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Ground rules: On any homework problem, you may use the result of any previous
homework problem, any result you know to be true from arithmetic and calculus, and any
result which has been proven in class.

1 Induction proofs

1. Prove that for every positive integer n,

n∑
j=0

j2 =
n(n+ 1)(2n+ 1)

6
.

2. (All variables in this problem represent real numbers.) Assuming only that multipli-
cation distributes over the sum of two real numbers, i.e. a(b+ c) = ab+ ac, prove by
induction that multiplication distributes over the sum of any number of real numbers,
i.e.

a(x1 + x2 + ...+ xn) = ax1 + ...+ axn.

Remark: This illustrates one of the most frequent type of induction proofs, namely
extending results known about 2 variables to analogous results about n variables.

3. Prove that every set of n elements has exactly 2n different subsets.

4. Let fn be the Fibonacci sequence; that is, let f1 = 1, f2 = 1 and for all n ≥ 3, fn =
fn−1 +fn−2. (Thus the first few terms of this sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, ....)
Find and prove a formula for the sum of the first n Fibonacci numbers.

5. This is the “Tower of Hanoi” problem: suppose you have a collection of n disks, all
of different sizes. Each disk has a hole in the middle which allows it to rest on one
of three pegs. Initially all of the disks are stacked on top of each other on the first
peg, arranged in order by size, with the largest on the bottom and the smallest on
the top (see the picture below for n = 4). The object is to move the disks to the third
peg, where a “move” consists of lifting the top disk from any peg and placing it on a
different peg. The catch is that at no time is any disk allowed to rest on top of any
smaller disk. Prove that the disks can be moved to the third peg in 2n − 1 moves.

6. Let x1, ..., xn be real numbers. Prove∣∣∣∣∣∣sin
 n∑
j=1

xj

∣∣∣∣∣∣ ≤
n∑
j=1

|sinxj | .
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(You may assume the Triangle Inequality for real numbers, which says that for any
real numbers a and b, |a+ b| ≤ |a|+ |b|. This “should” have been proven for you when
you took calculus. If you can prove the Triangle Inequality, write a proof of that as
well.)

7. Prove that for every natural number greater than 5,

nn

3n
< n! <

nn

2n
.

Warning: this problem is very hard.

8. The Strong Form of Mathematical Induction says: Let m ∈ Z and let Pm, Pm+1,
Pm+2, ... be a sequence of statements which each have a truth value. If

(a) Pm is true, and
(b) for every integer k ≥ m, the truth of all the statements (Pm, Pm+1, ..., Pk) implies

the truth of Pk+1,

then Pn is true for every n ≥ m.

Use this to prove that every amount of postage greater than or equal to 12 cents can
be made by a combination of 4-cent and 5-cent stamps.

2 Complex numbers

1. Let z be a complex number. Prove <(z) = z+z
2 and =(z) = z−z

2i . (Notation: <(z)
means the real part of z; =(z) means the imaginary part of z.)

2. Let z and w be complex numbers. Prove z + w = z + w, zw = z · w and ¯̄z = z.

3. Let z be a complex number. Prove the following statements:

(a) |z|2 = z · z̄
(b) |z̄| = |z|
(c) For any other complex number w 6= 0, z

w = z w̄
|w|2

(d) z−1 = z̄
|z|2

(e) |z| = 1 if and only if z̄ = z−1

4. Let z and w be complex numbers. Prove the following statements:

(a) <(z) ≤ |<(z)| ≤ |z|
(b) =(z) ≤ |=(z)| ≤ |z|
(c) |zw| = |z| |w|
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5. We saw in class that for a complex number z, its complex conjugate z can be ob-
tained by reflecting z through the real axis. For each of these numbers, give a similar
description of how they can be obtained from z “graphically”:

(a) Re(z)

(b) 3z

(c) −z
(d) iz

(e) −z

6. Prove the following statements, where t is a real number:

(a) |eit| = 1

(b) cos t = eit+e−it

2

(c) sin t = eit−e−it

2i

7. Prove DeMoivre’s Theorem, which says that for all n ∈ N and all θ ∈ R,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

8. Find all solutions to the equation z8 = 1 (z is allowed to be any complex number).
Graph the solutions on the same plane. Hint: DeMoivre’s Theorem may be useful
here.

9. Prove the Triangle Inequality, which says that for any complex numbers z and w, we
have

|z + w| ≤ |z|+ |w|.

10. Prove the Generalized Triangle Inequality, which says that for any complex numbers
z1, z2, ..., zn, we have

|z1 + ...+ zn| ≤ |z1|+ ...+ |zn|.

11. Prove the formula for a geometric sum, which states that for any complex number
z 6= 1 and any natural number n,

n∑
j=0

zj =
1− zn+1

1− z
.
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3 Fields

1. Determine whether or not the following sets are fields under the usual operations of
addition and multiplication:

(a) The complex rationals, i.e. the set {x+ iy : x, y ∈ Q}.
(b) The Gaussian integers, denoted Z[i], which is the set {x+ iy : x, y ∈ Z}.
(c) S = {a+ b

√
2 : a, b ∈ Q}.

(d) T = {a+ b
√

2 + c
√

3 : a, b, c ∈ Q}.
(e) U = {a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Q}.

2. In our definition of field, we stated that there must be an identity element (called 0)
for the addition operation. We did not assume in the definition, however, that this
identity element was unique, that is, that there is only one such identity element for
the addition operation. Use the other defining properties of a field to deduce that this
element is unique, that is, that if x ∈ F is such that x + y = y for all y ∈ F , then
x = 0.

3. Prove the multiplicative identity element of a field is unique.

4. Prove that the additive and multiplicative inverses of elements of a field are unique.

5. Let 0 be the multiplicative identity element of a field F . Prove 0x = 0 for all x ∈ F .

6. Let F be a field. By definition, what does the symbol −1 refer to? Prove that for all
x ∈ F , −x = −1 · x.

7. (Challenge) Does there exist a field with 5 elements? Does there exist a field with 6
elements?

4 Vector space axioms

1. Prove that the additive identity element (called 0) of a vector space is unique, i.e.
that if x + y = y for all y ∈ V , then x = 0.

2. Prove that if there is even a single y ∈ V such that x + y = y, then x = 0.

3. Show that the additive inverse of any vector is unique.

4. Let V be a vector space over a field F ; prove that for all v ∈ V and all c ∈ F :

(a) c0 = 0.

(b) 0v = 0.

(c) −v = (−1)v.
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(d) (−c)v = c(−v) = −(cv).

5. Comment on the following “proof” of part (a) of the previous problem:

c0 = c(0, 0, ..., 0) = (c0, ..., c0) = (0, ..., 0) = 0.

6. Prove that the following are vector spaces under the “usual” operations (you don’t
need to write everything out in detail, but you should describe explicitly what the
zero element and the additive inverse of a vector look like, and you should verify one
or two axioms):

(a) The set of all functions from R to R (called the set of real functions). Challenge:
Generalize this: do you really need the domain and range to be R?

(b) The set of infinite sequences of real numbers, where addition and scalar multi-
plication are defined coordinatewise. Challenge: Generalize this.

(c) The set Pn of polynomials of degree ≤ n with real coefficients. P.S. What is the
degree of the zero element of this vector space?

(d) The set of complex numbers C, taken as a vector space over R.

(e) The set {0}, consisting of only the zero vector (over any field).

7. Consider the set of all vectors in C2 of the form (z, z̄), with the usual addition and
scalar multiplication. Is this set a vector space over C? Why or why not? Is this set
a vector space over R? Why or why not?

8. Prove that the set of real numbers is a vector space (over itself) with the following
strange definitions of addition and scalar multiplication (we’ll use⊕ and⊗ to represent
the new addition and scalar multiplication), and + to represent the usual addition):

x⊕ y := x+ y + 1; k ⊗ x := kx+ k − 1

9. Show that the set of positive real numbers forms a vector space over R, if addition
and multiplication are defined in a funny way. Figure out a way to define addition
and multiplication to make (0,∞) into a vector space over R. Hint: You can define
addition to be what multiplication normally is.

10. Here’s another strange (possible) vector space. The vectors are the set of all nonzero
real numbers, and we define addition (denoted ⊕) and scalar multiplication (denoted
⊗) by

x⊕ y := xy; k ⊗ x := sign(x)|x|k

where sign(x) is equal to 1 if x > 0 and equal to −1 if x < 0. Prove or disprove: this
is a vector space.

11. Prove the Cancellation Law (for vector addition), which states that if x,y and z
belong to vector space V , then

if x + y = x + z, then y = z.
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12. Consider the power set 2Z consisting of all subsets of integers. Suppose we were to
define addition on this set to be set union, i.e {1, 2, 3} + {2, 3, 5, 8} = {1, 2, 3, 5, 8}.
Show that no matter how scalar multiplication is subsequently defined (and no matter
what the underlying field is), this set cannot be made into a vector space.

13. True or false (prove your answer): if V is a vector space over F and v ∈ V and c ∈ F
are such that cv = 0, then either c = 0 or v = 0.

14. Prove that any vector space over R, other than the vector space {0}, has infinitely
many vectors in it. Hint: First prove that if x 6= 0 and c 6= d, then cx 6= dx.

15. Let U and V be vector spaces over the same field F . Prove U × V is a vector space
over F where the addition and scalar multiplication are defined coordinatewise.

5 Subspaces

1. True or false? Provide enough justification to satisfy yourself:

(a) The set of polynomials of even degree is a subspace of Pn.

(b) The y−axis is a subspace of R2.

(c) The set of functions from R to R which are everywhere differentiable is a subspace
of the vector space of continuous functions from R to R.

(d) The set of vectors with rational coordinates is a subspace of Rn.

(e) Every vector space is a subspace of itself.

(f) The set of vectors W = {(x, y, z) : x+ y + z = 0} is a subspace of R3.

(g) The set of vectors U = {(x, y, z) : x+ y + z = 1} is a subspace of R3.

(h) The set of polynomials satisfying p(2) = 0 is a subspace of Pn.

(i) The set of (twice-differentiable) real functions satisfying 3f ′′(x)+x2f ′(x)−f(x) =
0 is a subspace of the set of all twice-differentiable real functions.

2. Let W1 and W2 be subspaces of a vector space V . Prove that W1 ∩ W2 is also a
subspace.

3. Let W1, ...,Wn be subspaces of a vector space V . Prove that W =
⋂n
j=1Wj is also a

subspace.

4. Prove (by an example) that the union of two subspaces of a vector space need not be
a subspace.

5. Let W1 and W2 be subsets of a vector space V . Define the sum of these subsets to be

W1 +W2 = {w1 + w2 : w1 ∈W1,w2 ∈W2}.
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(a) Let V = R3, let X be the x−axis, and let Y be the y−axis. What is X + Y ?

(b) Let V = R4 (where the coordinate directions are called x, y, z and w), let U1 be
the xy−plane, and let U2 be the yz−plane. Describe U1 + U2.

(c) Why in the definition above do we require that W1 and W2 are subsets of the
same vector space?

(d) Prove or disprove: W1 +W2 = W2 +W1.

(e) Prove that if W1 and W2 are subspaces (not just subsets), then W1 + W2 is a
subspace.

(f) Let W be a subspace of V . Describe W +W , W + {0}, and W + V .

(g) Prove or disprove: if U,W1 and W2 are all subspaces of V such that U + W1 =
U +W2, then W1 = W2.

6. Let V be a vector space over a field F and for any n ≥ 1, let v1, ...,vn be any elements
of V . Let W be the span of these vectors, that is, let

W = Span(v1, ...,vn) =


n∑
j=1

cjvj : cj ∈ F

 .

Prove that W is a subspace of V . Note: W is also denoted < v1, ...,vn >.

7. Describe in words the following subsets of R3 (the first one is “the x−axis”):

(a) W =< (1, 0, 0) >.

(b) W =< (1, 2, 3) >.

(c) W =< (1, 0, 0), (0, 1, 0) >.

(d) W =< (1, 0, 0), (0, 1, 0), (1, 4, 0) >.

(e) W =< (1, 0, 0), (0, 1, 0), (0, 0, 1) >.

8. Prove or disprove: let v and w be vectors in some vector space V . Then

< v > + < w >=< v,w > .

9. The functions in the following set are solutions to f ′′(x) = −f(x):

S = {A sinx+B cosx : A,B ∈ R}.

But in physics, one usually argues that the following are solutions:

T = {A sin(x+ c) : A, c ∈ R}.

The argument goes like this: the differential equation f ′′ = −f is a special case of
Hooke’s Law, with a fixed spring constant k = 1. All solutions to Hooke’s Law are
sinusoidal; since k is fixed, so is the frequency of the solution, but the amplitude A
and phase shift c are arbitrary.
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(a) One of S and T is clearly a vector space (by problem 5.6). Which one?

(b) Determine the relationship between S and T (for example, is one contained in
the other?)

6 Affine subspaces, lines and planes

1. Let W be a subset of a vector space V . Define the translation of W by the vector
p ∈ V to be

p +W = {p + w : w ∈W};

observe that p + W = {p} + W as defined in problem 5.5, so by problem 5.5 (e),
p +W and W + p are the same thing. Also, for any scalar k ∈ F , define

kW = {kw : w ∈W}.

