Old MATH 320 Final Exams

David M. McClendon

Department of Mathematics
Ferris State University

Last updated May 2024

Contents

Contents 2
1 General information about these exams 3
1.1 Spring 2024 Final Exam 4
1.2 Fall 2021 Final Exam 16
1.3 Spring 2021 Final Exam 25
1.4 Fall 2020 Final Exam 36
1.5 Spring 2018 Final Exam 45

Chapter 1

General information about these exams

These are the final exams I have given between 2018 and 2024 in Calculus 3 courses. To help give you some guidance on what questions are appropriate, each question on each exam is followed by a section number in parenthesis (like "(3.2)"). That means that question can be solved using material from that section (or from earlier sections) in the 2024 version of my Vector Calculus Lecture Notes.

1.1 Spring 2024 Final Exam

1. Throughout this problem, let $\mathbf{w}=(1,2,-5,4), \mathbf{x}=(3,0,5,1), \mathbf{y}=(1,-7,4)$ and $\mathbf{z}=(2,0,-3)$.
a) (2.3) Of the following two expressions, circle the one that is defined, and the compute it:

$$
\mathrm{w} \cdot \mathrm{x} \quad \mathrm{x} \cdot \mathrm{y}
$$

b) (2.2) Of the following two expressions, circle the one that is defined, and the compute it:

$$
2 \mathbf{w}-3 \mathbf{z} \quad 2 \mathbf{y}-3 \mathbf{z}
$$

c) (2.6) Of the following two expressions, circle the one that is defined, and the compute it:

$$
\mathbf{w} \times \mathbf{x} \quad \mathbf{y} \times \mathbf{z}
$$

2. Throughout this problem, let $A=\left(\begin{array}{cc}3 & -4 \\ -4 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ 1 & -3 \\ 5 & 2\end{array}\right)$.
a) (2.4) Of the following two expressions, circle the one that is defined, and the compute it:

$$
A B \quad B A
$$

b) (2.5) Of the following two expressions, circle the one that is defined, and the compute it:

$$
\operatorname{det} A \quad \operatorname{det} B
$$

c) (3.1) The function $\mathbf{f}(\mathbf{x})=B \mathbf{x}$ defines a function from what domain to what codomain?
d) (6.1) Is the matrix A positive definite, negative definite or neither?
3. (3.5) Compute each limit, or explain (with justification) why the limit does not exist:
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x-y}{3 x+y}$
b) $\lim _{\mathbf{x} \rightarrow 0} \frac{x y z}{x^{2}+y^{2}+z^{2}}$
4. A contour plot for an unknown function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is shown here:

Use this contour plot to answer these questions:
a) (3.2) Estimate $f(4,2)$.
b) (4.2) Estimate $f_{y}(1,-3)$.
c) (4.2) Is $f_{x x}(2,-1)$ positive, negative or zero?
d) (4.2) Is $f_{y x}(1,1)$ positive, negative or zero?
e) (3.2) Estimate a number x so that $f(x, 3)=5$.
f) (3.2) What is the maximum value of f on the region $[0,2] \times[0,2]$?
g) (3.2) What is the minimum value of f, subject to the constraint $y=x-2$?
h) (4.5) Which of the pictures below is a picture of ∇f ?
A.

C.

B.

D.

i) (3.2) Which of the pictures below is a graph of f ?
A.

B.

C.

D.

E.

5. (4.3) Compute the linearization of $f(x, y)=\ln \left(x+y^{2}\right)$ at the point $(1,0)$, and use that linearization to estimate $f(.9, .2)$.
6. Throughout this problem, let $g(x, y)=4 x^{2} y-3 x y^{2}+2 x+7$.
a) (4.5) Compute the gradient of g.
b) (4.2) Compute $\frac{\partial^{2} g}{\partial x \partial y}$.
c) (4.3) Write an equation of the plane tangent to g at the point $(1,-1,2)$.
7. (6.1) Find all critical points of the function $f(x, y)=x^{3}-y^{3}-12 x y$. Classify each critical point as a local maximum, local minimum or saddle.
8. (6.3) Find the maximum value of $f(x, y, z)=3 x+6 y+6 z$, subject to the constraint $2 x^{2}+y^{2}+4 z^{2}=8800$.
9. A figure skater is skating so that her position (measured in meters) at time t (measured in seconds) is $\mathbf{x}(t)=(t-$ $\left.t^{3}, t^{2}\right)$.
For $-1 \leq t \leq 1$, she skates the path γ shown at right.

a) (5.1) Compute the skater's velocity at time $\frac{1}{2}$.
b) (5.1) Compute the skater's acceleration at time $\frac{1}{2}$.
c) (5.4) Compute the curvature of the skater's path at time $\frac{1}{2}$.
d) (8.5) Compute the area of the region E enclosed by the skater's path from $t=-1$ to $t=1$.
10. Compute each double integral:
a) (7.3) $\iint_{E}\left(2 x+6 x^{2} y\right) d A$, where $E \subseteq \mathbb{R}^{2}$ is the rectangle $[0,5] \times[0,3]$.
b) (7.5) $\iint_{E} 8 x d A$, where $E \subseteq \mathbb{R}^{2}$ is the set of points in the first quadrant that lie inside the circle of radius 3 centered at the origin.
c) (7.3) $\iint_{E} e^{y^{2}} d A$, where $E \subseteq \mathbb{R}^{2}$ is the triangle with vertices $(0,0),(0,1)$ and $(1,1)$.
11. (7.2) In this problem, suppose f and g are functions from \mathbb{R}^{2} to \mathbb{R} so that

$$
\begin{array}{ll}
\int_{0}^{3} \int_{0}^{3} f(x, y) d y d x=10 ; & \int_{0}^{3} \int_{3}^{4} f(x, y) d y d x=8 \\
\int_{0}^{3} \int_{0}^{3} g(x, y) d y d x=7 ; & \int_{0}^{3} \int_{0}^{4} g(x, y) d y d x=12
\end{array}
$$

Use this information to compute each quantity:
a) $\int_{0}^{3} \int_{0}^{3}[2 f(x, y)-g(x, y)] d y d x$
b) $\int_{0}^{3} \int_{0}^{4} f(x, y) d y d x$
c) $\int_{0}^{3} \int_{3}^{4} g(x, y) d y d x$
d) $\int_{0}^{3} \int_{0}^{3}[f(x)+2] d y d x$
12. (7.5) Compute $\iiint_{E} z d V$, where $E \subseteq \mathbb{R}^{3}$ is the set of points lying inside the sphere $x^{2}+y^{2}+z^{2}=1$, above the $x y$-plane, and inside the cone $z^{2}=x^{2}+y^{2}$.
13. Choose one of these two questions:
a) (8.4) Compute $\int_{\gamma} y^{2} d s$, where γ is the top half of the circle of radius 2 centered at the origin, parametrized counterclockwise.
b) (8.6) Compute $\int_{\gamma} \mathbf{f} \cdot d \mathbf{s}$, where $\mathbf{f}(x, y)=\left(10 x y^{3}, 15 x^{2} y^{2}+4\right)$ and γ is parametrized by $\mathbf{x}(t)=\left(e^{t^{2}-t}+t, e^{t^{3}-t}\right)$ for $0 \leq t \leq 1$.

Solutions

1. a) $\mathbf{w} \cdot \mathbf{x}$ is defined and equal to $1(3)+2(0)-5(5)+4(1)=-18$.
b) $2 \mathbf{y}-3 \mathbf{z}$ is defined and equal to $2(1,-7,4)-3(2,0,-3)=(2,-14,8)-$ $(6,0,-9)=(-4,-14,17)$.

c) | $\mathbf{y} \times \mathbf{z}$ is defined and equal to $(-7(-3)-4(0), 4(2)-(-3) 1,1(0)-(-7) 2)=$ |
| :--- |
| $(21,11,14)$. |

2. a) $B A$ is defined and equal to $\left(\begin{array}{cc}-8 & 14 \\ 15 & -25 \\ 7 & -6\end{array}\right)$.
b) $\operatorname{det} A$ is defined and equal to $3(7)-(-4)^{2}=5$.
c) $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ since B is 3×2.
d) Since A is a 2×2 symmetric matrix with positive trace and positive determinant, A is positive definite.
3. a) Along the path $y=0$, we have $\lim _{(x, 0) \rightarrow(0,0)} \frac{3 x-0}{3 x+0}=\lim _{x \rightarrow 0} 1=1$, but along the path $x=0$ we have $\lim _{(0, y) \rightarrow(0,0)} \frac{0-y}{0+y}=\lim _{y \rightarrow 0}-1=-1$. Since the limits along different paths approaching 0 are unequal, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x-y}{3 x+y}$ DNE.
b) Use spherical coordinates:

$$
\begin{aligned}
\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{x y z}{x^{2}+y^{2}+z^{2}} & =\lim _{\rho \rightarrow 0} \frac{(\rho \sin \varphi \cos \theta)(\rho \sin \varphi \sin \theta)(\rho \cos \varphi)}{\rho^{2}} \\
& =\lim _{\rho \rightarrow 0} \rho\left(\sin ^{2} \varphi \cos \theta \sin \theta \cos \varphi=0\right.
\end{aligned}
$$

irrrespective of the values of ϕ and/or θ.
4. a) $f(4,2) \approx 7$.
b) $f_{y}(1,-3) \approx-2.5$ since f decreases by about 2.5 per unit of increase of y near $(1,-3)$.
c) As x changes at $(2,-1), f_{x}$ is decreasing from about 2.5 to about 1.5 , so $f_{x x}(2,-1)$ is negative.
d) As x changes at $(1,1), f_{y}$ decreases from about -.5 to about -1 , so $f_{y x}(1,1)$ is negative.
e) $f(x, 3)=5$ when $x \approx 3$.
f) The maximum value of f on the region $[0,2] \times[0,2]$ occurs at the lower right-hand corner of the square $[0,2] \times[0,2]$; this maximum value is 6$]$.
g) The line $y=x-2$ is the dashed line shown on the picture below; the smallest value of f achieved on this line is 2 (at the point $(1,-1)$).

h) ∇f points in the direction of greatest increase of f, which is generally southeast. Thus ∇f must be picture \mathbf{C}.
i) The highest values of f occur when x is positive and y is negative; the only graph for which this is true is \mathbf{D}.
5. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so the total derivative of f is the 1×2 matrix

$$
\begin{aligned}
D f(x, y) & =\left(\begin{array}{cc}
f_{x} & f_{y}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{x+y^{2}} & \frac{2 y}{x+y^{2}}
\end{array}\right) \\
\Rightarrow D f(1,0) & =\left(\begin{array}{ll}
\frac{1}{1+0^{2}} & \frac{2(0)}{1+0^{2}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) .
\end{aligned}
$$

Thus the linearization of f at $(1,0)$ is

$$
\begin{aligned}
L(x, y) & =f(1,0)+D f(1,0)(x-1, y-0) \\
& =\ln \left(1+0^{2}\right)+\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{x-1}{y} \\
& =0+x-1=x-1 .
\end{aligned}
$$

Plugging in $(x, y)=(.9, .2)$, we get $f(.9, .2) \approx L(.9, .2)=.9-1=-.1$.
6. a) $\nabla g=\left(g_{x}, g_{y}\right)=\left(8 x y-3 y^{2}+2,4 x^{2}-6 x y\right)$.
b) $\frac{\partial^{2} g}{\partial x \partial y}=\frac{\partial}{\partial x}\left(g_{y}\right)=\frac{\partial}{\partial x}\left(4 x^{2}-6 x y\right)=8 x-6 y$.
c) The tangent plane has normal vector $\mathbf{n}=\left(g_{x}(1,-1,2), g_{y}(1,-1,2),-1\right)$ so using the answer to part (a), we see that $\mathbf{n}=\left(8(1)(-1)-3(-1)^{2}+\right.$ $\left.2,4\left(1^{2}\right)-6(1)(-1),-1\right)=(-9,10,-1)$. This makes the normal equation of the plane

$$
\begin{aligned}
\mathbf{n} \cdot(\mathbf{x}-\mathbf{p}) & =0 \\
(-9,10,-1) \cdot(x-1, y+1, z-2) & =0 \\
-9(x-1)+10(y+1)-(z-2) & =0 .
\end{aligned}
$$

This rearranges into $-9 x+10 y-z=-21$.
7. To find the CPs, set the gradient equal to 0 and solve for x and y. First, $\nabla f=\left(f_{x}, f_{y}\right)=\left(3 x^{2}-12 y,-3 y^{2}-12 x\right)$. Setting $f_{x}=0$ gives $3 x^{2}-12 y=0$, i.e. $\frac{1}{4} x^{2}=y$. Substitute this into the second equation to get $-3\left(\frac{1}{4} x^{2}\right)^{2}-12 x=0$, i.e. $-\frac{3}{16} x^{4}-12 x=0$, which factors as $-3 x\left(\frac{x^{3}}{16}+4\right)=0$. From $-3 x=0$, we get $x=0$ (and therefore $y=\frac{1}{4} 0^{2}=0$) and from $\frac{x^{3}}{16}+4=0$, we get $x^{3}=-64$, i.e. $x=-4$ (which goes with $y=\frac{1}{4}\left(4^{2}\right)=4$). Thus the two critical points of f are $(0,0)$ and $(-4,4)$. To classify these, use the Hessian:

$$
H f(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
6 x & -12 \\
-12 & 6 y
\end{array}\right)
$$

so

$$
H f(0,0)=\left(\begin{array}{cc}
0 & -12 \\
-12 & 0
\end{array}\right)
$$

which has negative determinant, making $(0,0)$ a saddle and

$$
H f(-4,4)=\left(\begin{array}{ll}
-24 & -12 \\
-12 & -24
\end{array}\right)
$$

which has negative trace and positive determinant, making $(-4,4)$ a local maximum .
8. Use Lagrange's method. Write $g(x, y, z)=2 x^{2}+y^{2}+4 z^{2}$ so that we have

$$
\nabla f=\lambda \nabla g \Rightarrow\left\{\begin{array}{l}
3=\lambda(4 x) \\
6=\lambda(2 y) \\
6=\lambda(8 z)
\end{array} \Rightarrow \lambda=\frac{3}{4 x}=\frac{3}{y}=\frac{3}{4 z}\right.
$$

