Old MATH 320 Exam 1s

David M. McClendon

Department of Mathematics Ferris State University

Last updated May 2024

Contents

Contents		2	
1	Gen	neral information about these exams	3
	1.1	Spring 2024 Exam 1	4
		Fall 2021 Exam 1	
	1.3	Spring 2021 Exam 1	16
	1.4	Fall 2020 Exam 1	23
	1.5	Spring 2018 Exam 1	28

Chapter 1

General information about these exams

These are the exams I have given between 2018 and 2024 in Calculus 3 courses. To help give you some guidance on what questions are appropriate, each question on each exam is followed by a section number in parenthesis (like "(3.2)"). That means that question can be solved using material from that section (or from earlier sections) in the 2024 version of my *Vector Calculus Lecture Notes*.

1.1 Spring 2024 Exam 1

1. a) (2.2) Suppose v and w are as shown in this diagram:

In terms of v and/or w, what is the vector indicated by the dashed arrow?

- b) (2.7) Write parametric equations for the line in \mathbb{R}^3 passing through the points (2, -5, -3) and (5, -2, -7).
- c) (2.7) Write the equation of the plane in \mathbb{R}^3 that contains the point (3, -1, 2) and contains the line whose parametric equations are

$$\begin{cases} x = 1 + 2t \\ y = 3 \\ z = -8t \end{cases}.$$

2. Let
$$B = \begin{pmatrix} 3 & 0 & 4 \\ 1 & -2 & 3 \\ 5 & 7 & -3 \end{pmatrix}$$
.

- a) (2.5) Compute the determinant of B.
- b) (2.4) Compute the trace of B.
- c) (2.4) Compute Bx, if x = (-1, -4, 2).
- 3. a) (2.4) Let $A = \begin{pmatrix} 4 & 0 \\ -3 & -7 \\ 2 & 5 \\ 1 & -4 \end{pmatrix}$. If $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ is the function $\mathbf{f}(\mathbf{x}) = A\mathbf{x}$, what are the values of m and n?
 - b) (2.8) Find a set of polar coordinates which represent the point in \mathbb{R}^2 whose Cartesian coordinates are (4, -4).
 - c) (2.8) Find a set of Cartesian coordinates which represent the point in \mathbb{R}^3 whose spherical coordinates are $\left(12,\frac{\pi}{2},\frac{2\pi}{3}\right)$.
 - d) (2.9) Let E be the subset of R^3 defined by

$$E = \{(x, y, z) : 1 < x^2 + y^2 + z^2 \le 4\}.$$

i. Is *E* bounded?

- ii. Is *E* connected?
- iii. Is *E* compact?
- 4. (2.8) Throughout this problem, let L, M and N be these subsets of \mathbb{R}^2 :

$$L = \{(x, y) : x \ge 2\}$$

$$M = \{(r, \theta) : r \ge 0, \frac{\pi}{4} \le \theta \le \frac{\pi}{2}\}$$

$$N = \{(r, \theta) : 1 \le r \le 3\}$$

Sketch a picture of each indicated set:

a) M

b) $M \cap N$

- c) $L \cup M$
- 5. Sketch a picture of the points in \mathbb{R}^3 satisfying each of the following equations:

a) (2.8)
$$\varphi = \frac{\pi}{4}$$

d) (2.8)
$$\theta = 0$$

b) (2.8)
$$\rho = 3$$

e)
$$(2.7) 3y - 4z = 12$$

c) (2.8)
$$r = 2$$

f) (2.7)
$$x + 2y + 4z = 8$$

- 6. Let H be the circle of radius 9, centered at the origin (thought of as a subset of \mathbb{R}^2).
 - a) (3.2) Describe H as the level curve of some function $k : \mathbb{R}^2 \to \mathbb{R}$. Make sure you clearly define the function k and specify the height of the level curve.
 - b) (3.2) Describe H as the image of a function $\mathbf{h} : \mathbb{R} \to \mathbb{R}^2$.
 - c) (2.8) Describe H as the graph of a polar function $r = g(\theta)$.
 - d) (3.2) Describe H as the graph of one or more functions $f : \mathbb{R} \to \mathbb{R}$.
- 7. (3.5) Compute each of the following two limits:

a)
$$\lim_{x\to 0} \frac{x^2 + xy}{x^2 + y}$$

b)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^4}{x^2+y^2+z^2}$$

Use this picture to answer the following questions:

- a) Estimate f(1,4).
- b) Estimate any one point (x, y) where f(x, y) = -2.
- c) At what value of x (between x = -4 and x = 4) is f(x, 0) maximized?
- d) If you are at the point (3,2), in which direction (written as a vector) would you move to make the value of f decrease as quickly as possible?

Solutions

- 1. a) The dashed arrow is w v, since it runs from the end of v to the end of w.
 - b) A point on the line isp = (2, -5, -3) and a direction vector is $\mathbf{v} = (5, -2, -7) (2, -5, -3) = (3, 3, -4)$. Thus a set of parametric equations for the line are

$$\mathbf{x} = \mathbf{p} + t\mathbf{v} \quad \Rightarrow \quad \begin{cases} x = 2 + 3t \\ y = -5 + 3t \\ z = -3 - 4t \end{cases}$$

c) A point on the plane is $\mathbf{p}=(3,-1,2)$; two vectors in the plane are $\mathbf{v}=(2,0,-8)$ (a direction vector for the given line) and $\mathbf{w}=(3,-1,2)-(1,3,0)=(2,-4,2)$ (a vector going from a point on the line to the given point in the plane). Therefore a normal vector to the plane is $\mathbf{n}=\mathbf{v}\times\mathbf{w}=(-32,-20,-8)$. Any nonzero multiple of this works, so I'll use $\mathbf{n}=(8,5,2)$.