Prove or disprove the following (where capital letters represent arbitrary subsets of a
vector space and lowercase letters represent arbitrary scalars):

(a) 0 +A = A

(b) A−A = {0}
(c) (a+ b)W = aW + bW

(d) (ab)S = a(bS)

(e) a(p + S) = ap + aS

(f) 1A = A

(g) 0A = {0}

Remark: This problem is one of the first where you are asked to prove the equality
of two sets. To prove two sets (say Q and R) are equal, there are two typical ways to
proceed:

• Prove two things: first, that Q ⊆ R, and second, that R ⊆ Q (these two things
together imply Q = R). To prove Q ⊆ R, start by assuming x is some arbitrary
element of Q and try to conclude by some argument that x ∈ R. To prove R ⊆ Q,
start by assuming x is some arbitrary element of R and try to conclude by some
argument that x ∈ Q.
• Start with the statement x ∈ Q and end with the statement x ∈ R, making sure

all your steps are reversible. This works in some parts of this problem, but won’t
always work.

2. Let V = R2; let X be the x−axis, Y be the y−axis, and C be the unit circle (centered
at the origin). Describe the following sets:

(a) 5X
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(b) 2C

(c) −Y
(d) Y + C

(e) (0, 1) +X

(f) 5((0, 1) +X)

(g) C + 2C

3. Suppose W is a subspace of vector space V and k is a nonzero scalar. Prove kW = W .

4. Let V be a vector space. Define an affine subspace of V to be a subset A ⊆ V which
is a translate of a subspace of V .

(a) Let V be a vector space over R, and let A be an affine subspace of V . Prove that
given any two vectors p and q in A, (tp + (1− t)q) is also in A for all t ∈ R.

(b) Suppose W1 and W2 are subspaces of vector space V and suppose also that p1

and p2 are vectors such that

p1 +W1 = p2 +W2.

Prove W1 = W2.

(c) In the context of part (b), is it necessarily true that p1 = p2?

(d) Show by example that the fact proven in part (b) fails if W1 and W2 are assumed
only to be subsets of V rather than subspaces.

(e) Show that given any vector v ∈ A, A − v is a subspace of V (and by part (b),
must be the same subspace no matter the choice of v).

(f) Prove the converse of (a), i.e. if A is a nonempty subset of V such that given
any two vectors p and q in A, (tp + (1 − t)q) is also in A for all t ∈ R, then A
is an affine subspace of V .

(g) Explain why the facts illustrated in parts (a) and (f) give a nice geometric char-
acterization of affine subspaces.

5. Give an example of two parallel vectors x and y in R4 such that there is no c ∈ R
such that x = cy.

6. Let V = R3. Consider the following vectors (or points) in V :

v = (2, 1, 2),w = (0, 3, 4),x = (−2, 3, 0).

(a) Find parametric equations of the plane passing through these three points.

(b) Find parametric equations of the line passing through v and w.

7. Here are the parametric equations for two lines in R3:
x1 = 2 + 3t
x2 = 1− t
x3 = 4 + 7t

;


x1 = 3− 7t
x2 = −2 + 5t
x3 = −6− 4t
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Prove that these two lines intersect in a point. Find the coordinates of this point.
Hint: If two lines intersect, they must meet at the same (x1, x2, x3), but the t doesn’t
have to be the same for both lines (think about why this is).

8. Here are the parametric equations for two lines in R3:
x1 = 3t
x2 = 2− t
x3 = −1 + t

;


x1 = 1 + 4t
x2 = −2 + t
x3 = −3− 3t

Prove that these two lines do not intersect.

9. Here are two sets of parametric equations:
x1 = 2t
x2 = 2− t
x3 = −1 + 4t

;


x1 = 2− 6t
x2 = 1 + 3t
x3 = 3− 12t

Prove that these are parametric equations for the same line in R3.

10. Two airplanes fly along straight lines. At time t, plane 1 is at (75, 50, 25) + t(5, 10, 1)
and plane 2 is at (60, 80, 34)+t(10, 5−1). Do the flight paths of these planes intersect?
Do the planes crash into one another?

7 Linear independence, span, basis and dimension

7.1 Linear independence and linear dependence

1. Given each of the following vector spaces V and lists S of vectors , determine whether
or not S is a linearly independent set.

(a) V = R2; S = {(−3, 7), (4,−10)}.
(b) V = R4; S = {(1, 1, 1, 1), (2, 2, 2, 2), (1, 3, 5, 8), (0,−2, 5, 7)}.
(c) V = R3; S = {(1, 2, 7), (−1, 7, 5), (10,−3, 6), (8, 4,−1)}.

Remark: An easy solution to this problem requires concepts not yet developed.
You could solve this now by solving a complicated system of equations, but that’s
hard.

(d) V = R7; S = {(2, 3, 8,−5, 0, 0, 0)}.
(e) V = R4; S = {(1, 2, 3, 4), (5, 6, 7, 8), (0, 0, 0, 0)}
(f) V = R3; S = {(0, 1, 4), (0, 0, 1), (0, 7,−3)}.
(g) V = R3; S = {(0, 1, 2), (0,−3,−6), (2, 5,−8)}.
(h) V = C2 (taken as a vector space over C); S = {(1, i), (i,−1)}
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(i) V = C2 (taken as a vector space over R); S = {(1, i), (i,−1)}

2. Let v1, ...,vn be vectors in some vector space. Prove that if
∑n

j=1 cjvj =
∑n

j=1 djvj
for scalars c1, ..., cn and d1, ..., dn where the cj 6= dj for some j, then {v1, ...,vn} is
linearly dependent.

Note: This problem tells you that if you can write a vector w as a linear combination
of the vj in two different ways, then {v1, ...,vn} is linearly dependent.

Equivalently (remember this), it says that given a lin. indep. set S and given any
vector x, there is at most one way to write x as a linear combination of vectors in
S.

3. Let V = C∞(R,R) be the vector space of functions from R to R which are differentiable
infinitely many times (this is a vector space over R since it is a nonempty subset of
RR which is closed under addition and scalar multiplication).

(a) Is the set of functions {sin2 x, cos2 x, 1} linearly independent? Why or why not?
(Check your answer before you proceed to part (b).)

(b) Is the set of functions {ex, e−x, 1} linearly independent? Note: Just because we
aren’t aware of an identity of the form c1e

x+c2e
−x = 1 doesn’t mean one doesn’t

exist. To prove that no such identity exists, we will carry out the following steps:

i. Suppose we write 0 (the constant function 0) as a linear combination of
{ex, e−x, 1}:

c1e
x + c2e

−x + c31 = 0 (1)

Show that it must be the case that c1 + c2 + c3 = 0. Hint: if the above
equation holds as an equality between functions, then it is supposed to hold
for all particular values of x.

ii. Differentiate both sides of equation (1) and subsequently show that c1−c2 =
0.

iii. Differentiate both sides of the equation again, and show that c1 + c2 = 0.

iv. Explain why c1 = c2 = c3 = 0 (and thus why the three functions {ex, e−x, 1}
are linearly independent).

(c) Suppose f, g ∈ V are functions such that f(17) = 2, f ′(17) = 1, g(17) = 3 and
g′(17) = 2. Are f and g linearly independent? Why or why not?

4. Prove that the set of functions {sinx, sin 2x, sin 3x} is linearly independent (in C∞(R,R,
taken as a vector space over R).

5. True or False? If the sets {u,v}, {u,w} and {v,w} are all linearly independent, then
the set {u,v,w} is linearly independent. Justify your answer.

7.2 More on spans

6. Consider the set W of functions from R to R satisfying the differential equation
f ′′(x)− 5f ′(x) + 6f(x) = 0. W is a subspace of C∞(R,R) (the proof is similar to the
one in Problem 5.1 (i)).
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(a) Verify that f(x) = e3x and f(x) = e2x both belong to W .

(b) Based on the fact that W is a subspace, give a description of a large collection
of functions which must belong to W .

(c) Based on the description in part (b), find a solution f(x) to the differential
equation f ′′(x) − 5f ′(x) + 6f(x) = 0 satisfying f(0) = 1 and f(1) = 4. Impor-
tant: Notice that the ideas of linear algebra reduce the problem of solving this
differential equation to solving linear equations.

7. Let F be a field and let V = F (i.e. we are taking V to be the field, taken as a vector
space over itself). Let {x1,x2, ...xn} be a collection of vectors in V ; describe what the
span of these vectors is. (Hint: there are only two possible cases.) Describe under
what circumstances this collection of vectors forms a linearly independent set.

8. Prove that two vectors (a, b) and (c, d) span R2 if and only if ad− bc 6= 0.

9. Prove or disprove: If S and S′ are two finite sets of vectors in some v.s. V , then
Span(S ∩ S′) = Span(S) ∩ Span(S′).

10. Prove or disprove: If S and S′ are two finite sets of vectors in some v.s. V , then
Span(S ∪ S′) = Span(S) ∪ Span(S′).

11. Prove or disprove: If S and S′ are two finite sets of vectors in some v.s. V , then
Span(S ∪ S′) = Span(S) + Span(S′).

7.3 Basis and dimension

12. Given each of the vector spaces (or subspaces) W , find a basis of W , and the dimension
of W .

(a) W = C, taken as a vector space over R.

(b) W = C, taken as a vector space over itself.

(c) W = M2(R) (2× 2 matrices with real entries).

(d) W = P3 (this is the set of polynomials with real coefficients of degree ≤ 3).

(e) W = {f ∈ P2 : f(3) = 0}
(f) W = {w = (w1, w2, w3) ∈ R3 : 2w1 + w2 − 3w3 = 0}.
(g) W = the line in R4 with parametric equations x1 = 4t, x2 = −3t, x3 = 2t, x4 = 0.

(h) V = C1(R,R); W is the subspace of V consisting of functions f satisfying the
differential equation f ′(x) = f(x).

(i) V = R3; W =


 2s− 5t

s
4t

 : s, t ∈ R


(j) V is the strange vector space from Problem 4.9 (i.e. V = (0,∞) where addition

is x⊕ y = xy and c⊗ x = xc).
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(k) V is the even stranger vector space of Problem 4.8.

13. Prove the following statements, where V is a vector space with dim(V ) = n <∞:

(a) If V 6= {0}, then V has a basis.

(b) Any linearly independent set of n vectors is a basis of V . Hint: What can be
done to any lin. indep. set of vectors in a finite-dimensional vector space?

(c) Any set of n vectors which span V must be a basis of V .

(d) If W is a subspace of V , then dim(W ) ≤ dim(V ).

(e) If W is a subspace of V and dim(W ) = dim(V ), then W = V . Warning: This
is not true if dim(V ) =∞.

14. Show that the only affine subspaces of R2 are single points, lines, and all of R2. Hint:
Start by characterizing all the subspaces of R2. What are the possible dimensions of
such a subspace? What is true about a subspace if its dimension is zero? What if its
dimension is one? Etc.

15. Characterize all the affine subspaces of R3; the answer should be “they are points or
lines or ...” (start by characterizing all the subspaces of R3).

16. Show that any subset of R3 of the form

{(x, y, z) ∈ R3 : ax+ by + cz = d}

(where a, b and c are not all zero) is a plane. Hint: Start by showing that any subset
of the form {(x, y, z) ∈ R3 : ax+ by + cz = 0} is a plane.

Remark: We will show in a future homework problem that every plane in R3 can be
described by such an equation.

17. Earlier this semester one of the homework questions was to determine whether the
following set

T = {a+ b
√

2 + c
√

3 : a, b, c ∈ Q}

was a field (under the usual operations of + and ·). You folks correctly told me that
T is not a field because it is not closed under multiplication...

√
2 ·
√

3 =
√

6 which is
not in T , i.e. there is no solution to the equation

a+ b
√

2 + c
√

3 =
√

6 (2)

where a, b, c are rational. We can restate the context of this problem using the language
of vector spaces: consider the set

V = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q};

this is a vector space over Q since V = Span(1,
√

2,
√

3,
√

6).

(a) Restate the assertion “
√

6 is not in T” using the language of linear algebra (use
a term or terms like “linear independence”, “span”, “basis”, etc.)
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(b) In fact, the following statement is also true:

a+ b
√

2 + c
√

3 + d
√

6 = 0 (a, b, c, d ∈ Q)⇒ a = b = c = d = 0.

Restate this claim in linear algebra language.

(c) Show that the assertion “
√

6 is not in T” follows from the statement in part (b).

(d) On the other hand, equation (2) above has lots of solutions a, b, c if a, b and c are
allowed to be real numbers. Give three different triples (a, b, c) of real numbers
which satisfy (2).

(e) Consider the set

Span(1,
√

2,
√

3) = {a+ b
√

2 + c
√

3 : a, b, c ∈ R}.

(Here we are taking the span over the reals rather than over the rationals.) What
is another name for this set?

8 Matrix theory

8.1 Matrix arithmetic

1. Let F be a field. Prove that for fixed m and n, Mmn(F ) is a vector space over F (i.e.
verify all the axioms).

2. Let A =

(
i 1 + i
0 2

)
; B2×1 =

(
2− i 3i

)
and C =

(
i 1 + i 0
0 2 1 + i

)
. Compute

the following or explain that they do not exist:

C2 AC CA (ABT )T BA A2 CBH

3. Prove the associative law of matrix multiplication, which says that for any matrices
A,B and C, if (AB)C exists, then so does A(BC) and in this case, A(BC) = (AB)C.

