n+ 5

d)
∞∑
n=0

sinn
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7.1. Returning to the classification problem

Classifying series according to sign

At this point, we know five basic tests which tell us whether some infinite series
converges or diverges:

1. x

2. x

3. x

4. x

5. nth Term Test: if lim
n→∞

|an| 6= 0, then
∑
an diverges.

We also know:
• starting index is irrelevant to convergence/divergence;
• convergent ± convergent = convergent;
• convergent ± divergent = divergent;
• etc.

QUESTION

What do you do next, if this stuff doesn’t help?

Next, look at the signs of the individual terms of the series. This is because the
validity of other test depends in part on what the signs of the series are.

Definition 7.3 An infinite series is called positive if all its terms are positive; more
precisely

∑
an is positive if an ≥ 0 for all n.

An infinite series is called negative if all its terms are negative; more precisely
∑
an

is negative if an ≤ 0 for all n.

If your series is negative, you can factor out −1 from it, and then what’s left will
be a positive series (so maybe the Comparison Test will apply to what’s left.)
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7.2. Alternating series

7.2 Alternating series
Recall: we are trying to determine whether a given series

∑
an converges or di-

verges.

EXAMPLE 2
Consider the series

∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 + 1

5 −
1
6 + ...

This series is called the alternating harmonic series. Does it converge or diverge?

• This series is not geometric⇒

• This series does not contain exponentials or factorials⇒

• This series is not a p-series⇒

• This series is neither positive nor negative⇒

• lim
n→∞

|an| =

Now what?

Back to the definition of convergence: to say
∑

an = L means
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7.2. Alternating series

Let’s compute the partial sums of the alternating harmonic series
∞∑
n=1

(−1)n+1

n
:

S1 = a1 = 1

S2 = a1 + a2 = 1− 1
2 =

S3 = a1 + a2 + a3 = 1− 1
2 + 1

3 =

S4 =

SN for N odd

SN for N even

0 4 8 12 16 20 24
N

S1=1

S2=1/2

S3=5/6

S4

S5

S6

L

SN

Observations:
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7.2. Alternating series

This theorem generalizes the argument on the previous pages:

Theorem 7.4 (Alternating Series Test (AST)) Suppose
∑
an is an infinite series

such that:

1.
∑

an is alternating

(meaning the terms being added alternate between positive and negative);

2. lim
n→∞

|an| = 0; and

3. The values of |an| decrease, i.e. |an| ≥ |an+1| for all n.

Then
∑

an converges.

Important:

How to classify an alternating series

1. Verify that the series is alternating.

2. If the Ratio Test is appropriate, use it.

3. Otherwise, compute lim
n→∞

|an|.

• If this limit is nonzero, the series diverges by the nth-term Test.

• If this limit is zero, verify that |an| ≥ |an+1| (it will in MATH 230). Then
the series converges by the AST.
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7.2. Alternating series

EXAMPLE 3
Determine whether or not each series converges or diverges:

a)
∑ cos(πn)

n2 + 1

b)
∞∑
n=2

(−1)n+1 n

n+ 4
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7.3. Absolute and conditional convergence

7.3 Absolute and conditional convergence
The triangle inequality

MOTIVATING EXAMPLE

Does the following series converge or diverge?

∞∑
n=1

sin(en)
| sin(en)|e

−n

Problem: This series is not geometric, not a p−series, not positive (so the Integral
and Comparison Tests are no good) and not alternating (so the Alternating Series
Test is no good). The only test we know so far that we could use to study this is
the nth−term Test:

A new idea in the study of series involves the following important concept about
numbers:

Theorem 7.5 (Triangle Inequality for R) For all real numbers a and b, |a + b| ≤
|a|+ |b|.

PROOF OF THE TRIANGLE INEQUALITY FOR R:

ab ≤ |ab|
2ab ≤ 2|ab|

a2 + 2ab+ b2 ≤ |a|2 + 2|ab|+ |b|2

(a+ b)2 ≤ (|a|+ |b|)2

(take√ of both sides; note
√
z2 = |z|)

|a+ b| ≤ ||a|+ |b|| = |a|+ |b|.

Reason this is called the Triangle Inequality:
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7.3. Absolute and conditional convergence

Theorem 7.6 (Generalized Triangle Inequality for R) For any finite list of real
numbers a1, a2, ..., an, ∣∣∣∣∣∣

n∑
j=1

aj

∣∣∣∣∣∣ ≤
n∑
j=1
|aj|.

Theorem 7.7 (Triangle Inequality for Infinite Series) Let
∑

an be an infinite se-
ries. If

∑
|an| converges, then

∑
an also converges.

(In this case, we have
∣∣∣∑ an

∣∣∣ ≤∑ |an|.)
MOTIVATING EXAMPLE (FROM EARLIER)

∞∑
n=1

sin(en)
| sin(en)|e

−n

If we denote this series by
∑
an, then

∑
|an| =

∑∣∣∣∣∣ sin(en)
| sin(en)|e

−n
∣∣∣∣∣ =

∑
|±1| e−n =

∑
e−n =

∑(1
e

)n

Since
∑
|an| converges, so does

∑
an by the Triangle Inequality.

PROOF OF THE TRIANGLE INEQUALITY FOR INFINITE SERIES:
Let bn = an + |an|.

Notice that an + |an| =
{
an − an = 0 if an < 0
|an|+ |an| = 2|an| if an ≥ 0 .

Therefore bn is always either 0 or 2|an|. That means 0 ≤ bn ≤ 2|an|.
By hypothesis,

∑
|an| converges, so by linearity

∑
2|an| converges.

Also, by the Comparison Test,
∑

bn converges.

Last, ∑
an =

∑
(bn − |an|) =

∑
bn −

∑
|an|

is the difference of two convergent series, hence
∑

an converges. �
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7.3. Absolute and conditional convergence

Absolute and conditional convergence

Definition 7.8 Let
∑

an be an infinite series. We say the series is absolutely con-
vergent (or that the series converges absolutely) if

∑
|an| converges.

Remarks:

• By the Triangle Inequality for Infinite Series, we know that if a series is abso-
lutely convergent, then it converges.

• If a series diverges, then it cannot converge absolutely (this is the contrapos-
itive of the immediate preceding statement).

• If a series
∑

an is positive, then there is no difference between
∑
|an| and∑

an, so saying that a positive series converges is the same as saying that it
absolutely converges.

• If a series is negative, then
∑
|an| = −

∑
an so to say a negative series con-

verges is the same as saying that it absolutely converges.

• Based on these observations, there are three possibilities for an infinite series∑
an:

1. The series
∑

an converges absolutely (i.e.
∑
|an| converges).

2. The series
∑

an diverges.
3. Something else (which given the remarks above must be that

∑
an con-

verges but
∑
|an| diverges).

Definition 7.9 Let
∑

an be an infinite series. If
∑

an converges but
∑
|an| di-

verges, then we say
∑

an is conditionally convergent (or that the series converges
conditionally).

Based on the ideas developed thus far, we can now create a Venn diagram which
incorporates the sign of a series together with whether the series converges ab-
solutely, converges conditionally, or diverges. This Venn diagram is on the next
page:
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7.3. Absolute and conditional convergence

ABSOLUTELY
CONVERGENT

CONDITIONALLY
CONVERGENT

POSITIVE
SERIES

ALTERNATING
SERIES

NEITHER
POSITIVE NOR
ALTERNATING

CONVERGENT SERIES

ALL INFINITE SERIES

We can now refine one of our major questions regarding infinite series:

General questions related to infinite series

Given an infinite series
∑

an:

1. Classification problem: Does
∑

an converge absolutely, converge
conditionally, or diverge? (In other words, where on the Venn dia-
gram above does the series belong?)

2. Computation problem: If
∑

an converges, what is its sum?

3. Rearrangement problem: When, if ever, can you legally rearrange or
regroup the terms of

∑
an without affecting its convergence?

For now, we turn our attention to the third question: the rearrangement problem.
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7.3. Absolute and conditional convergence

Rearrangement of infinite series

Goal: Determine the circumstances under which the terms of an infinite series can
be legally rearranged without affecting the sum.

MOTIVATING EXAMPLE (FROM EARLIER)

Consider the alternating harmonic series
∞∑
n=1

(−1)n+1 1
n

= 1− 1
2 + 1

3 −
1
4 + .... Does

this series converge or diverge?

Does this series converge absolutely or converge conditionally?

Note: This example is a prototype example of a conditionally convergent series.

Now, let L =
∞∑
n=1

(−1)n+1 1
n

= 1− 1
2 + 1

3 −
1
4 + ....

Since the series alternates and has positive initial term, L ∈ [S2, S1] = [1
2 , 1]

(see the picture in Section 7.2).

Suppose it was legal to rearrange this series. Then:

L = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + ...

= 1− 1
2 −

1
4 + 1

3 −
1
6 −

1
8 + 1

5 −
1
10 − ...

=
(

1− 1
2

)
− 1

4 +
(1

3 −
1
6

)
− 1

8 +
(1

5 −
1
10

)
− 1

12 + ...

=

=

=
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7.3. Absolute and conditional convergence

Further investigation: Look only at the terms of the alternating harmonic series
which are positive:

1 + 1
3 + 1

5 + 1
7 + ... =

∞∑
n=1

1
2n+ 1

Now look only at the negative terms of the alternating harmonic series:

−1
2 −

1
4 −

1
6 −

1
8 −

1
10 − ... =

∞∑
n=1

−1
2n = −1

2

∞∑
n=1

1
n

Consequence:

What happened when the series was rearranged?

Loosely speaking, the problem is that this series converges conditionally (as op-
posed to absolutely). Any conditionally convergent series is comprised of an in-
finite amount of “positive stuff” and an infinite amount of “negative stuff”, and
the series only converges because the terms cancel each other out in a very delicate
way.

On the other hand, an absolutely convergent series (almost by definition) has only
a finite amount of “positive stuff” and a finite amount of “negative stuff”, so no
matter how you rearrange the series you always get the same thing.

To summarize:

Theorem 7.10 (Rearrangement Theorem) Suppose
∑

an is an infinite series.

1. If
∑

an converges conditionally, then the terms of that series can be rearranged
so that the rearranged series converges to any number you like!

The series can also be rearranged so that the rearranged series diverges!

2. If
∑

an converges absolutely to L, then no matter how the terms of the series are
regrouped or rearranged, the rearranged series still converges absolutely to L.
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7.3. Absolute and conditional convergence

Additional remarks:

1. Geometric series always converge absolutely or diverge (they never converge
conditionally), since by the GST their convergence depends on |r| (rather
than just on r).

2. If a series is shown to converge by the Ratio Test, then the series converges
absolutely (since when evaluating ρ one takes absolute values of the terms in
the series).

In particular, for any conditionally convergent series, if you tried the Ratio
Test you would get ρ = 1. (However, if ρ = 1 the series could converge
absolutely, converge conditionally or diverge.)

3. p-series converge absolutely when they converge (since they are positive).

4. If a series is positive or negative, it must converge absolutely if it converges.

5. Since the Comparison Test applies only to positive series, if you use the Com-
parison Test to show that a series converges, then the series must converge
absolutely.

6. The Alternating Series Test tells you only that a series converges (not whether
the series converges absolutely or conditionally). To distinguish between
these situations, you need further analysis.

Putting together everything we know, we have the outline on the next page which
describes how to determine whether a given series is absolutely convergent, con-
ditionally convergent or divergent.
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7.4. Summary of classification techniques

7.4 Summary of classification techniques
Directions to classify most infinite series

1. If the series is geometric, then write in the standard form
∞∑
n=0

arn.

. If |r| ≥ 1, the series diverges by the GST.

. If |r| < 1, then the series converges absolutely to
a

1− r by the GST.

2. If the series contains only multiplication/division and has at least one expo-

nential or factorial term, try the Ratio Test: compute ρ = lim
n→∞

|an+1|
|an|

:

. If ρ > 1, the series diverges by the Ratio Test.

. If ρ < 1, the series converges absolutely by the Ratio Test.

. If ρ = 1, the Ratio Test is inconclusive.

3. If the series is alternating, compute lim
n→∞

|an|.

. If this limit is nonzero, the series diverges by the nth-term Test.

. If this limit is zero, verify |an| ≥ |an+1| and conclude that the series

. converges by the AST. Then, consider the series
∑
|an|:

. If
∑
|an| converges, then

∑
an converges absolutely.

. If
∑
|an| diverges, then

∑
an converges conditionally.

4. If the series is a p-series, then by the p-series Test it converges absolutely if
p > 1 and diverges if p ≤ 1.

5. If lim
n→∞

|an| 6= 0, then the series diverges by the nth Term Test.

6. If the series can be split, analyze the two pieces separately and use linearity
rules.

7. If the series is positive (or if it is negative, in which case you first factor out
(−1) to leave a positive series), try the Comparison Test.

8. If the series
∑

an is neither positive, negative nor alternating, try to show∑
|an| converges. Then

∑
an converges absolutely by the Triangle Inequal-

ity.
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7.4. Summary of classification techniques

Examples

In Examples 4-8, you are to classify the given series as absolutely convergent, con-
ditionally convergent, or divergent, providing appropriate justification.

EXAMPLE 4

∞∑
n=1

(−1)nnn
4n

243



7.4. Summary of classification techniques

EXAMPLE 5

∞∑
n=1

(−1)nn−1/3

EXAMPLE 6

∞∑
n=1

2n4

n8 + 3n11 + 12
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7.4. Summary of classification techniques

EXAMPLE 7

∞∑
n=1

(
(−1)n
n2 + 3

4n

)

EXAMPLE 8

1− 1
5 + 1

25 −
1

125 + 1
625 −

1
55 + ...
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7.5. Homework exercises

7.5 Homework exercises
In Exercises 1-6, determine whether the following series converge or diverge. Com-
pletely justify your reasoning:

1.
∞∑
n=1

(−1)n8n−3/4

2.
∞∑
n=2

(−1)nn2

3n

3.
∞∑
n=4

(−1)n 5n4 + 3
20n4 + 2n2 + n+ 1

4.
∞∑
n=1

(−1)n+1
√

3n+ 8

5.
∞∑
n=3

4 cos(πn)
2n + 3

6.
∞∑
n=0

(−1)nn2

ln(n+ 4)

In Exercises 7-22, classify the following statements as true or false:

7. If a negative series converges, then it must converge absolutely.

8. If a series converges conditionally, then its terms can be legally rearranged
without affecting the sum.

9. If a series
∑
|an| diverges, then

∑
an must also diverge.

10. If a series
∑
|an| diverges, then

∑
an cannot converge absolutely.

11. If a series
∑

an diverges, then
∑
|an|must also diverge.

12. If a series
∑

an converges, then
∑
|an|must also converge.

13. If a series
∑
|an| converges, then

∑
an must also converge.

14. It is possible for an alternating series to diverge.

15. It is possible for an alternating series to converge absolutely.

16. It is possible for an alternating series to converge conditionally.

17. It is possible for a positive series to diverge.

18. It is possible for a positive series to converge absolutely.

19. It is possible for a positive series to converge conditionally.

20. If lim
n→∞

|an| = 1, then
∑

an diverges.

21. If lim
n→∞

an = 0, then
∑

an converges.
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7.5. Homework exercises

22. If lim
n→∞

|an| = 0, then
∑

an converges.

In Exercises 23-43, determine whether the following series converge absolutely,
converge conditionally, or diverge. You should state the name of the test(s) you use
and completely justify your reasoning, giving arguments like those in the examples
in this text.