Finally, the equation of the plane is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$

$$(8, 5, 2) \cdot (x - 3, y + 1, z - 2) = 0$$

$$8x - 24 + 5y + 5 + 2z - 4 = 0$$

and this rearranges into 8x + 5y + 2z = 23

- 2. a) Use the Rule of Sarrus to get $\det B = [3(-2)(-3) + 0 + 4(1)7] [5(-2)4 + 7(3)3 + 0] = [18 + 28] [-40 + 63] = 46 23 = \boxed{23}$.
 - b) $tr(B) = 3 + (-2) + (-3) = \boxed{-2}$.

c)
$$B\mathbf{x} = \begin{pmatrix} 3 & 0 & 4 \\ 1 & -2 & 3 \\ 5 & 7 & -3 \end{pmatrix} \begin{pmatrix} -1 \\ -4 \\ 2 \end{pmatrix} = \boxed{\begin{pmatrix} 5 \\ 13 \\ -39 \end{pmatrix}}.$$

- 3. a) Since A is 4×2 , $\mathbf{f}(\mathbf{x}) = A\mathbf{x}$ defines a function $\mathbb{R}^2 \to \mathbb{R}^4$. Thus m = 4 and n = 2.
 - b) $r = \sqrt{x^2 + y^2} = \sqrt{4^2 + (-4)^2}\sqrt{32} = 4\sqrt{2}$ and $\theta = \arctan\frac{y}{x} = \arctan\frac{-4}{4} = \arctan(-1) = -\frac{\pi}{4}$. Therefore a set of polar coordinates for the point is $\left(4\sqrt{2}, -\frac{\pi}{4}\right)$.

c) We have

$$x = \rho \sin \phi \cos \theta = 12 \sin \frac{\pi}{2} \cos \frac{2\pi}{3} = 12(1) \left(-\frac{1}{2}\right) = -6$$

$$y = \rho \sin \phi \sin \theta = 12 \sin \frac{\pi}{2} \sin \frac{2\pi}{3} = 12(1) \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$z = \rho \cos \phi = 12 \cos \frac{\pi}{2} = 12(0) = 0$$

so the Cartesian coordinates are $(-6, 6\sqrt{3}, 0)$.

- d) i. E is bounded (by the sphere of radius 3 centered at the origin).
 - ii. \overline{E} is connected (it consists of only one connected piece).
 - iii. E is not compact because it is not closed.

- 5. a) (2.8) $\varphi = \frac{\pi}{4}$ is a cone opening around the *z*-axis, shown below at left.
 - b) (2.8) $\rho = 3$ is a sphere of radius 3, centered at the origin. This is shown below in the center.
 - c) (2.8) r=2 is a cylinder of radius 2, opening around the z-axis. This is shown below at right.

- d) (2.8) $\theta = 0$ is the *xz*-plane, shown below at left.
- e) (2.7) 3y 4z = 12 is the plane parallel to the *x*-axis with *y*-intercept (0,4,0) and *z*-intercept (0,0,-3), shown below in the middle.
- f) (2.7) x + 2y + 4z = 8 is the plane with x-intercept (8,0,0), y-intercept (0,4,0) and z-intercept (0,0,2), shown below at right.

- 6. a) Since H is described by the equation $x^2 + y^2 = 81$, we see that H is the level curve to $k(x,y) = x^2 + y^2$ at height 81.
 - b) $H = image(\mathbf{h})$ where $\mathbf{h} : \mathbb{R} \to \mathbb{R}^2$ is $\mathbf{h}(t) = (9\cos t, 9\sin t)$.
 - c) H is the graph of the polar function r = 3.
 - d) Solve the equation $x^2 + y^2 = 81$ for y in terms of x to see that $H = graph(f_1) \cup graph(f_2)$, where $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ are $f_1(x) = \sqrt{81 x^2}$ and $f_2(x) = -\sqrt{81 x^2}$.
- 7. a) Along the x-axis, we have

$$\lim_{(x,0)\to(0,0)} \frac{x^2 + xy}{x^2 + y} = \lim_{x\to 0} \frac{x^2}{x^2} = 1$$

but along the *y*-axis, we have

$$\lim_{(0,y)\to(0,0)} \frac{x^2 + xy}{x^2 + y} = \lim_{y\to 0} \frac{0}{y} = 0.$$

Therefore $\lim_{x\to 0} \frac{x^2+xy}{x^2+y}$ DNE since limits along different paths going to (0,0) are unequal.

(This problem could also be done with polar coordinates.)

b) Use spherical coordinates:

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^4}{x^2 + y^2 + z^2} = \lim_{\rho\to 0} \frac{\rho^4 \sin^4 \phi \cos^4 \theta}{\rho^2}$$
$$= \lim_{\rho\to 0} \rho^2 \sin^4 \phi \cos^4 \theta = \boxed{0}.$$

- 8. a) $f(1,4) \approx \boxed{-6}$
 - b) Answers can vary here; one possible point is (2,0) since it is on the level curve at height -2.

- c) f(x,0) is maximized at $x \approx \boxed{\frac{1}{3}}$.
- d) You need to move southeast, which is in the direction (1,-1).

1.2 Fall 2021 Exam 1

- 1. a) (2.4) Let $A = \begin{pmatrix} 1 & -3 \\ -2 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 4 \\ 1 & 3 \end{pmatrix}$. Compute AB.
 - b) (2.4) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be f(x, y, z) = 3x y + 6z. Find a matrix A such that $f(\mathbf{x}) = A\mathbf{x}$.
 - c) (2.3) Compute $(3, -4) \cdot (5, 2)$.
 - d) (2.8) Find a set of spherical coordinates which represent the point in \mathbb{R}^3 whose cylindrical coordinates are $(6, \pi, 6)$.
 - e) (2.6) Suppose v and w are two vectors in \mathbb{R}^3 such that $\mathbf{v} \times \mathbf{w} = (1, 6, -1)$.
 - i. Is this information sufficient to compute $\mathbf{v} \times 3\mathbf{w}$? If so, what is $\mathbf{v} \times 3\mathbf{w}$?
 - ii. Is this information sufficient to compute $\mathbf{w} \times \mathbf{v}$? If so, what is $\mathbf{w} \times \mathbf{v}$?
 - iii. Is this information sufficient to compute $\mathbf{v} \cdot \mathbf{w}$? If so, what is $\mathbf{v} \cdot \mathbf{w}$?
 - iv. Is this information sufficient to compute ${\bf v}\times ({\bf v}+{\bf w})$? If so, what is ${\bf v}\times ({\bf v}+{\bf w})$?
- 2. a) (2.8) Write the polar equation of the circle pictured below, at left.