4. Prove that “scalars pass through matrix multiplication”, which says that for any
A ∈Mmn(F ), B ∈Mnp(F ) and k ∈ F , we have k(AB) = (kA)B = A(kB).

5. The commutative property AB = BA cannot hold for all matrices, because it can be
the case where BA exists, but AB does not exist. Even when both AB and BA exist,
however, they might be different sizes (hence unequal). Even worse, if AB and BA
both exist and are the same size, it still is not necessarily the case that AB = BA.
Prove this by finding a specific example of an A and a B where AB and BA both
exist, are the same size, but are different matrices. What is the smallest possible size
of such an A and B?

6. Let A ∈Mmn(F ) and B,C ∈Mnp(F ). Prove A(B + C) = AB +AC.

7. Let A,B ∈Mmn(F ) and C ∈Mnp(F ). Prove (A+B)C = AC +AC.
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8. If A and B are matrices where AB and BA are both defined and we have AB = BA,
we say A and B commute.

(a) If A and B commute, what must be true about the sizes of A and B?

(b) Suppose A commutes with B and C. Is it necessarily the case that A commutes
with B + C? Is it necessarily the case that A commutes with B2? Does A
commute with kB for any scalar k? Does A commute with BC?

(c) Supose A and B commute. Prove that A2 and B2 commute.

(d) Prove or disprove: if A and B commute, then for all nonnegative integers p and
q, the matrices Ap and Bq commute.

9. True or false: let A,B ∈Mn(F ). Then A2 −B2 = (A+B)(A−B).

10. In this problem, for each k let Ik be the k × k identity matrix. Prove that if A ∈
Mmn(F ), then

ImA = A and AIn = A.

11. Prove, for matrices A,B ∈Mmn(F ), C ∈Mnp(F ), D ∈Mnm(F ) and scalar r ∈ F :

(a) (AT )T = A and (AH)H = A;

(b) (AT )H = (AH)T = A;

(c) If A is square, tr(AT ) = tr(A) and tr(AH) = tr(A) = tr(A);

(d) (rA)T = rAT and (rA)H = rAH ;

(e) (A+B)T = AT +BT and (A+B)H = AH +BH ;

(f) (AC)T = CTAT and (AC)H = CHAH ;

(g) tr(A+B) = trA+ trB;

(h) tr(AD) = tr(DA).

12. Regardless of the size of a matrix A, the products AAT and ATA both exist. What
are the sizes of these matrices, in terms of the size of A?

8.2 Invertibility of matrices

13. We say that a matrix A ∈ Mn(F ) is invertible if there exists another matrix B ∈
Mn(F ) such that AB = I (where I is the n× n identity matrix). Prove that for the
same matrix B, BA = I (note, we only assume AB = I).

Remark: If A is invertible, we call the matrix B of this problem the inverse of A
and denote it A−1. In particular, if A is invertible, this problem shows that there is
a matrix A−1 such that A−1A = AA−1 = I.

14. Prove that the inverse of an invertible matrix is unique.

15. Suppose A,B ∈Mn(F ) are both invertible. Prove AB is invertible and find an explicit
formula for its inverse.
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16. Suppose A ∈Mn(F ) is invertible. Prove AT is invertible and (AT )−1 = (A−1)T ; prove

A is invertible and
(
A
)−1

= A−1; prove AH is invertible and (AH)−1 = (A−1)H . Prove
that for any nonnegative integer n, An is invertible; what is the inverse of An? Prove
also that A−1 is invertible; what is the inverse of A−1?

17. Prove the following statements (assume the matrices are of the appropriate size so
that everything is defined):

(a) (A1 +A2 + ...+An)T = AT1 + ...+ATn ;

(b) (A1 +A2 + ...+An)H = AH1 + ...+AHn ;

(c) (A1A2 · · ·An)T = ATn · · ·AT1 ;

(d) (A1A2 · · ·An)H = AHn · · ·AH1 ;

(e) If the Aj are all invertible, then (A1A2 · · ·An)−1 = A−1
n · · ·A−1

1

18. Show that a 2 × 2 matrix A =

(
a b
c d

)
is invertible if and only if ad − bc 6= 0, in

which case

A−1 =
1

ad− bc

(
d −b
−c a

)
Remember this formula for the inverse of a 2× 2 matrix.

19. Show by an explicit counterexample (without using the zero matrix as any of your
counterexamples) that each of the following statements is false:

(a) If A,B and C are matrices such that the products AB and AC both exist and
AB = AC, then B = C.

(b) If A,B are matrices such that AB = 0 (the zero matrix), then A = 0 or B = 0.

(c) If A ∈Mn(F ) is not the zero matrix, then A is invertible.

(d) If A,X ∈Mn(F ) are such that AX = A, then X = I.

20. Prove the Cancellation Law for matrices, which says that if A ∈Mn(F ) is an invertible
matrix, then:

(a) If AB = AC, then B = C; and
(b) if BA = CA, then B = C.

Note: This does not mean that if AB = CA, then B = C. Why not?

21. Suppose A,B and X are n × n matrices such that A,X and A − AX are invertible.
If (A−AX)−1 = X−1B, find X in terms of A and B.

22. Suppose A and B are invertible matrices of the same size. Show A−1 + B−1 =
A−1(A+B)B−1. What fact from high-school (or earlier) algebra does this generalize?
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8.3 Special matrices

23. A matrix A ∈Mn(F ) is called diagonal if Ajk = 0 whenever j 6= k (i.e. all the entries
of A off its diagonal are zero). Prove that the set of diagonal n × n matrices is a
subspace of Mn(F ); what is its dimension?

24. Prove that any two diagonal matrices (of the same size) commute.

25. A matrix A is called symmetric if A = AT . Explain why every symmetric matrix
must be square. Now, denote by Symn(F ) the set of symmetric n× n matrices with
entries in the field F . Prove Symn(F ) is a subspace of Mn(F ). What is the dimension
of Symn(F ) (as a vector space over F )?

26. Let A ∈Mn(F ). Prove AAT and ATA are symmetric.

27. A matrix A ∈Mn(C) is called Hermitian if A = AH . Prove that the set of Hermitian
n×n matrices with entries in C , called Hn(C) or just Hn, is not a subspace of Mn(C)
if the underlying field is C, but is a subspace of Mn(C) if the underlying field is R.
Hint: What must be true about all the diagonal entries of a Hermitian matrix?

28. Prove that if A ∈ Symn(F ), then A2 ∈ Symn(F ). Prove or disprove: if A,B ∈
Symn(F ), then AB ∈ Symn(F ). Prove or disprove: if A,B ∈ Symn(F ), then A+B ∈
Symn(F ).

29. Let A ∈Mn(F ). Prove AAH and AHA are Hermitian.

30. A matrix A is called skew symmetric if A = −AT . The set of skew-symmetric n× n
matrices is called Skewn(F ); this is a subspace of Mn(F ) (you don’t need to prove
this). What is its dimension (as a vector space over F?

31. Suppose A ∈ Skewn(F ). What kind of matrix is A2?

32. Prove every square matrix is the sum of a symmetric matrix and a skew-symmetric
matrix. Hint: You can give a slick proof of this using dimensions of the spaces. What
is Symn(F )

⋂
Skewn(F )?

8.4 More insight into matrix multiplication

33. LetB ∈M3n(F ). This meansB has three rows and each row ofB, by itself, constitutes
a vector in Fn. Let these rows (from top to bottom) be r1, r2, r3 (these rj are vectors
in Fn, not numbers). We write this by saying

B =

 r1

r2

r3

 .
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(a) Is there a matrix A such that AB has three rows, and the rows of AB are exactly −2r2

r2 + 3r3

4r1 − 7r2 + 5r3

?

If so, find A. If not, explain why not.

(b) Is there a matrix C such that BC has three rows, and the rows of BC are exactly −2r2

r2 + 3r3

4r1 − 7r2 + 5r3

?

If so, find C. If not, explain why not.

34. Let B ∈ Mm4(F ). This means each column of B, by itself, constitutes a vector in
Fm. Let these columns (from left to right) be c1, c2, c3, c4 (these are vectors, not
numbers). We write this by saying

B =
(

c1 c2 c3 c4

)
.

(a) Is there a matrix A such that AB has four columns, and the columns of AB are
exactly (

−2c2 c2 + 3c3 4c1 − 7c2 + 5c3 −c3 + c4

)
?

If so, find A. If not, explain why not.

(b) Is there a matrix C such that BC has four columns, and the rows of BC are
exactly (

−2c2 c2 + 3c3 4c1 − 7c2 + 5c3 −c3 + c4

)
?

If so, find C. If not, explain why not.

35. Let

E12 =

 0 1 0
1 0 0
0 0 1

 ∈M3(F ).

Let A ∈ M3(F ). What is the relationship between A and E12A? What is the rela-
tionship between A and AE12? Generalize this.

36. Suppose mystery matrix B satisfies

B

(
1
0

)
=

(
2
3

)
and B

(
0
1

)
=

(
5
−2

)
.

(a) (Quickly) find X such that

BX =

(
5 4
−2 6

)
.
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(b) (Quickly) find B.

37. Suppose C ∈M2(R) is such that

C

(
1 3
2 4

)
= I.

Quickly find x and y so that

Cx =

(
1
0

)
and Cy =

(
2
−1

)
.

8.5 Partitioned matrices

38. If we write something like this:

M =

(
A B

C D

)
then this means A ∈ Mmp(F ), B ∈ Mmq(F ), C ∈ Mnp(F ) and D ∈ Mnq(F ) are all
matrices that when concatenated together, make the matrix M ∈ Mm+n,p+q(F ). M ,
when written this way, is called a partitioned matrix and A,B,C and D are called
blocks in M . For example, if A = I2×2, B = (3, 4), C is the 2 × 2 zero matrix, and
D = (1,−1), then

(
A B

C D

)
=

(
I B

0 D

)
=


1 0 3
0 1 4

0 0 1
0 0 −1

 =


1 0 3
0 1 4
0 0 1
0 0 −1

 .

Explain why (you don’t need a detailed proof) the following equation holds:(
A

C

)(
B D

)
=

(
AB AD

CB CD

)
.

39. Compute the partitioned form of the matrix product (assume all the blocks are 2×2):(
A B

C 0

)(
I 0

D I

)

40. Find formulas for X, Y and Z in terms of A and B (assume A and B are invertible)
if (

X 0 0

Y 0 I

) A Z

0 0

B I

 =

(
I 0

0 I

)
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41. Show that if A1 and A2 are invertible matrices, then(
A1 B

0 A2

)
is invertible. Calculate the partitioned form of its inverse.

42. Show that if A1, ..., An are all invertible, then
A1

A2

. . .

An


is invertible. Calculate the partitioned form of its inverse.

8.6 Fundamental subspaces of a matrix

43. Given A ∈ Mmn(F ), define the row space R(A) of A to be the span of the rows
of A, and define the column space C(A) of A to be the span of the columns of A.

For example, if A =

(
0 1
2 4

)
, the row space is R(A) = Span((0, 1), (2, 4)) and the

column space is C(A) = Span((0, 2), (1, 4)).

As the row space and column space are both spans, they are subspaces. For an
arbitrary matrix A ∈ Mmn(F ), for what value of p is R(A) a subspace of F p? For a
matrix A ∈Mmn(F ), for what value of p is C(A) a subspace of F p?

44. Prove that x ∈ C(A) if and only if x = Az for some vector z.

45. Given A ∈Mmn(F ), the null space N(A) of A is the set of vectors x such that Ax = 0.
Prove that N(A) is a subspace of F p for some p. (What is the value of p)?

46. Given A ∈ Mmn(F ) where F = R or C, the left null space N(AH) of A is the set of
vectors y such that AHy = 0 (i.e. it is the null space of the Hermitian of A). Prove
that N(AH) is a subspace of F p for some p (use the preceding problem). (What is
the value of p)?

9 Inner products and geometry

9.1 Inner products

1. Let u = (1, 2, 3), v = (1, 0,−1) and w = (0, 2, 1). Think of these vectors as being
elements of R3, which we endow with the usual inner product (i.e. dot product).
Compute (u + v) ·w and 3(v ·w). Remark: the first thing you are asked to compute
here could also be written < u + v,w >.
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2. Let V be the vector space C4, endowed with the usual Hermitian inner product <,>.
Compute < (1, 2 + i,−3i, 0), (1 + i, 2− 3i, 1 + i, 2− i) >.

3. Let V be R3 with the usual inner product <,>. Suppose that for some v 6= 0 ∈ V ,
< v,a >=< v,b >. Is it necessarily the case that a = b? Explain.

4. Let V be the vector space R3 with the usual inner product <,>. Suppose that for
every v ∈ V , < v,a >=< v,b >. Is it necessarily the case that a = b? Justify your
answer.

5. For each of the following vector spaces, determine whether the given formula for <,>
actually defines an inner product. Justify your answer.

(a) V = C2. Given z = (z1, z2) and w = (w1, w2), set

< z,w >= z1w1 + z2w2.

(b) V is the set of continuous functions from R to R which are 2π− periodic, that
is, that V = {f ∈ C(R,R) : f(x) = f(x+ 2π) for all x ∈ R}. For f, g ∈ V , set

< f, g >=

∫ 2π

0
f(x)g(x) dx.

(c) V = R2. Given x = (x1, x2) and y = (y1, y2), set

< x,y >= x1y1.

(d) V = P3. For f, g ∈ V , set
< f, g >= f(0)g(0).