23.
∞∑
n=2

(−1)n sinn

24.
∞∑
n=2

e−1/n

25.
∞∑
n=4

n+ 1
ln(2n− 5)

26.
∞∑
n=2

5−n2−3n

27.
∞∑
k=1

3
4 + sin4(2k)

28.
∞∑
n=1

6n
62n + 3

29.
∞∑
k=1

2 cos(πk)
k2

30.
∞∑
n=0

(−1)n

2
√
n+ 2

31.
∞∑
n=0

1
en + e−n

32.
∞∑
n=2

2n2 + 3
5n2 − 4

33.
∞∑
n=1

(−1)n+1 n

n2 + 1

34.
∞∑
n=0

(−1)n2n
n3 + 5

35.
∞∑
n=1

lnn

36.
∞∑
n=0

(−1)n42n

7nn!

37.
∞∑
n=1

4(−1)n+1n−3/5

38.
∞∑
n=2

3 + 2n
3n + 4

39.
∞∑
n=0

[
3
n5 + (−1)n

n

]

40.
∞∑
n=1

(−1)[ 1
2n(n+1)]

4n + n2

41.
∞∑
n=1

2n2 + 3n− 2
n2 + 4n+ 1

42. (Challenge)
∞∑
n=1

ln
(

n

n+ 1

)

43. (Challenge)

1+ 1
1.1 + 1

1.11 + 1
1.111 + 1

1.1111 + ...
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7.5. Homework exercises

Answers

1. converges

2. converges

3. diverges

4. converges

5. converges

6. diverges

7. True

8. False

9. False

10. True

11. True

12. False

13. True

14. True

15. True

16. True

17. True

18. True

19. False

20. True

21. False

22. False

23. diverges

24. diverges

25. diverges

26. converges absolutely

27. diverges

28. converges absolutely

29. converges absolutely

30. converges conditionally

31. converges absolutely

32. diverges

33. converges conditionally

34. converges absolutely

35. diverges

36. converges absolutely

37. converges conditionally

38. converges absolutely

39. converges conditionally

40. converges absolutely

41. diverges

42. diverges

43. diverges
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Chapter 8

Taylor and Fourier series

GOAL

Use the ideas of infinite series to study functions.

Why might we want to do this?

Recall from Calculus 1 that for values of x near x = a, we can approximate a
differentiable function f by its tangent line at a:

f(x) ≈ L(x) = f(a) + f ′(a)(x− a).

f

L

a

f (a)

f

L

a x

Question: In general, given an arbitrary function f , when will this approximation
L(x) overestimate the actual value of f(x), and when willL(x) underestimate f(x)?

f1

f2

L

a

L underestimates f2 ⇔

L overestimates f1 ⇔
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With this in mind, you may be aware that we can obtain a better approximation
to f , which accounts (in part) for how the function f curves, by using quadratic
approximation at a:

f(x) ≈ Q(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2.

f

L

Q

a

f (a)

f

L

Q

a x

Quadratic approximation is better than linear approximation in two ways:

1. For x near a, Q(x) will be closer to f(x) than L(x) was.

2. There is a larger interval of x-values for which the approximation Q(x) ≈
f(x) is good, so (loosely speaking) there are more xs that count as being “near
a”.

Questions:

1. Under what circumstances will Q(x) over/underestimate f(x)?

2. How might we get a better approximation to f than L orQ (“better” meaning
closer to f and working for a larger interval of x-values)?
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8.1. Taylor series

8.1 Taylor series
Uniqueness of Taylor coefficients

MAIN PROBLEM

Given a function f , we can approximate f by linear and quadratic functions near
a = 0 as follows:

f(x) ≈ L(x) = f(0) + f ′(0)(x− 0) = f(0) + f ′(0)x

f(x) ≈ Q(x) = f(0) + f ′(0)(x− 0) + 1
2f
′′(0)(x− 0)2 = f(0) + f ′(0)x+ f ′′(0)

2 x2.

For each N , we want to find numbers a0, a1, a2, ... so that we can approximate f by
a
x

x
of the form

PN(x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ aNx
N .

We will do this by writing f as an infinite series of the form

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + ... (8.1)

Then PN(x) will the the N th partial sum of the series representing f , so it will
approximate f (and as N gets bigger and bigger, the approximation will get better
and better).

An application from statistics

A lot of naturally occurring data (student exam grades, heights/weights/lifespans
of species, errors in experiments) is modeled by a class of random variables (re-
member those?) called normal random variables. The simplest of these is called the
standard normal r.v. and has density function

f(x) = 1√
2π
e−x

2/2.

The graph of this density function is called a bell curve:

-3 -1 1 3

0.2

0.4

251



8.1. Taylor series

If X is a (standard) normal r.v., then to compute the probability that X is between
a and b, we would need to compute

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx =

∫ b

a

1√
2π
e−x

2/2 dx.

f

a b

Problem: We know no method of computing
∫
e−x

2/2 dx.
In fact, there is no method to compute exact values of this integral.

Potential solution: If we approximate this f by a polynomial, then we can
approximate the integral as well.

RECALL

Our goal is to write f as an infinite series of the form

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + ... (F)

THEORETICAL SOLUTION

Suppose we can write f as an infinite series, as in equation (F) above. Then by
repeatedly differentiating f , we get

f(x) = a0 +a1x +a2x
2 +a3x

3 +a4x
4 +a5x

5 + ...

f ′(x) = a1 +2a2x +3a3x
2 +4a4x

3 +5a5x
4 + ...

f ′′(x) = 2a2 +3 · 2a3x +4 · 3a4x
2 +5 · 4a5x

3 + ...

f ′′′(x) = 3 · 2a3 +4 · 3 · 2a4x +5 · 4 · 3a5x
2 + ...

f (4)(x) = 4 · 3 · 2a4 +5 · 4 · 3 · 2a5x+ ...
...

...

Continuing in this fashion, we see

f (n)(x) = n(n− 1)(n− 2) · · · 3 · 2 · 1an + (const)x+ (const)x2 + ...
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8.1. Taylor series

Plugging in x = 0 to all the formulas on the previous page, we get

f(0) =

f ′(0) =

f ′′(0) =

f ′′′(0) =
... = ...

f (n)(0) =

Importantly, this gives us a formula for all the an:

We have proven the following fundamental theorem, called the uniqueness of power
series:

Theorem 8.1 (Uniqueness of power series) Suppose f is a function which can be
differentiated over and over again at x = 0. Then if we write f as a power series of the
form

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + ...,

then for all n, the coefficients an must satisfy

an = f (n)(0)
n! .

In other words, the only power series of the form
∑

anx
n which can represent f is the

series

∞∑
n=0

f (n)(0)
n! xn.

This series is called the Taylor series (centered at 0) of f or the Maclaurin series
of f .

Corollary 8.2 Suppose you have two power series which represent the same function
of x, i.e.

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n

for all x in some open interval containing 0. Then, for every n, an = bn.
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8.1. Taylor series

Note: There are functions which cannot be represented as a power series.
However, we will not encounter those in MATH 230 (so we will assume in
our course that every function f is equal to its Taylor series at any x for which
the Taylor series converges).

The “big six” Taylor series

It turns out that representing functions by their Taylor series is very doable and
very useful. Our next task is to determine the Taylor series of some common func-
tions (which should be memorized); these memorized Taylor series can then be
used to determine the Taylor series of lots of other functions.

(This should remind you of how we learn to differentiate functions: you memorize
derivatives of elementary functions, and then you learn rules to differentiate more
complicated functions.)

EXAMPLE 1
Determine the Taylor series (centered at 0) of f(x) = ex.

Solution: By definition, the Taylor series of any function f is

f(x) =
∞∑
n=0

f (n)(0)
n! xn

(
i.e. f(x) =

∞∑
n=0

anx
n, where an = f (n)(0)

n!

)
.

Let’s compute this series directly. Since the exponential function is its own
derivative, we have, for all n:

f (n)(x) = ex ⇒ f (n)(0) = e0 = 1.

So for all n, we have an =

and therefore the Taylor series of f is

254



8.1. Taylor series

To summarize, on the previous page we found the following formula:

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2 + x3

3! + x4

4! + ...

Memorize this (and the other Taylor series we derive in this section)!

P.S. You can show that this series converges for all x using the Ratio Test.

What does this formula mean?

Since ex = 1 + x+ x2

2 + x3

3! + x4

4! + ..., we can approximate ex by computing a
partial sum for this series. In this context, theN th partial sum is denoted PN(x).

PN(x) should be a good approximation to ex, and as N gets bigger, PN(x)
approximates ex more and more closely, and for larger and larger intervals of
x-values:

P1

f

P1

P2

f P3

P2

f

P3

P4

f

P20

f

If you let N →∞, then PN(x) becomes the entire series
∞∑
n=0

xn

n! , which is exactly

the function ex for all x.
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8.1. Taylor series

EXAMPLE 2
Determine the Taylor series (centered at 0) of f(x) = sin x.

n f (n)(x) . f (n)(0) . an = f (n)(0)
n! .

0 sin x

1 cosx

2

3

4

5

6

7

8

Therefore the Taylor series of sin x is

sin x =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)! = x− x3

3! + x5

5! −
x7

7! + x9

9! − ...

This series can also be shown to converge for all x using the Ratio Test.
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8.1. Taylor series

EXAMPLE 3
Determine the Taylor series (centered at 0) of f(x) = cos x.

We could go through the procedure of Example 2 (f(x) = sin x) again and find
a pattern with the an. But there is a better way:

cosx =
∞∑
n=0

(−1)nx2n

(2n)! = 1− x2

2 + x4

4! −
x6

6! + x8

8! − ...

This series can also be shown to converge for all x using the Ratio Test.

EXAMPLE 4
There is one other function whose Taylor series we “know” (even though we didn’t
call it a “Taylor series” at the time). Suppose we set an = 1 for all n. Then we get

∞∑
n=0

anx
n =

∞∑
n=0

1xn =
∞∑
n=0

xn

This series converges to
1

1− x , but only when |x| < 1. Thus we have:

1
1− x =

∞∑
n=0

xn = 1 + x+ x2 + x3 + ... for −1 < x < 1
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8.1. Taylor series

Any known Taylor series can be manipulated to find Taylor series of other func-
tions. For instance, let’s start with the formula we discovered in Example 4:

1
1− x =

∞∑
n=0

xn = 1 + x+ x2 + x3 + ... for −1 < x < 1

If you replace the x on both sides of the above equation with −x, we get

1
1− x = 1 + x+ x2 + x3 + ...

1
1 + x

=

Now if we integrate both sides of the equation above, we get

1
1 + x

= 1− x+ x2 − x3 + ...

ln(1 + x) =

We have derived:

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x− 1

2x
2 + 1

3x
3 − 1

4x
4 + ... for −1 < x ≤ 1

Next, go back to the series for
1

1− x , and let’s do some different manipulations.

First, replace x with −x2, and then integrate:

1
1− x = 1 + x+ x2 + x3 + ...

1
1 + x2 =

arctan x =
∞∑
n=0

(−1)n
2n+ 1x

2n+1 = x− 1
3x

3 + 1
5x

5 − 1
7x

7 + ... for −1 ≤ x ≤ 1
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8.1. Taylor series

To summarize, we have derived Taylor series representations for the following six
common functions. YOU MUST KNOW THESE COLD.

The “big six” Taylor series

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2 + x3

3! + ... (holds for all x)

sin x =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)! = x− x3

3! + x5

5! −
x7

7! + ... (holds for all x)

cosx =
∞∑
n=0

(−1)nx2n

(2n)! = 1− x2

2 + x4

4! −
x6

6! + ... (holds for all x)

1
1− x =

∞∑
n=0

xn = 1 + x+ x2 + x3 + ... (holds for x ∈ (−1, 1))

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x− x2

2 + x3

3 −
x4

4 + ... (holds for x ∈ (−1, 1])

arctan x =
∞∑
n=0

(−1)n
2n+ 1x

2n+1 = x− x3

3 + x5

5 −
x7

7 + ... (holds for x ∈ [−1, 1])

From these six Taylor series, we can obtain the Taylor series for lots of other func-
tions via manipulations (see Example 5 below).

Why the values of x for which the series converge are important

f(x) = 1
1− x vs. f(x) =

∞∑
n=0

xn

-5 -3 -1 1 3 5

-4

-2

2

4

-5 -3 -1 1 3 5

-4

-2

2

4
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8.1. Taylor series

EXAMPLE 5
Find a power series representation (i.e. find the Taylor series centered at 0) of each
of the following functions (give the answer both in Σ notation and in written-out
form):

a) f(x) = arctan x3

b) f(x) = x2e−3x5

c) f(x) = x

(1− x)2
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8.1. Taylor series

EXAMPLE 6
Find a power series representation (i.e. find the Taylor series centered at 0) of each
of the following functions (give the answer in Σ notation).

a) f(x) = x3 cos(2x)

Solution: Start with cosx =
∞∑
n=0

(−1)nx2n

(2n)! .

Replace each x with 2x to get cos 2x =
∞∑
n=0

(−1)n(2x)2n

(2n)! =
∞∑
n=0

(−1)n4nx2n

(2n)! .

Now multiply by x3 in front to get

x3 cos 2x =
∞∑
n=0

x3 (−1)n4nx2n

(2n)! =
∞∑
n=0

(−1)n4nx2n+3

(2n)! .

b) f(x) = 2 sin x4

Solution: Start with sin x =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)! .

Replace each x with x4 to get sin x4 =
∞∑
n=0

(−1)n(x4)2n+1

(2n+ 1)! =
∞∑
n=0

(−1)nx8n+4

(2n+ 1)! .

Now multiply by 2 in front to get

2 sin x4 =
∞∑
n=0

2(−1)nx8n+4

(2n+ 1)! .

c) f(x) = 4
3 + 5x
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8.2. Applications of Taylor series

8.2 Applications of Taylor series
Evaluation of hard limits without using L’Hôpital’s rule

EXAMPLE 7

Evaluate the limit lim
x→0

6 sin x− 6x+ x3

2x5 .

Old solution using L’Hôpital’s Rule:

lim
x→0

6 sin x− 6x+ x3

2x5 = 0
0

L= lim
x→0

6 cosx− 6 + 3x2

10x4 = 0
0

L= lim
x→0

−6 sin x+ 6x
40x3 = 0

0
L= lim
x→0

−6 cosx+ 6
120x2 = 0

0
L= lim
x→0

6 sin x
240x = 0

0
L= lim
x→0

6 cosx
240 = 6

240 = 1
40 .

New solution using Taylor series:
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8.2. Applications of Taylor series

EXAMPLE 8

Evaluate the limit lim
x→0

arctan 3x− 3x
x2 .

Approximation of function values and definite integrals

First, we introduce some vocabulary to describe the partial sums of a Taylor series
of a function.

Definition 8.3 Suppose f is a function which can be differentiated over and over
again at x = 0; the Taylor series of f is

∞∑
n=0

f (n)(0)
n! xn.

If we truncate this series at the N th power term, we obtain a partial sum of the Taylor
series called the N th Taylor polynomial (centered at 0) (a.k.a. Taylor polynomial
of order N ) of f . This polynomial is denoted PN(x).