- b) (2.8) Write the polar equation of the circle pictured above, at right.
- c) (2.8) Write the polar equation of the (half-)line pictured below, at left.

d) (2.9) Write the Cartesian equation of the circle pictured above, at right.

- 3. Sketch a picture of the points in \mathbb{R}^3 satisfying each of the following equations:
 - a) (2.8) $\varphi = \frac{5\pi}{6}$
 - b) (2.8) $\rho = 4$
 - c) (2.8) r = 2
 - d) (2.7) x + 2y = 6
 - e) (2.7) x + 2y + 3z = 6
- 4. (3.2) Let *E* be the curve in \mathbb{R}^2 pictured below:

- a) Describe E as the level curve of some function $f: \mathbb{R}^2 \to \mathbb{R}$. Make sure you clearly define the function f and specify the height of the level curve.
- b) Which Mathematica command would be used to produce a picture of E, in the context of part (a) of this question?
 - A. Plot
 - B. ContourPlot
 - C. ParametricPlot
 - D. none of the above
- c) Describe E as the image of a function $\mathbf{f}: \mathbb{R} \to \mathbb{R}^2$.
- d) Which Mathematica command would be used to produce a picture of E, in the context of part (c) of this question?
 - A. Plot
 - B. ContourPlot
 - C. ParametricPlot
 - D. none of the above
- 5. a) (2.7) Write parametric equations for the line which is the intersection of the two planes 2x + z = 6 and x 2y + 4z = -1.
 - b) (2.7) Write a normal equation of the plane which contains the three points (1, -3, 4), (2, -1, 0) and (-1, 4, -1).
- 6. (3.5) Compute each of the following two limits:

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+2xy+y^2}{x+y}$$

b)
$$\lim_{\mathbf{x}\to\mathbf{0}} \frac{xyz}{x^2+y^2+z^2}$$

7. (3.2) Here are the graphs of four functions f, g, h and $k : \mathbb{R}^2 \to \mathbb{R}$:

a) For each contour plot below, choose the function (f, g, h or k) which the contour plot represents:

b) For each graph below, choose the function (f, g, h or k) such that the given graph is the graph of the x = 0 trace of that function. *Note:* The last graph is the horizontal axis z = 0.

Solutions

1. a)
$$AB = \begin{pmatrix} 1(0) + -3(1) & 1(4) + (-3)3 \\ -2(0) + 5(1) & -2(4) + 5(3) \end{pmatrix} = \begin{vmatrix} -3 & -5 \\ 5 & 7 \end{vmatrix}$$

- b) Since $f: \mathbb{R}^3 \to \mathbb{R}$, A must be 1×3 ; in particular we have $A = \begin{pmatrix} 3 & -1 & 6 \end{pmatrix}$.
- c) $(3,-4) \cdot (5,2) = 3(5) + (-4)2 = \boxed{7}$.
- d) We have $\theta=\pi$; $\rho=\sqrt{x^2+y^2+z^2}=\sqrt{r^2+z^2}=\sqrt{6^2+6^2}=6\sqrt{2}$; and $\varphi=\arctan\frac{r}{z}=\arctan\frac{6}{6}=\arctan 1=\frac{\pi}{4}$, so the spherical coordinates are $\left(6\sqrt{2},\frac{\pi}{4},\pi\right)$.
- e) i. $\mathbf{v} \times 3\mathbf{w} = 3(\mathbf{v} \times \mathbf{w}) = 3(1, 6, -1) = \boxed{(3, 18, -3)}.$ ii. $\mathbf{w} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{w}) = -(1, 6, -1) = \boxed{(-1, -6, 1)}.$
 - iii. $\mathbf{v} \cdot \mathbf{w}$ cannot be determined from the given information.

iv.
$$\mathbf{v} \times (\mathbf{v} + \mathbf{w}) = \mathbf{v} \times \mathbf{v} + \mathbf{v} \times \mathbf{w} = \mathbf{0} + \mathbf{v} \times \mathbf{w} = \mathbf{v} \times \mathbf{w} = \boxed{(1, 6, -1)}$$

- 2. a) $r = 3\cos\theta$
 - b) r = 3
 - c) $\theta = \frac{3\pi}{4}$
 - d) $(x-2)^2 + (y-3)^2 = 9$
- 3. a) $\varphi = \frac{5\pi}{6}$ is a cone opening downward around the *z*-axis, pictured below at left.
 - b) $\rho=4$ is a sphere of radius 4 centered at (0,0,0), pictured below in the center.
 - c) r = 2 is a cylinder of radius 2 around the z-axis, pictured below at right.

d) This plane has intercepts (6,0,0) and (0,3,0) and is parallel to the *z*-axis, pictured below at left.

e) This plane has intercepts (6,0,0), (0,3,0) and (0,0,2), pictured below at right.

- 4. a) E is the level curve to $f(x,y) = \frac{x^2}{25} + \frac{y^2}{9}$ at height 1.
 - b) B. ContourPlot
 - c) E is the image of $\mathbf{f}(t) = (5\cos t, 3\sin t)$ (for $0 \le t \le 2\pi$).
 - d) C. ParametricPlot
- 5. a) From the first equation, we have z=6-2x. Substituting into the second plane, we get x-2y+4(6-2x)=-1, i.e. -7x-2y+24=-1, i.e. -7x-2y=-25. Solve for y to get $y=-\frac{7}{2}x+\frac{25}{2}$. We can then write parametric equations for the line by letting t=x, obtaining (by substitution in the equations for y and z in terms of x)

$$\begin{cases} x = t \\ y = -\frac{7}{2}t + \frac{25}{2} \\ z = -2t + 6 \end{cases}$$

(There are many other correct answers here.)

b) Two nonparallel vectors in the plane can be found by subtracting pairs of the given points: $\mathbf{v}=(2,-1,0)-(1,-3,4)=(1,2,-4)$ and $\mathbf{w}=(1,-3,4)-(-1,4,-1)=(2,-7,5)$. So a normal vector to the plane is $\mathbf{n}=\mathbf{v}\times\mathbf{w}=(-18,-13,-11)$. Finally, the equation of the plane is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$

$$(-18, -13, -11) \cdot (x - 2, y + 1, z) = 0$$

$$-18(x - 2) - 13(y + 1) - 11z = 0$$

$$-18x + 36 - 13y - 13 - 11z = 0$$

which rearranges into $\boxed{-18x - 13y - 11z = -23}$. (Any scalar multiple of this equation is also correct.)