(e) V = R2. Given x = (x1, x2) and y = (y1, y2), set

< x,y >= 4x1y1 + x1y2 + x2y1 + 4x2y2.

(f) V = P2. For f, g ∈ V , set

< f, g >= f(0)g(0) + f(1)g(1) + f(2)g(2).

6. Let V = Cn. Give an example of a function x, y : V ×V → C which is antisymmetric,
linear in the first coordinate, and which satisfies xv,vy ≥ 0 for all v ∈ V but is not
an inner product.

7. Prove that if <,> is an arbitrary inner product on a vector space V , then for all
d1, ..., dn ∈ F and all v,w1, ...,wn we have〈

v,

n∑
j=1

djwj

〉
=

n∑
j=1

dj < v,wj > .

8. Let V be a vector sapce with inner product <,>. Suppose < u,v >= 1 + i and
< v,w >= 3i for vectors u,v,w ∈ V . Compute < (2− i)v, 2iu− (1 + i)w >.

9. Let V be a vector space and let W = Span(w1, ...,wn). Prove that < v,w >= 0 for
every w ∈W if and only if < v,wj >= 0 for j = 1, ..., n.
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9.2 Norms

10. Let V = R4, endowed with the usual inner product. Let x = (1, 2,−1, 4) and y =
(−2, 2, 3,−8). Compute the norm of x and the distance between x and y.

11. Find a real number k such that (1, 2, k) and (2, 4, 3) are distance 3 apart (in R3,
endowed with the usual inner product). Before you solve this, can you determine by
geometric reasoning (or a picture) how many solutions for k will exist?

12. Let V be the vector space C3, endowed with the usual Hermitian inner product <,>.
Compute the distance between (1, 2 + i,−3i, 0) and (1 + i, 2− 3i, 1 + i, 2− i).

13. Let V be a vector space endowed with some inner product <,> and associated norm
|| · || (we shorthand this sentence by saying V is an inner product space). We say
that a vector v ∈ V is a unit vector if ||v|| = 1. Show that given any nonzero vector
v ∈ V , there is a unit vector in the same direction as v. Such a unit vector is called a
normalized version of v, and the process of finding such a vector is called normalizing
v.

14. Let V = C2, endowed with the usual Hermitian inner product <,>. Normalize
v = (1− 2i, 2 + i), and find a vector of length 8 in the direction of v.

15. Let V be the inner product space of problem 8.5 (b). Find the norm of f(x) = sinx.

16. Let V = R2 be endowed with inner product < x,y >= 2x1y1 + 4x2y2 (you do not
need to prove that this is in fact an inner product). Sketch a picture of the set of
points (x, y) such that x = (x, y) is a unit vector in V relative to this inner product.
Find the norm of (1, 2) relative to this inner product.

17. Prove the Polarization Identities, which say that for any inner product space V , and
any vectors v,w ∈ V ,

(a) <(< v,w >) = 1
4

(
||v + w||2 − ||v −w||2

)
.

(b) =(< v,w >) = 1
4

(
||v + iw||2 − ||v − iw||2

)
.

Note: If V is a vector space over R (as opposed to C), the first identity gives us
< v,w >= 1

4

(
||v + w||2 − ||v −w||2

)
.

18. Prove the Parallelogram Law, which says that for any inner product space V , and any
vectors v,w ∈ V ,

||v + w||2 + ||v −w||2 = 2
(
||v||2 + ||w||2

)
.

9.3 Dual relations and classification of inner products on Cn and Rn

19. A matrix A ∈Mn(C) is called positive definite if it is Hermitian and:

• for every v ∈ Cn, the product vHAv ≥ 0 (in particular, this means vHAv is real
for every v), and
• if v ∈ Cn is such that vHAv = 0, then v = 0.



Math 28S Fall 2011 Homework Problems Page 25

(a) Prove that for any positive definite, Hermitian matrix A, the formula < v,w >=
wHAv defines an inner product on Cn.

(b) Find a positive definite, Hermitian matrix A such that wHAv defines the usual
(Hermitian) inner product on Cn.

(c) Let {e1, ..., en} be the standard basis of Cn, and let < v,w >= wHAv for some
positive definite, Hermitian matrix A ∈Mn(C). Calculate (in terms of the entries
of A) < ej , ek > for all choices of j and k.

(d) Prove that every inner product on Cn is of the form < v,w >= wHAv for a
suitably chosen positive definite, Hermitian matrix A. Hint: use the result of
part (c) to define the entries of A in terms of the values of some inner products.

(e) Prove that the matrix A in part (d) is unique, given the inner product <,>.
Hint: use part (c).

20. A matrix A ∈Mn(R) is called positive definite if it is symmetric and:

• for every v ∈ Rn, the product vTAv ≥ 0, and
• if v ∈ Rn is such that vTAv = 0, then v = 0.

(a) Prove that for any positive definite, symmetric matrix A, the formula < v,w >=
wTAv defines an inner product on Rn.

(b) Prove that every inner product on Rn is of the form < v,w >= wTAv for a
suitably chosen positive definite, symmetric matrix A.

(c) Prove that the matrix A in part (b) is unique, given the inner product <,>.

(d) Let A =

(
3 1
1 5

)
and define an inner product on R2 by < v,w >= wTAv.

Compute < (2, 1), (−1, 3) >.

(e) Find the symmetric, positive definite matrix A such that the inner product of
problem 8.5 (e) is of the form < x,y >= yTAx.

21. Let V = Fn where F = R or C, with the usual (dot or Hermitian) inner product. Let
M ∈ Mn(F ). Show that for any x,y ∈ V , < Mx,y >=< x,MHy >. (This means
that if F = R, < Mx,y >=< x,MTy >.)

Remember these facts. They are used to prove the Fundamental Theorem of
Linear Algebra.

22. Let V = Fn where F = R or C, with some inner product on it. Let M ∈ Mn(F ).
Under what conditions is it true that for all x,y ∈ V , < Mx,y >=< x,MHy >?

9.4 Orthogonality

23. Find a complex number z such that the two vectors(
2 + 3i
5− i

)
and

(
1 + i
z

)
are orthogonal (with respect to the usual Hermitian inner product).
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24. Let V = R2 be endowed with inner product < x,y >= 4x1y1 + x1y2 + x2y1 + 4x2y2

(this is the inner product of Problem 8.5 (e)). Sketch a picture of the set of points
(x1, x2) such that x = (x1, x2) is orthogonal to (1, 0).

25. Let V = R3 with the usual inner product (i.e. dot product). Given any two vectors
a = (a1, a2, a3) and b = (b1, b2, b3) in V , define the cross product of these two vectors
by

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

In particular, the cross product of two vectors in R3 is itself a vector in R3.

(a) Compute (1, 2,−1)× (2,−1, 3).

(b) Prove that for all a,b ∈ R3, (a× b) ⊥ a and (a× b) ⊥ b.

(c) What is the relationship between a× b and b× a?

(d) Prove that a× b = 0 if and only if a ||b.

26. Prove the Pythagorean Theorem (for vectors), which says that if v and w belong to
some inner product space V and v ⊥ w, then ||v + w||2 = ||v||2 + ||w||2.

27. Here is the converse of the Pythagorean Theorem: If v and w are vectors in some
inner product space V such that ||v + w||2 = ||v||2 + ||w||2, then v ⊥ w.

(a) Show that the converse of the Pythagorean Theorem is false. Hint: to find a
counterexample, you can set V = C (as a vector space over itself), with the usual
Hermitian inner product.

(b) Show that if V is an inner product space over the field R, then the converse of
the Pythagorean Theorem is true.

28. Give a proof (using vectors and inner products) that the diagonals of a (Euclidean)
rhombus are perpendicular. Hint: Draw a rhombus and think of the sides as vectors;
give them names like v and w. Since the shape you drew is a rhombus, what is true
about v and w? Draw the diagonals of the rhombus, figure out what they are in
terms of the sides, and show they are orthogonal.

29. Prove (using vectors and inner products) that if the diagonals of a (Euclidean) paral-
lelogram have the same length, then the parallelogram is a rectangle.

30. Prove (using vectors and inner products) that if A and B are ends of the diameter of
a circle and if C is any other point on the same circle, then AC is perpendicular to
BC.

9.5 Orthogonal decomposition, projections and orthogonal comple-
ments

31. Let V be an inner product space. What are V ⊥ and {0}⊥?
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32. Let V be an inner product space and let W = Span(w1,w2, ...,wn). Show that
v ∈W⊥ if and only if v ⊥ wj for all j = 1, ..., n. Hint: This is pretty easy if you look
back at Problem 8.9.

33. Let V be an inner product space. If v is a vector which is orthogonal to itself, what
must be true about v?

34. Let V be an inner product space. Let W be any subspace of V . What is W ∩W⊥?

35. Let S = {v1, ...,vn} be a set of nonzero vectors in an inner product space such that
for all i 6= j, vi ⊥ vj . Show that S is a linearly independent set of vectors.

36. Let W be a subspace of an inner product space V . Prove that W ⊆ (W⊥)⊥. Warn-
ing: It is not true in general that W = (W⊥)⊥. More on this later.

37. Let A ∈Mmn(F ), where F = R or C. Prove C(A) ⊆ [N(AH)]⊥ and R(A) ⊆ [N(A)]⊥.
Hint: Use the dual relations.

38. Let V be R3 with the usual inner product. Consider the following vectors in V :

v = (2, 1, 2) and w = (0, 3, 4).

(a) Find the projection of v onto w.

(b) Find the “vector component of v orthogonal to w” (we called this v⊥ in class).

(c) Find the angle θ between v and w.

(d) Let W = Span(v,w). Prove that W⊥ is a line by proving that W⊥ = Span(v×
w).

39. Prove that projwv =< v,u > u where u is the normalized version of w.

40. Prove the following statements (assume w 6= 0):

(a) v ⊥ w⇔ projwv = 0.

(b) v||w⇔ projwv = v.

(c) projwv ⊥ v− projwv.

41. Let θ be the angle between the vectors v and w. Prove that

||v⊥|| = ||v|| sin θ

where v⊥ = v− projwv.

42. Prove the Law of Cosines, which says that given any vectors v and w in Rn, if θ is
the angle between v and w then

||v−w||2 = ||v||2 + ||w||2 − 2||v|| ||w|| cos θ.
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43. Let V = R2 be endowed with inner product < x,y >= 2x1y1 + 4x2y2 (you do not
need to prove that this is in fact an inner product). Relative to this inner product,
find the measure of the angle between (1, 0) and (1, 1). Is it greater than, less than,
or equal to π/4?

44. Prove the Generalized Triangle Inequality, which says that given any vectors v1, ...,vn,
we have ∣∣∣∣∣∣

∣∣∣∣∣∣
n∑
j=1

vj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

n∑
j=1

||vj ||.

45. In class, we proved the Triangle Inequality using the Cauchy-Schwarz Inequality
(which was derived independently). Prove the Cauchy-Schwarz Inequality, assum-
ing that the Triangle Inequality is true.

46. Let V be any vector space with inner product <,>. Prove the (General) Orthogonal
Decomposition Theorem, which says that given any finite-dimensional subspace W of
V , and any vector v ∈ V , we can write v = vW + v⊥ where vW ∈W and v⊥ ∈W⊥.

An outline of how to proceed: First, show that any finite-dimensional vector space
(or subspace) has a basis where the first vector in the basis is orthogonal to each of
the other elements. (To do this, take any basis {v1,v2, ...} and replace all the vectors
other than v1 with their vector component orthogonal to v1; prove that when you do
this you still have a basis of V .)

Second, to prove the theorem, use induction on the dimension of W . The base case
dim(W ) = 1 was proven in class (you don’t need to reprove it). The inductive step
goes like this: suppose the result is true for all subspaces of dimension k and suppose
dim(W ) = k + 1. By the result in the preceding paragraph, W has a basis where
the first vector in the basis is orthogonal to all the other elements in the basis. Now
let W ′ be the span of all the vectors in this basis other than the first vector ; this is
a subspace of dimension k. Apply the inductive hypothesis to write v as the sum of
something in W ′ (hence in W ) and something in (W ′)⊥.

Finally, figure out how to write the something in (W ′)⊥ as a sum of something in W
and something in W⊥. Then explicitly write v as the sum of something in W plus
something in W⊥ and check that everything works.

Remark: Your proof here doesn’t really tell you how to compute vW and v⊥. We’ll
talk about how to do that later–you use matrix operations to do it.

47. Prove that the choice of vW and v⊥ in the Orthogonal Decomposition Theorem are
uniquely determined by v and W . Hint: Suppose you have two different decomposi-
tions

v = vW + v⊥ and v = xW + x⊥

where vW ,xW ∈ W and v⊥,x⊥ ∈ W⊥. Subtract these equations and explain why it
must be that vW − xW ∈W

⋂
W⊥. But what is W

⋂
W⊥?

48. Let V be any finite-dimensional inner product space. Let W be a subspace of V .
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(a) Prove that given any basis B for W and any basis B⊥ for W⊥, B ∪ B⊥ is a basis
of V .

(b) Use part (a) to find a formula relating dim(V ),dim(W ) and dim(W⊥).

(c) Use part (b) to find the dimension of (W⊥)⊥, in terms of the dimension of W .

(d) Prove that W = (W⊥)⊥. Hint: A part of problem 7.13 may be helpful here.