From this, we see $x=z$ and $y=4 x$. Substituting into the constraint, we get $2 x^{2}+(4 x)^{2}+4 x^{2}=8800$, i.e. $22 x^{2}=8800$, i.e. $x^{2}=400$ so $x= \pm 20$. This gives two candidate points $(20,80,20)$ and $(-20,-80,-20)$. Test these candidate points in the utility to find the maximum value:

$$
\begin{aligned}
f(20,80,20) & =3(20)+6(80)+6(20)=60+480+120=660 \\
f(-20,-80,-20) & =3(-20)+6(-80)+6(-20)=-60-480-120=-660
\end{aligned}
$$

Thus the maximum value is 660 .
9. a) The skater's velocity is $\mathbf{x}^{\prime}\left(\frac{1}{2}\right)=\left.\left(1-3 t^{2}, 2 t\right)\right|_{t=1 / 2}=\left(1-\frac{3}{4}, \frac{2}{2}\right)=$ $\left(\frac{1}{4}, 1\right)$.
b) The skater's acceleration is $\mathbf{x}^{\prime \prime}\left(\frac{1}{2}\right)=\left.(-6 t, 2)\right|_{t=1 / 2}=(-3,2)$.
c) Treat the path as though it is in \mathbb{R}^{3} by setting $z=0$. Then, the curvature of the skater's path at time $\frac{1}{2}$ is

$$
\begin{aligned}
\frac{\left\|\mathbf{x}^{\prime}\left(\frac{1}{2}\right) \times \mathbf{x}^{\prime \prime}\left(\frac{1}{2}\right)\right\|}{\left\|\mathbf{x}^{\prime}\left(\frac{1}{2}\right)\right\|^{3}} & =\frac{\left\|\left(\frac{1}{4}, 1,0\right) \times(-3,2,0)\right\|}{\|\left(\left(\frac{1}{4}, 1,0\right) \|^{3}\right.} \\
& =\frac{\left\|\left(0,0, \frac{7}{2}\right)\right\|}{\left(\frac{17}{16}\right)^{3 / 2}} \\
& =\frac{\frac{7}{2}}{\frac{17^{3 / 2}}{64}}=224 \cdot 17^{-3 / 2}
\end{aligned}
$$

d) Use the area formula coming from Green's Theorem:

$$
\begin{aligned}
\operatorname{Area}(E) & =\frac{1}{2} \oint_{\partial E}(x d y-y d x) \\
& =\frac{1}{2} \int_{-1}^{1}\left[\left(t-t^{3}\right)(2 t d t)-t^{2}\left(1-3 t^{2}\right) d t\right] \\
& =\frac{1}{2} \int_{-1}^{1}\left[2 t^{2}-2 t^{4}-t^{2}+3 t^{4}\right] d t \\
& =\frac{1}{2} \int_{-1}^{1}\left(t^{2}+t^{4}\right) d t \\
& =\frac{1}{2}\left[\frac{t^{3}}{3}+\frac{t^{5}}{5}\right]_{-1}^{1}=\frac{1}{2}\left[\frac{1}{3}+\frac{1}{5}\right]-\frac{1}{2}\left[-\frac{1}{3}-\frac{1}{5}\right]=\frac{8}{15} .
\end{aligned}
$$

10. a) This is

$$
\begin{aligned}
\iint_{E}\left(2 x+6 x^{2} y\right) d A & =\int_{0}^{5} \int_{0}^{3}\left(2 x+6 x^{2} y\right) d y d x \\
& =\int_{0}^{5}\left[2 x y+3 x^{2} y^{2}\right]_{0}^{3} d x \\
& =\int_{0}^{5}\left[6 x+27 x^{2}\right] d x \\
& =\left[3 x^{2}+9 x^{3}\right]_{0}^{5}=3\left(5^{2}\right)+9\left(5^{3}\right)=75+1125=1200 .
\end{aligned}
$$

b) Using polar coordinates, the region E can be described with the inequalities $0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 3$. Thus

$$
\begin{aligned}
\iint_{E} 8 x d A & =\int_{0}^{\pi / 2} \int_{0}^{3} 8 r \cos \theta r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{3} 8 r^{2} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 2}\left[\frac{8}{3} r^{3} \cos \theta\right]_{0}^{3} d \theta \\
& =\int_{0}^{\pi / 2} 72 \cos \theta d \theta=\left.72 \sin \theta\right|_{0} ^{\pi / 2}=72-0=72 .
\end{aligned}
$$

c) The triangle E can be described with the inequalities $0 \leq y \leq 1,0 \leq x \leq$ y, so this is

$$
\begin{aligned}
\iint_{E} e^{y^{2}} d A & =\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y \\
& =\int_{0}^{1}\left[e^{y^{2}} x\right]_{0}^{y} d y=\int_{0}^{1} e^{y^{2}} y d y
\end{aligned}
$$

This integral is done with the u-sub $u=y^{2}, \frac{1}{2} d u=y d y$ to get

$$
\int_{0}^{1} \frac{1}{2} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{0} ^{1}=\frac{1}{2} e-\frac{1}{2}
$$

NOTE: This integral is not doable if you try to do the integration in the other order ($d y d x$).
11. a) By linearity,

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{3}[2 f(x, y)-g(x, y)] d y d x & =2 \int_{0}^{3} \int_{0}^{3} f(x, y) d y d x-\int_{0}^{3} \int_{0}^{3} g(x, y) d y d x \\
& =2(10)-7=13
\end{aligned}
$$

b) By additivity,

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{4} f(x, y) d y d x & =\int_{0}^{3} \int_{0}^{3} f(x, y) d y d x+\int_{0}^{3} \int_{3}^{4} f(x, y) d y d x \\
& =10+8=18
\end{aligned}
$$

c) By additivity,

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{4} g(x, y) d y d x & =\int_{0}^{3} \int_{0}^{3} g(x, y) d y d x+\int_{0}^{3} \int_{3}^{4} g(x, y) d y d x \\
12 & =7+\int_{0}^{3} \int_{3}^{4} g(x, y) d y d x \\
5 & =\int_{0}^{3} \int_{3}^{4} g(x, y) d y d x
\end{aligned}
$$

d) By linearity,

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{3}[f(x)+2] d y d x & =\int_{0}^{3} \int_{0}^{3} f(x, y) d y d x+\int_{0}^{3} \int_{0}^{3} 2 d y d x \\
& =10+2(\operatorname{Area}([0,3] \times[0,3])) \\
& =10+2(3)(3)=10+18=28 .
\end{aligned}
$$

12. Using spherical coordinates, the set E can be described with the inequalities $0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \frac{\pi}{4}$ (from the cone) and $0 \leq r \leq 1$ (from the sphere). So the integral is

$$
\begin{aligned}
\iiint_{E} z d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1}(\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =2 \pi \int_{0}^{\pi / 4} \int_{0}^{1} \rho^{3} \cos \varphi \sin \varphi d \rho d \varphi \\
& =2 \pi \int_{0}^{\pi / 4}\left[\frac{1}{4} \rho^{r} \cos \varphi \sin \varphi\right]_{0}^{1} d \varphi \\
& =2 \pi \int_{0}^{\pi / 4} \frac{1}{4} \cos \varphi \sin \varphi d \varphi
\end{aligned}
$$

For this last integral, use the u-sub $u=\sin \varphi, d u=\cos \varphi d u$ to get

$$
2 \pi \int_{0}^{\sqrt{2} / 2} \frac{1}{4} u d u=\left[\frac{\pi}{4} u^{2}\right]_{0}^{\sqrt{2} / 2}=\frac{\pi}{4}\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{\pi}{8}
$$

13. a) Parameterize γ by $\mathbf{x}(t)=(2 \cos t, 2 \sin t)$ for $0 \leq t \leq \pi$. Then $\mathbf{x}^{\prime}(t)=$ $(-2 \sin t, 2 \cos t)$ so the speed is $\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t}=\sqrt{4}=2$. That means

$$
\begin{aligned}
\int_{\gamma} f d s & =\int_{0}^{\pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t \\
& =\int_{0}^{\pi} f(2 \cos t, 2 \sin t) 2 d t \\
& =\int_{0}^{\pi} 8 \sin ^{2} t d t \\
& =\int_{0}^{\pi} 8\left(\frac{1-\cos 2 t}{2}\right) d t \\
& =\int_{0}^{\pi}(4-4 \cos 2 t) d t \\
& =[4 t-2 \sin 2 t]_{0}^{\pi}=4 \pi
\end{aligned}
$$

b) We first show \mathbf{f} is conservative by finding a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so that $\mathbf{f}=\nabla f$:

$$
\begin{aligned}
f_{x}=10 x y^{3} & \Rightarrow f=\int 10 x y^{3} d x=5 x^{2} y^{3}+A(y) \\
f_{y}=15 x^{2} y^{2}+4 & \Rightarrow f=\int\left(15 x^{2} y^{2}+4\right) d y=5 x^{2} y^{3}+4 y+B(x)
\end{aligned}
$$

To reconcile these, set $A(y)=4 y$ and $B(x)=0$ so that $f(x, y)=5 x^{2} y^{3}+4 y$ is a potential function for f . Then, by the Fundamental Theorem of Line Integrals,

$$
\begin{aligned}
\int_{\gamma} \mathbf{f} \cdot d \mathbf{s} & =f(\mathbf{x}(1))-f(\mathbf{x}(0)) \\
& =f\left(e^{0}+1, e^{0}\right)-f\left(e^{0}+0, e^{0}\right) \\
& =f(2,1)-f(1,1) \\
& =5\left(2^{2}\right)\left(1^{3}\right)+4(1)-\left[5\left(1^{2}\right)\left(1^{3}\right)+4(1)\right]=15 .
\end{aligned}
$$

1.2 Fall 2021 Final Exam

1. Throughout this problem, let $\mathbf{v}=(-3,1,2), \mathbf{w}=(-1,5,0)$ and $\mathbf{x}=(4,1,-1)$.
a) (2.3) Compute the distance between \mathbf{v} and \mathbf{w}.
b) (2.3) Is the angle between v and w acute, obtuse or right? Explain.
c) (2.4) If $A=\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & 1 & 0\end{array}\right)$, compute $A \mathbf{v}$.
d) (2.7) Write parametric equations for the line passing through w and x.
e) (2.7) Write a normal equation of the plane containing v, w and x.
2. For each given limit, compute the value of the limit, or explain why the limit does not exist.
a) $(3.5) \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x+y}$.
b) (3.5) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}$.
3. Suppose $f(x, y)=4 x^{2} y^{2}-3 x y^{3}$.
a) (4.5) Compute the gradient of f.
b) (4.2) Compute $f_{x}(1,2)$.
c) (4.2) Compute $\frac{\partial^{3} f}{\partial y^{2} \partial x}$.
d) (4.3) Write the equation of the plane tangent to the graph of f at the point $(2,-1,22)$.
e) (8.4) Compute $\int_{\gamma} f d s$, where γ is the line segment beginning at $(0,0)$ and ending at $(2,1)$.
4. A contour plot for an unknown function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given below:

Use this contour plot to answer the following questions.
a) (3.2) Estimate $f(4,-1)$.
b) (4.5) In which compass direction does $\nabla f(5,2)$ point?
c) (4.2) Estimate $\frac{\partial f}{\partial y}(-2,2)$.
d) (4.5) Is $D_{\mathbf{u}} f(2,-1)$ positive, negative or zero, if \mathbf{u} is in the direction $(1,1)$?
e) (3.2) Find the minimum value of $f(2, y)$, for $-5 \leq y \leq 5$.
f) (6.1) Estimate the coordinates of a local maximum of f.
g) (6.1) Estimate the coordinates of a saddle of f.
5. (4.3) Compute the linearization of $f(x, y, z)=x^{2} \sin (y z)$ at the point $(2,3,0)$, and use that linearization to estimate $f(1.9,3.3, .2)$.
6. Suppose that a particle is moving in \mathbb{R}^{3} so that its position at time t is $\left(t^{2}, t, \frac{2}{3} t^{3}\right)$.
a) (5.1) Compute the velocity of the particle at time 0 .
b) (5.2) Compute the tangential component of the acceleration of the particle at time 0 .
c) (5.2) What does the sign of your answer to part (b) tell you about the motion of the particle at time 0 ?
d) (5.4) Compute the curvature of the path the particle travels at time 0.
e) (5.2) Compute the distance travelled by the particle from time 0 to time 2.
7. (6.1) Find all critical points of the function $f(x, y)=2 x^{3}+6 x y^{2}-9 x^{2}+9 y^{2}$. Classify, with appropriate reasoning, each critical point as a local maximum, local minimum or saddle.
8. (6.3) Compute the absolute maximum value of the function $f(x, y)=x y$, subject to the constraint $x^{2}+4 y^{2}=8$.
9. a) (7.3) Compute $\iint_{D} \cos (x+y) d A$, where D is the square $\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]$.
b) (7.3) Compute $\iint_{E} 6 y^{2} d A$, where E is the triangle with vertices $(0,0)$, $(4,0)$ and $(2,2)$.
10. (7.3) Compute each iterated integral:
(a) $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$
(b) $\int_{0}^{1} \int_{0}^{y} \int_{x y}^{x} 12 x z d z d x d y$
11. (7.5) Compute the volume of the set of points in \mathbb{R}^{3} lying above the parallelogram in \mathbb{R}^{2} with vertices $(1,-1),(-1,1),(2,0)$ and $(0,2)$, and lying below the graph of $z=x^{2}$.
12. (7.5) Compute

$$
\iiint_{E} x z d V
$$

where E is the set of points in \mathbb{R}^{3} satisfying $x \geq 0, y \geq 0, z \geq 0$ and $x^{2}+y^{2}+$ $z^{2} \leq 1$.