EXAMPLE 9
Let f(x) = ex. Then the Taylor series of f is

f(x) =
∞∑
n=0

xn

n! = 1 + x+ x2

2! + x3

3! + ...
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8.2. Applications of Taylor series

and the Taylor polynomials of f(x) = ex are:

P0(x) = 1

P1(x) = 1 + x

P2(x) = 1 + x+ x2

2
P3(x) = 1 + x+ x2

2 + x3

3!
... .

PN(x) = 1 + x+ x2

2 + x3

3! + ...+ xN

N !

We saw a few pages ago how the graphs of these PN more closely approximate ex

as N gets larger.

EXAMPLE 10
Let f(x) = sin x. Then the Taylor series of f is

f(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)! = x− x3

3! + x5

5! −
x7

7! + ...

= 0 + x+ 0x2 − x3

3! + 0x4 + x5

5! + 0x6 − x7

7! + ...

and the Taylor polynomials of f(x) = sin x are:

P0(x) =

P1(x) =

P2(x) =

P3(x) =

P4(x) =

P5(x) =

Some Taylor polynomials of sin x are graphed on the next page.
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8.2. Applications of Taylor series

P1 P5P3

P15

f

-10 -5 5 10

-3

-2

-1

1

2

3

General properties of Taylor polynomials

1. PN(x) is a polynomial of degree ≤ N ;

2. P0(x) is the constant function of height f(0);

3. P1(x) is the tangent line to f when x = 0;

4. PN(x) is the best N th degree polynomial approximation to f near 0.

To approximate the value of a function or a definite integral, we can replace the
function with its N th Taylor polynomial to get a good approximation.

EXAMPLE 11
Approximate ln(1.2) using the fourth Taylor polynomial (a.k.a. Taylor polynomial
of order 4) for an appropriately chosen function.

This sum evaluates to
1367
7500 ≈ .182267.

Remark: The actual value of ln(1.2) is .182322..., so our approximation has only
.03% error.
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8.2. Applications of Taylor series

EXAMPLE 12
Approximate e.1 using a Taylor polynomial of order 3 for an appropriately chosen
function.

This sum evaluates to
6631
6000 ≈ 1.1051666.

e.1 ≈ 1.1051709, so the error here is .0003%.

EXAMPLE 13

Approximate
∫ 1

0
sin x4 dx by replacing the integrand with its tenth Taylor polyno-

mial.

The integral
∫ 1

0
sin x4 dx has an actual value of about .18757, so our approxima-

tion is good to an error of 6.6%.
If we had used one more nonzero term and approximated sin x4 by P12(x) =

x4 − x12

6 , we would obtain an approximation of
73
390 ≈ .187179, which has an error

of .2%.
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8.2. Applications of Taylor series

EXAMPLE 14
The height of a randomly chosen adult man in the United States is represented by
adding 70 inches to a continuous random variable with density function

f(x) = 1
3
√

2π
e−x

2/18.

Use the second-order Taylor polynomial of the integrand to estimate the probabil-
ity that a randomly chosen American male is between 5′9” (= 69 inches) and 6′0”
(= 72 inches).

Solution: We know

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2 + x3

3! + · · ·

⇒ e−x
2/18 = 1− x2

18 + x4

182 · 2 −
x6

183 · 3! + · · ·

so by approximating f by its second-order Taylor polynomial, we have

P (height ∈ [69, 72]) = P (X ∈ [−1, 2]) =
∫ 2

−1
f(x) dx

≈
∫ 2

−1
P2(x) dx

= 1
3
√

2π

∫ 2

−1

(
1− x2

18

)
dx

= 1
3
√

2π

[
x− x3

54

]2

−1

= 1
3
√

2π

[17
6

]

= 17
18
√

2π
≈ .3767 .

P.S. In MATH 251 and/or MATH 414, you will learn how to solve this problem us-
ing some tables associated to things called z-scores; those tables produce an answer
of .3780....
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8.2. Applications of Taylor series

Computation of high-order derivatives
EXAMPLE 15

Let f(x) = x20 cos(3x8). Compute f (100)(0), the 100th derivative of f at zero.

Analysis of numerical series
EXAMPLE 16

Determine whether or not the series
∞∑
n=1

(
e1/n − 1

)
converges or diverges.
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8.2. Applications of Taylor series

EXAMPLE 17
Compute the sum of each series:

a) 1− 1
2 + 1

3 −
1
4 + 1

5 − ...

b) 1 + 1
2 + 1

4 · 2! + 1
8 · 3! + 1

16 · 4! + 1
25 · 5! ...

c) π − 2π3

23 · 3! + 2π5

25 · 5! −
2π7

27 · 7! + ...
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8.2. Applications of Taylor series

Series solutions of differential equations
EXAMPLE 18

Suppose f is an unknown function such that f ′(x) = xf(x) and f(0) = 2. Compute
the fourth Taylor polynomial of f , and use that polynomial to estimate f(1).
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8.2. Applications of Taylor series

EXAMPLE 19
Suppose y is an unknown function of x where y′′ + y = 0, where y(0) = 2 and
y′(0) = −1. Compute the Taylor series of y, and then, if possible, identify y as a
common function.
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8.3. General theory of power series

8.3 General theory of power series
In the last section, we saw how to use certain series to study functions. In particu-
lar, given a function f , we can define the Taylor series of f :

∞∑
n=0

f (n)(0)
n! xn

The partial sums of this series are denoted PN(x) and called the Taylor polynomials
of f . Ideally, f(x) ≈ PN(x), so f can be replaced by PN in approximation problems.

Now, we want to study the general behavior of series of the form

∞∑
n=0

anx
n,

where the an are constants (which may or may not have anything to do with some
function f ). Such functions are called power series (centered at 0). In fact, we can
study more general objects:

Definition 8.4 A power series (in x) centered at x = a is a function of the form

f(x) =
∞∑
n=0

an(x− a)n

= a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + a4(x− a)4 + ...

where the a0, a1, ... are real numbers. A power series (in x) is a power series centered
at x = 0, i.e. a power series is a function of the form

f(x) =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + ...

The numbers a0, a1, a2, ... are called the coefficients of the power series; the terms of
the series are a0, a1x, a2x

2, ...

Remark: When evaluating a power series, 00 is always taken to be 1 (even though
technically 00 is an indeterminate form).

Most important question regarding power series: What is the domain of a power
series?
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8.3. General theory of power series

EXAMPLE 20
Determine the values x for which the following series converges:

∞∑
n=1

(x− 6)n
n4n

Solution: Apply the Ratio Test (we expect ρ to depend on x):
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8.3. General theory of power series

EXAMPLE 21
Determine the values x for which the following series converges:

∞∑
n=0

n!(x+ 1)n

Solution: Again apply the Ratio Test:

EXAMPLE 22
Determine the values x for which the following series converges:

∞∑
n=0

(x− 2)n
3n!

Solution: Again apply the Ratio Test:

ρ = lim
n→∞

∣∣∣ (x−2)n+1

3(n+1)!

∣∣∣∣∣∣ (x−2)n
3n!

∣∣∣ = lim
n→∞

|x− 2|n+1

3(n+ 1)! ·
3n!
|x− 2|n = lim

n→∞

|x− 2|
n+ 1 =

Notice the pattern in the Examples 20 to 22 above:
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8.3. General theory of power series

Theorem 8.5 (Cauchy-Hadamard (C-H) Theorem) Let
∞∑
n=0

an(x−a)n be a power

series centered at a. As in the Ratio Test, set

ρ = lim
n→∞

|an+1|
|an|

.

Then, the quantity R = 1
ρ

(which is either a nonnegative real number or∞) is called

the radius of convergence of the series. One of the following holds:

1. If 0 < R <∞ (i.e. 0 < ρ <∞), then:

a) the power series converges absolutely for x ∈ (a−R, a+R);
b) the power series diverges for x ∈ (−∞, a−R) or x ∈ (a+R,∞);
c) anything can happen when x = a−R or x = a+R.

2. If R = 0 (i.e. ρ = ∞), then the power series converges absolutely when x = a
but diverges for all other x.

3. If R =∞ (i.e. ρ = 0) , the power series converges absolutely for all x.

Remarks:

1. the formula R = 1
ρ

above is called Abel’s Formula. To compute ρ, and there-
fore R, we use only the coefficients of the power series and not the powers of
(x− a).

2. This theorem has nothing to do with numerical series (those with no xn or
(x− a)n); it is only useful for power series.

According to the C-H Theorem, the set of x for which a power series converges is
an interval; that interval is called the interval of convergence of that series and that
interval is the domain of that power series.
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8.3. General theory of power series

General procedure to find the interval of convergence of a power
series

∞∑
n=0

an(x− a)n

1. Read off the value of a (where the power series is centered).

2. Compute ρ using the Ratio Test

ρ = lim
n→∞

|an+1|
|an|

.

Then the radius of convergence is R = 1
ρ

.

3. If R = 0, then the series converges absolutely for x = a and diverges for all
other x. The interval of convergence is [a, a] or just {a}.

4. If R = ∞, then the series converges absolutely for all x. The interval of
convergence is (−∞,∞).

5. If 0 < R <∞, then by the C-H Theorem:

• the series converges absolutely on (a−R, a+R);
• the series diverges on (−∞, a−R) and (a+R,∞).

The interval of convergence in this case always runs from a − R to a + R;
what you have to determine is whether the endpoints a−R and a+R should
be included in the interval. To figure this out, plug each of these endpoints
in for x (do them one-by-one) and check whether the numerical series you
obtain converge or diverge.
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EXAMPLE 23
For each given power series:

i. Determine the radius of convergence of the series.
ii. Give the set of x for which the series converges.

a)
∞∑
n=0

(−1)n(x+ 1)n
(2n)!

b)
∞∑
n=2

nn(x− 4)n

Solution: This power series is centered at x = xx

x
.

Next, use the Ratio Test and Abel’s Formula:

ρ = lim
n→∞

(n+ 1)n+1

nn
= lim

n→∞

(
n+ 1
n

)n
(n+ 1) = lim

n→∞

(
1 + 1

n

)n
(n+ 1)

= e lim
n→∞

(n+ 1) =∞,

so R = 1
ρ

= 1
∞ = xx

x
.

Therefore the series
∞∑
n=2

nn(x− 4)n
{

converges absolutely when x = 4
diverges otherwise .
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c)
∞∑
n=0

3nxn
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8.4. Fourier series

8.4 Fourier series
Periodic functions

Definition 8.6 Let f : R→ R. f is called periodic if there is a number T such that
f(x+ T ) = f(x) for all x ∈ R. In this case, the number T is called a period of f .

T

T/2-T/2

f

Periodic functions cannot be globally approximated well by a Taylor polynomial,
because polynomial graphs have “tails” that point upward or downward, whereas
periodic functions keep repeating themselves forever:

sin x

P15(x)

P3(x)

-15 -10 -5 5 10 15

-2

-1

1

2

Our goal in this section is to come up with a way to globally approximate a periodic
function. To do this, we will approximate f by a sum of “basic” periodic functions.
We know three basic periodic functions, two with the same period and one that is
“easy” but “hard to come up with”:

To obtain a basic periodic function with period T , stretch/shrink the first two func-
tions above horizontally:

Remark: If a function has period T , then technically it also has period 2T , 3T , etc.
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So generally speaking, these functions have period T :

constants cos
(2πn
T

x
)

sin
(2πn
T

x
)
.

Definition of Fourier series

Suppose f is periodic with period T . Our goal is to write f as an infinite series
made up of the basic functions we found above that have period T :

To do this, we would need to determine the constant term a0 and the coefficients
cn and sn on the cosine and sine terms. Turns out, we can figure out formulas for
these coefficients (time permitting, we’ll discuss this at the end of this section).

Definition 8.7 Let f : R → R be a periodic function with period T . For each n ∈
{1, 2, 3, ...}, define the numbers

cn = 2
T

∫ T

0
f(x) cos

(2πn
T

x
)
dx and sn = 2

T

∫ T

0
f(x) sin

(2πn
T

x
)
dx.

Then, the series

f(x) = 1
T

∫ T

0
f(x) dx+

∞∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]

is called the Fourier series of f .
The nth term of this Fourier series, namely

cn cos
(2πn
T

x
)

+ sn sin
(2πn
T

x
)
,

is called the nth harmonic of f .
The N th partial sum of the Fourier series of f is called the N th Fourier polyno-

mial of f (even though it isn’t a polynomial) and is denoted by FN . In particular,

FN(x) = 1
T

∫ T

0
f(x) dx+

N∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]
.
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Advantages of Fourier series over Taylor series:

1. Fourier series give good global approximations to the behavior of peri-
odic functions.

2. Fourier series approximate integrals of f well.

3. The function f being approximated doesn’t have to be differentiable (or
even cts).

Disadvantages of Fourier series, relative to Taylor series:

1. Fourier series are no good locally (there’s no reason why Fn(x) ≈ f(x)
for a particular x).

2. The set of x for which the Fourier series converges can be complicated
(not necessarily an interval).

3. No hard and fast theoretical rules exist telling us when a Fourier series
converges to the original function f .

4. Fourier series coefficients are harder to compute than Taylor series coef-
ficients.
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Examples
EXAMPLE 24

Compute the Fourier series of the square wave function

f(x) =
{

1 if x ∈ [0, 1), [2, 3), [4, 5), ..., [2n, 2n+ 1), ...
0 if x ∈ [1, 2), [3, 4), [5, 6), ..., [2n+ 1, 2n+ 2), ... .

f

-5 -4 -3 -2 -1 1 2 3 4 5

1

a0 = 1
T

∫ T

0
f(x) dx = 1

2

∫ 2

0
f(x) dx =

cn = 2
T

∫ T

0
f(x) cos

(2πn
T

x
)
dx

= 2
2

∫ 2

0
f(x) cos (πnx) dx

=
∫ 1

0
cos (πnx) dx

=
[ 1
πn

sin(πnx)
]1

0
= 1
πn

[sin πn− sin(0)] =

sn = 2
T

∫ T

0
f(x) sin

(2πn
T

x
)
dx

= 2
2

∫ 2

0
f(x) sin (πnx) dx

= 2
2

∫ 1

0
sin (πnx) dx

=
[
− 1
πn

cos(πnx)
]1

0
= − 1

πn
[cosπn− cos(0)] =
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EXAMPLE 24 (CONTINUED)
On the previous page, we found:

a0 = 1
2 cn = 0 sn =

 0 if n is even
2
πn

if n is odd

Therefore the Fourier series of f is

f(x) = a0 +
∞∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]

= a0 +
∞∑
n=1

[cn cos (πnx) + sn sin (πnx)]

= 1
2 +

∞∑
n=1

[
0 cos (πnx) +

({
0 if n is even
2
πn

if n is odd

)
sin (πnx)

]

= 1
2 + 2

π
sin(πx) + 2

3π sin(3πx) + 2
5π sin(5πx) + ...

= 1
2 +

∞∑
n=1

2
(2n+ 1)π sin [(2n+ 1)πx] .

What’s the point of this?