(e) Note: The statement (W⊥)⊥ = W does not always hold if dim(V ) = ∞. Ex-
plain what part of the argument in parts (a)-(d) of this question breaks down if
dim(V ) =∞.

49. Let W be a plane in R3 containing 0. Why must W⊥ be a line? Hint: One of the
parts of Problem 42 is relevant here. Show that for every plane in R3 containing 0,
there is a vector n called a normal vector to the plane such that

x lies in the plane ⇔ n · x = 0.

We know by definition that W is the span of two vectors, say a and b. Given these
vectors, how would you compute n?

50. Let P be a plane in R3. Show that there is a vector n and a scalar d such that the
plane can be characterized as

x = (x, y, z) ∈ P ⇔ n · x = d.

As before, n is called a normal vector to the plane. In particular, if you are given a
definition of P as

P = {p + sv + tw : s, t ∈ R},

how do you compute n and d in terms of the given information p,v,w?

Note: If you let n = (a, b, c), then the equation n · x = d becomes ax + by + cz = d;
this proves that every plane in R3 has an equation of the form ax+ by + cz = d.

51. Find the equation (in ax + by + cz = d form) of the plane containing the points
(1, 2,−3), (0, 1, 6) and (−1, 1, 4).

52. Let V be an inner product space. A hyperplane in V is a set H ⊆ V of the form

H = {x ∈ V :< x,n >= d}

for some fixed vector n 6= 0 (called a normal vector to the hyperplane) and some
scalar d.

(a) Prove that every hyperplane is an affine subspace (and is a subspace if d = 0).

(b) Suppose V is finite-dimensional; find the dimension of a hyperplane H in terms
of the dimension of V .

(c) Describe all hyperplanes in V = R, all hyperplanes in V = R2 and all hyperplanes
in V = R3 (all taken as vector spaces over R).

(d) Formulate a definition of what it means for two hyperplanes to be parallel.

(e) Formulate a definition of the angle between two hyperplanes.
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9.6 Coordinate systems and orthonormal bases

53. Find the coordinates of the function 2x2 − 3x + 1 relative to the basis {4 − x, 2 +
3x, x2 − 1} of P2.

54. Find the coordinates of the vector (1, 4, 6, 0) relative to the basis

B = {(1, 0, 1, 0), (1, 0,−1, 0), (0, 1, 0, 1), (0, 1, 0,−1)}

of R4.

55. Let x,y ∈ V where V is some vector space and suppose B = {v1, ...,vn} is a basis of
V . Prove:

(a) [x + y]B = [x]B + [y]B.

(b) [rx]B = r[x]B for any scalar r.

56. (a) Suppose B = {v1, ...,vn} be an orthogonal basis of an inner product space V .
Let x ∈ V and suppose [x]B = (c1, ..., cn) (i.e. x =

∑n
j=1 cjvj). Find a formula

for the coordinates cj in terms of x and the basis vectors. Hint: Inner products
may be useful here.

(b) Repeat part (a) if the basis B is assumed to be an orthonormal basis (as op-
posed to just an orthogonal basis). The formula you get here should be
remembered.

57. Let W = Span(v1,v2,v3) where

v1 = (3, 1,−1, 3); v2 = (−5, 1, 5,−7); v3 = (1, 1,−2, 8)

(W is taken as a subspace of R4). Use the Gram-Schmidt procedure to find an
orthonormal basis for W .

58. In problem 46 we proved the Orthogonal Decomposition Theorem, which says that
given any finite-dimensional subspace W of an inner product space V , and given any
v ∈ V , we can write v = vW + v⊥ where vW ∈ W and v⊥ ∈ W⊥. We know that if
W = Span(w), then we can compute this decomposition because vW = projwv. In
this problem we show (one method) of actually computing vW in the general case:

Suppose v ∈ V and {w1, ...,wm} is an orthonormal basis for W . (Hypothetically, you
could find an orthonormal basis by starting with any basis of W and using Gram-
Schmidt on that basis.)

(a) Let x =
∑m

k=1 < v,wk > wk. Explain why x ∈W .

(b) Show that v − x ∈W⊥.

(c) Explain how the work in (a) and (b) gives formulas for vW and v⊥.

(d) Let V be Euclidean 4−dimensional space. Compute the projection of v =
(1, 2, 5, 6) onto the subspace W spanned by (1,−4, 0, 1) and (7,−7,−4, 1). (Use
a calculator.)
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59. Given a vector v ∈ V where V is an inner product space, and given a subspace W ⊆ V ,
define the distance from v to W to be

dist(v,W ) = min{||v −w|| : w ∈W};

that is, that the distance from a vector to the subspace is the minimum distance from
the vector to any point in the subspace.

(a) Show that dist(v,W ) = ||v⊥|| where v⊥ is the vector component of v orthogonal
to W . Hint: It is sufficient to show that ||v⊥|| ≤ ||v−w|| for all w ∈W (convince
yourself why). You can show this inequality using the Pythagorean Theorem (or
by other means).

(b) Use your answer to Problem 50 (d) to compute the distance (in Euclidean
4−dimensional space) from (1, 2, 5, 6) to the plane spanned by (0, 3,−4, 0) and
(2, 1, 0, 4/25).

(c) Let W be a hyperplane containing 0 with normal vector n. Prove that the
distance from v to W is | < n,v > |/||n||.

9.7 Orthogonal and unitary matrices

60. Let V be Rn, endowed with the usual inner product. An invertible real matrix Q is
called orthogonal if QT = Q−1. The set of n× n orthogonal matrices is denoted On.
Prove these statements:

(a) If Q is orthogonal, so is QT . (This is not hard.)

(b) Prove that every orthogonal matrix is invertible, and that the inverse of an
orthogonal matrix is also orthogonal.

(c) If Q is orthogonal, then the columns of Q form an orthonormal set of vectors
(hence form an orthonormal basis of Rn).

(d) If Q is orthogonal, then the rows of Q form an orthonormal set of vectors (hence
form an orthonormal basis of Rn).

(e) If Q is orthogonal, then for all x,y ∈ Rn, < Qx, Qy >=< x,y >.

(f) If Q is orthogonal, then for all x,y ∈ Rn, the angle between x and y is the same
as the angle between Qx and Qy.

(g) Classify all the 2 × 2 orthogonal matrices in terms of one parameter θ. Hint:
Why is the parameter called θ?

(h) Prove the converse of (b), i.e. that if the columns of an n×n real matrix Q form
an orthonormal basis of Rn, then Q is orthonormal.

61. Let V be Cn, endowed with the usual Hermitian inner product. An invertible complex
matrix U is called unitary if UH = U−1. (Unitary matrices with real entries are exactly
the orthogonal matrices.) The set of n× n unitary matrices is denoted Un. Prove:

(a) If U is unitary, so is UH , U , UT and U−1 (so in particular, all unitary matrices
are invertible).
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(b) If U is unitary, then the columns of U form an orthonormal set of vectors (hence
form an orthonormal basis of Cn).

(c) If U is unitary, then the rows of U form an orthonormal set of vectors (hence
form an orthonormal basis of Cn).

(d) If U is unitary, then for all x,y ∈ Cn, < Ux, Uy >=< x,y >.

(e) Prove the converse of (b), i.e. that if the columns of an n× n complex matrix U
form an orthonormal basis of Cn, then U is unitary.

(f) Prove the converse of (e), i.e. that if U ∈ Mn(C) and for all x,y ∈ Cn, <
Ux, Uy >=< x,y >, then U is unitary.

10 Linear transformations

1. For each of the following functions T , decide whether or not T is a linear transfor-
mation from V1 to V2. For each function that is a linear transformation, describe
the kernel and image of that transformation (by giving bases for those subspaces if
necessary).

(a) V1 = V2 = P3; T (f) = f ′.

(b) V1 = P3; V2 = R; T (f) = f ′(0).

(c) V1 = C([−1, 1],R); V2 = R; T (f) =
∫ 1
−1(f(x))2 dx.

(d) V1 = V2 = R3; T (x1, x2, x3) = (x1 − x2, 0, 0).

(e) V1 = R3; V2 = R2; T (x1, x2, x3) = (x1 + x2 + 2x3, x2 − 2x3).

(f) V1 = V2 = R2; T reflects points through the line x = 3.

(g) V1 = V2 = R3; T (x) = Ax where

A =

 1 2 2
1 3 5
0 1 3

 .

Hint: The third column of A is equal to 3 times the second column minus 4
times the first column.

(h) V1 = Mmn(R); V2 = Mnm(R); T (A) = AT .

(i) V1 = Mn(R); V2 = R; T (A) = trace(A).

(j) V1 = V2 = M2(R); T defined by

T

(
a b
c d

)
=

(
a+ b 0

0 c+ d

)
.

(k) V1 = Mmn(F ); V2 = Fm; T (A) is the first column of A.

(l) V1 = V2 = P2; T (ax2 + bx+ c) = a+ b(x+ 1) + b(x+ 1)2.

2. For each of the linear transformations in the previous problem, calculate dim(ker(T ))+
dim(image(T )). What does this sum have to do with the linear transformation? Make
a general conjecture.
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3. Let V = F be a vector space over itself. Describe all linear transformations from V
to V .

4. Prove that for any linear transformation T : V1 → V2,

T

 n∑
j=1

cjvj

 =
n∑
j=1

cjT (vj)

for any vectors v1, ...,vn and any scalars c1, ..., cn.

5. How many rows and columns must a matrix A have in order to define a mapping from
F 4 into F 5 by the rule T (x) = Ax?

6. Let T : V1 → V2 be a linear transformation. Prove that if T maps a set of linearly
independent vectors in V1 to a set of vectors in V2 which are linearly dependent, then
the equation T (x) = 0 has a nontrivial solution (nontrivial means x 6= 0).

Remark: The contrapositive of this statement is useful to know; it says that if
T (x) = 0 has only the solution x = 0 (i.e. if T is injective), then T maps sets of
linearly independent vectors to sets of linearly independent vectors.

7. Suppose T : R2 → R3 is a linear transformation such that T (1, 0) = (−1, 3, 7) and
T (0, 1) = (0,−2,−2). Find T (2, 3) and T (−4, 1). What is T (x1, x2) for an arbitrary
vector (x1, x2)?

8. Find a linear transformation T : R2 → R2 such that T (−1, 2) = (2, 1) and T (1, 3) =
(−2, 4). Hint: Find a matrix A such that T (x) = Ax.

9. Let Q =

(
cos θ − sin θ
sin θ cos θ

)
for some θ. Consider the linear transformation T : R2 →

R2 defined by T (x) = Qx. Show that T rotates each vector in R2 counter-clockwise
by θ degrees. Hint: Consider the polar coordinates of the vector x.

10. Let V1 and V2 be vector spaces over the same field F and let L(V1, V2) be the set of
linear transformations from V1 to V2. (Sometimes L(V1, V2) is called Hom(V1, V2).)
Show that L(V1, V2) is a vector space. Hint: To do this, you need to define an
addition and a scalar multiplication, i.e. given linear transformations T and S, what
is T + S? What is rT? What is the additive identity element? How are additive
inverses defined? If you answer these questions correctly, the rest of the vector space
axioms don’t really need to be checked because they’re “obvious”.

10.1 Dimension issues with linear transformations; surjectivity, in-
jectivity, isomorphisms, etc.

11. Suppose T : V1 → V2 is a linear transformation and suppose W is a subspace of V1.
Prove that T (W ), which is defined to be

T (W ) = {T (w) : w ∈W}
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is a subspace of V2 and that dim(T (W )) ≤ dim(W ).

Hint: The “right” way to prove this is to take a basis B = {w1,w2, ...} of W and then
let T (B) = {T (w1), T (w2), ...}. Then, by the result of Problem 4, T (W ) is the span
of the vectors in T (B). Why is this the “right” proof? (Because you prove something
stronger... formulate the stronger statement you have proven.)

Remark: As a special case of this, we see that if T : V1 → V2 is a linear transforma-
tion, then dimT (V1) ≤ dim(V1).

12. Prove that if a linear transformation T : V1 → V2 is injective, then dim(V1) ≤ dim(V2).
Hint: take a basis B = {w1,w2, ...} of V1 and then let T (B) = {T (w1), T (w2), ...}.
Show that T (B) is a linearly independent set of vectors in V2.

13. We say two vector spaces V1 and V2 over the same field are isomorphic (and write V1
∼=

V2) if there is a bijective linear transformation T : V1 → V2; such a transformation T is
called an isomorphism (of vector spaces). Prove: if V1

∼= V2, then dim(V1) = dim(V2).

14. Prove that if V1 and V2 are vector spaces over F with the same finite dimension, then
V1
∼= V2.

15. Let V1 and V2 be finite-dimensional vector spaces of the same finite dimension and let
T : V1 → V2 be a linear transformation. Prove that T is surjective if and only if T is
injective.

16. Prove the conjecture you made in Problem 2.

17. Suppose T : V1 → V2 is an isomorphism. Prove that for any basis B of V1, T (B) is a
basis of V2.

18. Suppose T : V1 → V2 is a linear transformation. Prove that if for any basis B of V1,
T (B) is a basis of V2, then T is an isomorphism.

19. Prove that isomorphism of vector spaces is an equivalence relation, i.e. prove for
vector spaces V,W,X over the same field F :

(a) V ∼= V ;

(b) if V ∼= W , then W ∼= V ;

(c) if V ∼= W and W ∼= X then V ∼= X.