6. a) Factor and cancel:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + 2xy + y^2}{x + y} = \lim_{(x,y)\to(0,0)} \frac{(x+y)(x+y)}{x + y} = \lim_{(x,y)\to(0,0)} (x+y) = 0 + 0 = \boxed{0}.$$

b) Use spherical coordinates:

$$\lim_{(x,0,0)\to(0,0,0)} \frac{xyz}{x^2 + y^2 + z^2} = \lim_{\rho\to 0} \frac{\rho^3 \cos\varphi \sin^2\varphi \sin\theta \cos\theta}{\rho^2}$$
$$= \lim_{\rho\to 0} \rho \left(\cos\varphi \sin^2\varphi \sin\theta \cos\theta\right) = \boxed{0}$$

irrespective of the values of φ and/or θ .

- 7. a) From left to right, these are the contour plots of functions h, k, f and g.
 - b) From left to right, these are the x = 0 traces of functions k, g, h and f.

1.3 Spring 2021 Exam 1

- 1. a) (2.3) Compute $(3, -4, 1, -2) \cdot (1, 2, 5, -3)$.
 - b) (2.3) Compute ||(2, -1, 4)||.
 - c) (2.4) Compute A^2 , where $A = \begin{pmatrix} 1 & -3 \\ 0 & 2 \\ 7 & 5 \end{pmatrix}$.
 - d) (2.5) Compute $\det \begin{pmatrix} 6 & -4 \\ 3 & 2 \end{pmatrix}$.
 - e) (2.3) If \mathbf{v} and \mathbf{w} are vectors, each having norm 5, what is the smallest possible value of $\mathbf{v} \cdot \mathbf{w}$?
- 2. (2.7) Consider the two lines in \mathbb{R}^3 given by the following sets of parametric equations:

$$\begin{cases} x = 7 - 2t \\ y = 3 + t \\ z = 5 - 3t \end{cases} \qquad \begin{cases} x = -2 - t \\ y = 2 - 5t \\ z = -3 + 4t \end{cases}$$

These two lines intersect in a point. Find the coordinates of this point.

3. (2.7) Write the normal equation of the plane in \mathbb{R}^3 containing the point (2, -5, -2) and the line whose parametric equations are

$$\begin{cases} x = 1 + 4t \\ y = 3t \\ z = 2 \end{cases}$$

- 4. Let *E* be the line in \mathbb{R}^2 that has slope 1 and passes through the origin.
 - a) (3.2) Describe *E* as the graph of one or more functions from $\mathbb{R} \to \mathbb{R}$.
 - b) (3.2) Describe E as the image of a function $\mathbf{f}: \mathbb{R} \to \mathbb{R}^2$ (i.e. give parametric equations for E).
 - c) (3.2) E is the graph of what polar equation?
 - d) (3.2) Describe E as the level curve to a function $g: \mathbb{R}^2 \to \mathbb{R}$.
- 5. Consider the subset F of \mathbb{R}^2 defined by

$$F = \{(x, y) \in \mathbb{R}^2 : x^2 \ge 4 \text{ and } x^2 \le 36\}.$$

This set *F* is the shaded region in the picture below:

Answer the following questions about F (no justification is required).

- a) (2.9) Is the set F open?
- b) (2.9) Is the set *F* closed?
- c) (2.9) Is the set F compact?
- d) (2.9) Is the set F connected?
- e) (2.9) Give the coordinates of any one point which belongs to the boundary of F.
- f) (2.1) Sketch a picture of $F \cup G$ below, if $G = \{(x, y) \in \mathbb{R}^2 : y \le -4\}$.
- 6. (3.5) Evaluate the following limit (or state that it does not exist), with proper justification.

$$\lim_{\mathbf{x}\to\mathbf{0}}\frac{x+2y}{x+4y}$$

7. (3.2) The contour plot for some unknown function $h: \mathbb{R}^2 \to \mathbb{R}$ is given below.

Use this contour plot to answer these questions:

- a) Estimate h(1,0).
- b) Estimate a value of x such that h(x, 3) = 0.
- c) Which best describes the graph of the x = 0 trace of h?
 - A. A line with positive slope
 - B. A line with negative slope
 - C. A parabola that opens upward
 - D. A parabola that opens downward
- 8. Sketch graphs of the following equations. (Each of these pictures should be drawn in \mathbb{R}^3 .)

a) (3.4)
$$x^2 - y^2 + z^2 = 1$$

b)
$$(2.7) 2x + 3y = 6$$

- c) (2.8) r = 2 (think of this as an equation in cylindrical coordinates)
- 9. a) (3.3) Find a set of parametric equations for the curve pictured below:

b) (2.8) Describe the set pictured below by using one or more inequalities, involving polar coordinates:

c) (2.8) Compute the Cartesian coordinates of the point in \mathbb{R}^3 whose spherical coordinates are $\left(8,\frac{\pi}{4},\frac{\pi}{2}\right)$.