Let’s take a look at the Fourier polynomials (i.e. the partial sums of this Fourier
series):

F1(x) = 1
2 + 2

π
sin(πx)

f

F1

-5 -4 -3 -2 -1 1 2 3 4 5

1

F3(x) = 1
2 + 2

π
sin(πx) + 2

3π sin(3πx)

f

F3

-5 -4 -3 -2 -1 1 2 3 4 5

1
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F5(x) = 1
2 + 2

π
sin(πx) + 2

3π sin(3πx) + 2
5π sin(5πx)

f

F5

-5 -4 -3 -2 -1 1 2 3 4 5

1

F15(x) = 1
2 + 2

π
sin(πx) + ...+ 2

15π sin(15πx)

f

F15

-5 -4 -3 -2 -1 1 2 3 4 5

1

EXAMPLE 25
Use Mathematica to compute the fourth Fourier polynomial for the function f which
repeats the portion of the graph of y = x2 between x = −π and x = π periodically,
with period 2π:

-π π

Solution: We have T = 2π, so all integrals will run from 0 to 2π. Therefore

a0 = 1
T

∫ T

0
f(x) dx = 1

2π

∫ 2π

0
f(x) dx

= 1
2π

∫ π

0
x2 dx+ 1

2π

∫ 2π

π
(x− 2π)2 dx

(1/(2 Pi)) Integrate[xˆ2, {x,0,Pi}] +

(1/(2 Pi)) Integrate[(x-2 Pi)ˆ2, {x,Pi, 2Pi}

= π2

3
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EXAMPLE 25 (CONTINUED)
Also,

cn = 2
T

∫ T

0
f(x) cos

(2πn
T

x
)
dx = 2

2π

∫ 2π

0
f(x) cosnx dx

= 1
π

∫ π

0
x2 cosnx dx+ 1

π

∫ 2π

π
(x− 2π)2 cosnx dx

(1 / Pi) Integrate[xˆ2 Cos[n x], {x,0,Pi}] +

(1 / Pi)Integrate[(x-2 Pi)ˆ2 Cos[n x], {x, Pi, 2 Pi}

= 4nπ cos(nπ) + 2(−2 + n2π2) sin(nπ)
n3π

= 4πn cos(nπ) + 0
n3π

= 4
n2 cosnπ =


4
n2 if n is even
−4
n2 if n is odd

sn = 2
T

∫ T

0
f(x) sin

(2πn
T

x
)
dx = 2

2π

∫ 2π

0
f(x) sinnx dx

= 1
π

∫ π

0
x2 sinnx dx+ 1

π

∫ 2π

π
(x− 2π)2 sinnx dx

(1 / Pi) Integrate[xˆ2 Sin[n x], {x,0,Pi}] +

(1 / Pi)Integrate[(x-2 Pi)ˆ2 Sin[n x], {x, Pi, 2 Pi}

= 0.

Therefore the Fourier series is

f(x) = π2

3 −
4
12 cosx+ 4

22 cos 2x− 4
32 cos 3x+ 4

42 cos 4x− ...

and some Fourier polynomials are

F1(x) = π2

3 − 4 cosx F2(x) = π2

3 − 4 cosx+ cos 2x

f

F1

-π π

f

F2

-π π
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F4(x) = π2

3 − 4 cosx+ cos 2x− 4
9 cos 3x+ 1

4 cos 4x

f

F4

-π π

An application in heat transfer
EXAMPLE 26

A pipe of length 2π ft is insulated except at its two ends. The pipe is initially heated
to 100◦ F. Let T (x, t) represent the temperature at position x of the pipe (measured
from the left end) t seconds after the ends of the pipe are initally exposed to an
outside temperature of 0◦ F.

In MATH 330, you may learn how to model this situation using a partial differential
equation (PDE), which is much easier to approach if you approximate the initial
temperature T (x, 0) by a Fourier polynomial. If you do that, you get these simula-
tions:

2π
position x

100

temperature T(x,0)

approximate initial cond.−→

F5(x,0)

2π
x

100

T(x,0)

↓ solve PDE

t=0t=1/4 t=1/2

t=1

t=6

t=30

2π
x

100

T

Notice that after about time t = 1, the waves from the initial approximation have
disappeared, and you see that the pipe cools quickly on the ends and more slowly
in the middle (eventually the whole pipe has temperature 0◦ F).

This enables you to approximate the temperature at any point on the pipe at any
time in the future, as the pipe cools.
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Where do the Fourier coefficients come from?

In this section, we derive the formulas for a0, cn and sn in the Fourier series

f(x) = 1
T

∫ T

0
f(x) dx+

∞∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]
.

First, we need some basic results about integrals of our basic periodic functions:

Fact 1:
∫ T

0
cos

(2πn
T

x
)
dx = 0.

PROOF Use the Linear Replacement Principle to get

T

2πn sin
(2πn
T

x
)∣∣∣∣T

0
= T

2πn [sin(2πn)− sin 0] = 0.

Fact 2:
∫ T

0
sin

(2πn
T

x
)
dx = 0.

PROOF HW (similar to Fact 1).

Fact 3:
∫ T

0
sin

(2πn
T

x
)

cos
(

2πk
T
x

)
dx = 0.

PROOF HW (you have to rewrite the integrand with a weird trig identity).

Fact 4:
∫ T

0
cos

(2πn
T

x
)

cos
(

2πk
T
x

)
dx =

{
T
2 if n = k
0 otherwise .

PROOF HW you have to rewrite the integrand with a weird trig identity).

Fact 5:
∫ T

0
sin

(2πn
T

x
)

sin
(

2πk
T
x

)
dx =

{
T
2 if n = k
0 otherwise .

PROOF HW you have to rewrite the integrand with a weird trig identity).

Now suppose

f(x) = a0 +
∞∑
n=1

[
cn cos

(2πn
T

x
)

+ sn sin
(2πn
T

x
)]

(F)

First, let’s find the constant term a0.
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To do this, integrate both sides of (F) over one period of the function f ,
from 0 to T :∫ T

0
f(x) dx =

∫ T

0
a0 dx+

∞∑
n=1

[
cn

∫ T

0
cos
(

2πn
T

x

)
dx+ sn

∫ T

0
sin
(

2πn
T

x

)
dx

]
= a0

[
T

2 −
−T
2

]
+
∞∑
n=1

[cn(0) + sn(0)] (by Facts 1 and 2 above)

= a0T . Therefore the constant term is a0 = 1
T

∫ T

0
f(x) dx .

Next, we find the values of the cosine coefficients ck.
To do this, first multiply f by cos

(
2πk
T
x
)

and then integrate over one period
of the function f , from 0 to T :∫ T

0
f(x) cos

(
2πk
T

x

)
dx =

a0

∫ T

0
cos
(

2πk
T

x

)
dx+

∞∑
n=1

[
cn

∫ T

0
cos
(

2πn
T

x

)
cos
(

2πk
T

x

)
dx

+sn
∫ T

0
sin
(

2πn
T

x

)
cos
(

2πk
T

x

)
dx

]
= 0 +

∞∑
n=1

[
cn

({
T
2 if n = k
0 otherwise

)
+ sn(0)

]
(by Facts 1, 4 and 3 above)

= ck
T

2 . Therefore ck = 2
T

∫ T

0
f(x) cos

(
2πk
T
x

)
dx .

Last, we find the values of the sine coefficients sk:
To do this, first multiply f by sin

(
2πk
T
x
)

and then integrate over one period
of the function f , from 0 to T :∫ T

0
f(x) sin

(
2πk
T

x

)
dx =

a0

∫ T

0
sin
(

2πk
T

x

)
dx+

∞∑
n=1

[
cn

∫ T

0
cos
(

2πn
T

x

)
sin
(

2πk
T

x

)
dx

+sn
∫ T

0
sin
(

2πn
T

x

)
sin
(

2πk
T

x

)
dx

]
= 0 +

∞∑
n=1

[
cn(0) + sn

({
T
2 if n = k
0 otherwise

)]
(by Facts 2, 3 and 5 above)

= sk
T

2 . Therefore sk = 2
T

∫ T

0
f(x) sin

(
2πk
T
x

)
dx .
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8.5 Homework exercises
Exercises from Section 8.1

1. a) Verify that the Taylor series of ex converges for all x, by using the Ratio
Test and showing that ρ = 0 no matter what x is.

b) Based on the fact that you used the Ratio Test in part (a), does the Taylor
series of ex converge absolutely, or converge conditionally, for all x?

2. a) Verify that the Taylor series of sin x converges for all x, by using the Ratio
Test and showing that ρ = 0 no matter what x is.

b) Based on the fact that you used the Ratio Test in part (a), does the Taylor
series of sin x converge absolutely, or converge conditionally, for all x?

In Exercises 3-23, write the Taylor series of the given function.

3. f(x) = 3
1−x

4. f(x) = 1
1−x2

5. f(x) = ln(1 + x)

6. f(x) = 1
(1−x)3

Hint: Differentiate 1
1−x twice.

7. f(x) = 1
1−x3

8. f(x) = 2
2+5x

9. f(x) = −3
−2−x

10. f(x) = e−x

11. f(x) = cos 4x

12. f(x) = ln(1− 2x)

13. f(x) = 1
1+2x

14. f(x) = cos x2

15. f(x) = ln(1− x2)

16. f(x) = x sin 3x

17. f(x) = x

ex2

18. f(x) = x arctan x2

19. f(x) = 2
x2+1

20. f(x) = 1
(1−x)2

21. f(x) = x sin x2 − x3

22. f(x) = ex + e−x

Hint: Find the Taylor series of ex and e−x independently, and then add them
term-by-term.

23. f(x) = (x2 + 2) cosx
Hint: Find the Taylor series of x2 cosx and 2 cosx independently, and then
add them term-by-term.
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Exercises from Section 8.2

For Exercises 24-33, evaluate the following limits without using L’Hopital’s Rule:

24. lim
x→0

sin x
x

25. lim
x→0

cosx− 1
x

26. lim
x→0

arctan x− x
x3

27. lim
x→0

ex − 1− x
2x2

28. lim
x→0

2ex − 2− 2x− x2

x3

29. lim
x→0

arctan 6x2 − 6x2

x6

30. lim
x→0

sin x8 − x8

x20

31. lim
x→0

sin x8 − x8

x24

32. lim
x→0

sin x8 − x8

x30

33. lim
x→0

arctan x9 − ln(x9 + 1)
x18

In Exercises 34-38, approximate each of the following numbers using the second
Taylor polynomial of an appropriately chosen function (write your answer as a
fraction in lowest terms).

34. ln .8

35. sin .3

36. e3/5

37. arctan 1
6

38.
√

2
Hint: Here, the appropriate function is f(x) =

√
x+ 1. You will have to figure

out the second Taylor polynomial of f(x) by computing derivatives of f at
zero and using the definition of Taylor series.

In Exercises 39-43, approximate each of the following numbers using the fourth
Taylor polynomial of an appropriately chosen function (write your answer as a
fraction in lowest terms).

39. sin 1
4

40. cos .2

41.
√
e

42. arctan 2
3

43.
√

3
2

Hint: As in Exercise 38, the appropriate function is f(x) =
√
x+ 1.

44. Approximate
∫ 1/2

0
cos(4x2) dx by replacing the integrand with its fourth Tay-

lor polynomial.
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45. Approximate
∫ 1/2

0
arctan x2 dx by replacing the integrand with its fourth Tay-

lor polynomial.

46. Approximate
∫ 1

−1
e−x

3
dx by replacing the integrand with its fourth Taylor

polynomial.

47. Approximate
∫ 1

0
ln(2x2 +1) dx by replacing the integrand with its fourth Tay-

lor polynomial.

48. Approximate
∫ 1

0
x2 sin(x2) dx by replacing the integrand with its sixth Taylor

polynomial.

49. a) Approximate
∫ 1

0
x8 sin x dx by replacing the integrand with its twelfth

Taylor polynomial.

b) Describe the integration technique that one would use to find the exact
value of this integral. (Isn’t using a Taylor polynomial better?)

50. Suppose f is an unknown function with f(0) = 2, f ′(0) = 4, f ′′(0) = −6,
f ′′′(0) = 0 and f (4)(0) = 8.

a) Compute P3(x).

b) Approximate f(2) using the fourth Taylor polynomial of f .

c) Approximate
∫ 1

−1
f(x) dx using the fourth Taylor polynomial of f .

d) Compute lim
x→0

f(x)− 4x− 2
x2 .

51. Compute f (6)(0), if f(x) = sin x2.

52. Compute f (36)(0), if f(x) = cos x2.

53. Compute f (100)(0), if f(x) = 4 ln(2x2 + 1).

54. Compute f (40)(0), if f(x) = e2x3 .

55. Compute f (42)(0), if f(x) = e2x3 .

56. Compute f (30)(0), if f(x) =
∞∑
n=0

xn

(4n)! .

57. Compute f (30)(0), if f(x) =
∞∑
n=0

x4n+2

(4n)! .
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58. Suppose the third-order Taylor polynomial (centered at 0) of some unknown
function f is given by P3(x) = 2 − x − x2

3 + 2x3. Determine f(0), f ′(0), f ′′(0)
and f ′′′(0).

59. Determine whether the series
∞∑
n=1

(
e1/
√
n − 1

)
converges or diverges.

60. Determine whether the series
∞∑
n=1

(
cos( 1

n
)− 1

)
converges or diverges.

61. Determine whether the series
∞∑
n=1

ln
(

1− 1
n

)
converges or diverges.

In Exercises 62-79, compute the sum of each of the following series (you may as-
sume without proof that each series converges):

62. 1− 1
3 + 1

5 −
1
7 + 1

9 −
1
11 + ...

63. 2 + 2 + 2
2! + 2

3! + 2
4! + 2

5! + ...

64.
π

4 −
π2

422! + π4

444! −
π6

466! + ...

65. 1− 3 + 9
2! −

27
3! + 81

4! −
35

5! + ...

66. 1 + e+ e2

2 + e3

3! + e4

4! + ...

67. 2− 2π2

2! + 2π4

4! −
2π6

6! + ...

68. 1− 1
2! + 1

4! −
1
6! + 1

8! − ...

69.
100
2! −

10000
4! + 106

6! −
108

8! + ...

70. 1− π2

223! + π4

245! −
π6

267! + π8

289! − ...

71.
1
2 −

1
22 · 2 + 1

23 · 3 −
1

24 · 4 + ...

72.
∞∑
n=0

(−1)n
7nn!

73.
∞∑
n=2

3n
n!

74.
∞∑
n=0

(−1)n
(2n)!

75.
∞∑
n=0

(−3π)n
2n(2n+ 1)!

76.
∞∑
n=1

(−2)n+1

n3n

77.
∞∑
n=0

(−1)n

(2n+ 1)3n
√

3

78.
∞∑
n=1

(−1)n
n5n

79.
∞∑
n=3

(−1)n+1

n4n

80. Suppose f is an unknown function with f ′(x) = rf(x) and f(0) = y0, where
r and y0 are constants.
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a) Determine the Taylor series of f (your answer will be in terms of r and
y0).

b) Identify the function f you wrote in part (a) as a common function of x.

81. Suppose y is a function of x so that y′ + 2xy = 0, where y(0) = 3.

a) Compute the fourth Taylor polynomial of y.

b) Write the Taylor series of y in Σ notation.

c) Identify the Taylor series you wrote in part (b) as a function of x.

82. Suppose f is an unknown function with f ′′(x) − xf(x) = 0, where f(0) = 1
and f ′(0) = −1.

a) Compute the fifth Taylor polynomial of f .

b) Use your answer to part (a) to estimate f
(

1
2

)
.

c) Use your answer to part (a) to estimate
∫ 1

0
f(x) dx.

83. Suppose f is a function of x so that x2f ′′′(x) = f(x), where f ′′(0) = 12. Com-
pute the fifth Taylor polynomial of f .

84. Suppose y is a function of x so that y′′ − 2xy′ + y = 0, where y(0) = 1 and
y′(0) = 1. Compute the fourth Taylor polynomial of y.