Hint: Remember that to say two vector spaces are isomorphic means there is a bijec-
tive linear transformation between the two spaces. Part (b) is essentially asking you
to prove that the inverse of a bijective linear transformation is also a bijective linear
transformation, and part (c) is essentially asking you to prove that the composition
of two bijective linear transformations is a bijective linear transformation.

20. Let U, V andW be vector spaces over the same field and let S : V →W and T : U → V
be linear transformations. Classify the following statements as true or false; prove the
statements that are true and show the false statements are false by giving an explicit
counterexample:
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(a) If ST is injective, then T is injective. (Here, as always in linear algebra, ST
means S ◦ T , not S “times” T .)

(b) If ST is injective, then S is injective.

(c) If ST is surjective, then T is surjective.

(d) If ST is surjective, then S is surjective.

10.2 Standard matrices of linear transformations F n → Fm

21. Suppose T : R3 → R3 is a linear transformation that reflects all points in R3 through
the xy−plane. Find the standard matrix of T .

22. Suppose T : R2 → R2 is a linear transformation that first reflects points through the
x−axis, then reflects points through the y−axis. Find the standard matrix of T , and
show that T is a rotation (find the angle of rotation).

23. Find the standard matrix of each of the following linear transformations.

(a) T : R3 → R3 where T is projection onto (2, 1,−2);

(b) T : R4 → R2 where T (x1, x2, x3, x4) = (x1 − 5x3 + x4, 0);

(c) T : R2 → R2 where T stretches vectors by a factor of 2, then rotates the plane
π/3 radians counterclockwise;

(d) T : R3 → R3 described by T (1, 0, 0) = (1, 2, 3); T (0, 1, 0) = (1, 1, 1); T (0, 0, 1) =
(0, 0, 1);

24. Let A be the standard matrix of a linear transformation S : Rn → Rp and let B be
the standard matrix of another linear transformation T : Rm → Rn. Show that ST is
linear (this may have been done in a previous problem) and that the standard matrix
of ST is AB.

Remark: This problem explains why matrix multiplication is defined the way that
it is. Multiplying two matrices corresponds to composing the associated linear trans-
formations.

11 Systems of linear equations

1. Write the following system of linear equations as a matrix equation Ax = b and as a
vector equation: 

x− 2y + 3z − w
2 = 2

−
√

3x+ y + 5z + π2w = −4
2x− 3z = 6

2. (This problem is particularly important.) Let A ∈ Mmn(F ) and let b ∈ Fm. Let
S ⊆ Fn be the set of solutions to the matrix equation Ax = b. Prove:

(a) S 6= ∅ if and only if b ∈ C(A).
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(b) If S 6= ∅, then S is an affine subspace of Fn. Hint: assuming S 6= ∅, then there
is a vector p ∈ S. Consider the set W = S − p. Show W is a subspace of Fn;
what name have we given to W?

(c) If N(A) 6= {0}, then S contains at least two elements if it is nonempty.

(d) If F is infinite and N(A) 6= {0}, then S is infinite if it is nonempty.

(e) If N(A) = {0}, then S contains at most one element.

(f) The equation Ax = b has a unique solution x if and only if (b ∈ C(A) and
N(A) = {0}).

3. Prove that no system of linear equations with more variables than equations can have
a unique solution. Hint: Write the matrix version of the system and consider the
dimensions of the fundamental subspaces associated to the coefficient matrix A.

4. Prove that if A ∈ Mn(F ) is invertible then the equation Ax = b has exactly one
solution x for every choice of b ∈ Fn. What is that solution? What does this fact
imply about the null space of an invertible matrix? What does this fact imply about
the row space of an invertible matrix? What does this fact imply about the column
space of a real invertible matrix (hint: if A is invertible, so is AT )?

5. SupposeA is some matrix withN(A) = Span((2,−1, 3), (1, 0, 5)). SupposeA(1, 1, 4) =
(2, 0, 3). Describe all solutions to the equation Ax = (2, 0, 3).

6. Given the following subspace W ⊆ C5, find a matrix A such that W = C(A):

W = {(3− 2i)r + s− 3t, s+ (2− 7i)t, 5t,−2is− t, (1− i)r − 3s) : r, s, t ∈ C}

7. Assume that the following chart shows the number of grams of nutrients per ounce of
food indicated:

BEEF POTATO CABBAGE

PROTEIN 20 5 1
FAT 4 7 12

CARBOHYDRATES 15 20 5

If you eat a meal consisting of 9 ounces of meat, 20 ounces of potatoes, and 5 ounces
of cabbage, how many grams of each nutrient do you get? More importantly, why
is this problem in our linear algebra course (express the result using linear algebra
language)?

8. Continuing with the data from the previous problem, suppose the army desires to
use these same delectable foods to feed new recruits a dinner providing 305 grams of
protein, 365 grams of fat, and 575 grams of carbohydrates. Write a system of equations
which, when solved, will figure out how much of each food should be prepared for each
recruit. Be sure to make clear what this problem is doing in a linear algebra course.
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11.1 Gaussian elimination

9. Use Gaussian elimination to row reduce the following matrices to a row-echelon form,
then to a reduced row-echelon form:

A =

 1 2 −3 0
2 4 −2 2
3 6 −4 3



B =

 2 2 −1 6 4
4 4 1 10 13
6 6 0 20 19


10. Describe all possible row-echelon forms of a 2×2 matrix. Describe all possible reduced

row-echelon forms of a 2× 2 matrix.

11. Solve the following systems using Gaussian elimination:

(a)


x − 2y + z = 7
2x − y + 4z = 17
3x − 2y + 2z = 14

(b)


x + 2y − z = 3
x + 3y + z = 5
3x + 8y + 4z = 17

(c)


x1 − 2x2 + x3 + x4 = 7

2x2 − x3 − 7x4 = 6
− 3x3 + 2x4 = −6

(d)


x + 2y + 3z = 1
2x + 3y + 4z = 0
3x + 4y + 5z = 1

(e)


x1 − 2x2 − 3x3 + 5x4 − 2x5 = 4

2x3 − 6x4 + 3x5 = 2
5x5 = 10

12. Determine if the following three planes in R3 have at least one common point of
intersection: x+ 2y + z = 4, y − z = 1 and x+ 3y = 0.

13. Find the unique polynomial of degree at most 3 which goes through the points
(1, 1),(2, 3),(3, 6) and (4, 10) (please use Gaussian elimination).

14. Express (1,−2, 5) as a linear combination of (1,−3, 2), (2,−4,−1) and (1,−5, 7), if it
can be done; if not, explain why this problem is impossible.

15. Let v1,v2,v3 ∈ R3 be v1 = (1,−5,−3), v2 = (−2, 10, 6) and v3 = (2,−9, h).

(a) For what values of h, if any, is v3 ∈ Span(v1,v2)?
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(b) For what values of h, if any, does {v1,v2,v3} form a linearly independent set?

16. Let v1,v2,v3 ∈ R3 be v1 = (1,−3, 2), v2 = (−3, 9,−6) and v3 = (5,−7, h).

(a) For what values of h, if any, is v3 ∈ Span(v1,v2)?

(b) For what values of h, if any, does {v1,v2,v3} form a linearly independent set?

11.2 Rank

17. Give the rank of coefficient matrices for each of the systems of equations in problem
11.

18. For each of the following pairs of matrices, assume A is row equivalent to B. In each
case, find a basis for C(A), R(A), and N(A).

(a) A =

 −1 −4 9 −7
−1 2 −4 1
5 −6 10 7

 ; B =

 1 0 −1 5
0 −2 5 −6
0 0 0 0



(b) A =


−1 1 −3 7 9 −9
1 2 −4 10 13 −12
1 −1 −1 1 1 −3
1 −3 1 −5 −7 3
1 −2 0 0 −5 −4

 ; B =


1 1 −3 7 9 −9
0 1 −1 3 4 −3
0 0 0 1 −1 2
0 0 0 0 0 0
0 0 0 0 0 0


19. (a) Suppose A ∈ M38(R) has rank 3. Find dimN(A), dimR(A), dimC(A) and the

rank of AT .

(b) Suppose A ∈ M38(R) has rank 1. Find dimN(A), dimR(A), dimC(A) and the
rank of AT .

(c) Suppose A ∈ M63(C) has rank 3. Find dimN(A), dimR(A), dimC(A) and the
rank of AH .

(d) Suppose A ∈ M63(R) has rank 2. Find dimN(A), dimR(A), dimC(A) and the
rank of AT .

(e) Suppose A ∈ M56(F ) has a 4−dimensional null space. How many linearly in-
dependent columns does A have? How many linearly independent rows does A
have? How many pivot columns will A have if one performs Gaussian elimination
on A?

(f) Suppose A ∈M35(F ). What are the possible dimensions of C(A)? What are the
possible dimensions of R(A)? What are the possible dimensions of N(A)?

(g) Suppose A ∈M42(F ). What are the possible dimensions of C(A)? What are the
possible dimensions of R(A)? What are the possible dimensions of N(A)?

(h) Suppose A ∈ M57(F ) is such that the subspace of all solutions to Ax = 0 has a
basis of three vectors. What is the rank of A?
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20. Is there a 3× 4 matrix such that dimC(A) = 2 and dimN(A) = 2? If so, find such a
matrix. If not, explain why not.

21. Give an example of a 4× 3 matrix with rank 1.

22. In each of the following, determine (a) if the equation Ax = 0 has a nontrivial solution
(“nontrivial” means a solution other than x = 0) and (b) if the equation Ax = b has
at least one solution for every choice of b.

(a) A is a 3× 3 matrix with 3 pivot columns.

(b) A is a 2× 4 matrix with rank 2.

(c) A is an 8× 6 matrix with 1−dimensional null space.

(d) A is a 5× 3 matrix with 3 pivot columns.

(e) A is a 4× 4 matrix with rank 3.

23. Consider the system of equations Ax = b where

A =


1 −2 4 0
−1 −1 −1 0
0 4 −4 3
3 2 4 −2
1 0 2 2

 and b =


4
2
−11
−2
−2

 .

Let aj represent the jth column of A.

(a) Find the solution set of this system.

(b) Find bases for the column space of A, the row space of A, and the null space of
A.

(c) Find the dimensions of R(A), C(A), N(A) and N(AT ).

(d) Find the rank of A.

(e) Let T : Ra → Rb be the linear transformation defined by T (x) = Ax. What are
a and b? Find bases for the kernel and image of T , and the dimensions of the
kernel and image of T .

(f) Is b in the span of the columns of A? If so, write b as a linear combination of
the columns of A. If not, explain why not.

(g) Find a vector which is not in the column space of A.

(h) Is there any vector v ∈ R5 for which Ax = v has exactly one solution? If so,
find such a vector v. If not, explain why not.

(i) Do the vectors a1,a2,a3,a4 form a linearly independent set? Why or why not?

(j) Do the vectors a1,a2,a4 form a linearly independent set? Why or why not?

(k) Do the vectors a1,a2,a3,a4,b form a linearly independent set? Why or why not?

24. Do the vectors (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1) and (1, 0, 0, 1) span R4? Why or why
not? Do they span C4? Why or why not?

25. Let W be the subspace of R4 spanned by (1, 2,−5, 2) and (0, 1, 3,−1). Find a basis
of W⊥.
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11.3 Fundamental theorem of linear algebra

26. Let T : Fn → Fm be a linear transformation with standard matrix A. Prove:

(a) ker(T ) = N(A).

(b) T (Fn) = C(A).

(c) T is injective if and only if N(A) = {0}.
(d) T is surjective if and only if C(A) = Fm.

27. Prove the Fundamental Theorem of Linear Algebra, which says:

Let F = R or C and let <,> be standard (dot or Hermitian) inner product. Then for
any A ∈Mmn(F ),

(a) C(A) = [N(AH)]⊥;
(b) R(A) = [N(A)]⊥.

28. Determine the premultiplier matrix that clears the column beneath the first pivot
when performing Gaussian elimination on the matrix 1 2 3

2 3 4
3 4 4

 .

In other words, if you call the above matrix A, find a matrix E such that the matrix
you get once the column under the first pivot is cleared is EA.

11.4 Matrix inverses

29. Use the Gauss-Jordan method to find the inverses of these matrices (if the inverse
exists):  0 1 1

1 0 1
1 1 0




3 10 3 8
3 −2 8 7
2 1 4 −5
5 11 7 3


30. Use as few calculations as possible (use theory, if possible) to determine whether or

not each of these matrices are invertible (you need not find the inverse):

 5 0 0
−3 −7 0
8 5 −1

  0 3 −5
1 0 2
−4 −9 7

  1 −5 4
0 3 4
−3 6 0

  −7 0 4
3 0 −4
2 0 9


31. If A, B and C are n × n invertible matrices, does the matrix equation C−1(A +

X)B−1 = I have a solution X? If so, find it.

32. Suppose A is a 4× 3 matrix and B is a 3× 4 matrix. Is it possible for the matrix AB
to be invertible? Make a conjecture that generalizes this; prove your conjecture.
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12 Coordinate systems and changes of basis

1. Consider the bases B = {(1,−2, 1), (2, 3, 2), (1, 1, 0)} and B′ = {(1, 0, 2), (1, 0, 3), (2, 2, 1)}
of R3.

(a) Find the B−coordinate vector of x = (1, 2, 3).