Solutions

- 1. a) $(3, -4, 1, -2) \cdot (1, 2, 5, -3) = 3(1) 4(2) + 1(5) 2(-3) = 3 8 + 5 + 6 = \boxed{6}$.
 - b) $||(2,-1,4)|| = \sqrt{2^2 + (-1)^2 + 4^2} = \sqrt{21}$
 - c) $A^2 = A_{3\times 2}A_{3\times 2}$ DNE, since A is not a square matrix.
 - d) $\det \begin{pmatrix} 6 & -4 \\ 3 & 2 \end{pmatrix} = 6(2) 3(-4) = \boxed{24}.$
 - e) By either the Cauchy-Schwarz Inequality or the angle formula from dot products, we have $\mathbf{v} \cdot \mathbf{w} \ge -||\mathbf{v}|| \, ||\mathbf{w}|| = -5(5) = \boxed{-25}$.
- 2. Change the t to s in the second set of parametric equations, and set the x, y and z-coordinates equal to obtain the system

$$\begin{cases} 7 - 2t &= -2 - s \\ 3 + t &= 2 - 5s \\ 5 - 3t &= -3 + 4s \end{cases} \Rightarrow s = 2t - 9$$

Plug the first equation into the second and solve for t to get 3+t=2-5(2t-9), i.e. t=4. Then from the first equation, s=-1. Notice that s=-1, t=4 works in the last equation as well, so the lines intersect in the point (x,y,z) where s=-1, i.e. $(-2-(-1),2-5(-1),-3+4(-1))=\boxed{(-1,7,-7)}$.

3. One point on the line, which must also be in the plane, is $\mathbf{p}=(1,0,2)$. One vector in the plane can be read off as the direction vector for the given line: $\mathbf{v}=(4,3,0)$. A second vector in the plane can be found by subtracting two points in the plane, one on the line and one not:

$$\mathbf{w} = (2, -5, -2) - \mathbf{p} = (2, -5, -2) - (1, 0, 2) = (1, -5, -4).$$

Thus a normal vector to the plane is $\mathbf{n} = \mathbf{v} \times \mathbf{w} = (4,3,0) \times (1,-5,-4) = (-12,16,-23)$. That makes the normal equation of the plane

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$

$$(-12, 16, -23) \cdot ((x, y, z) - (1, 0, 2)) = 0$$

$$-12(x - 1) + 16(y - 0) - 23(z - 2) = 0$$

which simplifies to -12x + 16y - 23z = -58

- 4. a) E is the graph of the function $f: \mathbb{R} \to \mathbb{R}$ where f(x) = x.
 - b) E is the image of $\mathbf{f} : \mathbb{R} \to \mathbb{R}^2$ given by $\mathbf{f}(t) = (t, t)$.
 - c) E has polar equation $\theta = \frac{\pi}{4}$.

- d) E is the level curve to $g: \mathbb{R}^2 \to \mathbb{R}$ defined by g(x,y) = y x, at height 0.
- 5. a) *F* is not open since it contains at least some of its boundary.
 - b) *F* is closed since it contains all of its boundary.
 - c) *F* is not compact since it is not bounded.
 - d) *F* is not connected since it consists of two "pieces" which do not touch.
 - e) Answers can vary here, but any point on the "edge" of F works. These are points with x-coordinate equal to ± 2 or ± 6 , like for instance (2,3).
 - f) G is the set of points on or below the horizontal line y=-4. Thus the union $F \cup G$ is the set of points in F, or G, or both, as shown here:

6. I'll use paths (although this problem could be done with polar coordinates). Along the *x*-axis, the limit is

$$\lim_{(x,0)\to(0,0)} \frac{x+2y}{x+4y} = \lim_{x\to 0} \frac{x+2(0)}{x+4(0)} = \lim_{x\to 0} \frac{x}{x} = 1$$

but along the line y = x, the limit is

$$\lim_{(x,x)\to(0,0)}\frac{x+2y}{x+4y}=\lim_{x\to0}\frac{x+2x}{x+4x}=\lim_{x\to0}\frac{3x}{5x}=\frac{3}{5}.$$

Since the limits along different paths are unequal, $\lim_{x\to 0} \frac{x+2y}{x+4y}$ DNE.

- 7. a) $h(1,0) \approx 1$, since it is between the level curves at heights 0 and 2.
 - b) The horizontal line y=3 intersects the level curve at height 0 when x is about $\frac{-1}{2}$, so h(x,3)=0 when $x \approx -\frac{1}{2}$.
 - c) The x=0 trace has z-value -10 when $x\approx -4$, has z-value 2 when $x\approx 1$, but then z-value -4 when $x\approx 4$. Thus this trace starts negative, increases, then decreases, so it is best describe as a parabola that opens downward. This is choice $\boxed{\mathsf{D}}$.

- 8. a) $x^2 y^2 + z^2 = 1$ is a hyperboloid of one sheet, opening around the *y*-axis since the *y* variable has the (-) sign. This graph is shown below at left.
 - b) 2x + 3y = 6 is a plane with x-intercept (3,0,0) and y-intercept (0,2,0). The plane is parallel to the z-axis since it is missing the z variable, and is shown below in the center.
 - c) r=2 is a cylinder of radius 2, centered at the origin and opening around the z-axis, as shown below at right.

- 9. a) This ellipse has parametric equations $(5\cos t, 2\sin t)$ (for $0 \le t \le 2\pi$).
 - b) This set is $E = \left[\left\{(r, \theta) : r \leq 2, \frac{\pi}{2} \leq \theta \leq \pi\right\}\right]$.
 - c) We have

$$x = \rho \sin \varphi \cos \theta = 8 \sin \frac{\pi}{4} \cos \frac{\pi}{2} = 8 \left(\frac{\sqrt{2}}{2}\right) 0 = 0$$
$$y = \rho \sin \varphi \sin \theta = 8 \sin \frac{\pi}{4} \sin \frac{\pi}{2} = 8 \left(\frac{\sqrt{2}}{2}\right) 1 = 4\sqrt{2}$$
$$z = \rho \cos \varphi = 8 \cos \frac{\pi}{4} = 8 \left(\frac{\sqrt{2}}{2}\right) = 4\sqrt{2}$$

so the Cartesian coordinates are $(0, 4\sqrt{2}, 4\sqrt{2})$.

1.4 Fall 2020 Exam 1

1. (2.4) Let
$$A = \begin{pmatrix} -3 & 4 & -7 \\ 3 & 6 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -5 & 3 \\ 1 & 2 \end{pmatrix}$.