Exercises from Section 8.3

In Exercises 85-90,
a) Compute the radius of convergence of the given power series.
b) In Exercises 85-89, determine the interval of convergence of the series (i.e.

determine the values of x for which the series converges). Omit this part in
Exercise 90.

85.
∞∑
n=1

3
n2 (x+ 1)n

86.
∞∑
n=2

4n
n

(x− 1)n

87.
∞∑
n=0

5
2n (x− 3)n

88.
∞∑
n=1

1
n

(x− 1)n

89.
∞∑
n=3

n!
2n (x+ 4)n

90.
∞∑
n=0

(n!)2

(2n)!x
n
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Exercises from Section 8.4

91. Let f be a periodic function with period T .

When we computed the Fourier coefficients a0, cn and sn of f , we integrated
all our functions from 0 to T (over one period of T ). In fact, we can also
integrate these functions from −T/2 to T/2 to obtain the same constants, i.e.
we can also get a0, cn and sn by

a0 = 1
T

∫ T/2

−T/2
f(x) dx, cn = 2

T

∫ T/2

−T/2
f(x) cos

(2πn
T

x
)
dx

and sn = 2
T

∫ T/2

−T/2
f(x) sin

(2πn
T

x
)
dx.

To justify this, show that for any periodic function g of period T ,∫ T

0
g(x) dx =

∫ T/2

−T/2
g(x) dx.

92. Let f be the function whose graph is shown below:

f

-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8
-1

1

a) Compute (by hand) the Fourier constant coefficient a0 of f .

b) Compute (by hand) the Fourier cosine coefficients cn of f .

c) Compute (by hand) the Fourier sine coefficients sn of f .

d) What is the fifth harmonic of f?

e) Write the third Fourier polynomial of f .

f) Use Mathematica to graph the third Fourier polynomial of f .

93. Let f be the function whose graph is shown below:

f

-5 -4 -3 -2 -1 1 2 3 4 5

1

2

a) Compute (by hand) the Fourier constant coefficient a0 of f .

b) Compute (by hand) the Fourier cosine coefficients cn of f .

c) Compute (by hand) the Fourier sine coefficients sn of f .
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d) Write the second Fourier polynomial of f .

e) Use Mathematica to graph the second Fourier polynomial of f .

94. Use Mathematica to compute the Fourier series of the triangular wave function
which is obtained by taking the graph of |x| between x = −1 and x = 1 and
extending it periodically with period 2.

95. Use Mathematica to compute the Fourier series of the full-wave rectifier, which
is the function f(x) = | sin x|.

96. An odd function is one whose graph is unchanged when you rotate it 180◦
about the origin (see the picture below at left). Equivalently, a function g is
called odd if g(−x) = −g(x) for all x.

g

-4 -2 2 4

-4

-2

2

4

g

-4 -2 2 4

-2

2

4

An even function is one whose graph is symmetric about the y-axis (see the
picture above at right). Algebraically, g is even if g(−x) = g(x) for all x.

a) Classify each function as even, odd, or neither:

i. g(x) = tan x
ii. g(x) = sin x

iii. g(x) = cos x
iv. g(x) = |x|

v. g(x) = x

vi. g(x) = 1
x

vii. g(x) =
√
x

viii. g(x) = 5

ix. g(x) = arcsin x
x. g(x) = 2x+ 3

xi. g(x) = x4

xii. g(x) = arctan x

b) Show that for any odd function g and any number T > 0,
∫ T/2

−T/2
g(x) = 0.

c) The product of an even function and an odd function must be what kind
of function? Explain.

d) Suppose f is an odd function. What must be true about the Fourier
constant coefficient a0 of that function? Explain (as a hint, look at part
(b) of this problem and the result of Problem 91).

e) Suppose f is an odd function. What must be true about the Fourier
cosine coefficients cn of that function? Explain.

f) Suppose f is an even function. What must be true about the Fourier sine
coefficients sn of that function? Explain.
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97. Establish Fact 2 from the last part of Section 8.4, which says

∫ T

0
sin

(2πn
T

x
)
dx = 0.

98. Establish Fact 3 from the last part of Section 8.4, which says

∫ T

0
sin

(2πn
T

x
)

cos
(2πn
T

x
)
dx = 0.

Hint: To do this, first rewrite the integrand using the “double angle” trig
identity

sinAx cosAx = 1
2 sin 2Ax,

then use the Linear Replacement Principle.

99. Establish Fact 4 from the last part of Section 8.4, which says

∫ T

0
cos

(2πn
T

x
)

cos
(

2πk
T
x

)
dx =

{
T
2 if n = k
0 otherwise

Hint: First, rewrite the integrand using another “product to sum” trig iden-
tity, and then split the integral into two terms, using the Linear Replacement
Principle on each term.

cosAx cosBx = 1
2 [cos(A−B)x+ cos(A+B)x] .

100. Establish Fact 5 from the last part of Section 8.4, which says

∫ T

0
sin

(2πn
T

x
)

sin
(

2πk
T
x

)
dx =

{
T
2 if n = k
0 otherwise

Hint: First, rewrite the integrand using yet another “product to sum” trig
identity:

sinAx sinBx = 1
2 [cos(A−B)x− cos(A+B)x] .

Answers

1. a) ρ = lim
n→∞

∣∣∣ xn+1

(n+1)!

∣∣∣∣∣∣xn
n!

∣∣∣ = lim
n→∞

|x|
n+ 1 = 0

b) converges absolutely for all x
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2. a) ρ = lim
n→∞

∣∣∣ (−1)n+1x2(n+1)+1

(2(n+1)+1)!

∣∣∣∣∣∣ (−1)nx2n

(2n+1)!

∣∣∣ = lim
n→∞

|x|2n+3

(2n+ 3)! ·
(2n+ 1)!
|x|2n+1 = lim

n→∞

|x|2

(2n+ 3)(2n+ 2) =

0
b) converges absolutely for all x

3.
∞∑
n=0

3xn = 3 + 3x+ 3x2 + 3x3 + 3x4 + ...

4.
∞∑
n=0

x2n = 1 + x2 + x4 + x6 + ...

5.
∞∑
n=1

(−1)n+1

n
xn = x− x2

2 + x3

3 −
x4

4 + x5

5 − ...

6.
∞∑
n=0

(n+ 1)(n+ 2)xn = 2 + 6x+ 12x2 + 20x3 + 30x4 + ...

7.
∞∑
n=0

x3n = 1 + x3 + x6 + x9 + ...

8.
∞∑
n=0

(−5
2

)n
xn = 1− 5

2x+
(5

2

)2
x2 −

(5
2

)3
x3 +

(5
2

)4
x4 − ...

9.
∞∑
n=0

3
2

(−1
2

)n
xn = 3

2 −
3
2 ·

1
2x+ 3

2

(1
2

)2
x2 − 3

2

(1
2

)3
x3 + 3

2

(1
2

)4
x4 − ...

10.
∞∑
n=0

(−1)n
n! xn = 1− x+ x2

2 −
x3

3! + x4

4! − ...

11.
∞∑
n=0

(−1)n42n

(2n)! x2n = 1− 42

2!x
2 + 44

4!x
4 − 46

6!x
6 + ...

12.
∞∑
n=1

−2n
n
xn = −2x− 4

2x
2 − 8

3x
3 − 16

4 x
4 − 32

5 x
5 − ...

13.
∞∑
n=0

(−2)nxn = 1− 2x+ 4x2 − 8x3 + 16x4 − ...

14.
∞∑
n=0

(−1)n
(2n)! x

4n = 1− x4

2! + x8

4! −
x12

6! + ...

15.
∞∑
n=1

−1
n
x2n = −x2 − 1

2x
4 − 1

3x
6 − 1

4x
8 1
5x

10 − 1
6x

12 + ...
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16.
∞∑
n=0

(−1)n32n+1

(2n+ 1)! x
2n+2 = 3

1!x
2 − 33

3!x
4 + 35

5!x
6 − 37

7!x
8 + 39

9!x
10 − ...

17.
∞∑
n=0

(−1)n
n! x2n+1 = x− x3 + x5

2! −
x7

3! + x9

4! − ...

18.
∞∑
n=1

(−1)n
(2n+ 1)!x

4n+3 = − 1
3!x

7 + 1
5!x

11 − 1
7!x

15 + 1
9!x

19 − ...

19.
∞∑
n=0

2
(2n)!x

2n = 2 + x2 + 2
4!x

4 + 2
6!x

6 + ...

20.
∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + 5x4 + ...

21.
∞∑
n=0

(−1)n
2n+ 1x

4n+3 = x3 − x7

3 + x11

5 −
x15

7 + ...

22.
∞∑
n=0

2(−1)nx2n = 2− 2x2 + 2x4 − 2x6 + 2x8 − ...

23. 2+
∞∑
n=0

(−1)n+1
(

1
(2n)! −

2
(2n+ 2)!

)
x2n+2 = 2+

(
1− 2

2!

)
x2−

( 1
2! −

2
4!

)
x4+...

24. 1

25. 0

26.
−1
3

27.
1
4

28.
1
3

29. −72

30. 0

31.
−1
6

32. −∞

33.
1
2

34.
−6
25

35.
3
10

36.
49
25

37.
1
6

38.
5
4

39.
15
64

40.
60
625

41.
31
16

42.
2
27

43.
301
256

44.
9
20

45.
1
24

46.
23
15

47.
4
15

48.
1
5

49. a)
31
360

b) you would use
parts 8 times.

50. a) P3(x) = 2 + 4x− 3x2 + 1
3x

4

b) f(2) ≈ 4
3

c)
32
15

d) −6

51. −120
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52.
−36!
18!

53.
−252100!

50
54. 0

55.
21442!

14!

56.
30!
120!

57. 870

58. f(0) = 2;

f ′(0) = −1;

f ′′(0) = −2
3 ;

f ′′′(0) = 12.

59. diverges

60. converges

61. diverges

62.
π

4
63. 2e

64.
√

2
2

65. e−3

66. ee

67. −2

68. cos 1

69. cos 10− 1

70.
2
π

71. ln
(1

2

)

72. e−1/7

73. e3 − 4

74. cos 1

75.

√
2

3π sin
√

3π
2

76. 2 ln 5
3

77.
π

6

78. − ln 6
5

79. ln 5
4 −

7
32

80. a) f(x) =
∞∑
n=0

y0
rn

n!x
n

b) f(x) = y0e
rx

81. a) P4(x) = 3− 3x2 + 3
2x

4

b) f(x) =
∞∑
n=0

3(−1)n
n! x2n

c) f(x) = 3e−x2

82. a) P5(x) = 1− x+ 1
6x

3 + 1
12x

4

b)
31
64

c)
19
40

83. 6x2 + x3 + 1
24x

4 + 1
1440x

5

84. 1 + x− 1
2x

2 + 1
6x

3 − 1
8x

4

85. a) R = 1
b) [0, 2]

86. a) R = 1
4

b)
[

3
4 ,

5
4

)
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87. a) R = 4
b) [−4, 4)

88. a) R = 2
b) (1, 5)

89. a) R = 1

b) [0, 2)

90. a) R = 0

91. By additivity of integrals,
∫ T/2

−T/2
g(x) dx =

∫ 0

−T/2
g(x) dx+

∫ T/2

0
g(x) dx. On the

first interval, use the periodicity of g to rewrite it as
∫ 0

−T/2
g(x + T ) dx; then

use the u-sub u = x+ T to rewrite it as
∫ T

T/2
g(u) du. So all together, we have

∫ T/2

−T/2
g(x) dx =

∫ 0

−T/2
g(x) dx+

∫ T/2

0
g(x) dx

=
∫ T

T/2
g(u) du+

∫ T/2

0
g(x) dx

=
∫ T

T/2
g(x) dx+

∫ T/2

0
g(x) dx

(since the name of the variable in the first integral
doesn’t matter)

=
∫ T

0
g(x) dx (by additivity of integrals).

92. a) a0 = −1
4 .

b) cn =


0 if n is even
−3
nπ

if n = 1, 5, 9, 13, ...
3
nπ

if n = 3, 7, 11, 15, ...

c) sn =


−1
nπ

if n is odd
1
nπ

if n is even

d)
−3
5π cos 5πx

2 − 1
5π sin 5πx

2

e) F3(x) = −1
4 −

3
π

cos πx2 −
1
π

sin πx2 + 1
π

sin πx− 1
π

cos 3πx
2 − 1

3π sin 3πx
2

f)
F5

f

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0
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93. a) a0 = 4
3

b) cn = −2
nπ

sin 2πn
3

c) sn = 2
nπ

(
cos 2πn

3 − 1
)

d) F2(x) = 4
3 −
√

3
π

cos 2πx
3 +

√
3

2π cos 4πx
3 − 3

π
sin 2πx

3 − 3
2π sin 4πx

3

e)
F2

f

-4 -2 2 4

0.5

1.0

1.5

2.0

94. f(x) = 1
2 +

∞∑
n=1

4
(
−2 + 2 cos nπ

2 + nπ sin nπ
2

)
n2π2 cos (πnx)

95. f(x) = 2
π

+
∞∑
n=1

4
(
−2 + nπ sin nπ2

4

)
−4 + n2π2 cos (2nx)

96. a) i. odd
ii. odd

iii. even

iv. even
v. odd

vi. odd

vii. neither
viii. even
ix. odd

x. neither
xi. even

xii. odd

b) By additivity of integrals,
∫ T/2

−T/2
g(x) dx =

∫ 0

−T/2
g(x) dx+

∫ T/2

0
g(x) dx.

Use the u-sub u = −x on the first integral to get∫ 0

T/2
g(−x)(− dx) = −

∫ 0

T/2
g(−x) dx.

Since g is odd, the first integral is

−
∫ 0

T/2
−g(x) dx =

∫ 0

T/2
g(x) dx = −

∫ T/2

0
g(x) dx.

All together, we have∫ T/2

−T/2
g(x) dx =

∫ 0

−T/2
g(x) dx+

∫ T/2

0
g(x) dx = −

∫ T/2

0
g(x) dx+

∫ T/2

0
g(x) dx = 0 .

c) An even function times an odd function is odd. To see why, let f be
even and g be odd. Then (fg)(−x) = f(−x)g(−x) = f(x)[−g(x)] =
−f(x)g(x) = −fg(x).

d) If f is odd, then by part (b) and Problem 91, a0 must be 0 .
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e) If f is odd, then since cos
(

2πn
T
x
)

is even, g(x) = f(x) cos
(

2πn
T
x
)

is odd

by part (c). So by part (b) and # 91 applied to g, cn =
∫ T/2

−T/2
g(x) dx = 0 .

f) If f is even, then since sin
(

2πn
T
x
)

is odd, g(x) = f(x) sin
(

2πn
T
x
)

is odd by

part (c). So by part (b) and # 91 applied to g, sn =
∫ T/2

−T/2
g(x) dx = 0 .

97. Use the Linear Replacement Principle:∫ T

0
sin
(

2πn
T

x

)
dx = − T

2πn cos
(

2πn
T

x

)∣∣∣∣T
0

= − T

2πn cos(2πn) + T

2πn cos 0 = −1 + 1 = 0 .

98. First, use the product to sum identity, then use the Linear Replacement Prin-
ciple: ∫ T

0
sin
(

2πn
T

x

)
cos
(

2πn
T

x

)
dx =

∫ T

0

1
2 sin

(
4πn
T

x

)
dx

= − 1
2 ·

T

4πn cos
(

4πn
T

x

)∣∣∣∣T
0

= −T8πn [cos 4πn− cos 0] = −T8πn [1− 1] = 0 .