Solutions

1. a) $\operatorname{dist}(\mathbf{v}, \mathbf{w})=\|\mathbf{v}-\mathbf{w}\|=\|(-2,-4,2)\|=\sqrt{2^{2}+(-4)^{2}+2^{2}}=\sqrt{24}$.
b) $\mathbf{v} \cdot \mathbf{w}=(-3)(-1)+1(5)+2(0)=8>0$, so the angle between \mathbf{v} and \mathbf{w} is acute.
c) By regular matrix multiplication, $A \mathbf{v}=(1(-3)+0(1)+2(-4), 2(-3)+$ $1(1)+2(0))=(-11,-5)$.
d) A direction vector for the line is $\mathbf{x}-\mathbf{w}=(5,-4,-1)$; the line then has parametric equations

$$
\left\{\begin{array}{ll}
x & =-1+5 t \\
y & =5-4 t \\
z & =-t
\end{array} .\right.
$$

e) The plane contains vectors $\mathbf{w}-\mathbf{v}=(2,4,-2)$ and $\mathbf{x}-\mathbf{w}=(5,-4,-1)$; a normal vector to the plane is therefore $\mathbf{n}=(2,4,-2) \times(5,-4,-1)=$ $(-12,-8,-28)$. Any nonzero multiple of this is also a normal vector, so I will use $\mathbf{n}=(3,2,7)$. Thus the plane has normal equation

$$
\mathbf{n} \cdot(\mathbf{x}-\mathbf{v})=0
$$

i.e. $(3,2,7)(x+3, y-1, z-2)=0$
i.e. $3(x+3)+2(y-1)+7(z-2)=0$

$$
\text { i.e. } 3 x+2 y+7 z=7 \text {. }
$$

2. a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x+y}=\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)(x+y)}{x+y}=\lim _{(x, y) \rightarrow(0,0)}(x-y)=0-0=0$.
b) Along the y-axis, we have $\lim _{(0, y, 0) \rightarrow(0,0)} \frac{x^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$, but along the z-axis, we have $\lim _{(0,0, z) \rightarrow(0,0)} \frac{x^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}=\lim _{z \rightarrow 0} \frac{z^{2}}{z^{2}}=1$. Therefore the limit does not exist.
(This limit could also be done with spherical coordinates.)
3. a) $\nabla f(x, y)=\left(f_{x}, f_{y}\right)=\left(8 x y^{2}-3 y^{3}, 8 x^{2} y-9 x y^{2}\right)$.
b) $f_{x}(1,2)=\left.\left(8 x y^{2}-3 y^{3}\right)\right|_{(1,2)}=32-24=8$.
c) $\frac{\partial^{3} f}{\partial y^{2} \partial x}=f_{x y y}=\left(8 x y^{2}-3 y^{3}\right)_{y y}=\left(16 x y-9 y^{2}\right)_{y}=16 x-18 y$.
d) Observe $f_{x}(2,-1)=16-(-3)=19$ and $f_{y}(2,-1)=-32-18=-50$, so the tangent plane has equation

$$
\begin{array}{r}
z=f(2,-1)+f_{x}(2,-1)(x-2)+f_{x}(2,-1)(y+1) \\
z=22+19(x-2)-50(y+1) \\
z=19 x-50 y-66 .
\end{array}
$$

e) γ is parametrized by $\mathbf{x}(t)=(2 t, t)$ for $0 \leq t \leq 1$, so $\mathbf{x}^{\prime}(t)=(2,1)$ and $\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. Thus the line integral becomes

$$
\begin{aligned}
\int_{\gamma} f d s & =\int_{0}^{1} f(2 t, t) \sqrt{5} d t \\
& =\int_{0}^{1}\left[4(2 t)^{2} t^{2}-3(2 t) t^{3}\right] \sqrt{5} d t \\
& =\sqrt{5} \int_{0}^{1} 10 t^{4} d t=\left.2 \sqrt{5} t^{5}\right|_{0} ^{1}=2 \sqrt{5}
\end{aligned}
$$

4. a) $f(4,-1) \approx 5$.
b) $\nabla f(5,2)$ points toward the greatest increase in the value of f, which is west.
c) $\frac{\partial f}{\partial y}(-2,2) \approx f(-2,3)-f(-2,2)=-3-0=-3$.
d) Is $D_{\mathbf{u}} f(2,-1)$ is negative since f decreases in the direction $(-1,-1)$ from the point $(2,-1)$.
e) The minimum value of $f(2, y)$ for $-5 \leq y \leq 5$ is 0 , when $x \approx-1.5$.
f) f has alocal maximum at about $(2.2,3.1)$.
g) f has two saddles in the viewing window: one at about $(-1.2,1)$ and another at about $(3.5, .25)$.
5. The total derivative of f is

$$
D f(x, y, z)=\left(\begin{array}{lll}
f_{x} & f_{y} & f_{z}
\end{array}\right)=\left(\begin{array}{lll}
2 x \sin (y z) & x^{2} z \cos (y z) & x^{2} y \cos (y z)
\end{array}\right) .
$$

At the point $(2,3,0)$, this is $D f(2,3,0)=\left(\begin{array}{lll}0 & 0 & 12\end{array}\right)$. So the linearization of f at $(2,3,0)$ is

$$
\begin{aligned}
L(x, y, z) & =f(2,3,0)+D f(2,3,0)(x-2, y-3, z-0) \\
& =0+\left(\begin{array}{lll}
0 & 0 & 12
\end{array}\right)(x-2, y-3, z-0)=12 z .
\end{aligned}
$$

That means

$$
f(1.9,3.3, .2) \approx L(1.9,3.3, .2)=12(.2)=2.4
$$

6. Suppose that a particle is moving in \mathbb{R}^{3} so that its position at time t is $\left(t^{2}, t, \frac{2}{3} t^{3}\right)$.
a) $\mathbf{v}(0)=\mathbf{x}^{\prime}(0)=\left.\left(2 t, 1,2 t^{2}\right)\right|_{t=0}=(0,1,0)$.
b) First, $\mathbf{a}(0)=\mathbf{x}^{\prime \prime}(0)=\left.(2,0,4 t)\right|_{t=0}=(2,0,0)$. Therefore, $a_{T}(0)=\frac{\mathbf{a}(0) \cdot \mathbf{v}(0)}{\|\mathbf{v}(0)\|}=$ $\frac{0}{1}=0$.
c) Since $a_{T}(0)=0$, at time 0 the object is neither speeding up nor slowing down at that instant.
d) $\kappa(0)=\frac{\|\mathbf{v}(0) \times \mathbf{a}(0)\|}{\|\mathbf{v}(0)\|^{3}}=\frac{\|(0,0,-2)\|}{1^{3}}=2$.
e) The arc length is

$$
\begin{aligned}
\int_{0}^{2}\left\|\mathbf{x}^{\prime}(t)\right\| d t & =\int_{0}^{2} \sqrt{(2 t)^{2}+1^{2}+\left(2 t^{2}\right)^{2}} d t \\
& =\int_{0}^{2} \sqrt{4 t^{2}+1+4 t^{4}} d t \\
& =\int_{0}^{2} \sqrt{\left(2 t^{2}+1\right)^{2}} d t \\
& =\int_{0}^{2}\left(2 t^{2}+1\right) d t \\
& =\frac{2}{3} t^{3}+\left.t\right|_{0} ^{2}=\frac{22}{3}
\end{aligned}
$$

7. The gradient of f is $\nabla f(x, y)=\left(f_{x}, f_{y}\right)=\left(6 x^{2}+6 y^{2}-18 x, 12 x y+18 y\right)$. Set the gradient equal to $(0,0)$ to produce the system

$$
\left\{\begin{array}{l}
6 x^{2}+6 y^{2}-18 x=0 \\
12 x y+18 y=0 \Rightarrow 6 y(2 x+3)=0 \Rightarrow y=0 \text { or } x=-\frac{3}{2} .
\end{array}\right.
$$

If $y=0$, then the first equation gives $6 x^{2}-18 x=0$, i.e. $x=0$ or $x=3$, giving the critical points $(0,0)$ and $(3,0)$. If $x=-\frac{3}{2}$, the first equation gives $y^{2}=-36$, which has no solution. Thus there are two critical points: $(0,0)$ and $(3,0)$. We test these using the Hessian:

$$
H f(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
12 x-18 & 12 y \\
12 y & 12 x+18
\end{array}\right)
$$

We have $\operatorname{det} H f(0,0)=\operatorname{det}\left(\begin{array}{cc}-18 & 0 \\ 0 & 18\end{array}\right)<0$, so $(0,0)$ is a saddle. Finally, we see that $\operatorname{Hf}(3,0)=\left(\begin{array}{cc}18 & 0 \\ 0 & 54\end{array}\right)$ has positive determinant and trace, so $H f(3,0)>0$, so $(3,0)$ is a local minimum.
8. Use Lagrange's method: let $g(x, y)=x^{2}+4 y^{2}$ and start with $\nabla f=\lambda \nabla g$ to get

$$
\left\{\begin{aligned}
y & =\lambda(2 x) \\
x & =\lambda(8 y)
\end{aligned}\right.
$$

Plugging the first equation into the second, we get $x=16 \lambda^{2} x$, so $x=0$ or $16 \lambda^{2}=1$ so $\lambda= \pm \frac{1}{4}$. If $x=0$, then from the first equation $y=0$, but $(0,0)$
isn't on the constraint, so we can discard that point. That leaves $\lambda= \pm \frac{1}{4}$: from the first equation above, that means $y=\left(\pm \frac{1}{4}\right)(2 x)= \pm \frac{1}{2} x$. Plugging into the constraint gives $x^{2}+4\left(\pm \frac{1}{2} x\right)^{2}=8$, i.e. $2 x^{2}=8$, i.e. $x= \pm 2$. since $y= \pm \frac{1}{2} x$, that gives four critical points $(\pm 2, \pm 1)$; plug these into the utility $f(x, y)=x y$ to see that the maximum value is 2 .
9. a) By Fubini's theorem, this is

$$
\begin{aligned}
\iint_{D} \cos (x+y) d A & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \cos (x+y) d y d x \\
& =\left.\int_{0}^{\pi / 2} \sin (x+y)\right|_{0} ^{\pi / 2} d x \\
& =\int_{0}^{\pi / 2}\left[\sin \left(x+\frac{\pi}{2}\right)-\sin x\right] d x \\
& =\left[-\cos \left(x+\frac{\pi}{2}\right)+\cos x\right]_{0}^{\pi / 2} \\
& =[(1+0)-(0+1)]=0 .
\end{aligned}
$$

b) E is horizontally simple with $0 \leq y \leq 2, y \leq x \leq 4-y$, so Fubini's theorem gives

$$
\begin{aligned}
\iint 6 y^{2} d A & =\int_{0}^{2} \int_{y}^{4-y} 6 y^{2} d x d y \\
& =\int_{0}^{2}\left[6 y^{2} x\right]_{y}^{4-y} d y \\
& =\int_{0}^{2}\left[24 y^{2}-12 y^{3}\right] d x \\
& =\left[8 y^{3}-3 y^{4}\right]_{0}^{2}=64-48=16 .
\end{aligned}
$$

10. a) This is a double integral over a triangle with vertices $(0,0),(0,1)$ and $(1,1)$, and by reversing the order of integration we get

$$
\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x=\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y=\int_{0}^{1} y e^{y^{2}} d y
$$

Now use the u-sub $u=y^{2}, d u=2 y d y$ to rewrite this integral as

$$
\int_{0}^{1} \frac{1}{2} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{0} ^{1}=\frac{1}{2}(e-1)
$$

b) Compute this directly:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} \int_{x y}^{x} 12 x z d z d x d y & =\int_{0}^{1} \int_{0}^{y}\left[6 x z^{2}\right]_{x y}^{x} d x d y \\
& =\int_{0}^{1} \int_{0}^{y}\left[6 x^{3}-6 x^{3} y^{2}\right] d x d y \\
& =\int_{0}^{1}\left[\frac{3}{2} x^{4}-\frac{3}{2} x^{4} y^{2}\right]_{0}^{y} d y \\
& =\int_{0}^{1}\left[\frac{3}{2} y^{4}-\frac{3}{2} y^{6}\right] d y \\
& =\left[\frac{3}{10} y^{5}-\frac{3}{14} y^{7}\right]_{0}^{1} \\
& =\frac{3}{10}-\frac{3}{14}=\frac{3}{35}
\end{aligned}
$$

11. The four sides of the parallelogram E have equations $x+y=0, x+y=2$, $y-x=-2$ and $y-x=-2$, so we use the change of variables $(x, y) \stackrel{\phi}{\mapsto}(u, v)$ where $u=x+y$ and $v=y-x$. Thus

$$
J(\phi)=\operatorname{det}\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=2
$$

so the volume is

$$
V=\iint_{E} x^{2} d A=\int_{0}^{2} \int_{-2}^{2} x^{2} \frac{1}{|J(\phi)|} d v d u=\int_{0}^{2} \int_{-2}^{2} \frac{1}{2} x^{2} d v d u
$$