- a) Determine which of the two products AB or BA is defined, and compute it.
- b) Determine which of $\det A$ or $\det B$ is defined, and compute it.
- c) Suppose f is the function defined by f(x) = Ax. Which of the following best describes how we would indicate the domain and codomain of f? Write the letter of your answer.

$$\begin{array}{lll} A. & \mathbf{f}: \mathbb{R} \to \mathbb{R} & & D. & \mathbf{f}: \mathbb{R}^3 \to \mathbb{R} \\ B. & \mathbf{f}: \mathbb{R} \to \mathbb{R}^3 & & E. & \mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2 \\ C. & \mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3 & & F. & \mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3 \end{array}$$

- 2. (2.6) Let $\mathbf{u} = (2, 3, 4)$ and $\mathbf{v} = (-1, 0, 3)$.
 - a) Find a nonzero vector which is orthogonal to both u and v.
 - b) Is the vector you found in part (a) unique (meaning, is the vector you found the only possible answer to part (a))? Explain.
- 3. (2.7) Write the normal equation of the plane in \mathbb{R}^3 containing the points (4, -3, 1), (-3, 1, 1) and (4, -2, 8).
- 4. (2.3, 2.6) Suppose \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 with $||\mathbf{v}|| = 9$, $\mathbf{v} \cdot \mathbf{w} = -5$, and $\mathbf{v} \times \mathbf{w} = (1, 2, -4)$.

For each given quantity below, determine if it is possible to compute that quantity, based on the given information and/or principles developed in class. If it is, compute it. If it isn't, state that quantity is impossible (to compute).

- a) $\mathbf{v} \cdot \mathbf{v}$ b) $\mathbf{v} \times \mathbf{v}$ c) $\mathbf{w} \cdot \mathbf{v}$ d) $\mathbf{w} \times \mathbf{v}$ e) $\mathbf{w} \cdot \mathbf{w}$
- 5. (3.2) Let E be the circle in \mathbb{R}^2 of radius 2, centered at the origin.
 - a) Describe E as the image of a function $\mathbf{f}: \mathbb{R} \to \mathbb{R}^2$ (i.e. give parametric equations for E).
 - b) Describe E as the graph of a polar function $r = f(\theta)$.
 - c) Describe E as the level curve to a function $g: \mathbb{R}^2 \to \mathbb{R}$.

6. (3.2) Below, you are given a contour plot for some unknown function $h: \mathbb{R}^2 \to \mathbb{R}$.

Use the contour plot to answer the following questions:

- a) Estimate h(4,3).
- b) Find a value of y for which h(1, y) = 2.
- c) If you move in a straight line from (-2, -3) to (-2, 0), are the values of h getting larger, getting smaller, or staying the same?
- d) For what x (between -5 and 5) is h(x, -3) maximized?
- 7. (3.5) Evaluate the following limits (or state that they do not exist), with proper justification.

a)
$$\lim_{\mathbf{x}\to\mathbf{0}} \frac{x-y}{\sqrt{x^2+y^2}}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

- 8. (2.7, 3.4) Sketch graphs of the following equations:
 - a) $y^2 = x^2 + z^2$
 - b) y = 3 (this graph should be drawn in \mathbb{R}^3)
 - c) 2x + y + 4z = 8
- 9. a) (3.3) Sketch the graph of the conic section whose parametric equations are

$$\begin{cases} x = 4\cos t \\ y = \sin t \end{cases}$$

- b) (2.8) Sketch the region of points in \mathbb{R}^2 described by the inequalities $0 \le \theta \le \frac{\pi}{2}$, $1 \le r \le 3$.
- c) (2.8) Sketch a picture of the set of points in \mathbb{R}^3 which satisfy the equation r=3 in cylindrical coordinates.

Solutions

- 1. Let $A = \begin{pmatrix} -3 & 4 & -7 \\ 3 & 6 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 3 \\ 1 & 2 \end{pmatrix}$.
 - a) AB is undefined, but $BA = \begin{pmatrix} 24 & -2 & 41 \\ 3 & 16 & -3 \end{pmatrix}$.
 - b) det *A* is undefined, but det B = (-5)2 1(3) = -13.
 - c) Since *A* is 2×3 , $\mathbf{f} : \mathbb{R}^3 \to \mathbb{R}^2$. This is choice **E**.
- 2. a) One answer is $\mathbf{u} \times \mathbf{v} = (9, -10, 3)$.
 - b) Any (nonzero) multiple of the answer to (a) works, so the answer to (a) is **not unique**.
- 3. First, subtract pairs of the given points to get two direction vectors for the plane: $\mathbf{v}=(4,-3,1)-(-3,1,1)=(7,-4,0)$ and $\mathbf{w}=(4,-3,1)-(4,-2,8)=(0,-1,-7)$. Then a normal vector to the plane is $\mathbf{n}=\mathbf{v}\times\mathbf{w}=(28,49,-7)$. (I'll divide through this vector by 7 to keep the numbers small, and set $\mathbf{n}=(4,7,-1)$.) Now, the normal equation of the plane is $\mathbf{n}\cdot(\mathbf{x}-\mathbf{x}_0)=0$; any of the given points could be used as \mathbf{x}_0 . For example, using the first given point we obtain

$$(4,7,-1) \cdot (x-4,y+3,z-1) = 0$$
$$4(x-4) + 7(y+3) - (z-1) = 0$$
$$4x + 7y - z + 6 = 0$$
$$4x + 7y - z = -6.$$

- 4. a) $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 = 9^2 = 81$.
 - b) $\mathbf{v} \times \mathbf{v} = \mathbf{0}$ (since any vector \times itself is 0).
 - c) $\mathbf{w} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = -5$.
 - d) $\mathbf{w} \times \mathbf{v} = -\mathbf{v} \times \mathbf{w} = -(1, 2, -4) = (-1, -2, 4).$
 - e) $\mathbf{w}\cdot\mathbf{w}$ is impossible to compute without more information.
- 5. a) E is the image of $\mathbf{f}(t) = (2\cos t, 2\sin t)$.
 - b) E is the graph of the polar function r=2.
 - c) E is the level curve to $g(x,y) = x^2 + y^2$ at height 4.
- 6. a) $h(4,3) \approx 0$.
 - b) h(1, y) = 2 at four places: when $y \approx -5$, $y \approx -4$, $y \approx 3$ and $y \approx 4$.
 - c) Values of h are **getting smaller** (from about 2.5 to about .5) as you move in a straight line from (-2, -3) to (-2, 0).