99. First, use the product to sum identity:∫ T

0
cos
(

2πn
T

x

)
cos
(

2πk
T

x

)
dx =

∫ T

0

1
2

[
cos
(

2π(n− k)
T

x

)
+ cos

(
2π(n+ k)

T
x

)]
dx

If n 6= k, then we can split the integral as

1
2

∫ T

0
cos
(

2π(n− k)
T

x

)
dx+ 1

2

∫ T

0
cos
(

2π(n+ k)
T

x

)
dx

= T

4π(n− k) sin
(

2π(n− k)
T

x

)∣∣∣∣T
0

+ T

4π(n+ k) sin
(

2π(n+ k)
T

x

)∣∣∣∣T
0

= T

4π(n− k) [sin 2π(n− k)− sin 0] + T

4π(n+ k) [sin 2π(n+ k)− sin 0]

= T

4π(n− k) [0− 0] + T

4π(n+ k) [0− 0] = 0 .

If n = k, the second integral is still zero. But the first term is

1
2

∫ T

0
cos 0x dx = 1

2

∫ T

0
1 dx = 1

2 [T − 0] = T

2 .

100. This is exactly the same as Exercise 99, except that the red + signs become −
signs, due to the different “product to sum” identity.
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Appendix A

Additional review material

Old MATH 230 exams are available on my website:

http://mcclendonmath.com/230.html

I recommend using the old exams as your primary review material, but if you need
more practice, this appendix contains some additional problems.

A.1 Additional review exercises for Exam 1
In Exercises 1-13, compute each integral.

1.
∫ (

3 secx tan x+ 5 sin x− sec2 x

2

)
dx

2.
∫ sin(1/x)

x2 dx

3.
∫
x sin 3x dx

4.
∫ π/3

π/4
cotx dx

5.
∫

sin4 x cos3 x dx

6.
∫

sec2 x tan5 x dx

7.
∫ 4 + x

(x− 2)2 dx

8.
∫ 3x− 2

x+ 3 dx

9.
∫ 19− x
x2 + 2x− 15 dx

10.
∫ ex

e2x − 4 dx

Hint: Start with the u−sub u = ex.

11.
∫ x√

1− x2
dx
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12.
∫ x3
√

1− x2
dx 13.

∫
x3 ln x dx

In Exercises 14-19, determine, with justification, whether each improper integral
converges or diverges.

14.
∫ ∞

3

ln x
x

dx

15.
∫ ∞

2
xe−4x dx

16.
∫ 5

1

1√
5− x

dx

17.
∫ ∞

2

1
x3 + 4x+ 1 dx

18.
∫ ∞

2

x3 + sin x+ 2
x4 dx

19.
∫ ∞

0
x5e−2x dx

20. Use the method of undetermined coefficients to find a function f so that
f ′′(x)− 8f ′(x) + 15f(x) = 12e2x.

Some sample Mathematica questions:

21. For each problem, you are given a problem that a student was trying to
solve on Mathematica, and what the student typed in. What they typed in
is WRONG; explain why their code is wrong.

a) Student wants to find the sine of π/6 and types in Sin(Pi/6)
b) Student wants to find log 7 and types in Log[7]
c) Student wants to solve the equation x2 + 3x = 7 and types in

Solve[xˆ2 + 3x = 7, x]
d) Student wants to define function f(x) = x2 and types in f[x] = xˆ2
e) Student wants to define function f(x) = e2x and types in f[x_] = eˆ(2x)
f) Student wants to evaluate 32+9

63−17 and types in [32+9]/[63-17]
g) Student wants to define function f(x) = x−1

x+1 and types in f[x_] = x-1/x+1

h) Student wants a decimal approximation to
∫ 2

1 e
−2/x2

dx and types in
N[Integrate[Eˆ(-2/xˆ2), {x, 1, 2}]]

22. In each part of this problem, you are given some code in Mathematica (the
code works). Determine what output Mathematica will give you.

a) f[x_] = xˆ2 + x; f[3]
b) Cos[2 Pi/3]
c) g[x_] = 1/x-1; g[x+1]
d) Solve[x+3 ==5, x]

e) Factor[xˆ2 - 4, x]
f) D[xˆ2, x]
g) Integrate[x, {x, 2, 4}]
h) Limit[1/x, x -> 3]
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23. Suppose you typed in the following command into Mathematica:

Plot[xˆ3 Log[xˆ2 + 1], {x, -3, 5}, PlotRange -> {0,4}]

a) What function is being plotted? (Write the function in hand-written no-
tation, not Mathematica syntax.)

b) What x−value will be at the left edge of the graph?

c) What y−value will be at the top of the graph?

24. Write the Mathematica code which will accomplish each of the following tasks:

a) Find the exact value of cos(π8 )
b) Define the function f(x) = cos(ex − 1)
c) Find the indefinite integral of f(x) = (x2 + 1)5

d) Find the definite integral of f(x) = 2 secx from x = 0 to x = π/3
e) Find a decimal approximation to the definite integral of f(x) =

√
x2 + 1

from x = 0 to x = 4
f) Find the third derivative of f(x) = ex

2 sin x
g) Compute 5 + 7 + 9 + 11 + ...+ 1755
h) Find f ′(6), given that f(x) = 2x

Answers

1. 3 secx− 5 cosx+ 1
2 tan x+ C (just do it).

2. cos
(

1
x

)
+ C (use the u-sub u = 1

x
).

3. −1
3 x cos 3x+ 1

9 sin 3x+ C (use parts with r = x, ds = sin 3x dx).

4. 1
2 ln 3

2 (this can also be written as 1
2 ln 3− 1

2 ln 2)

(write cotx as cosx
sinx , then use the u-sub u = sin x).

5.
sin5 x

5 − sin7 x

7 + C (rewrite as
∫

sin4 x(1 − sin2 x) cosx dx then use the u-sub
u = sin x).

6. 1
6 tan6 x+ C (use the u-sub u = tan x).

7.
−6
x− 2 + ln |x− 2|+C (either use the u-sub u = x− 2 or use partial fractions).
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8. 3(x+ 3)− 11 ln |x+ 3|+ C (use the u-sub u = x+ 3).

(the answer 3x− 11 ln |x+ 3|+ C is also correct)

9. 2 ln |x− 3| − 3 ln |x+ 5|+ C (use partial fractions).

10. 1
4 ln |ex−2|− 1

4 ln |ex+ 2|+C (after the u-sub in the hint, use partial fractions).

11. −
√

1− x2 + C (use the u-sub u = 1− x2).

12. −1
3 x

2√1− x2 − 2
3

√
1− x2 + C (use the u-sub u = 1− x2).

13.
1
4x

4 ln x− 1
16x

4 + C (use parts with r = ln x, ds = x3 dx).

14. diverges (compute it directly)

15. converges (compute it directly; it converges to 9
16e
−8)

16. converges (compute it directly; it converges to 4)

17. converges (by the Comparison Test; compare the integrand with 1
x3 )

18. diverges (by the Comparison Test; compare the integrand with x3

x4 = 1
x
)

19. converges (it is a Gamma integral that converges to 15
8 )

20. f(x) = 4e2x.

21. a) Used parentheses instead of brackets: command should have been Sin[Pi/6].
b) Log computes natural logarithm, not logarithm base 10.

c) Equation inside the Solve command needs two equal signs, not one.

d) Missing underscore after the x: command should have been f[x_] = xˆ2.

e) e is capital E, not lowercase e: should have been f[x_] = Eˆ(2x).
f) Used brackets instead of parentheses: should have been (32+9)/(63-17).
g) Forgot parentheses: should have been f[x_] = (x-1)/(x+1).
h) NIntegrate[... ] is much faster than N[Integrate[ ...].

22. a) 12

b) −1/2

c) 1
x+1 − 1

d) 2

e) (x− 2)(x+ 2)
f) 2x

g) 6 (this is
∫ 4

2
x dx)

h) 1
3
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23. a) x3 ln(x2 + 1) b) −3 c) 4

24. There could be more than one answer to some of these questions:

a) Cos[Pi/8]
b) f[x_] = Cos[Eˆx - 1]
c) Integrate[(xˆ2+1)ˆ5, x]

(you could also do
∫
(xˆ2+1)ˆ5 dx, etc.)

d) Integrate[2 Sec[x], {x, 0, Pi/3}]
(you could also do

∫ Pi/3
0 2 Sec[x] dx, etc.)

e) NIntegrate[Sqrt[xˆ2+1], {x, 0, 4}]
(you could also do NIntegrate[

√
xˆ2+1, {x, 0, 4}] , etc.)

f) D[Eˆ(xˆ2) Sin[x], {x, 3}]
(you could also do f[x_] = Eˆ(xˆ2) Sin[x]; f”’[x] , etc.)

g) Sum[x, {x, 5, 1755, 2}]
h) f[x_] = 2ˆx; f’[6]

A.2 Additional review exercises for Exam 2
1. Let Q be the region in the xy−plane bounded by the graphs of y + x = 0,

2y − x = 0 and y =
√
x+ 1 + 1. (The corner points of this region are (0, 0),

(−1, 1) and (8, 4); you might be responsible for solving for these on the exam.)

a) Write an expression involving one or more integrals with respect to x
which gives the area of Q.

b) Write an expression involving one or more integrals with respect to y
which gives the area of Q.

2. LetR be the region in the xy−plane which lies below the graph of y = 8x and
above the graph of y = e−x between x = 1 and x = 4.

a) Write an expression involving one or more integrals (with respect to
any variable you want) which gives the volume of the solid obtained
by revolving R around the x−axis.

b) Write an expression involving one or more integrals (with respect to
any variable you want) which gives the volume of the solid obtained
by revolving R around the y−axis.
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c) Write an expression involving one or more integrals (with respect to any
variable you want) which gives the volume of the solid whose base is
R and whose cross-sections parallel to the y−axis are semicircles with
diameter in the xy−plane.

3. Let S be the region in the xy−plane bounded by the graphs of y = ln x, y = 0
and x = e2. Write an integral with respect to x, and a different integral with
respect to y, which gives the volume of the solid obtained by revolving S
around each of these lines:

y = 8 y = −2 x = 13 x = −5 x = e2

4. Write an integral which gives the length of the curve y = x2/3 from x = 0 to
x = 8.

5. Suppose a 20-foot rod is made from a material whose density is x(30−x) g/ft
where x is the number of feet from the left end of the rod.

a) What is the mass of the rod?

b) How far from the left end of the rod is its center of mass?

6. Find the centroid of the region bounded by the x−axis and the portion of the
graph of y = cos x from x = −π/2 to x = π/2. You may leave your answer in
terms of unevaluated integrals if you like.

7. Suppose a slab of metal has shape bounded by the graphs y = x and y = 1
6x

2,
and that its density at any point (x, y) is x + 1 kg/sq unit. Find the center
of mass of the slab; you may leave your answer in terms of unevaluated
integrals if you like.

8. Compute the moments of inertia about the x- and y-axes for the region of
points in the xy-plane lying above the graph of y = x2 − 1, to the left of the
y-axis, and below the graph of y = 3.

9. Suppose X is a continuous random variable with density function

f(x) =
{
cx5 if 0 ≤ x ≤ 1
0 else

where c is some unknown constant.

a) Determine the value of c.

b) Compute the expected value of X .
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10. Suppose X is a continuous random variable with density function

f(x) =
{

2e−2x if x ≥ 0
0 else

a) Compute the probability that X ≥ 5.

b) If b is so that P (X ≤ b) = 3
4 , what is the value of b?

c) Compute the expected value of X .

Answers

1. a)
∫ 0

−1

[√
x+ 1 + 1− (−x)

]
dx+

∫ 8

0

[√
x+ 1 + 1− x

2

]
dx

b)
∫ 1

0
[2y − (−y)] dy +

∫ 4

1

[
2y − ((y − 1)2 − 1)

]
dy

2. a)
∫ 4

1
π
[
(8x)2 − (e−x)2

]
dx

b)
∫ 4

1
2πx

[
8x− e−x

]
dx

c)
∫ 4

1
π

1
2

[
8x− e−x

2

]2

dx

3. • Around y = 8:

V =
∫ e2

1
π
[
82 − (8− ln x)2

]
dx =

∫ 2

0
2π(8− y)

[
e2 − ey

]
dy

• Around y = −2:

V =
∫ e2

1
π
[
(ln x+ 2)2 − (0−−2)2

]
dx =

∫ 2

0
2π(y + 2)

[
e2 − ey

]
dy

• Around x = 13:

V =
∫ e2

1
2π(13− x) [(ln x)− 0] dx =

∫ 2

0
π
[
(13− ey)2 − (13− e2)2

]
dy

• Around x = −5:

V =
∫ e2

1
2π(x+ 5) [(ln x)− 0] dx =

∫ 2

0
π
[
(e2 + 5)2 − (ey + 5)2

]
dy

• Around x = e2:

V =
∫ e2

1
2π(e2 − x) [(ln x)− 0] dx =

∫ 2

0
π
[
(e2 − ey)2

]
dy
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4. s =
∫ 8

0

√
1 +

(2
3x
−1/3

)2
dx

5. a) M =
∫ 20

0
x(30− x) dx = 10000

3 g.

b) M0 =
∫ 20

0
x · x(30− x) dx = 40000 so x = 12 feet from the left of the rod.

6. The centroid is (x, y) where

x = 0 (by symmetry) and y = Mx

M
=

∫ π/2

−π/2

1
2 cos2 x dx∫ π/2

−π/2
cosx dx

.

7. The center of mass is (x, y) where

x =

∫ 6

0
x(x− 1

6x
2)(x+ 1) dx∫ 6

0
(x− 1

6x
2)(x+ 1) dx

and y =

∫ 6

0

1
2

[
x2 − (1

6x)2)2
]

(x+ 1) dx∫ 6

0
(x− 1

6x
2)(x+ 1) dx

.

8. Iy = 64
15 ; Ix = 1712

105 .

9. a) c = 6
b) EX = 6

7

10. a) e−10

b) b = ln 2
c) EX = 1

2
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A.3 Additional review exercises for Exam 3
1. Compute the third partial sum of the harmonic series.

2. Write each of these series in Σ−notation.

a) 2− 4
3! + 8

6! −
16
9! + 32

12! − ...

b) 3 + 5
4 + 7

7 + 9
10 + 11

13 + 13
16 + ...

3. Rewrite the series
∞∑
n=2

3n+ 1
4n−1 so that its starting index is 0; write your answer

in Σ−notation.

4. Determine, with justification, whether each of the following series converges
absolutely, converges conditionally, or diverges:

a)
∞∑
n=1

3
2n + n2 + 6

b)
∞∑
n=0

cos(πn)
5n
√
n

c)
∞∑
n=0

(−1)n(3n)!
(n!)3

d)
∞∑
n=0

( 2
n+ 3 −

4
5n
)

e)
∞∑
n=0

3n− 2
2n+ 1

f)
∞∑
n=2

(−1)nn−1/3

5. Write the Taylor series of the function f(x) = sin(2x2).

6. Let f(x) = x3 ln(x3 + 1).

a) Write the Taylor series of f in Σ notation.

b) Write the eighth Taylor polynomial of f(x).

c) Use the eighth Taylor polynomial to estimate f(1
2).