(b) If the B−coordinate vector of x is (2, 1,−1), find x. Express the computation
you did here as matrix multiplication.

(c) Find the B′−coordinates of the vector whose B−coordinates are (1,−1, 2).

2. Suppose T : R3 → R2 has standard matrix(
1 −3 6
2 −1 5

)
.

Find the matrix of T relative to the basis {(1, 1, 1), (1, 2,−1), (1, 0,−1)} of R3 and the
basis {(5, 2), (7, 3)} of R2.

3. Let T : V → V be a linear transformation (where V is finite-dimensional) be such
that the matrix of T with respect to some basis of V (chosen for both the domain and
range) is the identity matrix. Prove that the matrix of T with respect to every basis
of V is the identity matrix (so long as you choose the same basis of V for both the
domain and range).

4. Let T : V1 → V2 be a linear transformation between finite-dimensional vector spaces
V1 and V2. Show that if A and A′ are two different matrices of T (taken with respect
to different bases of V1 and V2, then A and A′ have the same rank.

5. Let A =

(
1 2
3 4

)
and let T : M2(R) → M2(R) be defined by T (M) = AM . Find

the matrix of T relative to the basis {∆11,∆12,∆21,∆22} of M2(R).

6. Let T : P3 → P3 be defined by (T (f))(x) = f ′(x)− f(1). Find T (x2 + 2). Next, find
the matrix of T relative to the basis {1, x, x2, x3} of P3. Is T invertible? Why or why
not?

7. Let W be the subspace of C∞(R,R) which is spanned by e2x, e2x sinx and e2x cosx.
Let T : W → W be defined by T (f) = f ′. Find the matrix of T relative to the basis
{e2x, e2x cosx, e2x sinx. Is T invertible? Why or why not?

8. Define T : P2 → R3 by T (f) = (f(−1), f(0), f(1)). Show that T is linear; find the
matrix of T relative to the basis {1, x, x2} of P2 and the standard basis of R3. Is T
invertible? Why or why not?

9. Let T : R2 → R2 have standard matrix

(
−3/5 4/5
4/5 3/5

)
. Find the matrix of T relative

to the basis {(1, 2), (−2, 1)} of R2.



Math 28S Fall 2011 Homework Problems Page 42

13 Determinants

13.1 Computations with permutations

1. Let σ ∈ S8 be defined by

x 1 2 3 4 5 6 7 8

σ(x) 4 7 3 6 2 1 8 5
.

(a) Find σ2(1).

(b) Write σ in cycle notation.

2. Let σ = (124)(37) and τ = (25467) be permutations in S7. Compute σ−1, στ , τσ,
στ−1 and τστ ; write your answers in cycle notation.

3. Show that every cycle (x1x2...xk) can be written as a product of transpositions. How
many transpositions do you multiply to obtain a cycle with k elements in it?

4. Show that if you can write a cycle as a product of k transpositions, then you can write
it as a product of k + 2 transpositions (and therefore by induction, you can write it
as a product of k + 2j transpositions for any positive integer j).

5. Fix n. Let P : Rn → R be defined by P (x1, ..., xn) =
∏
i<j(xi − xj). (For example, if

n = 3, we have P (x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).) Let σ ∈ Sn and define
the sign of σ to be

sgn(σ) =
P (x1, x2, ..., xn)

P (xσ(1), xσ(2), ..., xσ(n))
.

For example, suppose n = 3 and σ = (12). Then

sgn(σ) =
P (x1, x2, x3)

P (xσ(1), xσ(2), ..., xσ(n))
=
P (x1, x2, x3)

P (x2, x1, x3)
=

(x1 − x2)(x1 − x3)(x2 − x3)

(x2 − x1)(x2 − x3)(x1 − x3)
= −1.

(a) Convince yourself that the example is indeed worked out properly. Hint: Think
carefully about what P (x2, x1, x3) means. What is P (x3, x2, x4, x1)?

(b) Show that the sign of any permutation is either 1 or −1. Note: from this fact we
can define the parity of a permutation: σ ∈ Sn is said to be even if sgn(σ) = 1
and odd if sgn(σ) = −1.

(c) What is the sign of the identity permutation (defined by σ(x) = x for all x)?

(d) Show that the sign of any transposition is −1.

(e) Show that sgn(στ) = sgn(σ) · sgn(τ) for any permutations σ, τ ∈ Sn.

(f) Show that sgn(σ−1) = sgn(σ) for all σ ∈ Sn.

(g) Show that if σ is written as the product of k transpositions, then sgn(σ) = (−1)k.
Hint: use previous parts of this question.

(h) Find the sign of a cycle (x1x2...xn). Use this fact to determine a method for
determining the sign of a permutation quickly without having to work out any
P ’s as above.
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(i) Find the sign of σ = (12854)(367) ∈ S9.

(j) Find the signs of all the permutations in S4. How many permutations are even?
How many are odd? Make a conjecture about the numbers of even and odd
permutations in Sn.

6. Let A ∈Mn(F ) and let σ ∈ Sn. The expression
∏n
j=1 aσ(j),j is the product of n entries

taken from A. Show that the list of numbers multiplied together in this expression
has one number taken from each row, and one number taken from each column, of A.
Note: The

∏
here means multiply the entries that follow it, in the same way that

∑
means sum.

7. Write down a 4×4 matrix A (choose your own entries) and let σ ∈ S4 be σ = (12)(34).
Compute, for your matrix,

∏n
j=1 aσ(j),j .

13.2 Properties of the determinant

8. A square matrix is called lower triangular if all the entries above its diagonal are zero
and is called upper triangular if all the entries below its diagonal are zero. (Diagonal
matrices are those which are both upper and lower triangular.) Show that for any
(upper or lower) triangular matrix, the determinant of that matrix is equal to the
product of its diagonal entries. Hint: problem 6 is useful here.

9. Find an explicit formula for the determinant of a 3× 3 matrix (write it out from the
definition).

10. To find the determinant of a 5 × 5 matrix, how many terms would have to be
added/subtracted together to obtain the determinant (if one used the definition)?

11. Show that if two rows of a matrix are identical, then the determinant of that matrix
is zero. Hint: Interchange the two rows.

12. (a) Show that the determinant of a matrix is nonzero if and only if it is row equivalent
to the identity matrix (thus if and only if the matrix is invertible, by previous
theory).

(b) Explain how performing row reductions on a matrix gives a method of computing
its determinant.

13. Let (a, b) and (u, v) be two vectors in R2. Construct a parallelogram whose sides are
the vectors (a, b) and (u, v). Find the area of this parallelogram. What does this area
computation have to do with determinants?

14. Suppose A is n× n. How are the following quantities related to det(A)?

det(2A) det(−A) det(A2) det(A−1) det(AT ) det(A) det(AH)

15. Suppose A is a square matrix such that det(A4) = 0. Can A be invertible? Why or
why not?
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16. Suppose Q is an orthogonal matrix. What must be true about det(Q)?

17. Suppose U is a unitary matrix. What must be true about det(U)?

18. In this problem we derive Cramer’s Rule, which gives a method of solving systems
of n linear equations in n variables which have a unique solution (the method uses
determinants).

First, given A ∈Mn(F ) and b ∈ Fn, define the matrix Ai(b) to be the n× n matrix
which has the same entries of A except on its ithcolumn, and whose ith column is b.

For example, if A =

(
1 2
3 4

)
and b = (5, 6), then A2(b) =

(
1 5
3 6

)
.

Let A ∈ Mn(F ) be invertible and let b ∈ Fn be given. Let x = A−1b, i.e. x is the
solution to the equation Ax = b.

(a) Show that Ax = b if and only if AIi(x) = Ai(b).

(b) Use part (a) to show that (detA)(det Ii(x)) = det(Ai(b)).

(c) Calculate det(Ii(x)) in terms of the components of x.

(d) Use parts (b) and (c) to derive a formula for the components of x in terms of
the determinants of A and Ai(b). This formula is called Cramer’s Rule.

(e) Use Cramer’s Rule to solve {
x+ 2y = 2
−x+ 4y = 1

.

19. Suppose A is an invertible n × n matrix. Let B = A−1 and denote the respective
entries of A and B by aij and bij , respectively.

(a) Let bj be the jth column of B, i.e. bj = (b1j , ..., bnj). What is Abj?

(b) Use part (a) and Cramer’s Rule to find a formula for bij in terms of determinants.

13.3 Computing determinants

20. Find determinants of each of the following matrices:

 3 0 4
2 3 2
0 5 −1

  −1 0 0
2 3 0
0 5 −4




1 2 0 1
0 2 1 0
−2 3 3 −1
1 0 5 2





Math 28S Fall 2011 Homework Problems Page 45

14 Eigentheory

14.1 Definitions and properties

1. Let V be a vector space over F and let T : V → V be a linear transformation from V
to itself. We say a subspace W ⊆ V is invariant (under T ) if T (W ) ⊆W .

(a) Given linear transformation T : V → V , there are two “trivial” subspaces of V
which are always invariant (no matter what T is). What are they?

(b) Show that ker(T ) and T (V ) are both invariant subspaces of V under T .

(c) Let T : R2 → R2 be the transformation in problem 9 on page 40. Find all the
subspaces of R2 which are invariant under T . Hint: the result of problem 9, page
40 may be helpful.

(d) Let T : R2 → R2 be the transformation T (x, y) = (−y, x). Find all invariant
subspaces under this T .

2. In this problem we will characterize all one-dimensional invariant subspaces of linear
transformations:

(a) Suppose w 6= 0 is a vector and λ ∈ F is such that T (w) = λw. Show that
W = Span(w) is an invariant subspace (of dimension 1) under T .

(b) Suppose W is a one-dimensional subspace of V which is invariant under T . Show
that there exists a scalar λ such that T (w) = λw for every w ∈W .

3. Let T : V → V be a linear transformation. We say that a scalar λ ∈ F is an eigenvalue
of T if there exists a nonzero vector w ∈ V s.t. T (w) = λw. Given an eigenvalue λ,
any vector w ∈ V satisfying T (w) = λw is called an eigenvector (corresponding to λ)
of T .

(a) Fix an eigenvalue λ of T . Prove that the set of eigenvectors corresponding to λ
is a subspace of V , called the eigenspace corresponding to λ.

(b) Suppose λ1, ..., λk are distinct eigenvalues of T (“distinct” means λi 6= λj for all
i 6= j) with corresponding eigenvectors w1, ...,wk. Prove that the set {w1, ...,wk}
is linearly independent.

Hint: Suppose the set is linearly dependent. Then there is an initial vector
wm which depends on the previous vectors, i.e. you get an equation wm =
c1w1 + ... + cm−1wm−1 for scalars c1, ..., cm−1. Apply T to both sides of this
equation and derive a contradiction.

(c) Use the result of part (b) to prove that if dimV = n <∞, then T : V → V has
at most n distinct eigenvalues.

4. Let A ∈ Mn(F ). We say that a scalar λ ∈ F is an eigenvalue of the matrix A if
there exists a nonzero vector w ∈ Fn s.t. Aw = λw. Given an eigenvalue λ, any
vector w ∈ Fn satisfying Aw = λw is called an eigenvector (corresponding to λ) of
A. (Put another way, eigenvalues/vectors of A are eigenvalues/vectors of the linear
transformation T (x) = Ax. Read question 3 for the definitions of eigenvalue and
eigenvector for a linear transformation.)



Math 28S Fall 2011 Homework Problems Page 46

(a) Prove that w 6= 0 is an eigenvector of A corresponding to λ if and only if
w ∈ N(A− λI).

(b) Prove that λ is an eigenvalue of A if and only if det(A− λI) = 0.

(c) Given matrix A ∈Mn(F ), the expression det(A−xI) is called the characteristic
polynomial of A. Explain why this expression is a polynomial (in the variable x)
of degree n (be sure to explain why the degree cannot be less than n).

(d) Prove that if n is odd, then every n× n real matrix has a real eigenvalue.

(e) Prove that every complex matrix has a complex eigenvalue. Hint: Apply the
Fundamental Theorem of Algebra, which says that every nonconstant polynomial
with complex coefficients has a complex root.

(f) Find all eigenvalues of the matrix

A =

 −4 −4 −4
6 4 6
2 4 2

 .

Hint: use part (b) to solve for λ.

5. (Read questions 3 and 4 for the definitions of eigenvalue and eigenvector.)

(a) Let V and W be vector spaces over F with dimV = dimW . Let φ be any
isomorphism φ : V → W . Let T : V → V be linear and let S : W → W be
defined by S = φ ◦ T ◦ φ−1.

i. Draw a commutative diagram (with sets and arrows) illustrating the rela-
tionship between S and T .

ii. Show that if λ ∈ F is an eigenvalue for T with eigenvector w, then λ is also
an eigenvalue for S. What is an eigenvector (in terms of w) corresponding
to λ for S?

(b) Let V be a real vector space of dimension n <∞. Prove that if n is odd, every
linear transformation T : V → V has a real eigenvalue. Hint: use part (a) of this
problem and part (d) of question 4.

(c) Let V be a vector space over C of dimension n < ∞. Prove that every linear
transformation T : V → V has a (complex) eigenvalue. Hint: Use part (a) of
this problem and the result of part (e) of question 4.

(d) Show that if A and A′ are two different n × n matrices representing the same
linear transformation T : V → V , then A and A′ have the same eigenvalues.