- d) h(x, -3) is maximized when $x \approx -2$.
- 7. a) Use the polar coordinates trick (this problem could also be done with paths):

$$\lim_{\mathbf{x} \to \mathbf{0}} \frac{x - y}{\sqrt{x^2 + y^2}} = \lim_{r \to 0} \frac{r \cos \theta - r \sin \theta}{r} = \lim_{r \to 0} (\cos \theta - \sin \theta);$$

when $\theta=0$ this is 1-0=1, but when $\theta=\frac{\pi}{2}$ this is 0-1=-1. Therefore $\lim_{\mathbf{x}\to\mathbf{0}}\frac{x-y}{\sqrt{x^2+y^2}}$ DNE.

b) Use the polar coordinates trick:

$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2} = \lim_{r\to 0} \frac{r^3\cos^3\theta+r^3\sin^3\theta}{r^2} = \lim_{r\to 0} r(\cos^3\theta+\sin^3\theta) = 0.$$

- 8. a) Rewrite this as $x^2 y^2 + z^2 = 0$; this is a cone opening around the *y*-axis, as shown below at left.
 - b) This is a plane parallel to the *x* and *z*-axes, as shown below in the center.
 - c) This is a plane with intercepts (4,0,0), (0,8,0) and (0,0,2), as shown below at right. 2x + y + 4z = 8

- 9. a) This is an ellipse traced out counterclockwise, as shown below at left.
 - b) This region is sketched below, in the center.
 - c) This is a cylinder of radius 3 around the z-axis, as shown below at right.

8

1.5 Spring 2018 Exam 1

- 1. Let $\mathbf{v} = (2, 5, -3)$ and let $\mathbf{w} = 7\mathbf{i} + 2\mathbf{k}$.
 - a) (2.3) Find $\mathbf{v} \cdot \mathbf{w}$.
 - b) (2.3) Find a vector of length 4 in the opposite direction as v.
 - c) (2.3) Find the projection of w onto v.
 - d) (2.3) Suppose (6, y, 1) is orthogonal to v. Find y.
 - e) (2.7) Find symmetric equations for the line containing v and w.
- 2. a) (2.7) Find the normal equation of the plane containing the points (2, -1, 4), (3, 3, 5) and (0, -3, -2).
 - b) (2.7) Find parametric equations of the line which is the intersection of the planes 2x 3y + 5z = 12 and x + 4y 3z = -5.
- 3. a) (2.8) Find Cartesian coordinates of the point whose polar coordinates are $\left(8, \frac{3\pi}{2}\right)$.
 - b) Find spherical coordinates of the point whose Cartesian coordinates are (0,3,3).
 - c) (2.8) Find Cartesian coordinates of the point whose cylindrical coordinates are $\left(4, \frac{\pi}{6}, 2\right)$.
- 4. (3.3) Sketch graphs of the following equations.
 - a) $x^2 = y^2 + z^2$
 - b) $x = z^2$ (sketch this as a subset of \mathbb{R}^3)
 - c) 4x + 3y 2z = 12
 - d) $x^2 + y^2 z^2 = 1$
 - e) y = 2 (sketch this as a subset of \mathbb{R}^3)
 - f) $\rho = 4$ (this equation is in spherical coordinates)
 - g) $r = 6\cos\theta$ (this equation is in polar coordinates)
 - h) $r = 6\cos\theta$ (this equation is in cylindrical coordinates)
- 5. (3.6) Evaluate each of the following limits (if the limit does not exist, say so).
 - a) $\lim_{x\to 0} (3x+5, e^{-x}, 7x^2-3)$
 - b) $\lim_{(x,y,z)\to(0,0,0)} \frac{2x^2+yz}{x^2+y^2+z^2}$
 - c) $\lim_{(x,y)\to(0,0)} \frac{x^2+2xy+y^2}{x+y}$

- d) $\lim_{\mathbf{x}\to\mathbf{0}} \frac{x-2y}{x+y}$ e) $\lim_{\mathbf{x}\to\mathbf{0}} \mathbf{f}(\mathbf{x})$, where $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $\frac{\mathbf{x}}{||\mathbf{x}||}$.

Solutions

- 1. a) $\mathbf{v} \cdot \mathbf{w} = 2(7) + 5(0) + (-3)2 = 8$.
 - b) First, $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{2^2 + 5^2 + (-3)^2} = \sqrt{38}$. The answer is therefore $-4\frac{\mathbf{v}}{||\mathbf{v}||} = \left(\frac{-8}{\sqrt{38}}, \frac{-20}{\sqrt{38}}, \frac{12}{\sqrt{38}}\right)$.
 - c) $\pi_{\mathbf{v}}\mathbf{w} = \frac{\mathbf{v}\cdot\mathbf{w}}{\mathbf{v}\cdot\mathbf{v}}\mathbf{v} = \frac{8}{38}(2,5,-3) = \left(\frac{8}{19},\frac{20}{19},\frac{-12}{19}\right).$
 - d) We have $0 = \mathbf{v} \cdot (6, y, 1) = 2(6) + 5y + (-3)1 = 9 + 5y$. Solving for y, we get $y = \frac{-9}{5}$.
 - e) A direction vector for the line is $\mathbf{w} \mathbf{v} = (7-2, 0-5, 2-(-3)) = (5, -5, 5)$. Therefore, symmetric equations for the line, using the point (2, 5, -3) and the above direction vector, are

$$\frac{x-2}{5} = \frac{y-5}{-5} = \frac{z+3}{5}.$$

(Answers may vary in this problem, depending on your choice of direction vector and point on the line.)