7. Determine the interval of convergence of each power series:

a)
∞∑
n=1

(−1)n+1 · n
n+ 2 (x− 1)n

b)
∞∑
n=0

2n
3n x

n

c)
∞∑
n=0

(n+ 2)!(x− 2)n

8. Suppose the power series f(x) =
∞∑
n=0

an(x+3)n converges conditionally when

x = 0.

a) Does this power series converge or diverge when x = 2?

b) Does this power series converge or diverge when x = −5?
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9. Suppose f(x) = x + x2

4 + x3

9 + x4

16 + x5

25 + .... Compute f (12)(0), the twelfth
derivative of f at zero.

10. Estimate cos .3 by approximating a suitable function with its third Taylor
polynomial.

11. Estimate
∫ 1

0
x arctan x dx by replacing the integrand with its third Taylor poly-

nomial.

12. Evaluate lim
x→0

cos(4x5)− 1
x10 without using L’Hôpital’s Rule.

13. Compute the exact sum of each series; simplify your answers.

a)
∞∑
n=1

−3
5n−1

b)
∞∑
n=0

3 · 4n
2 · 52n−1

c)
∞∑
n=2

(−1)n
n!

d)
∞∑
n=0

1
5nn!

e)
∞∑
n=0

(−1)nπ2n+1

32n+1(2n+ 1)!

f)
∞∑
n=4

(−1)n+1

n

(2
3

)n

g) 3− 33

3 + 35

5 −
37

7 + 39

9 −
311

11 + ...

h) 2− 1 + 1
2 −

1
4 + ...− 1

220

i) 1− 1
2! + 1

4! −
1
6! + 1

8! − ...

14. Suppose y is a function with y(0) = 0, y′(0) = 1 and xy′′ + 2x2y′ = y. Write
the fifth Taylor polynomial of y.

15. Let f be the piecewise constant function

f(x) =
{

0 if x ∈ ..., [−4,−2), [0, 2), [4, 6), [8, 10), ...
6 if x ∈ ..., [−6,−4), [−2, 0), [2, 4), [6, 8), ...

Compute the third Fourier polynomial of f .
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16. a) Why is calculus required to add up an infinite list of numbers?

b) What does it mean (precisely) for a series to converge?

c) What does it mean (precisely) for a series to converge absolutely?

d) What does it mean for a series to converge conditionally?

e) Why do we care whether or not knowing if a series absolutely converges
(rather than just knowing if it converges)?

f) What is the difference between the terms power series and Taylor series?

g) What is meant by uniqueness of power series?

Answers

1.
11
6

2. There are many different correct answers to each part of this question.

a)
∞∑
n=0

(−1)n2n+1

(3n)!
b)

∞∑
n=0

2n+ 3
3n+ 1

3.
∞∑
n=0

3n+ 7
4n+1

4. a) converges absolutely (positive series; Comparison Test)

b) converges absolutely (p-series Test (the Alt. Series test also applies to
tell you the series converges))

c) diverges (Ratio Test, ρ = 27 > 1)

d) diverges (divergent (harmonic) − convergent (geometric with r = 1
5 ))

e) diverges (nth Term Test)

f) converges conditionally (converges by AST; converges conditionally by
p-series test)

5.
∞∑
n=0

(−1)n22n+1

(2n+ 1)! x
4n+2

6. a) x6 − x9

2 + x12

3 −
x15

4 + x18

5 −
x21

6 + ...

b) P8(x) = x6

c)
(

1
2

)6

7. a) (0, 2)
b) (−3, 3)
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c) {2} (i.e. the series converges only when x = 2 since R = 0)

8. a) The series diverges when x = 2.
b) The series converges (absoutely) when x = −5.

9. f (12)(0) = 12!
144

10. cos .3 ≈ 191
200

11.
1
3

12. −8

13. a)
−15

4

b)
10
7

c) e−1

d) e1/5

e)
√

3
2

f) ln 5
3 −

44
81

g) arctan 3

h)
4
3
(
1− 2−22

)
i) cos 1

14. P5(x) = x+ 1
2x

2 − 1
4x

3 − 9
48x

4 + 21
320x

5

15. F3(x) = 3− 12
π

sin πx2 −
4
π

sin 3πx
2

16. a) Addition is formally a binary operation (it has two inputs and one out-
put). If you try to add an infinite list of numbers two at a time, you
never run out of numbers in the list. So to add the infinite list, you need
to take a limit, which means you need calculus.

b)
∑
an converges to L if limN→∞ SN = L, where SN is the N th partial sum

of the series.
c)
∑
an converges absolutely if

∑ |an| converges.
d)

∑
an converges conditionally if

∑
an converges but

∑ |an| diverges.
e) The terms of a series can be rearranged legally if and only if the series

absolutely converges. So if we know whether or not a series converges
absolutely, we know if we can rerarrange or regroup terms.

f) A power series is any function of the form
∑
an(x− a)n. A Taylor series

is a specific kind of power series associated to a function f ; it is defined

by
∞∑
n=0

f (n)(a)
n! (x− a)n and its main theoretical attribute is that the Taylor

series of f centered at a is the only power series centered at a which can
be equal to the function f .

g) The uniqueness of power series is the principle that if you have two
power series centered at a which are equal as functions, all the coeffi-
cients of the two power series have to be equal. In symbols, this means

that if
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n, then an = bn for all n.
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A.4 Additional review exercises for the Final Exam
1. Evaluate each integral:

a)
∫
x sin πx dx

b)
∫ π/3

0
cosx sin2 x dx

c)
∫

cot 4x dx

d)
∫ 4x2 + 6x− 12

x3 − 4x dx

e)
∫ 3
x2 + 1 dx

f)
∫ 1

0
xex dx

g) x
√
x− 3 dx

h)
∫ x+ 4
x2 + 3x+ 2 dx

2. Determine whether or not each improper integrals converges or diverges:

a)
∫ ∞

0
x4e−x dx

b)
∫ ∞

0
xe−x

2
dx

c)
∫ ∞

1

3x
x3 + 1 dx

d)
∫ 2

0

3
5
√
x2
dx

3. Compute the area of the “triangular”-shaped region in the first quadrant
bounded by the graphs of y = x2, x+ y = 2 and the x−axis.

4. Write integals which give the volume of the solid formed by revolving the re-
gion of the previous problem around each of the following lines (you should
be able to write integrals with respect to either x or y):

a) the x−axis

b) the line x = −2
c) the line x = 5
d) the line y = 2

5. Compute the length of the curve y = 4x3/2 + 1 between x = 1 and x = 2.

6. Compute the center of mass of a rod of length 3 ft, where the density of the
rod at a point x ft from the left-end of the rod is ρ(x) = x2 + x mg/ft.

7. Let R be the region in the xy plane above the line y = x − 3 and below the
curve y = 4

√
x− 3. (The left- and right-most points of this region are (3, 0)

and (4, 1).)

a) Determine the centroid of R.
b) Compute the moment of inertia of R about the y-axis.

8. Suppose the amount of time, in months, that a lightbulb lasts is a continuous
random variable whose density function is

f(x) =
{
Ce−x/9 if x ≥ 0

0 if x < 0 .
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a) Determine the value of C.
b) Compute the probability that the lightbulb lasts at least 4 months.
c) Compute the expected lifespan of a lightbulb.

9. State precisely what it means for an infinite series to converge.

10. Compute the sum of each series:

a)
∞∑
n=2

(2
3

)n

b)
∞∑
n=0

3 · 23(n+1)

5 · 11n−1

c)
∞∑
n=1

(−1)n π2n

(2n)!

d)
∞∑
n=0

(−1)nπ2n+1

(2n+ 1)42n+1

11. Determine, with appropriate justification, whether each series converges ab-
solutely, converges conditionally, or diverges:

a)
∞∑
n=2

[ 4
n3 +

(1
4

)n
+ 3
n

]

b)
∞∑
n=0

5n
n3 + 3

c)
∑ 5n

(2n)!

d)
∑ (−1)n+1

4n

12. Determine the interval of convergence of each power series:

a) f(x) =
∞∑
n=0

1
4n (x− 1)n

b) g(x) =
∞∑
n=1

(−1)n
n4n! (x+ 3)n

c) h(x) =
∞∑
n=0

nnxn

13. Write the Taylor series of each function:

a) f(x) = 4
2− 3x

b) g(x) = x2e−x

c) h(x) = arctan(2x3)

d) k(x) = 2
(1− x)3

14. Estimate arctan 1
3 by using the fifth Taylor polynomial for an appropriate

function.

15. Estimate
∫ 1

0
cosx3 dx by replacing the integrand with its seventh Taylor poly-

nomial.

16. Evaluate lim
x→0

ln(x2 + 1)− sin x2

ex4 − 1 without using L’Hôpital’s Rule.

17. Let f be an unknown function with f(0) = 2, f ′(0) = 1
2 , f ′′(0) = −3 and

f ′′′(0) = 6. Estimate f(−1) using the third Taylor polynomial of f .
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Answers

1. a) Use parts with r = x, ds = sin πx to get
−1
π

cos πx+ 1
π2 sin πx+ C.

b) Use u-sub u = sin x to get
√

3
8 .

c) Rewrite as cos 4x
sin 4x ; then the u-sub u = sin 4x to get 1

4 ln | sin 4x|+ C.

d) Use partial fractions to get 2 ln |x− 2|+ 3 ln |x| − ln |x+ 2|+ C.

e) Just write the answer to get 3 arctan x+ C.

f) Use integration by parts to get 1.

g) Use the u-sub u = x− 3 to get

−12
5
√
x− 3− 2

5x
√
x− 3 + 2

5x
2√x− 3 + C.

h) Use partial fractions to get 3 ln |x+ 1| − 2 ln |x+ 2|+ C.

2. they all converge (use the Comparison Test on (c))

3.
5
6

4. a)
∫ 1

0
π(x2)2 dx+

∫ 2

1
π(2− x)2 dx

or
∫ 1

0
2πy(2− y −√y) dy

b)
∫ 1

0
2π(x+ 2)[x2] dx+

∫ 2

1
2π(x+ 2)(2− x) dx

or
∫ 1

0
π[(2− y + 2)2 − (√y + 2)2] dy

c)
∫ 1

0
2π(5− x)[x2] dx+

∫ 2

1
2π(5− x)(2− x) dx

or
∫ 1

0
π[(5−√y)2 − (5− (2− y))2] dy

d)
∫ 1

0
π[22 − (2− x2)2] dx+

∫ 2

1
π[22 − (2− (2− x))2] dx

or
∫ 1

0
2π(2− y)(2− y −√y) dy

5.
1
54
(
373/2 − 1

)
6. x = 13

6 ft from the left end of the rod.
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7. a) (x, y) =
(91

27 ,
5
9

)
b) Iy = 2671

780

8. a) C = 1
9 b) e−4/9 c) EX = 9 months.

9.
∑
an converges to L if lim

N→∞
SN = L, where SN is the N th partial sum of the

series.

10. a)
4
3 b)

512
5

c) −2 d) 1

11. a) diverges

b) converges absolutely

c) converges absolutely

d) converges conditionally

12. a) (−3, 5) b) (−∞,∞) c) {0}

13. a)
∞∑
n=0

2
(3

2

)n
xn b)

∞∑
n=0

(−1)nxn+2

n! c)
∞∑
n=0

(−1)n22n+1

2n+ 1 x6n+3

14.
1
3 −

(1/3)3

3 = 26
81

15.
13
14

16.
−1
2

17. 2
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Appendix B

Mathematica reference

B.1 What is Mathematica?
Mathematica is an extremely useful and powerful software package / program-

ming language invented by a mathematician named Stephen Wolfram. Early ver-
sions of Mathematica came out in the late 1980s and early 1990s; as of 2023, the most
recent version available to you is Mathematica 13.

Mathematica does symbolic manipulation of mathematical expressions; it solves
all kinds of equations; it has a library of important functions from mathemat-
ics which it recognizes while doing computations; it does 2− and 3−dimensional
graphics; it has a built-in word processor tool; it works well with Java and C++;
etc. One thing it doesn’t do is prove theorems, so it is less useful for a theoretical
mathematician than it is for an engineer or college student.

A bit about how Mathematica works: When you use the Mathematica program,
you are actually running two programs. The “front end” of Mathematica is the part
that you type on and the part you see. The “kernel” is the part of Mathematica
that actually does the calculations. If you type in 2 + 2 and hit [ENTER] (actually
[SHIFT]+[ENTER]; see below), the front end “sends” that information to the kernel
which actually does the computation. The kernel then “sends” the result back to
the front end, which displays 4 on the screen.

About Mathematica notebooks and cells: The actual files that Mathematica
produces that you can edit and save are called notebooks and carry the file designa-
tion *.nb; they take up little space and can easily be saved to Google docs or on a
flash drive, or emailed to yourself if you want them somewhere you can retrieve
them.

Suggestion: when saving any file, include the date in the file name (so it is
easier to remember which file you are supposed to be open).
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B.1. What is Mathematica?

A Mathematica notebook is broken into cells. A cell can contain text, input, or
output. A cell is indicated by a dark blue, right bracket (a “]”) on the right-hand
side of the notebook. To select a cell, click that bracket. This highlights the “]”
in blue. Once selected, you can cut/copy/paste/delete cells as you would high-
lighted blocks of text in a Word document.

To change the formatting of a cell, select the cell, then click “Format / Style” and
select the style you want. You may want to play around with this to see what the
various styles look like. There are three particularly important styles:

• input: this is the default style for new cells you type
• output: this is the default style for cells the kernel produces from your com-

mands
• text: changing a cell to text style allows you to make comments in between

the calculations

To execute an input cell, put the cursor anywhere in the cell and hit [SHIFT]+[ENTER]
(or the [ENTER] on the numeric keypad at the far-right edge of the keyboard). The
[ENTER] next to the apostrophe key (a.k.a. [RETURN]) gives you only a carriage
return.
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B.2 Important general concepts re: Mathematica syntax
Executing mathematical commands: To execute an input cell, put the cursor any-

where in the cell and hit [SHIFT]+[ENTER] (or the [ENTER] on the numeric
keypad at the far-right edge of the keyboard). The [ENTER] next to the apos-
trophe key (a.k.a. [RETURN]) gives you only a carriage return.

Multiplication: use a star or a space: 2 * 3 or 2 3 will multiply numbers; a x means
a times x; ax means the variable ax (in Mathematica, variables do not have to
be named after one letter; they can be named by words or other strings of
characters as well).

Parentheses: used for grouping only. Parentheses mean “times” in Mathematica.

Brackets: used to enclose all functions and Mathematica commands. For example,
to evaluate a function f(x), you would type f[x]; for sin x you type Sin[x]; etc..
Brackets mean “of” in Mathematica and cannot be used for multiplication.

Capitalization: All Mathematica commands and built-in functions begin with cap-
ital letters. For example, to find the sine of π, typing sin(pi) does you no good
(this would be the variable “sin” times the variable “pi”). The correct syntax
is Sin[Pi].

Spaces: Mathematica commands do not have spaces in them; for example, the
inverse function of sine is ArcSin, not Arc Sin or Arcsin.

Pallettes: Lots of useful commands are available on the Basic Math Assistant
Pallette, which can be brought up by clicking “Pallettes / Basic Math Assistant”
on the toolbar. If you click on a button in the pallette, what you see appears
in the cell.

Commands Mathematica knows: Sqrt, Sin, Cos, Tan, Csc, Cot, Sec, ArcSin, ArcCos,
ArcTan, ArcCsc, ArcSec, ArcCot, ! (for factorial). It knows what Pi and E are
(but not pi or e).