Now we back-solve for x in terms of u and v; add the equations $u=x+y$ and $v=y-x$ to get $2 y=u+v$, i.e. $y=\frac{1}{2}(u+v)$. Thus $x=u-y=u-\frac{1}{2}(u+v)=$ $\frac{1}{2}(v-u)$, so the integral becomes

$$
\begin{aligned}
\int_{0}^{2} \int_{-2}^{2} \frac{1}{2}\left[\frac{1}{2}(v-u)\right]^{2} d v d u & =\frac{1}{8} \int_{0}^{2} \int_{-2}^{2}(v-u)^{2} d v d u \\
& =\frac{1}{8} \int_{0}^{2}\left[\frac{1}{3}(v-u)^{3}\right]_{-2}^{2} d u \\
& =\frac{1}{24} \int_{0}^{2}\left[(2-u)^{3}-(-2-u)^{3}\right] d u \\
& =\frac{1}{24} \int_{0}^{2}\left[(2-u)^{3}+(2+u)^{3}\right] d u \\
& =\frac{1}{24}\left[-\frac{1}{4}(2-u)^{4}+\frac{1}{4}(-2-u)^{4}\right]_{0}^{2} \\
& =\frac{1}{96}\left[\left(0+4^{4}\right)-\left(-2^{4}+2^{4}\right)\right]_{2}^{10}=\frac{4^{4}}{96}=\frac{8}{3}
\end{aligned}
$$

12. In spherical coordinates, this region is $0 \leq \rho \leq 1,0 \leq \theta \leq \frac{\pi}{2}$, and $0 \leq \varphi \leq \frac{\pi}{2}$. So the integral becomes

$$
\begin{aligned}
\iiint_{E} x z d V & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1}(\rho \sin \varphi \cos \theta)(\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{4} \sin ^{2} \varphi \cos \varphi \cos \theta d \rho d \theta d \varphi \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left[\frac{1}{5} \rho^{5} \sin ^{2} \varphi \cos \varphi \cos \theta\right]_{0}^{1} d \theta d \varphi \\
& =\frac{1}{5} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin ^{2} \varphi \cos \varphi \cos \theta d \theta d \varphi \\
& =\frac{1}{5} \int_{0}^{\pi / 2}\left[\sin ^{2} \varphi \cos \varphi \sin \theta\right]_{0}^{\pi / 2} d \varphi \\
& =\frac{1}{5} \int_{0}^{\pi / 2} \sin ^{2} \varphi \cos \varphi d \varphi
\end{aligned}
$$

Now use the u-sub $u=\sin \varphi, d u=\cos \varphi d \varphi$ to rewrite this integral as

$$
\frac{1}{5} \int_{0}^{1} u^{2} d u=\left.\frac{1}{15} u^{3}\right|_{0} ^{1}=\frac{1}{15}
$$

1.3 Spring 2021 Final Exam

1. Fill in the blanks in these sentences with sets so that the sentence is true.
a) (4.1) Suppose \mathbf{f} is such that for each $\mathbf{x}, D \mathbf{f}(\mathbf{x})$ is a 4×2 matrix. In this situation, f must be a function from \qquad to \qquad .
b) (4.5) Suppose \mathbf{f} is such that $\nabla \mathbf{f}(3,1,-5)$ exists. In this setting, \mathbf{f} must be a function from \qquad to \qquad , and $\nabla \mathbf{f}(3,1,-5)$ is an element of
\qquad -
c) (8.2) Suppose \mathbf{f} is such that $\operatorname{div} \mathbf{f}(3,-2)$ exists. In this setting, \mathbf{f} must be a function from \qquad to \qquad , and $\operatorname{div} \mathbf{f}(3,-2)$ is an element of
\qquad .
d) (6.1) Suppose \mathbf{f} is such that $H \mathbf{f}(4,8)$ exists. In this situation, \mathbf{f} must be a function from \qquad to \qquad and $H \mathbf{f}(4,8)$ is an element of
\qquad .
e) (4.5) Suppose \mathbf{f} is such that $D_{\mathbf{u}} \mathbf{f}(-1,-4,0)$ exists. In this situation, \mathbf{f} must be a function from \qquad to \qquad , u must be an element of \qquad , and $D_{\mathbf{u}} \mathbf{f}(-1,-4,0)$ is an element of \qquad .
2. (8.5) Green's Theorem says that under suitable hypotheses, some equation equating two types of integrals is true. Write that equation here:
3. (4.1) To say that a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at x means that there exists some matrix $D \mathbf{f}(x)$ such that some limit exists and is equal to 0 . Write that limit here:
4. (3.5) Explain why the limit $\lim _{\mathrm{x} \rightarrow 0} \frac{x-y+z}{x+y+z}$ does not exist.
5. Let $\mathbf{v}=(1,3,0)$ and $\mathbf{w}=(-2,-1,2)$.
a) (2.3) Compute $(\mathbf{v}+2 \mathbf{w}) \cdot \mathbf{w}$.
b) (2.6) Find a nonzero vector in \mathbb{R}^{3} which is orthogonal to both v and w.
c) (2.3) Compute the measure of the angle between v and w.
d) (2.3) Compute the distance between v and w.
6. Throughout this problem, let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be $f(x, y)=2 x y^{2}+x^{3}-3 y^{4}$.
a) (4.2) Compute all second-order partial derivatives of f.
b) (4.2) Compute the slope of the line tangent to the graph of f which is parallel to the y-axis, that passes through the point $(1,-2)$.
c) (4.5) Find the direction in which the value of f is decreasing most rapidly, at the point $(2,1)$.
d) (4.5) Compute the rate of change of f in the direction $(-3,4)$ at the point $(2,1)$.
7. Suppose $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $\mathrm{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are differentiable functions satisfying

$$
\begin{gathered}
\mathbf{f}(1,5)=(2,3) ; \quad \mathbf{g}(1,5)=(4,-1) ; \\
D \mathbf{f}(1,5)=\left(\begin{array}{cc}
1 & -3 \\
3 & 4
\end{array}\right) ; \quad D \mathbf{g}(1,5)=\left(\begin{array}{cc}
0 & 2 \\
-7 & 2
\end{array}\right) ; \quad D \mathbf{g}(2,3)=\left(\begin{array}{cc}
-1 & 3 \\
5 & 0
\end{array}\right) .
\end{gathered}
$$

In each part of this problem, you are given a quantity.

- If the given information in this problem is sufficient to compute the quantity, compute it.
- If the given information cannot be used to compute the quantity, write "not enough information".
a) $(4.1) D(\mathbf{f}+2 \mathbf{g})(1,5)$
b) $(4.4) D(\mathbf{f} \circ \mathbf{g})(1,5)$
c) $(4.4) D(\mathbf{g} \circ \mathbf{f})(1,5)$

8. (6.1) Find all the critical points of the function $f(x, y)=4 x y-x^{4}-y^{4}+12$. Classify each critical point as a local maximum, local minimum or saddle.
9. (6.3) The profit of a company is given by $P(x, y, z)=4 x+8 y+6 z$, where x, y and z are units of three different products the company manufactures. Find the maximum profit of the company, given that $x^{2}+4 y^{2}+2 z^{2}=800$.
10. An object is moving in \mathbb{R}^{3} so that its position at time t is $\mathbf{x}(t)=\left(3 \cos 2 t, 4 \sin 2 t, \frac{1}{\pi} t\right)$.
a) (5.1) Compute the velocity of the object at time $t=\frac{\pi}{3}$.
b) (5.1) Compute the speed of the object at time $t=\frac{\pi}{3}$.
c) (5.1) Compute the acceleration of the object at time $t=\frac{\pi}{3}$.
d) (4.3) Find parametric equations of the line which is tangent to the path the object travels at $t=\frac{\pi}{3}$.
11. In each part of this problem, you are given a set $E \subseteq \mathbb{R}^{2}$. For each given E, compute

$$
\iint_{E} 8 x d A .
$$

a) (7.3) $E=[0,1] \times[0,4]$
b) (7.5) E is the one-third of a circle pictured here:

c) (7.3) $E=\left\{(x, y): y \geq 0, y^{2} \leq x \leq y+2\right\}$
12. (7.5) Compute the volume of the set of points in \mathbb{R}^{3} lying below the graph of $z=\frac{y^{2}(x+2 y)^{2}}{x^{5}}$ and above the triangular region E bounded by the red, blue and green lines shown below:

13. (7.5) Compute the volume of the set of points in \mathbb{R}^{3} lying above the $x y$-plane, inside the sphere $x^{2}+y^{2}+z^{2}=16$, and inside the cone $z^{2}=x^{2}+y^{2}$.
14. (8.4) Compute the line integral $\int_{\gamma} \mathbf{f} \cdot d \mathbf{s}$, where γ is the line segment beginning at $(2,-1,3)$ and ending at $(4,0,1)$, and $\mathbf{f}(x, y, z)=(3 z, x+y, 2 x+z)$.
15. (Bonus) (7.5) Compute the area of the region F of points lying in the first quadrant, outside the circle $x^{2}+y^{2}=1$ but inside the graph of the polar
1.3. Spring 2021 Final Exam
function $r=2 \sin 2 \theta$. This region is shown below:

Solutions

1. a) Suppose \mathbf{f} is such that for each $\mathbf{x}, D \mathbf{f}(\mathbf{x})$ is a 4×2 matrix. In this situation, f must be a function from \mathbb{R}^{2} to \mathbb{R}^{4}.
b) Suppose \mathbf{f} is such that $\nabla \mathbf{f}(3,1,-5)$ exists. In this setting, \mathbf{f} must be a function from \mathbb{R}^{3} to \mathbb{R}, and $\nabla \mathbf{f}(3,1,-5)$ is an element of \mathbb{R}^{3}.
c) Suppose \mathbf{f} is such that $\operatorname{div} \mathbf{f}(3,-2)$ exists. In this setting, \mathbf{f} must be a function from \mathbb{R}^{2} to \mathbb{R}^{2}, and $\operatorname{div} \mathbf{f}(3,-2)$ is an element of \mathbb{R}.
d) Suppose \mathbf{f} is such that $H \mathbf{f}(4,8)$ exists. In this situation, \mathbf{f} must be a function from \mathbb{R}^{2} to \mathbb{R}, and $H \mathbf{f}(4,8)$ is an element of $M_{2}(\mathbb{R})$.
e) Suppose \mathbf{f} is such that $D_{\mathbf{u}} \mathbf{f}(-1,-4,0)$ exists. In this situation, \mathbf{f} must be a function from $\sqrt[\mathbb{R}^{3}]{ }$ to \mathbb{R}, u must be an element of \mathbb{R}^{3}, and $D_{\mathbf{u}} \mathbf{f}(-1,-4,0)$ is an element of \mathbb{R}.
2. The formula of Green's Theorem is $\oint_{\partial E} \mathbf{f} \cdot d \mathbf{s}=\iint_{E}\left(N_{x}-M_{y}\right) d A$.
(This is under the assumption that $\mathbf{f}=(M, N)$, that E is compact with a piecewise C^{1} boundary and that ∂E has been oriented so that as you move along $\partial E, E$ is on the left.)
3. To say that a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at x means that there exists some matrix $D \mathbf{f}(x)$ such that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-D \mathbf{f}(\mathbf{x}) \mathbf{h}\|}{\|\mathbf{h}\|}=0 .
$$

4. Along the z-axis, we have

$$
\lim _{(0,0, z) \rightarrow(0,0,0)} \frac{x-y+z}{x+y+z}=\lim _{(0,0, z) \rightarrow(0,0,0)} \frac{0-0+z}{0+0+z}=1
$$

and along the y-axis, we have

$$
\lim _{(0, y, 0) \rightarrow(0,0,0)} \frac{x-y+z}{x+y+z}=\lim _{(0,0, z) \rightarrow(0,0,0)} \frac{0-y+0}{0+y+0}=-1 .
$$

Since limits along different paths, are unequal, the limit does not exist.
5. a) Compute $(\mathbf{v}+2 \mathbf{w}) \cdot \mathbf{w}=(-3,1,4) \cdot(-2,-1,2)=(-3)(-2)+1(-1)+4(2)=$ 13.
b) $\mathbf{v} \times \mathbf{w}=(3(2)-0(-1), 0(-2)-1(2), 1(-1)-3(-2))=(6,-2,5)$.
c) First, $\mathbf{v} \cdot \mathbf{w}=1(-2)+3(-1)+0(2)=-5$. Next, $\|\mathbf{v}\|=\sqrt{1^{2}+3^{2}+0^{2}}=$ $\sqrt{10}$ and $\|\mathbf{w}\|=\sqrt{(-2)^{2}+1^{2}+2^{2}}=3$. So from the angle formula for dot product, we have