2. a) Two vectors in the plane are $\mathbf{v} = (3,3,5) - (2,-1,4) = (1,4,1)$ and $\mathbf{w} = (2,-1,4) - (0,-3,-2) = (2,2,6)$. So a normal vector to the plane is $\mathbf{n} = \mathbf{v} \times \mathbf{w} = (22,-4,-6)$. Thus the normal equation of the plane is 22x - 4y - 6z = d; to find d, plug in the point (0,-3,-2) to get d = 22(0) - 4(-3) - 6(-2) = 24. Thus the normal equation is 22x - 4y - 6z = 24; dividing through by 2 we get

$$11x - 2y - 3z = 12.$$

b) Normal vectors to the two planes can be read off from the normal equations as $\mathbf{n}_1 = (2, -3, 5)$ and $\mathbf{n}_2 = (1, 4, -3)$. The line which is the intersection of the planes must be orthogonal to both \mathbf{n}_1 and \mathbf{n}_2 , so it has direction vector $\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = (-11, 11, 11)$.

Next, find a point on the line by finding a point on both planes. To do this, set x = 0 and solve for y and z using the given equations:

$$\begin{cases}
-3y + 5z = 12 \\
4y - 3z = -5
\end{cases} \Rightarrow y = 1, z = 3.$$

So (0,1,3) is common to both planes, therefore lies on the line of intersection. Using this point and the direction vector from the previous paragraph, we get

$$\mathbf{x} = \mathbf{p} + t\mathbf{v} \implies \begin{cases} x = 0 - 11t \\ y = 1 + 11t \\ z = 3 + 11t \end{cases}$$

(Answers may vary, depending on the point and direction vector you use.)

- 3. a) $x = r \cos \theta = 8 \cos \frac{3\pi}{2} = 8(0) = 0$ and $y = r \sin \theta = 8 \sin \frac{3\pi}{2} = 8(-1) = -8$, so the Cartesian coordinates are (x, y) = (0, -8).
 - b) $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{0^2 + 3^2 + 3^2} = 3\sqrt{2}; \ \theta = \frac{\pi}{2} \text{ since } x = 0 \text{ and } y > 0; \ \varphi = \arctan \frac{z}{\sqrt{x^2 + y^2}} = \arctan 1 = \frac{\pi}{4}, \text{ so the spherical coordinates } \arg (\rho, \varphi, \theta) = \left(3\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}\right).$
 - c) $x = r \cos \theta = 4 \cos \frac{\pi}{6} = 2\sqrt{3}$; $y = r \sin \theta = 4 \sin \frac{\pi}{6} = 2$; z = z = 2 so the Cartesian coordinates are $(x, y, z) = (2\sqrt{3}, 2, 2)$.
- 4. a) $x^2 = y^2 + z^2$ is a cone opening around the *x*-axis, shown below at left:

- b) $x = z^2$ is a cylinder parallel to the *y*-axis; the shape is a parabola opening around the positive *x*-axis shown above at right:
- c) 4x+3y-2z=12 is a plane with intercepts (3,0,0), (0,4,0) and (0,0,-6), shown below at left:

d) $x^2 + y^2 - z^2 = 1$ is a hyperboloid of one sheet, opening around the *z*-axis, shown above at right:

e) y = 2 is a plane parallel to the x- and z-axes, shown below at left:

- f) $\rho = 4$ is a sphere of radius 4 centered at the origin, shown above at right:
- g) $r = 6\cos\theta$, in polar coordinates, is a circle of radius 3 centered at (3,0) (this graph belongs in \mathbb{R}^2), shown below at left:

- h) $r=6\cos\theta$ is a cylinder parallel to the *z*-axis; the shape of the cylinder is a circle coming from the figure in part (g) of this question. The graph is above at right:
- 5. a) Plug in 0 to get $\lim_{x\to 0} (3x+5, e^{-x}, 7x^2-3) = (5, -1, -3)$.
 - b) Change to spherical coordinates:

$$\lim_{(x,y,z)\to(0,0,0)} \frac{2x^2+yz}{x^2+y^2+z^2} = \lim_{\rho\to 0} \frac{2\rho^2\sin^2\varphi\cos^2\theta+\rho^2\sin\varphi\cos\varphi\sin\theta}{\rho^2}$$

$$= \lim_{\rho\to 0} (\sin\varphi) \left(2\sin\varphi\cos^2\theta+\cos\varphi\sin\theta\right)$$

$$= \begin{cases} 0 & \text{if } \varphi=0\\ 2 & \text{if } \varphi=\frac{\pi}{2} \text{ and } \theta=0 \end{cases}$$

Since the value of the limit depends on φ and θ , the original limit **does not exist**.

(This could also have been shown using paths; along the y-axis and z-axis, the limit is 0, but along the x-axis, the limit is 2.)

c) Factor and cancel:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + 2xy + y^2}{x + y} = \lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x + y} = \lim_{(x,y)\to(0,0)} (x+y) = 0.$$

(This could also have been done by changing to polar coordinates.)

d) Use paths: along the *x*-axis, this limit is

$$\lim_{(x,0)\to(0,0)} \frac{x-2y}{x+y} = \lim_{x\to 0} \frac{x}{x} = 1$$

but along the *y*-axis, the limit is

$$\lim_{(0,y)\to(0,0)} \frac{x-2y}{x+y} = \lim_{y\to 0} \frac{-2y}{y} = -2.$$

Since the limits are different, the original limit **does not exist**.

(This could also have been done by changing to polar coordinates.)

e) First, writing the function coordinate-wise, this is the limit

$$\lim_{(x,y)\to(0,0)} \left(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}\right).$$

Let's look at the first coordinate: changing to polar coordinates, we obtain

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}} = \lim_{r\to 0} \frac{r\cos\theta}{\sqrt{r^2}} = \lim_{r\to 0} \cos\theta.$$

When $\theta = 0$, this is 1, but when $\theta = \frac{\pi}{2}$, this is 0. Since the value depends on θ , the limit

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + y^2}}$$

does not exist; consequently the vector-valued limit

$$\lim_{\mathbf{x} \to \mathbf{0}} \frac{\mathbf{x}}{||\mathbf{x}||} = \lim_{(x,y) \to (0,0)} \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right)$$

also does not exist.