Logarithms: Log[ ] means natural logarithm (base e); Log10[ ] means common
logarithm (base 10).

% refers to the last output (like ANS on a TI-calculator).

Exact answers versus decimal approximations: Mathematica gives exact answers
for everything if possible. If you need a decimal approximation, click “numerical
value" or use the command N[ ]. For example, N[Pi] spits out 3.14159...

To solve an equation: make sure there are two equals signs (“==”) in your equa-
tion.
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Getting help from the program: To get help on a command, type ? followed by
the command you don’t understand (with no space between the ? and the
command).

To export graphics: Once Mathematica produces a graphic, you can right-click the
graphic, and select “Copy Graphic”. Then you can go in a Word document or
a PowerPoint, and paste the graphic. You can subsequently resize it and/or
move it around as you see fit.

Troubleshooting: For a command to run correctly, you usually want everything
in your command to be black. If anything is purple or red, that suggests
where the problem is. Variables that don’t have values should be blue. Next,
check that everything is capitalized appropriately. Next, check that you aren’t
missing a space if you are trying to multiply two variables. Next, if you are
using variables in your code, try clearing the variables by executing some-
thing like Clear[x] (if your variable is x). Then re-run the command that is
giving you trouble.

If Mathematica freezes up in the middle of a calculation and you see “Running..."
at the top of your screen, click “Evaluation / Abort Evaluation” on the toolbar.
If this doesn’t help, kill the program and restart it.

To get help: Email me, and attach your Mathematica file to your email. I can trou-
bleshoot things pretty quickly if the file is attached. If the file isn’t attached,
it is hard for me to figure out what you are doing wrong. Alternatively, seek
assistance from another math major who has experience with Mathematica.
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B.3 Mathematica quick reference guides
General tasks

TASK MATHEMATICA SYNTAX

To call the preceding output %
To get a decimal approximation to the N[%]

preceding output (or click numerical value)

Algebraic manipulations

TASK MATHEMATICA SYNTAX

To factor an expression Factor[ ]
To multiply out an expression Expand[ ]

(i.e. FOIL an expression)
Partial fraction decomposition Apart[ ]
To combine rational terms Together[ ]

(i.e. “undo” a partial fraction decomp)
To simplify an answer Simplify[ ] (or FullSimplify[ ])

Solving equations

GOAL MATHEMATICA SYNTAX

Find exact solution(s) to equation Solve[lhs == rhs, x]
of form lhs = rhs (two equals signs)

(assuming the variable is x) (works only with polynomials or other
relatively “easy” equations)

Find decimal approx. to solutions NSolve[lhs == rhs, x]
of equation lhs = rhs (two equals signs)

(works only with “easy” equations)
Find decimal approx. to solutions FindRoot[lhs == rhs, {x, guess}]
of equation lhs = rhs (two equals signs)
Solve two (or more) equations Solve[{lhs1==rhs1, lhs2==rhs2}, {x,y}]
together, like lhs1 = rhs1

lhs2 = rhs2

(assuming variables are x and y)
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Precalculus operations

EXPRESSION MATHEMATICA SYNTAX
SP

E
C

IA
L

SY
M

B
O

L
S

e E (not e) (or use Basic Math Assistant pallette)
π Pi (or use Basic Math Assistant)
∞ Infinity (or use Basic Math Assistant)

(or type [Esc] inf [Esc])
i =
√
−1 I (not i) (or use Basic Math Assistant)

A
R

IT
H

M
E

T
IC

3 + 4x 3 + 4x
5− 27 5 - 27

12x 12x or 12 x or 12 * x
xy x y (don’t forget the space)
x
y

x/y (or use Basic Math Assistant pallette)
(or type [CTRL]+/ to get �� )√

32 Sqrt[32]
(or use Basic Math Assistant)
(or type [CTRL]+2 for the√ sign)

4
√

40 40ˆ(1/4) (or use Basic Math Assistant)
|x− 3| Abs[x-3]

30! (factorial) 30!

T
R

IG

sin π Sin[Pi]
cos(x(y + 1)) Cos[x(y+1)]

cos 60◦ Cos[60 Degree]
(or use Basic Math Assistant)

cot
(

2π
3 + 3π

4

)
Cot[2 Pi/3 + 3 Pi/4]

sin2 x Sin[x]ˆ2 (not Sinˆ2[x])
arctan 1 ArcTan[1]

E
X

P
S

/
L

O
G

S

ln 3 Log[3]
log6 63 Log[6,63]
log 18 Log10[18] or Log[10, 18]

27y 2ˆ(7y) (or use Basic Math Assistant)
(or type [CTRL]+6 to get ��)

ex−5+x2 E^(x-5+xˆ2) or Exp[x-5+xˆ2]
(or use Basic Math Assistant)
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Defining functions

CLASS OF FUNCTION SYNTAX TO DEFINE FUNCTION

Calculus 1 function f : R→ R
x

f7−→ y f[x_] = formula

(one equals sign, underscore after the x)
Ex: f(x) = 3 cos(x2−x) f[x_] = 3 Cos[xˆ(2-x)]

Algebraic operations on functions

All these commands assume you have previously defined the function(s) as out-
lined above.

EXPRESSION MATHEMATICA SYNTAX

Generate table of values for f Table[{x, f[x]}, {x, xmin, xmax, step}]
(put //TableForm after this command to

format the output in a table)
f(x+ 3) f[x+3]
xf(2x)− x2f(x) x f[2x] - xˆ2 f[x]

(spaces important)
Composition (f ◦ g)(x) . f[g[x]]
Addition (f + g)(x) f[x] + g[x]
Multiplication (fg)(x) f[x] g[x]
Powers fn(x) (f[x])ˆn (or just f[x]ˆn)

Ex: sin2 x Sin[x]ˆ2
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B.3. Mathematica quick reference guides

Graphs

The basic command to graph a function is Plot[f(x), {x, xmin, xmax}]; the exam-
ples below describe how to adapt the Plot[ ] command:

GOAL HOW TO ADAPT THE Plot[ ] COMMAND

Plot multiple graphs at once Plot[{formula, formula, ..., formula},
{x, xmin, xmax}]

Plot the graph of f(x) = formula Plot[formula, {x, xmin, xmax},
with range of y−values specified PlotRange -> {ymin, ymax}]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with x- and y-axes on same scale PlotRange -> ymin,ymax,

AspectRatio -> Automatic]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with a red, dashed curve PlotStyle -> {Red, Dashed}]

Single-variable calculus

EXPRESSION MATHEMATICA SYNTAX

lim
x→4

f(x) Limit[f[x], x -> 4]
f ′(3) f’[3]
h′(x) D[h[x], x]

d
dx

(cosx) D[Cos[x], x]
g′′′(x) g’ ’ ’[x] or D[g[x], {x,3}]∫
x2 dx Integrate[xˆ2, x] (or use Basic Math Assistant pallette)

Note: answer will be missing the “+C”∫ 5

2
cosx dx For an exact answer:

Integrate[Cos[x], {x, 2, 5}]
(or use Basic Math Assistant)

For a decimal approximation:
NIntegrate[Cos[x], {x, 2, 5}]

12∑
k=1

f(k) Sum[f[k], {k, 1, 12}]

(or use Basic Math Assistant)
∞∑
n=3

blah Sum[blah, {n, 3, Infinity}]

(or use Basic Math Assistant)
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B.4 More on solving equations with Mathematica
There are three methods to solve an equation using Mathematica. They have

something in common: to solve an equation, the equation must be typed with two
equals signs where the = is. (A single equal sign is used in Mathematica to assign
values to variables, which doesn’t apply in the context of solving equations.)

The Solve command

To solve an equation of the form lhs = rhs, execute

Solve[lhs == rhs, variable]

where variable is the name of the variable you want to solve for. For example, to
solve x2 − 2x− 7 = 0 for x, execute Solve[xˆ2 - 2x - 7 == 0, x].

You can solve an equation for one variable in terms of others: for example,
Solve[a x + b == c, x] solves for x in terms of a, b and c.

WARNING: The advantage of the Solve command is that it gives exact answers
(no decimals); this can be a pro or con (as sometimes the exact answers are horrible
to write down). The disadvantage is that it only works on polynomial, rational and
other “easy” equations. It won’t work on equations that mix-and-match trigonom-
etry and powers of x like x2 = cosx.

The NSolve command

NSolve works exactly like Solve, except that it gives decimal approximations to the
solutions. It has the same drawback as Solve in that it only works on reasonably
“easy” equations. The syntax is

NSolve[lhs == rhs, variable]

The FindRoot command

To find decimal approximations to equations that are too hard for the Solve and
NSolve commands, use FindRoot. This executes a numerical algorithm to estimate
a solution to an equation. The good news is that this command always works; the
bad news is that it requires an initial “guess” as to what the solution is (usually
you determine the initial guess by graphing both sides of the equation and seeing
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roughly where the graphs cross). For example, to find a solution to x2 = cosx near
x = 1, execute

FindRoot[xˆ2 == Cos[x], {x, 1}]

and to find a solution to the same equation near x = −1, execute

FindRoot[xˆ2 == Cos[x], {x, -1}]

(these probably won’t give the same solution). The general syntax for this com-
mand is

FindRoot[lhs == rhs,{variable, guess}]
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Index

N th Fourier polynomial, 280
PN(x), 263
nth Term Test, 228
nth harmonic, 280
p-Series Test, 189
p-series, 186

Abel’s Formula, 275
absolutely convergent, 237
alternating series, 233
Alternating Series Test, 233
antiderivative, 18
Antiderivative Theorem, 25
application of integration, general prin-

ciple, 119
arc length, 120
arc length formula, 121
area, 103
associative property, 171
asymptote, horizontal, 12

big six Taylor series, 259
bounded (region), 79

Cauchy-Hadamard Theorem, 275
center of mass, idea of, 123
center of mass, one-dimensional con-

tinuous, 127
center of mass, one-dimensional dis-

crete, 126

center of mass, two-dimensional con-
tinuous, 130, 131

center of mass, two-dimensional dis-
crete, 129

centroid, 134
Chain Rule, 16
charge, 119
classification problem (series), 170, 174,

212, 227
classifying a series, methods for, 242
coefficients (of a power series), 272
common ratio, 198
Comparison Test for Improper Integrals,

92
Comparison Test for series, 184
complicated u-substitutions, 38
computation problem (series), 170, 174,

212, 227
concavity, 14
conditionally convergent, 237
continuous (function), 10
continuous (random variable), 144
converge ± converge = converge (se-

ries), 178
converge ± converge = converge (in-

tegrals), 91
converge± diverge = diverge (series),

179
converge ± diverge = diverge (inte-

grals), 91
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Index

convergence/divergence, p-integrals,
84

converges (improper integral), 81, 87
converges (series), 174, 178
converges absolutely, 237
converges conditionally, 237
cross-section, 110
current, 119

definite integral, 18
degree (of a polynomial), 53
density (one-dimensional), 126
density function (of a random variable),

146
derivative, definition of, 14
desperado substitutions, 63
differential equations (series solutions

of), 270
differentiation rules, 15
Dirichlet series, 169
disc method (volume), 113
displacement, 119
diverge± diverge = unknown (series),

179
diverge ± diverge = unknown (inte-

grals), 91
diverges (improper integral), 81, 87
diverges (series), 174, 178

elementary u-substitution, 35
ellipse, area of, 150
elliptic integrals, 122
equilibrium (physical system), 125
expected value (finite-valued r.v.), 143
expected value, continuous random vari-

able, 147

Finite Sum Formula for a Geometric
Series, 203

first derivative, 14
force, 119
Fourier series, 280
fulcrum, 124

Fundamental Theorem of Algebra, 54
Fundamental Theorem of Calculus, 19,

25

gamma integral, 96
Gamma Integral Formula, 98
General principle of application of in-

tegration, 119
Generalized Triangle Inequality, 236
geometric series, 198
Geometric Series Test, 201
geometric series, applications of, 207
geometric series, characterization of,

199
Geometric Series, Finite Sum Formula,

203

harmonic series, 186
harmonic series, divergence of, 187
horizontal asymptote, 12
horizontally unbounded (region), 81
how to choose r and ds, 47
how to classify an infinite series, 242

improper integral, horizontally unbounded
region, 81

improper integral, vertically unbounded
region, 87

improper integrals, linearity rules, 91
indefinite integral, 18
integral, definite, 18
integral, gamma, 96
integral, indefinite, 18
integral, linearity of, 28
integrand, rewriting the, 32
integration by parts formula, 43
integration rules, 27
interval of convergence (of power se-

ries), computing, 276
investments, 207
irreducible (polynomial), 53
irrelevance of starting index, 90

Koch snowflake, 210
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L’Hôpital’s Rule, 11
length (of a curve y = f(x)), 120
limit, 9
limit definition of derivative, 14
limits at infinity, 12
limits at infinity for rational functions,

13
linear approximation, 17, 249
Linear Replacement Principle, 29
linearity of improper integral, 91
linearity of infinite series, 178
linearity of Integration, 28
LRP, 29

Maclaurin series, 253
median (of a random variable), 161
Mercator projection, 52
method of undetermined coefficients,

48
moment about the x-axis, continuous,

131
moment about the x-axis, discrete, 129
moment about the y-axis, continuous,

130, 131
moment about the y-axis, discrete, 129
moment about the origin, continuous,

127
moment about the origin, discrete, 126
moment of inertia, 135

nth derivative, 14
Nth partial sum, 173
Nth Taylor polynomial, 263
negative series, 230

p-integral, 84
partial fraction decomposition, 54
partial sum, 173
parts vs. u-substitutions, 46
parts, integration by, 43
period, 279
periodic, 279
pharmacokinetics, 209

polynomial, 53
positive series, 230
power series (centered at a), 272
power series (in x), 272
Product Rule, 16
projection, Mercator, 52

quadratic approximation, 250
Quotient Rule, 16

r and ds, how to choose, 47
radius of convergence, 275
random variable, 139
Ratio Test, 213
rearrangement problem (series), 170,

174, 212, 227
Rearrangement Theorem, 240
repeating decimals, 208
rewriting the integrand, 32
Riemann integral, 18

second derivative, 14
series solutions of differential equations,

270
series, alternating, 233
series, geometric, 198
series, negative, 230
series, positive, 230
shell method (volume), 116
signed area, 103
SOHCAHTOA substitutions, 67
starting index is irrelevant (integrals),

90
starting index is irrelevant (series), 179
substitutions, desperado, 63
substitutions, SOHCAHTOA, 67
sum (of an infinite series), 174, 178

tangent line, 17, 249
Taylor polynomial of order N , 263
Taylor series, definition, 253
Taylor series, list of, 259
terms (of a series), 272
tone, 14
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torque, 124
total mass, one-dimensional continu-

ous, 127
total mass, one-dimensional discrete,

126
total mass, two-dimensional continu-

ous, 130
total mass, two-dimensional continu-

ous, 131
total mass, two-dimensional discrete,

129
Triangle Inequality, 235
Triangle Inequality for Infinite Series,

236
Triangle Inequality, Generalized, 236

u-substitution, elementary, 35
u-substitutions, more complicated, 38
undetermined coefficients, 48
uniqueness of power series, 253

vertically unbounded (region), 87
volume, 110
volume (disc method), 113
volume (shell method), 116
volume (washer method), 114
volume formula, generic, 112

washer method (volume), 114
work, 119

zeroth derivative, 14
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