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{w} & =\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \\
-5 & =\sqrt{10}(3) \cos \theta \\
\frac{-5}{3 \sqrt{10}} & =\cos \theta \\
\arccos \left(\frac{-5}{3 \sqrt{10}}\right) & =\theta
\end{aligned}
$$

d) This is $\|\mathbf{v}-\mathbf{w}\|=\|(3,4,-2)\|=\sqrt{3^{2}+4^{2}+(-2)^{2}}=\sqrt{9+16+4}=$ $\sqrt{29}$.
6. (6 pts each) Throughout this problem, let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be $f(x, y)=2 x y^{2}+x^{3}-$ $3 y^{4}$.
a) First, the first-order partial derivatives are $f_{x}(x, y)=2 y^{2}+3 x^{2}$ and $f_{y}(x, y)=4 x y-12 y^{3}$. Differentiate again to get

$$
f_{x x}(x, y)=6 x \quad f_{x y}(x, y)=f_{y x}(x, y)=4 y \quad f_{y y}(x, y)=4 x-36 y^{2}
$$

b) This is $f_{y}(1,-2)=4(1)(-2)-12(-2)^{3}=-8+96=88$.
c) This is $-\nabla f(2,1)=-\left(f_{x}(2,1), f_{y}(2,1)\right)=-\left(2 \cdot 1^{2}+3 \cdot 2^{2}, 4 \cdot 2 \cdot 1-12 \cdot 1^{3}\right)=$ $(-14,4)$.
d) First, a unit vector in the direction $(-3,4)$ is $\mathbf{u}=\frac{1}{\|(-3,4)\|}(-3,4)=\left(\frac{-3}{5}, \frac{4}{5}\right)$. The question asks for a directional derivative:

$$
D_{\mathbf{u}} f(-3,4)=\nabla f(2,1) \cdot \mathbf{u}=(14,-4) \cdot\left(\frac{-3}{5}, \frac{4}{5}\right)=\frac{-42}{5}-\frac{16}{5}=\frac{-58}{5}
$$

7. a) This follows from the Sum and Constant Multiple Rules:

$$
\begin{aligned}
D(\mathbf{f}+2 \mathbf{g})(1,5) & =D \mathbf{f}(1,5)+2 D \mathbf{g}(1,5) \\
& =\left(\begin{array}{cc}
1 & -3 \\
3 & 4
\end{array}\right)+2\left(\begin{array}{cc}
0 & 2 \\
-7 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-11 & 8
\end{array}\right) .
\end{aligned}
$$

b) Since we don't know what $\mathbf{g}(1,5)$ is, $D(\mathbf{f} \circ \mathbf{g})(1,5)$ cannot be computed. Not enough information.
c) This can be computed using the Chain Rule:

$$
\begin{aligned}
D(\mathbf{g} \circ \mathbf{f})(1,5) & =D \mathbf{g}(\mathbf{f}(1,5)) D \mathbf{f}(1,5) \\
& =D \mathbf{g}(2,3) D \mathbf{f}(1,5) \\
& =\left(\begin{array}{cc}
-1 & 3 \\
5 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -3 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
8 & 15 \\
5 & -15
\end{array}\right) .
\end{aligned}
$$

8. First, find the critical points by setting the gradient equal to 0 :

$$
\nabla f(x, y)=\left(f_{x}(x, y), f_{y}(x, y)=\left(4 y-4 x^{3}, 4 x-4 y^{3}\right)\right.
$$

Setting each coordinate equal to 0 , we see from the first equation that $y=x^{3}$ and from the second equation that $x=y^{3}$. Substituting the first equation into the second gives $x=\left(x^{3}\right)^{3}$, i.e. $x=x^{9}$, i.e. $x^{9}-x=x\left(x^{8}-1\right)=0$, so $x=0, x=1$ or $x=-1$. From $y=x^{3}$, we get respective y-values 0,1 and -1 . This gives three critical points: $(0,0),(1,1)$ and $(-1,-1)$, which we test by plugging them into the Hessian:

$$
H f(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
-12 x^{2} & 4 \\
4 & -12 y^{2}
\end{array}\right)
$$

Testing the critical points, we get

CP	$H f$	$\operatorname{det} H f$	$\operatorname{tr} H f$	classification
$(0,0)$	$\left(\begin{array}{cc}0 & 4 \\ 4 & 0\end{array}\right)$	-16	$\mathrm{~N} / \mathrm{A}$	saddle
$(1,1)$	$\left(\begin{array}{cc}-12 & 4 \\ 4 & -12\end{array}\right)$	128	-24	local max
$(-1,-1)$	$\left(\begin{array}{cc}-12 & 4 \\ 4 & -12\end{array}\right)$	128	-24	local max

9. We use Lagrange's method. Let $g(x, y, z)=x^{2}+4 y^{2}+2 z^{2}$; we set $\nabla P=\lambda \nabla g$ to get the system of equations

$$
\left\{\begin{array}{l}
4=\lambda 2 x \\
8=\lambda 8 y \\
6=\lambda 4 z
\end{array}\right.
$$

These equations lead to $x=\frac{2}{\lambda}, y=\frac{1}{\lambda}$ and $z=\frac{3}{2 \lambda}$. Plugging into the constraint gives

$$
800=x^{2}+4 y^{2}+2 z^{2}=\left(\frac{2}{\lambda}\right)^{2}+4\left(\frac{1}{\lambda}\right)^{2}+2\left(\frac{3}{2 \lambda}\right)^{2}=\frac{25}{2 \lambda^{2}}
$$

so $\lambda^{2}=\frac{25}{1600}=\frac{1}{64}$ and $\lambda= \pm \frac{1}{8}$. Since x, y and z have to be nonnegative, we can drop $\lambda=-\frac{1}{8}$. $\lambda=\frac{1}{8}$ leads to $x=16, y=8$ and $z=12$. This is the location of the maximum, and the maximum profit is $P(16,8,12)=4(16)+8(8)+6(12)=$ 200.
10.
a) $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)=\left(-6 \sin 2 t, 8 \cos 2 t, \frac{1}{\pi}\right) \cdot \mathbf{v}\left(\frac{\pi}{3}\right)=\left(-3 \sqrt{3},-4, \frac{1}{\pi}\right)$.
b) $\left\|\mathbf{v}\left(\frac{\pi}{3}\right)\right\|=\sqrt{(-3 \sqrt{3})^{2}+(-4)^{2}+\left(\frac{1}{\pi}\right)^{2}}=\sqrt{43+\frac{1}{\pi^{2}}}$.
c) $\mathbf{a}(t)=\mathbf{x}^{\prime \prime}(t)=(-12 \cos 2 t,-16 \sin 2 t, 0)$ so $\mathbf{a}\left(\frac{\pi}{3}\right)=(6,-8 \sqrt{3}, 0)$.
d) The line passes through $\mathbf{x}\left(\frac{\pi}{3}\right)=\left(\frac{-3}{2}, 2 \sqrt{3}, \frac{1}{3}\right)$ and has direction vector $\mathbf{x}^{\prime}\left(\frac{\pi}{3}\right)=\left(-3 \sqrt{3},-4, \frac{1}{\pi}\right)$ (computed in part (a)), so its parametric equations are

$$
\begin{cases}x & =\frac{-3}{2}-3 \sqrt{3} t \\ y & =2 \sqrt{3}-4 t \\ z & =\frac{1}{3}+\frac{1}{\pi} t\end{cases}
$$

11. a) Compute directly with Fubini's Theorem:

$$
\iint_{E} 8 x d A=\int_{0}^{1} \int_{0}^{4} 8 x d y d x=\left.\int_{0}^{1} 8 x y\right|_{0} ^{4} d x=\int_{0}^{1} 32 x d x=\left.16 x^{2}\right|_{0} ^{1}=16 .
$$

b) Change to polar coordinates, since $E=\left\{(r, \theta): 0 \leq \theta \leq \frac{2 \pi}{3}, 0 \leq r \leq 1\right\}$:

$$
\begin{aligned}
\iint_{E} 8 x d A & =\int_{0}^{2 \pi / 3} \int_{0}^{1} 8 r \cos \theta r d r d \theta \\
& =\int_{0}^{2 \pi / 3} \int_{0}^{1} 8 r^{2} \cos \theta d r d \theta \\
& =\left.\int_{0}^{2 \pi / 3} \frac{8}{3} r^{3} \cos \theta\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi / 3} \frac{8}{3} \cos \theta d \theta=\left.\frac{8}{3} \sin \theta\right|_{0} ^{2 \pi / 3}=\frac{4}{3} \sqrt{3} .
\end{aligned}
$$

c) $(10 \mathrm{pts})$ Sketch a picture of E :

Either from the picture, or by doing some algebra (setting $y^{2}=y+2$ and solving for y), we find that the upper-right corner of E is $(4,2)$. So you can compute the integral directly with Fubini's Theorem:

$$
\begin{aligned}
\iint_{E} 8 x d A & =\int_{0}^{2} \int_{y^{2}}^{y+2} 8 x d x d y \\
& =\left.\int_{0}^{2} 4 x^{2}\right|_{y^{2}} ^{y+2} d y \\
& =\int_{0}^{2}\left[4(y+2)^{2}-4 y^{4}\right] d y \\
& =\left[\frac{4}{3}(y+2)^{3}-\frac{4}{5} y^{5}\right]_{0}^{2}=\left[\frac{4}{3} 4^{3}-\frac{4}{5}(32)\right]-\frac{4}{3}\left(2^{3}\right)=\frac{736}{15}
\end{aligned}
$$

12. The volume is given by $\iint_{E} \frac{y^{2}(x+2 y)^{2}}{x^{5}} d A$. To compute this integral, use the change of variable $u=y / x$ and $v=x+2 y$ so that if $\varphi(x, y)=(u, v)$, then $\varphi(E)=\{(u, v): 1 \leq u \leq 3,0 \leq v \leq 12\}$. Then the Jacobian of φ is

$$
J(\varphi)=\operatorname{det} D \varphi=\operatorname{det}\left(\begin{array}{cc}
\frac{-y}{x^{2}} & \frac{1}{x} \\
1 & 2
\end{array}\right)=\frac{-2 y}{x^{2}}-\frac{1}{x}=\frac{-(2 y+x)}{x^{2}}=\frac{-v}{x^{2}}
$$

Back-solving for x and y in terms of u and v, we get $u=y / x$ so $y=x u$. Plugging in the equation for v gives $v=x+2 x u=x(1+2 u)$, so $x=\frac{v}{1+2 u}$ and finally, $y=x u=\frac{u v}{1+2 u}$. Now the integral can be computed:

$$
\begin{aligned}
\iint_{E} \frac{y^{2}(x+2 y)^{2}}{x^{5}} d A & =\iint_{\varphi(E)} \frac{y^{2}(x+2 y)^{2}}{x^{5}} \frac{1}{|J(\varphi)|} d A \\
& =\int_{0}^{12} \int_{1}^{3} \frac{\left(\frac{u v}{1+2 u}\right)^{2} v^{2}}{\left(\frac{v}{1+2 u}\right)^{5}} \cdot \frac{\left(\frac{v}{1+2 u}\right)^{2}}{v} d u d v \\
& =\int_{0}^{12} \int_{1}^{3}(1+2 u) u^{2} d u d v \\
& =\int_{0}^{12} \int_{1}^{3}\left(u^{2}+2 u^{3}\right) d u d v \\
& =\int_{0}^{12}\left[\frac{1}{3} u^{3}+\frac{1}{2} u^{4}\right]_{1}^{3} d v \\
& =\int_{0}^{12}\left(\left[9+\frac{81}{2}\right]-\left[\frac{1}{3}+\frac{1}{2}\right]\right) d v \\
& =\int_{0}^{12} \frac{146}{3} d v=\frac{146}{3}(12)=584 .
\end{aligned}
$$

13. This solid, in spherical coordinates, is $0 \leq \theta \leq 2 \pi, 0 \leq \rho \leq 4$ and $0 \leq \varphi \leq \frac{\pi}{4}$.

So the volume is

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{4} \int_{0}^{\pi / 4} \rho^{2} \sin \varphi d \varphi d \rho d \theta & =\int_{0}^{2 \pi} \int_{0}^{4}-\left.\rho^{2} \cos \varphi\right|_{0} ^{\pi / 4} d \rho d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{4} \rho^{2}\left(1-\frac{\sqrt{2}}{2}\right) d \rho d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{1}{3} \rho^{3}\left(1-\frac{\sqrt{2}}{2}\right)\right|_{0} ^{4} d \theta \\
& =\int_{0}^{2 \pi} \frac{64}{3}\left(1-\frac{\sqrt{2}}{2}\right) d \theta \\
& =2 \pi \cdot \frac{64}{3}\left(1-\frac{\sqrt{2}}{2}\right)=\frac{128 \pi}{3}\left(1-\frac{\sqrt{2}}{2}\right) .
\end{aligned}
$$

14. Since γ is a line segment, γ is parametrized by

$$
\mathbf{x}(t)=(2,-1,3)+t((4,0,1)-(2,-1,3))=(2+2 t,-1+t, 3-2 t)
$$

for $0 \leq t \leq 1$ and $\mathbf{x}^{\prime}(t)=(2,1,-2)$ so $d \mathbf{s}=(2,1,-2) d t$. Thus, the line integral is

$$
\begin{aligned}
\int_{\gamma} \mathbf{f} \cdot d \mathbf{s} & =\int_{0}^{1}(3 z, x+y, 2 x+z) \cdot(2,-1,2) d t \\
& =\int_{0}^{1}(3(3-2 t),(2+2 t)+(-1+t), 2(2+2 t)+3-2 t) \cdot(2,1,-2) d t \\
& =\int_{0}^{1}(9-6 t, 1+3 t, 7+2 t) \cdot(2,1,-2) d t \\
& =\int_{0}^{1}(18-12 t+1+3 t-14-4 t) d t \\
& =\int_{0}^{1}(5-13 t) d t=\left[5 t+\frac{13}{2} t^{2}\right]_{0}^{1}=5-\frac{13}{2}=\frac{-3}{2} .
\end{aligned}
$$

15. Start by finding the intersection points of the curves. In polar coordinates, the circle is $r=1$, so the curves intersect when $1=2 \sin 2 \theta$, i.e. $\frac{1}{2}=\sin 2 \theta$, i.e. $2 \theta \in\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$, i.e. $\theta=\frac{\pi}{12}$ and $\theta=\frac{5 \pi}{12}$. So F, in polar coordinates, is

$$
F=\left\{(r, \theta): \frac{\pi}{12} \leq \theta \leq \frac{5 \pi}{12}, 1 \leq r \leq 2 \sin 2 \theta\right\}
$$

Therefore the area of F is

$$
\begin{aligned}
\iint_{F} 1 d A & =\int_{\pi / 12}^{5 \pi / 12} \int_{1}^{2 \sin 2 \theta} r d r d \theta \\
& =\left.\int_{\pi / 12}^{5 \pi / 12} \frac{1}{2} r^{2}\right|_{1} ^{2 \sin 2 \theta} d \theta \\
& =\int_{\pi / 12}^{5 \pi / 12}\left[2 \sin ^{2}(2 \theta)-\frac{1}{2}\right] d \theta \\
& =\int_{\pi / 12}^{5 \pi / 12}\left[2\left(\frac{1-\cos 2(2 \theta)}{2}\right)-\frac{1}{2}\right] d \theta \\
& =\int_{\pi / 12}^{5 \pi / 12}\left[\frac{1}{2}-\cos 4 \theta\right] d \theta \\
& =\left[\frac{\theta}{2}-\frac{1}{4} \sin 4 \theta\right]_{\pi / 12}^{5 \pi / 12} \\
& =\left[\frac{5 \pi}{24}-\frac{1}{4} \sin \left(\frac{5 \pi}{3}\right)\right]-\left[\frac{\pi}{24}-\frac{1}{4} \sin \left(\frac{\pi}{3}\right)\right] \\
& =\frac{\pi}{6}+\frac{\sqrt{3}}{4} .
\end{aligned}
$$

1.4 Fall 2020 Final Exam

1. Throughout this problem, suppose $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{3}, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\mathrm{h}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are C^{∞} functions. Assume \mathbf{u} is a unit vector in \mathbb{R}^{3}.
In each part of this problem, you are given an expression. Determine if that expression is a scalar, a vector in \mathbb{R}^{3}, a matrix (in which case you should give its size), or nonsense.
a) (3.1) $\mathbf{f}(1)$
f) (4.1) $\mathrm{Dh}(1,2,3)$
k) $(7.5) J(\mathbf{f})$
b) $(4.2) g_{x}(1,2,3)$
g) (4.5) $\nabla \mathbf{f}(1)$
1) $(7.5) J(\mathbf{h})$
c) $(4.2) \mathbf{h}_{x}(1,2,3)$
h) $(4.5) \nabla g(1,2,3)$
d) (4.1) $\mathrm{Df}(1)$
i) $(6.1) \mathrm{Hf}(1)$
m) (4.5) $D_{\mathbf{u}} \mathbf{f}(1)$
e) (4.1) $D \mathbf{f}(1,2,3)$
j) $(6.1) H g(1,2,3)$
n) $(4.5) D_{\mathbf{u}} g(1,2,3)$
2. Let $\mathbf{v}=(1,3,-7)$ and $\mathbf{w}=(2,5,2)$.
a) (2.7) Write parametric equations for the line that passes through the point $(0,-6,11)$ and has direction vector \mathbf{v}.
b) (2.3) Compute the dot product of v and w.
c) (2.3) Based on your answer to the previous question, is the angle between \mathbf{v} and w acute, right, or obtuse? Explain your reasoning.
d) (2.6) Find a nonzero vector in \mathbb{R}^{3} which is orthogonal to both v and w .
e) (2.7) Write the normal equation of the plane that contains the point $(-8,-2,3)$ and contains lines whose direction vectors are v and w .
3. Let $A=\left(\begin{array}{ll}3 & 2 \\ 2 & 5\end{array}\right)$ and let $B=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$.
a) (2.5) Compute $\operatorname{det} A$.
b) (2.4) Compute $B^{T} A$.
c) (6.1) Is A positive definite, negative definite, or neither? Explain.
4. Compute each limit (or explain why the limit does not exist):
a) (3.5) $\lim _{\mathrm{x} \rightarrow 0} \frac{x+y}{x}$
b) $(3.5) \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x}$
5. Throughout this problem, let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be $f(x, y, z)=x^{2} y-2 x z^{3}+4 y^{3} z^{2}$.
a) (4.2) Compute all first-order partial derivatives of f.
b) (4.2) Compute $f_{y y z}$.
c) (4.5) Find the direction in which the value of f is increasing most rapidly, at the point $(3,1,1)$.
d) (4.5) Write the normal equation of the plane tangent to the level surface $f(x, y, z)=19$ at the point $(3,1,1)$.
e) (4.5) Use your answer to part (d) to estimate the value of y so that $f(3.1, y, .8)=19$.
f) (4.4) If $\mathrm{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a differentiable function such that $\mathrm{g}(-2,7)=$ $(3,1,1)$ and $D \mathbf{g}(-2,7)=\left(\begin{array}{cc}3 & -2 \\ 1 & 0 \\ 3 & -1\end{array}\right)$, compute $D(f \circ \mathbf{g})(-2,7)$.
6. (6.3) Find the absolute maximum and absolute minimum values of $f(x, y)=$ $x^{2}-2 x-y^{2}$ over the region of points (x, y) satisfying $x^{2}+4 y^{2} \leq 4$.
7. Suppose an object is moving in \mathbb{R}^{3} so that its velocity at time t is given by

$$
\mathbf{v}(t)=\left(\frac{t^{2}}{2}-3, t-t^{2}, 2 t+1\right)
$$

a) (5.1) Compute the displacement of the object from time 0 to time 1 .
b) (5.1) Compute the acceleration of the object at time 2 .
c) (5.2) Compute the tangential component of the object's acceleration at time 2.
d) (5.4) Compute the normal component of the object's acceleration at time 2.
8. In each part of this problem, you are given a set $E \subseteq \mathbb{R}^{2}$. For each given E, compute

$$
\iint_{E} 10 x^{2} y d A
$$

a) (7.3) $E=[0,3] \times[0,2]$
b) (7.3) $E=\{(x, y): 0 \leq x \leq y \leq 2\}$
9. (7.5) Compute

$$
\iint_{E} 12(y-x)^{2} d A
$$

where E is the parallelogram with vertices $(1,0),(0,2),(6,5)$ and $(5,7)$.
10. (7.6) Compute the area of the region of points lying inside the circle $(x-1)^{2}+$ $y^{2}=1$ but outside the circle $x^{2}+y^{2}=1$. This region is shaded in the picture below:

11. Let $S \subseteq \mathbb{R}^{3}$ be the solid consisting of points (x, y, z) lying above the set $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$ and below the function $z=x^{2}+y^{2}$.
a) (7.6) Compute the volume of S.
b) (7.5) Compute $\iiint_{S} z^{2} d V$.

Solutions

1. a) $\mathbf{f}(1)$ is a vector in \mathbb{R}^{3}.
b) $g_{x}(1,2,3)$ is a scalar.
c) $\mathbf{h}_{x}(1,2,3)$ is nonsense, since the range of \mathbf{h} isn't \mathbb{R}.
d) $D \mathbf{f}(1)$ is a 3×1 matrix, which is really a vector in \mathbb{R}^{3}.
e) $D \mathbf{f}(1,2,3)$ is nonsense, since the inputs of \mathbf{f} belong to \mathbb{R}, not \mathbb{R}^{3}.
f) $D \mathbf{h}(1,2,3)$ is a 3×3 matrix.
g) $\nabla \mathbf{f}(1)$ is nonsense, since the outputs of \mathbf{f} do not belong to \mathbb{R}.
h) $\nabla g(1,2,3)$ is a vector in \mathbb{R}^{3}.
i) $H \mathbf{f}(1)$ is nonsense, since the outputs of \mathbf{f} do not belong to \mathbb{R}.
j) $\operatorname{Hg}(1,2,3)$ is a 3×3 matrix.
k) $J(\mathbf{f})$ is nonsense, since the domain and range of \mathbf{f} aren't the same vector space.
1) $J(\mathbf{h})$ is a 3×3 matrix.
m) $D_{\mathbf{u}} \mathbf{f}(1)$ is nonsense, since the outputs of \mathbf{f} do not belong to \mathbb{R}.
n) $D_{\mathbf{u}} g(1,2,3)$ is a scalar.
2. a) Let $\mathbf{p}=(0,-6,11)$; the parametric equations of the line are

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v} \Leftrightarrow\left\{\begin{array}{l}
x=0+1 t \\
y=-6+3 t \\
z=11-7 t
\end{array}\right. \text {. }
$$

b) $\mathbf{v} \cdot \mathbf{w}=1(2)+3(5)-7(2)=2+15-14=3$.
c) Since $\mathbf{v} \cdot \mathbf{w}>0$, the angle between \mathbf{v} and \mathbf{w} is acute.
d) $\mathbf{v} \times \mathbf{w}=(3(2)-(-7) 5,-7(2)-1(2), 1(5)-3(2))=(41,-16,-1)$.
e) A normal vector to the plane is $\mathbf{n}=(41,-16,-1)$; since the plane contains $\mathbf{p}=(-8,-2,3)$, the normal equation of the plane is

$$
\begin{array}{r}
\mathbf{n} \cdot(\mathbf{x}-\mathbf{p})=0 \\
(41,-16,-1) \cdot(x+8, y+2, z-3)=0 \\
41(x+8)-16(y+2)-(z-3)=0 \\
41 x-16 y-z=-299 .
\end{array}
$$

3. a) $\operatorname{det} A=3(5)-2(2)=11$.
b) $B^{T} A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}3 & 2 \\ 2 & 5\end{array}\right)=\left(\begin{array}{cc}7 & 12 \\ 17 & 26\end{array}\right)$.
c) From (a), $\operatorname{det} A=11$. Note $\operatorname{tr}(A)=1+4=5$. Since A is a symmetric 2×2 matrix with positive trace and positive determinant, A is positive definite.
4. a) Along the x-axis, we have $\lim _{(x, 0) \rightarrow(0,0)} \frac{x+y}{x}=\lim _{x \rightarrow 0} \frac{x+0}{x}=1$. But along the line $y=x$, we have $\lim _{(x, x) \rightarrow(0,0)} \frac{x+y}{x}=\lim _{x \rightarrow 0} \frac{x+x}{x}=2$. Since we have two different limits along two different paths approaching $0, \lim _{\mathbf{x} \rightarrow 0} \frac{x+y}{x}$ DNE.
b) Change to polar coordinates:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x}=\lim _{r \rightarrow 0} \frac{r^{2}}{r \cos \theta}=\lim _{r \rightarrow 0} r \sec \theta=0 .
$$

5. a) $f_{x}(x, y, z)=2 x y-2 z^{3} ; f_{y}(x, y, z)=\boxed{x^{2}+12 y^{2} z^{2}} ; f_{z}(x, y, z)=-6 x z^{2}+8 y^{3} z$.
b) $f_{y}(x, y, z)=x^{2}+12 y^{2} z^{2}$ from (a). Differentiate again to get $f_{y y}(x, y, z)=$ $24 y z^{2}$ and one more time to get $f_{y y z}(x, y, z)=48 y z$.
c) The direction in which the value of f is increasing most rapidly at the point $(3,1,1)$ is $\nabla f(3,1,1)=\left(f_{x}(3,1,1), f_{y}(3,1,1), f_{z}(3,1,1)\right)=(6-2,9+$ $12,-18+8)=(4,21,-10)$.
d) The normal vector to this tangent plane is $\nabla f(3,1,1)$, which was computed in (c) as $(4,21,-10)$. So the normal equation of the plane is

$$
\begin{array}{r}
\nabla f(3,1,1) \cdot(\mathrm{x}-(3,1,1))=0 \\
(4,21,-10) \cdot(x-3, y-1, z-1)=0 \\
4(x-3)+21(y-1)-10(z-1)=0 \\
4 x+21 y-10 z=23 .
\end{array}
$$

e) Plug in $x=3.1$ and $z=.8$ to the answer to (d) to get

$$
\begin{array}{r}
4(3.1)+21 y-10(.8)=23 \\
12.4+21 y-8=23 \\
21 y=18.6 \\
y=\frac{18.6}{21}=\frac{31}{35} .
\end{array}
$$

f) First, $D f(3,1,1)=[\nabla f(3,1,1)]^{T}=\left(\begin{array}{ccc}4 & 21 & -10\end{array}\right)$. Then, by applying the Chain Rule, we get

$$
\begin{aligned}
D(f \circ \mathbf{g})(-2,7) & =D f(\mathbf{g}(-2,7)) D \mathbf{g}(-2,7) \\
& =D f(3,1,1)\left(\begin{array}{cc}
3 & -2 \\
1 & 0 \\
3 & -1
\end{array}\right) \\
& =\left(\begin{array}{lll}
4 & 21 & -10
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
1 & 0 \\
3 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 2
\end{array}\right) .
\end{aligned}
$$

6. Start by finding the critical points of f in the desired region:

$$
\nabla f(x, y)=(2 x-2,-2 y)=(0,0) \Rightarrow(x, y)=(1,0) \mathrm{CP}
$$

Next, optimize f along the boundary $x^{2}+4 y^{2}=4$ by setting $g(x, y)=x^{2}+4 y^{2}$ and using Lagrange's method:

$$
\nabla f=\lambda \nabla g \Rightarrow\left\{\begin{aligned}
2 x-2 & =\lambda(2 x) \\
-2 y & =\lambda(8 y) \Rightarrow y=0 \text { or } \lambda=-\frac{1}{4}
\end{aligned}\right.
$$

If $y=0$, then from the constraint $x^{2}+4 y^{2}=4$ we have $x^{2}=4$, i.e. $x=$ ± 2, leading to the two critical points $(2,0)$ and $(-2,0)$. On the other hand, if $\lambda=-\frac{1}{4}$, then from the first equation we get $2 x-2=\frac{-1}{2} x$, leading to $x=\frac{4}{5}$. Plugging this into the constraint gives $\left(\frac{4}{5}\right)^{2}+4 y^{2}=4$, i.e. $y= \pm \frac{\sqrt{21}}{5}$, generating the boundary critical points $\left(\frac{4}{5}, \frac{\sqrt{21}}{5}\right)$ and $\left(\frac{4}{5},-\frac{\sqrt{21}}{5}\right)$. Test all these points in the utility f :

	Point	Value of f
CP	$(1,0)$	$1^{2}-2(1)-0=-1$
BCP	$(2,0)$	$2^{2}-2(2)-0=0$
BCP	$(-2,0)$	$(-2)^{2}-2(-2)-0=8$
BCP	$\left(\frac{4}{5}, \frac{\sqrt{21}}{5}\right)$	$\left(\frac{4}{5}\right)^{2}-2\left(\frac{4}{5}\right)-\left(\frac{\sqrt{21}}{5}\right)^{2}=\frac{16}{25}-\frac{8}{5}-\frac{21}{25}=\frac{-9}{5}$
BCP	$\left(\frac{4}{5},-\frac{\sqrt{21}}{5}\right)$	$\left(\frac{4}{5}\right)^{2}-2\left(\frac{4}{5}\right)-\left(-\frac{\sqrt{21}}{5}\right)^{2}=\frac{16}{25}-\frac{8}{5}-\frac{21}{25}=\frac{-9}{5}$

So the absolute maximum value is 8 and the absolute minimum value is $-\frac{9}{5}$.
7. a) The displacement is

$$
\begin{aligned}
\int_{0}^{1} \mathbf{v}(t) d t & =\int_{0}^{1}\left(\frac{t^{2}}{2}-3, t-t^{2}, 2 t+1\right) d t \\
& =\left.\left(\frac{1}{6} t^{3}-3 t, \frac{1}{2} t^{2}-\frac{1}{3} t^{3}, t^{2}+t\right)\right|_{0} ^{1} \\
& =\left(\frac{1}{6}-3, \frac{1}{2}-\frac{1}{3}, 1+1\right) \\
& =\left(-\frac{17}{6}, \frac{1}{6}, 2\right)
\end{aligned}
$$

b) $\mathbf{a}(2)=\mathbf{v}^{\prime}(2)=\left.(t, 1-2 t, 2)\right|_{t=2}=(2,-3,2)$.
c) At time 2, the velocity is $\mathbf{v}(2)=(-1,-2,5)$ and the acceleration is $\mathbf{a}(2)=$ $(2,-3,2)$. Thus

$$
a_{T}(2)=\frac{\mathbf{v}(2) \cdot \mathbf{a}(2)}{\|\mathbf{v}(2)\|}=\frac{(-1,-2,5) \cdot(2,-3,2)}{\|(-1,-2,5)\|}=\frac{-2+6+10}{\sqrt{1+4+25}}=\frac{14}{\sqrt{30}}
$$

d) By the Pythagorean Theorem for acceleration,

$$
\begin{aligned}
{\left[a_{T}(2)\right]^{2}+\left[a_{N}(2)\right]^{2} } & =\|\mathbf{a}(2)\|^{2} \\
\left(\frac{14}{\sqrt{30}}\right)^{2}+\left[a_{N}(2)\right]^{2} & =\|(2,-3,2)\|^{2} \\
\frac{196}{30}+\left[a_{N}(2)\right]^{2} & =17 \\
\frac{98}{15}+\left[a_{N}(2)\right]^{2} & =17 \\
a_{N}(2) & =\sqrt{17-\frac{98}{15}}=\sqrt{\frac{157}{15}} .
\end{aligned}
$$

8. a) For $E=[0,3] \times[0,2]$, we have

$$
\iint_{E} 10 x^{2} y d A=\int_{0}^{3} \int_{0}^{2} 10 x^{2} y d y d x=\int_{0}^{3}\left[5 x^{2} y^{2}\right]_{0}^{2} d x=\int_{0}^{3} 20 x^{2} d x=\left.\frac{20}{3} x^{3}\right|_{0} ^{3}=180 .
$$

b) For $E=\{(x, y): 0 \leq x \leq y \leq 2\}$, we have

$$
\iint_{E} 10 x^{2} y d A=\int_{0}^{2} \int_{0}^{y} 10 x^{2} y d x d y=\int_{0}^{2}\left[\frac{10}{3} x^{3} y\right]_{0}^{y} d y=\int_{0}^{2} \frac{10}{3} y^{4} d y=\left.\frac{2}{3} y^{5}\right|_{0} ^{2}=\frac{64}{3} .
$$

9. The parallelogram E is bounded by the lines $y+2 x=2, y+2 x=17, x-y=1$ and $x-y=-2$. So we set $u=y+2 x$ and $v=x-y$ and let $(u, v)=\varphi(x, y)$. Thus $\varphi(E)=\{(u, v): 2 \leq u \leq 17,-2 \leq v \leq 1$ and

$$
J(\varphi)=\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)=-3
$$

so since $y-x=-(x-y)-v$, we have

$$
\begin{aligned}
\iint_{E} 12(y-x)^{2} d A & =\iint_{\varphi(E)} 12(-v)^{2} \frac{1}{|J(\varphi)|} d A \\
& =\int_{2}^{17} \int_{-2}^{1} \frac{12 v^{2}}{|-3|} d v d u \\
& =\int_{2}^{17} \int_{-2}^{1} 4 v^{2} d v d u \\
& =\int_{2}^{17}\left[\frac{4}{3} v^{3}\right]_{-2}^{1} d u \\
& =\int_{2}^{17} 12 d u=12(17-2)=12(15)=180 .
\end{aligned}
$$

10. In polar coordinates, the equation of the left-hand circle is $r=1$ and the equation of the right-hand circle is $r=2 \cos \theta$. These circles intersect when $1=2 \cos \theta$, i.e. $\theta= \pm \frac{\pi}{3}$. So the shaded region, in polar coordinates, is

$$
E=\left\{(r, \theta): 0 \leq \theta \leq \frac{\pi}{3}, 1 \leq r \leq 2 \cos \theta\right\} .
$$

So the area of E is

$$
\begin{aligned}
\iint_{E} 1 d A & =\int_{-\pi / 3}^{\pi / 3} \int_{1}^{2 \cos \theta} r d r d \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left[\frac{r^{2}}{2}\right]_{1}^{2 \cos \theta} d \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left[2 \cos ^{2} \theta-\frac{1}{2}\right] d \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left[(1-\cos 2 \theta)-\frac{1}{2}\right] d \theta \\
& =\int_{-\pi / 3}^{\pi / 3}\left[\cos 2 \theta+\frac{1}{2}\right] d \theta \\
& =\left[\frac{1}{2} \sin 2 \theta+\frac{1}{2} \theta\right]_{-\pi / 3}^{\pi / 3} \\
& =\left[\frac{1}{2} \sin \left(\frac{2 \pi}{3}\right)+\frac{\pi}{6}\right]-\left[\frac{1}{2} \sin \left(\frac{-2 \pi}{3}\right)-\frac{\pi}{6}\right]=\frac{\sqrt{3}}{2}+\frac{\pi}{3}
\end{aligned}
$$

11. a) In cylindrical coordinates, S is the set of points (r, θ, z) satisfying $0 \leq$ $r \leq 2,0 \leq \theta \leq 2 \pi$, and $0 \leq z \leq x^{2}+y^{2}=r^{2}$. Therefore

$$
\iiint_{S} 1 d V=\int_{0}^{2} \int_{0}^{2 \pi} \int_{0}^{r^{2}} r d z d \theta d r=\int_{0}^{2} \int_{0}^{2 \pi} r^{3} d \theta d r=\int_{0}^{2} 2 \pi r^{3} d r=\left.\frac{1}{2} \pi r^{4}\right|_{0} ^{2}=8 \pi .
$$

b) Using the same setup as part (a),

$$
\begin{aligned}
\iiint_{S} z^{2} d V=\int_{0}^{2} \int_{0}^{2 \pi} \int_{0}^{r^{2}} z^{2} r d z d \theta d r=\int_{0}^{2} \int_{0}^{2 \pi} \frac{1}{3} r^{7} d \theta d r & =\int_{0}^{2} \frac{2}{3} \pi r^{7} d r \\
& =\left.\frac{1}{12} \pi r^{8}\right|_{0} ^{2}=\frac{64}{3} \pi
\end{aligned}
$$

1.5 Spring 2018 Final Exam

1. (2.3) Throughout this problem, let $\mathbf{v}=(3,8)$ and $\mathbf{w}=(-5,2)$.
a) Find the norm of $v-w$.
b) Find the projection of w onto v.
c) Find the cosine of the angle θ between v and w.
2. (2.7) In this problem, consider the two lines l_{1} and l_{2}, where l_{1} has symmetric equations

$$
\frac{x-11}{-3}=\frac{y-2}{-1}=\frac{z+11}{5}
$$

and l_{2} is parameterized by $\mathbf{x}(t)=(4+t,-5-2 t,-2 t)$.
a) Show that lines l_{1} and l_{2} intersect in a point (by computing that point of intersection).
b) Find the normal equation of the plane containing lines l_{1} and l_{2}.
3. (3.5) Compute the following limits (or explain why they do not exist):
a) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{y-x}{y+x}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}-x^{2}}{y+x}$
c) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2} y}{x^{2}+y^{2}+z^{2}}$
4. a) Compute the total derivative of $\mathbf{f}(x, y)=\left(x e^{x y}, y e^{2 x-y}\right)$.
b) Find all second-order partial derivatives of $f(x, y)=20 x^{2}-10 x^{2} y^{2}+30 y^{4}$.
5. a) (4.2) Compute the directional derivative of $f(x, y, z)=x^{2} z-3 y z^{2}$ in the direction $(1,2,-2)$ at the point $(3,0,5)$.
b) (4.2) Compute div \mathbf{f} where $\mathbf{f}(x, y)=(\sin (2 x-y), \cos (2 x+y))$.
6. Let $\mathbf{x}(t)=\left(2 t^{2}+3, t, \frac{4}{3} \sqrt{2} t^{3 / 2}+1\right)$ represent the position of an object at time t.
a) (5.2) Find the tangential and normal components of the object's acceleration at time $t=2$.
b) (5.2) At time $t=2$, is the object speeding up or slowing down? Justify your answer.
7. (6.2 or 6.3) Find the absolute maximum value of the function $f(x, y)=x^{2} y^{4}$ on the region $\left\{(x, y): x^{2}+y^{2} \leq 36\right\}$.
8. Consider the surface $z=6 \sin x \cos y+8$.
a) (4.3) Find the equation of the plane which is tangent to this surface at $(\pi, 0,5)$.
b) (7.3) Find the volume of the solid consisting of points in \mathbb{R}^{3} lying above the rectangle $\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{3}\right]$ in the $x y$-plane, but below this surface.
9. (7.5) Compute the double integral

$$
\iint_{E}\left(x y-x^{2}\right) d A
$$

where E is the parallelogram with vertices $(2,0),(6,4),(4,8)$ and $(0,4)$.
10. Let E be a circle of radius R.
a) (7.5) Show that E has area πR^{2}, by computing a double integral with polar coordinates.
b) (8.5) Show that E has area πR^{2}, by computing an appropriate line integral and using Green's Theorem.
11. a) (8.4) Compute

$$
\int_{\gamma}(x y+y z) d s
$$

where γ is the line segment from $(0,1,2)$ to $(5,3,3)$.
b) (8.4) Compute

$$
\int_{\gamma} \mathbf{f} \cdot d \mathbf{s}
$$

where $\mathbf{f}(x, y, z)=\left(2 x y^{2} z, 2 x^{2} y z, x^{2} y^{2}\right)$ and γ is parameterized by

$$
\mathbf{x}(t)=\left(t e^{\sin \pi t}, t^{4} \sqrt{\tan \pi t+1}, t^{2018}\right)
$$

for $0 \leq t \leq 1$.
12. (7.6) Choose one of (a) or (b):
a) Compute

$$
\iiint_{E} y d V
$$

where E is the set of points (x, y, z) in the first octant lying below the plane $2 x+4 y+z=12$.
b) Compute the volume of the set of points (x, y, z) inside the cylinder $x^{2}+y^{2}=1$ lying above the $x y$-plane but below the sphere of radius 2 centered at the origin.

Solutions

1. a) $\|\mathbf{v}-\mathbf{w}\|=\|(3,8)-(-5,2)\|=\|(8,6)\|=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10$.
b) $\pi_{\mathbf{v}}(\mathbf{w})=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{1}{73}(3,8)=\left(\frac{3}{73}, \frac{8}{73}\right)$.
c) $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{1}{\sqrt{3^{2}+8^{2}} \sqrt{(-5)^{2}+2^{2}}}=\frac{1}{\sqrt{73 \sqrt{29}}}$.
2. a) l_{1} passes through $(11,2,-11)$ and has direction vector $(-3,-1,5)$ so we can write the parametric equations of l_{1} as $\mathbf{y}(s)=(-3 s+11,-s+2,5 s-$ 11). Now we set the coordinates of $\mathbf{x}(t)$ equal to the coordinates of $\mathbf{y}(s)$:

$$
\left\{\begin{aligned}
-3 s+11 & =4+t \\
-s+2 & =-5-2 t \\
5 s-11 & =-2 t
\end{aligned}\right.
$$

Subtracting the third equation from the first gives $-6 s+13=-5$, i.e. $s=$ 3 ; therefore $t=-2$. These values of s and t work in all three equations and produce the intersection point $\mathbf{x}(-2)=\mathbf{y}(3)=(2,-1,4)$.
b) To get the normal vector to the plane, take the cross product of the direction vectors of the two lines:

$$
\mathbf{n}=(-3,-1,5) \times(1,-2,-2)=(12,-1,7)
$$

Then the equation of the plane is

$$
\begin{aligned}
\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right) & =0 \\
\Rightarrow(12,-1,7) \cdot((x, y, z)-(11,2,-11)) & =0 \\
\Rightarrow(12,-1,7) \cdot(x-11, y-2, z+11) & =0 \\
\Rightarrow 12(x-11)-(y-2)+7(z+11) & =0 \\
\Rightarrow 12 x-y+7 z & =53
\end{aligned}
$$

3. a) $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \frac{y-x}{y+x}$ DNE (along the x-axis, the limit is $\lim _{(x, 0) \rightarrow(0,0)} \frac{0-x}{0+x}=-1$, but along the y-axis, the limit is $\lim _{(0, y) \rightarrow(0,0)} \frac{y-0}{y+0}=1$.)
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}-x^{2}}{y+x}=\lim _{(x, y) \rightarrow(0,0)} \frac{(y-x)(y+x)}{y+x}=\lim _{(x, y) \rightarrow(0,0)} y-x=0$.
c) Change to polar coordinates to get

$$
\lim _{\rho \rightarrow 0} \frac{\left(\rho^{2} \sin ^{2} \varphi \cos ^{2} \theta\right)(\rho \sin \varphi \sin \theta)}{\rho^{2}}=\lim _{\rho \rightarrow 0} \rho\left(\sin ^{3} \varphi \cos ^{2} \theta \sin \theta\right)=0
$$

no matter what φ and θ are.
4. a) This is a direct computation:

$$
D \mathbf{f}(x, y)=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
e^{x y}+x y e^{x y} & x^{2} e^{x y} \\
2 y e^{2 x-y} & e^{2 x-y}-y e^{2 x-y}
\end{array}\right)
$$

b) First, $f_{x}(x, y)=40 x-20 x y^{2}$ and $f_{y}(x, y)=-20 x^{2} y+120 y^{3}$. That means

$$
\begin{aligned}
& f_{x x}(x, y)=40-20 y^{2} \\
& f_{y y}(x, y)=-20 x^{2}+360 y^{2} \\
& f_{x y}(x, y)=f_{y x}(x, y)=-40 x y
\end{aligned}
$$

5. a) First, find a unit vector in the direction $(1,2,-2)$:

$$
\mathbf{u}=\frac{(1,2,-2)}{\|(1,2,-2)\|}=\frac{(1,2,-2)}{\sqrt{1+4+4}}=\left(\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}\right) .
$$

Next, the gradient of f is $\nabla f=\left(2 x z,-3 z^{2}, x^{2}-6 y z\right)$ so $\nabla f(3,0,5)=$ $\left(2(3) 5,-3\left(5^{2}\right), 3^{2}-6(0) 5^{2}\right)=(30,-75,9)$. Therefore the directional derivative is

$$
D_{\mathbf{u}} f(3,0,5)=\nabla f(3,0,5) \cdot \mathbf{u}=(30,-75,9) \cdot\left(\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}\right)=10-50-6=-46 .
$$

b) $\operatorname{div} \mathbf{f}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}=2 \cos (2 x-y)-\sin (2 x+y)$.
6. a) At time $t \geq 0$, the velocity is $\mathbf{x}^{\prime}(t)=(4 t, 1, \sqrt{8 t})$, and the speed is

$$
s(t)=\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{(4 t)^{2}+1+8 t}=\sqrt{16 t^{2}+8 t+1}=\sqrt{(4 t+1)^{2}}=4 t+1
$$

Therefore $a_{T}=\left.\frac{d s}{d t}\right|_{t=2}=4$.
Now for the normal component. At time t,

$$
\mathbf{a}(t)=\mathbf{x}^{\prime \prime}(t)=\left(4,0, \sqrt{\frac{2}{t}}\right)
$$

so at time $t=2$, the acceleration is $\mathbf{a}(2)=(4,0,1)$. The normal component of the acceleration is

$$
a_{N}=\sqrt{\|\mathbf{a}(2)\|^{2}-a_{T}^{2}}=\sqrt{17-16}=1 .
$$

b) The object is speeding up when $t=2 . a_{T}=\frac{d s}{d t}$, the rate of change of the speed with respect to time. Since $a_{T}=4>0$, the speed is increasing.
7. First, find the critical points of f : the gradient is $\nabla f=\left(2 x y^{4}, 4 x^{2} y^{3}\right)$; setting this equal to 0 we get $x=0$ and / or $y=0$, in which case $f(x, y)=0$.
Second, we have to study the behavior of f along the boundary of the constraint $x^{2}+y^{2}=36$: let $g(x, y)=x^{2}+y^{2}$ and use Lagrange multipliers to maximize f subject to $g(x, y)=16: \nabla f=(2 x, 2 y)$ so we have

$$
\nabla f=\lambda \nabla g \Rightarrow\left\{\begin{array}{l}
2 x y^{4}=2 \lambda x \\
4 x^{2} y^{3}=2 \lambda y
\end{array}\right.
$$

From the first equation, $y^{4}=\lambda$ and from the second equation, $2 x^{2} y^{2}=\lambda$. Thus $2 x^{2} y^{2}=y^{4}$, i.e. $2 x^{2}=y^{2}$. Substituting into the constraint, we get $x^{2}+$ $2 x^{2}=36$, i.e. $x^{2}=12$ and $y^{2}=2 x^{2}=24$. Irrespective of whether x and/or y are positive or negative, for these values of x and y we get

$$
f(x, y)=x^{2} y^{4}=12(24)^{2}=6912
$$

which, since it is greater than zero, is the maximum value of f given the constraint.
8. a) The tangent plane has equation

$$
\begin{aligned}
& z=f_{x}(\pi, 0)(x-\pi)+f_{y}(\pi, 0)(y-0)+5 \\
& z=(6 \cos \pi \cos 0)(x-\pi)+(-6 \sin \pi \sin 0)(y-0)+5 \\
& z=-6(x-\pi)+5
\end{aligned}
$$

and the normal equation of this plane is $6 x+z=6 \pi+5$.
b) This volume is

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\pi / 3}(6 \sin x \cos y+8) d y d x & =\int_{0}^{\pi / 2}[6 \sin x \sin y+8 y]_{0}^{\pi / 3} d x \\
& =\int_{0}^{\pi / 2}\left(3 \sqrt{3} \sin x+\frac{8 \pi}{3}\right) d x \\
& =\left[-3 \sqrt{3} \cos x+\frac{8 \pi}{3} x\right]_{0}^{\pi / 2} \\
& =\frac{4 \pi^{2}}{3}+3 \sqrt{3}
\end{aligned}
$$

9. First, sketch the parallelogram E and write equations for the lines comprising
the four sides:

These lines suggest the change of variables $u=y-x, v=y+2 x$. Computing the Jacobian we have

$$
J=\operatorname{det}\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right)=-3
$$

and notice also that $u-v=-3 x$ so $x=\frac{-1}{3}(u-v)$. Therefore the integral becomes

$$
\begin{aligned}
\iint_{E}\left(x y-x^{2}\right) d A & =\int_{4}^{16} \int_{-2}^{4}\left(x y-x^{2}\right) \frac{1}{|-3|} d u d v \\
& =\frac{1}{3} \int_{4}^{16} \int_{-2}^{4} x(y-x) d u d v \\
& =\frac{1}{3} \int_{4}^{16} \int_{-2}^{4} \frac{-1}{3}(u-v) u d u d v \\
& =\frac{-1}{9} \int_{4}^{16} \int_{-2}^{4}\left(u^{2}-u v\right) d u d v \\
& =\frac{-1}{9} \int_{4}^{16}\left[\frac{1}{3} u^{3}-\frac{1}{2} u^{2} v\right]_{-2}^{4} d v \\
& =\frac{-1}{9} \int_{4}^{16}[24-6 v] d v \\
& =\frac{-1}{9}\left[24 v-3 v^{2}\right]_{4}^{16} \\
& =\frac{-1}{9}(-384-48)=48
\end{aligned}
$$

10. a) In polar coordinates, $E=\{(r, \theta): 0 \leq r \leq R, 0 \leq \theta \leq 2 \pi\}$ so the area of E is

$$
\iint_{E} d A=\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{2} r^{2}\right]_{0}^{R} d \theta=\int_{0}^{2 \pi} \frac{1}{2} R^{2} d \theta=2 \pi\left(\frac{1}{2} R^{2}\right)=\pi R^{2} .
$$

b) Parameterize ∂E by $\mathbf{x}(t)=(R \cos t, R \sin t)$ for $0 \leq t \leq 2 \pi$. By Green's Theorem,

$$
\begin{aligned}
\iint_{E} d A & =\frac{1}{2} \oint_{\partial E} x d y-y d x \\
& =\frac{1}{2} \int_{0}^{2 \pi}(R \cos t)(R \cos t d t)-(R \sin t)(-R \sin t d t) \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(R^{2} \cos ^{2} t+R^{2} \sin ^{2} t\right) d t \\
& =\frac{1}{2} \oint_{0}^{2 \pi} R^{2} d t \\
& =\frac{1}{2}\left(2 \pi R^{2}\right)=\pi R^{2} .
\end{aligned}
$$

11. a) γ is parameterized by $\mathbf{x}(t)=(5 t, 2 t+1, t+2)$ for $0 \leq t \leq 1$; we have

$$
d s=\left\|\mathbf{x}^{\prime}(t)\right\| d t=\sqrt{5^{2}+2^{2}+1} d t=\sqrt{30} d t
$$

and consequently

$$
\begin{aligned}
\int_{\gamma}(x y+y z) d s & =\int_{0}^{1}(5 t(2 t+1)+(2 t+1)(t+2)) \sqrt{30} d t \\
& =\sqrt{30} \int_{0}^{1}\left(12 t^{2}+10 t+2\right) d t \\
& =\sqrt{30}\left[4 t^{3}+5 t^{2}+2 t\right]_{0}^{1} \\
& =11 \sqrt{30} .
\end{aligned}
$$

b) Write $\mathbf{f}=(M, N, P)$. First,

$$
\begin{aligned}
\operatorname{curl} \mathbf{f} & =\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right) \\
& =\left(2 x^{2} y-2 x^{2} y, 2 x y^{2}-2 x y^{2}, 4 x y z-4 x y z\right) \\
& =\mathbf{0}
\end{aligned}
$$

so f is conservative. Next, find a potential function for f by integrating the components of f :

$$
\begin{aligned}
& f(x, y, z)=\int M d x=\int 2 x y^{2} z d x=x^{2} y^{2} z+A(y, z) \\
& f(x, y, z)=\int N d y=\int 2 x^{2} y z d y=x^{2} y^{2} z+B(x, z) \\
& f(x, y, z)=\int P d z=\int x^{2} y^{2} d z=x^{2} y^{2} z+C(x, y)
\end{aligned}
$$

We see that by setting $A=B=C=0$, the function $f(x, y, z)=x^{2} y^{2} z$ is a potential for f . Now by the Fundamental Theorem of Line Integrals,

$$
\int_{\gamma} \mathbf{f} \cdot d \mathbf{s}=f(\mathbf{x}(1))-f(\mathbf{x}(0))=f(1,1,1)-f(0,0,0)=1-0=1 .
$$

12. a) E can also be thought of as the set

$$
\{(x, y, z): 0 \leq y \leq 3,0 \leq x \leq 6-2 y, 0 \leq z \leq 12-2 x-4 y\}
$$

so by Fubini's theorem, the triple integral is

$$
\begin{aligned}
\iiint_{E} y d V & =\int_{0}^{3} \int_{0}^{6-2 y} \int_{0}^{12-2 x-4 y} y d z d x d y \\
& =\int_{0}^{3} \int_{0}^{6-2 y}[z y]_{0}^{12-2 x-4 y} d x d y \\
& =\int_{0}^{3} \int_{0}^{6-2 y}[y(12-2 x-4 y)] d x d y \\
& =\int_{0}^{3} \int_{0}^{6-2 y}\left(12 y-2 x y-4 y^{2}\right) d x d y \\
& =\int_{0}^{3}\left[12 x y-x^{2} y-4 x y^{2}\right]_{0}^{6-2 y} d x \\
& =\int_{0}^{3}\left[12 y(6-2 y)-(6-2 y)^{2} y-4(6-2 y) y^{2}\right] d y \\
& =\int_{0}^{3}\left[36 y-24 y^{2}+4 y^{3}\right] d y \\
& =\left[18 y^{2}-8 y^{3}+y^{4}\right]_{0}^{3} \\
& =18(9)-8(27)+81=27 .
\end{aligned}
$$

b) Let E be the base of the figure (in the $x y$ plane) and use cylindrical coordinates, since

$$
E=\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\} .
$$

The sphere of radius 2 centered at the origin is $x^{2}+y^{2}+z^{2}=4$, and the top half is $z=\sqrt{4-x^{2}-y^{2}}=\sqrt{4-r^{2}}$. Therefore we want the double integral

$$
\begin{aligned}
\iint_{E} \sqrt{1-x^{2}-y^{2}} d A & =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4-r^{2}} r d r d \theta \\
& =2 \pi \int_{0}^{1} \sqrt{4-r^{2}} r d r \\
& =2 \pi\left[\frac{-1}{3}\left(4-r^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =2 \pi\left[\frac{-1}{3}(3 \sqrt{3})+\frac{1}{3}\left(4^{3 / 2}\right)\right] \\
& =\frac{16 \pi}{3}-2 \pi \sqrt{3}
\end{aligned}
$$