(e) Show that if P is an invertible matrix, then A and PAP−1 have the same eigen-
values.

6. (Read questions 3 and 4 for the definitions of eigenvalue and eigenvector.) Let V be a
finite-dimensional vector space over F and let T : V → V be a linear transformation.
Let B = {v1, ...,vn} be a basis of V and let A ∈ Mn(F ) be the matrix of T relative
to B.
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(a) Prove that the following three statements are equivalent:

i. A is upper triangular;
ii. T (vk) ∈ Span(v1, ...,vk) for all k ≤ n;
iii. Span(v1, ...,vk) is invariant under T , for all k ≤ n.

(b) Suppose the matrix A of T relative to some basis of V is upper triangular. Show
that the eigenvalues of T , and also the eigenvalues of A, are the diagonal entries
of A. Hint: Use part (a) of question 4.

(c) Prove that the following are equivalent:

i. A is diagonal;
ii. Every vector in the basis B is an eigenvector of A.

(d) Prove that if a linear transformation T : V → V has n distinct eigenvalues
(where dimV = n), then there is a basis B of V such that the matrix of T
associated to B is diagonal.

(e) Prove that if a matrix A ∈ Mn(F ) has n distinct eigenvalues, then there is an
invertible matrix P ∈Mn(F ) such that P−1AP is a diagonal matrix.

7. Prove that if V is a finite dimensional vector space over C and T : V → V is linear,
then there is a basis of V such that T has an upper-triangular matrix relative to that
basis. Hint: Use induction on dimV . The case dimV = 1 is trivial. Here is an outline
of how to carry out the induction:

(a) Use part (c) of question 5 to find an eigenvalue λ of T .
(b) Define the linear transformation S : V → V by S(x) = T (x) − λx. Show

W = Im(S) is invariant under T , and show that the kernel of S consists of
eigenvectors of T corresponding to λ.

(c) Use the induction hypothesis to find a basis of W such that the matrix B of
T : W →W relative to that basis is upper-triangular.

(d) Finally, show that the upper-triangular matrix

A =

(
B ∗
0 λI

)
is the matrix of T relative to an appropriately chosen basis of V .

8. Prove that if V is a finite dimensional vector space over C and T : V → V is linear,
then there is a orthonormal basis of V such that T has an upper-triangular matrix
relative to that basis.

9. Show that the trace of a matrix is equal to the sum of its eigenvalues. Hint: use
problems 7 and 6 (b).

10. Show that the determinant of a matrix is equal to the product of its eigenvalues. Hint:
use problems 7 and 6 (b).

11. Let A ∈Mn(C) be a matrix with only real entries. Suppose A has a complex eigenvalue
λ. Show λ is also an eigenvalue of A. What is the relationship between the eigenvectors
corresponding to λ and the eigenvectors corresponding to λ?
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14.2 Diagonalization and applications

12. A matrix A ∈ Mn(F ) is said to be diagonalizable if there is an invertible matrix P
such that the matrix Λ = P−1AP is diagonal. We know from the previous subsec-
tion (in particular, problem 6 (e)) that if A has n distinct eigenvalues, then A is
diagonalizable.

(a) Prove that A is diagonalizable if and only if Fn has a basis consisting only of
eigenvalues of A (the “if” part of this should have been done in 6 (e)).

(b) Prove that if A is diagonalizable, then the eigenvalues of A are the diagonal
entries of Λ. Hint: use part (e) of question 5 above.

(c) By inspection, what are the eigenvectors of Λ? Applying part (a) of question 5,
what does that tell you about the eigenvectors of A (specifically, what do they
have to do with P or P−1?)

(d) Show that

(
0 1
0 0

)
is not diagonalizable.

13. Let A ∈M2(R) be a matrix with no real eigenvalues Remark: by problems 4 (e) and
11, A has two complex eigenvalues λ and λ. Since λ is not real, we can write λ = eiθ

where θ /∈ {0, π}.

(a) Show A is diagonalizable if we allow entries of P and Λ to be complex.

(b) Let λ ∈ C be an eigenvalue of A and let v ∈ C2 be an eigenvector corresponding
to λ with ||v|| = 1. Let P ∈M2(R be P = (<(v) =(v)). Show that P−1AP ∈ Q2

(and is a rotation matrix).

14. Suppose A ∈Mn(F ) is diagonalizable.

(a) Prove that there exists an invertible matrix P and a diagonal matrix Λ such that
A = PΛP−1. (This is easy, given the definition in problem 12.) Writing A this
way is called diagonalizing A.

(b) Show that An = PΛnP−1 for n = 0, 1, 2, ...

(c) If Λ =

 2 0 0
0 1 0
0 0 −1

, find Λ2, Λ13 and Λ42. Generalize this.

(d) Suppose A =

(
5 7
2 3

)
. Find A8 by diagonalizing A.

15. Diagonalize the matrix

 −1 4 −2
−3 4 0
−3 1 3

. You may assume without calculation that

the eigenvalues are λ = 1, λ = 2 and λ = 3.

16. Determine whether or not these matrices are diagonalizable: 7 4 16
2 5 8
−2 −2 −5

  4 0 0
1 4 0
0 0 3


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17. Denote the owl population and wood rat population in a certain ecosystem at time k
by xk = (Ok, Rk). Suppose biologists determine that these populations evolve by the
equations {

Ok+1 = .5Ok + .4Rk
Rk+1 = −pOk + 1.1Rk

where p > 0 is some unknown parameter representing the rate of deaths of rats due
to predation by owls.

(a) Show that this set of recursive relations is equivalent to the matrix equation
xk+1 = Axk for some matrix A. Find A.

(b) Show that xk = Akx0 where x0 = (O0, R0) represents the initial numbers of owls
and rats in the ecosystem.

(c) Explain how you would compute the number of rats in the ecosystem when
k = 100.

18. A certain beetle has 3 life stages: egg, larva, adult. During each time period, each
adult lays 15 eggs and then dies, 80% of the eggs hatch into larvae, and 20% of the
larvae survive to adulthood.

Suppose initially a certain garden harbors 50 eggs, 20 larvae, and 10 adults. What will
be the situation at the end of one time period? Two periods later? Three? A hundred
time periods later? Describe how to approach this problem using the machinery of
linear algebra (eigentheory). (But dont actually compute anything, as the algebra is
not simple.)

19. Suppose A ∈ Mn(R) is diagonalizable and all of its eigenvalues are nonnegative.
Explain how to define a matrix B ∈Mn(R) such that B2 = A.

20. In this problem we define the exponential of a matrix. Recall that for a number x, we
can write the exponential of x as a power series

ex = exp(x) =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ ...

which converges for all x ∈ R. Given a n× n matrix A, we can define the exponential
of A to be the n× n matrix

eA = exp(A) =
∞∑
n=0

An

n!
= I +A+

1

2
A2 +

1

6
A3 +

1

4!
A4 +

1

5!
A5 + ...

In fact, this series “converges” for all matrices A (but exactly what is meant by
convergence here is beyond the scope of this class).

(a) Suppose Λ is a diagonal matrix. Give a formula for eΛ.

(b) Prove that if P ∈ Mn(F ) is invertible, then ePQP
−1

= PeQP−1 for any Q ∈
Mn(F ).
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(c) Let A =

 1 0 1
0 1 1
1 1 0

. Compute eA by diagonalizing A and using previous parts

of this problem.

(d) Compute exp

(
0 1
0 0

)
using the definition of the matrix exponential.

(e) Give examples of 2 × 2 matrices A and B which show that in general, eA+B 6=
eAeB.

(f) It is true that if AB = BA, then eA+B = eAeB Give a sketch of why this is
by expanding out all three exponentials with their power series definitions, and
match terms on the two sides up to, say, third powers to see what is going on.
Why is commutativity necessary?

21. Recall that the differential equation dx
dt = rx has as its solutions x = x0e

rt where the
x0 is an arbitrary constant (in fact, x0 = x(0)).

(a) Now, let A ∈ Mn(F ) and let x0 ∈ Rn be given. Define x : R → Rn by x(t) =
eAtx0. Write the formula for x out (as a power series) and differentiate it term-
by-term to obtain

x′(t) = Ax(t).

This gives a technique to solve systems of linear differential equations. Let’s
consider the system {

x′1(t) = 4x1(t)− 5x2(t)
x′2(t) = −2x1(t) + x2(t)

with initial condition x1(0) = 3, x2(0) = −1.

(b) Write x(t) = (x1(t), x2(t)) and explain why the given system is equivalent to the
matrix differential equation

x′(t) =

(
4 −5
−2 1

)
x(t), x0 =

(
3
−1

)
.

(c) Solve this system by using the formula x(t) = eAtx0. (The fact that this is a
solution follows from (a); that this is the only solution of this system follows from
a theorem in the study of differential equations called the “existence/uniqueness
theorem”.)

15 Spectral theory

15.1 Complex spectral theory

Throughout this subsection, <,> represents the usual inner product on Cn with associated
norm || · ||.

1. Prove that every eigenvalue of a Hermitian matrix is real.
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2. Prove that if A ∈Mn(C) is such that < Av,v >= 0 for all v ∈ Cn, then A = 0. Hint:
First show

< Av,w > =
1

4
(< A(v + w),v + w > − < A(v −w),v −w >)

+ i
1

4
(< A(v + iw),v + iw > − < A(v − iw),v − iw >) .

(Without the A, this is the content of the Polarization Identities we proved in problem
17 on page 16.) Then explain why the hypothesis of this problem implies < Av,w >=
0 for all v,w; we’ve already discussed in class why (< Av,w >= 0 for all v,w) implies
A = 0.

3. Prove that a matrix A ∈ Mn(C) is Hermitian if and only if < Av,v >∈ R for all
v ∈ C. Hint: use conjugate symmetry of inner products and the dual relations,
together with problem 2 of this section.

4. A matrix A ∈Mn(C) is called normal if AAH = AHA.

(a) Show that every Hermitian matrix is normal.

(b) Show that every unitary matrix is normal.

(c) Show that for any A ∈Mmn(C), AHA and AAH are both normal.

(d) Show that A is normal if and only if ||Av|| = ||AHv|| for every v ∈ Cn.

(e) Show that if A is normal, so is A− λI for any scalar λ.

(f) Show that if A is normal, then given any eigenvector v of A corresponding to
eigenvalue λ, then v is also an eigenvalue of AH corresponding to eigenvalue λ.

(g) Show that if A is normal, then eigenvectors of A corresponding to different eigen-
values are orthogonal.

(h) Show that if A is normal and U is unitary, then UAUH and UHAU are both
normal.

15.2 Real spectral theory

Throughout this subsection, <,> represents the usual inner product on Rn with
associated norm || · ||.

5. Prove that every eigenvalue of a real symmetric matrix is real. Hint: real symmetric
matrices are Hermitian matrices. Look at problem 1.

6. (Compare with problem 2)

(a) Prove that if A ∈ Mn(R) is such that < Av,v >= 0 for all v ∈ Rn, then it is
not necessarily the case that A = 0. (Take A to be a rotation.)

(b) Prove that if A ∈ Mn(R) is symmetric and is such that < Av,v >= 0 for all
v ∈ Rn, then A = 0.
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7. A matrix A ∈Mn(R) is called normal if AAT = ATA.

(a) Show that every symmetric matrix is normal.

(b) Show that every orthogonal matrix is normal.

(c) Show that for any A ∈Mmn(R), ATA and AAT are both normal.

(d) Show that A is normal if and only if ||Av|| = ||ATv|| for every v ∈ Rn.

(e) Show that if A is normal, so is A− λI for any scalar λ.

(f) Show that if A is normal, then given any eigenvector v of A corresponding to
eigenvalue λ, then v is also an eigenvector of AT corresponding to eigenvalue λ.

(g) Show that if A is normal, then eigenvectors of A corresponding to different eigen-
values are orthogonal.

15.3 Positive matrices

8. Let F = R or C. A Hermitian square matrix A ∈Mn(F ) is called positive if xHAx ≥ 0
for all x ∈ Fn. In this problem we prove that the following five items are equivalent:

i. A is positive;
ii. A is Hermitian and the eigenvalues of A are all nonnegative;
iii. there is a positive matrix B such that B2 = A (we call B the square root of A

and write B =
√
A);

iv. there is a Hermitian matrix B such that B2 = A;
v. there is a matrix B such that A = BHB.

(a) Prove (i) implies (ii). Hint: let the x in the definition of positive be an eigenvalue
of A.

(b) Prove (ii) implies (iii). Hint: the spectral theorem applies to A.

(c) It is trivial that (iii) implies (iv) since every positive matrix is Hermitian. Nothing
to do here.

(d) Prove (iv) implies (v). This is also pretty easy.

(e) Prove (v) implies (i). Hint: rewrite the expression xHAx as an inner product,
and use the dual relations.

9. Recall that a Hermitian matrix A ∈ Mn(F ) is called positive definite if it is positive
and if xHAx = 0 only when x = 0.

(a) Prove that A is positive definite if and only if all its eigenvalues are positive.

(b) Prove that the trace and determinant of any positive definite matrix are positive.

(c) Define the upper left submatrices of A to be

A1 = (a11)1×1, A2 =

(
a11 a12

a21 a22

)
2×2

, A3 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


3×3

, ...
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(in other words, you look at the upper-leftmost k × k entries of A and call that
k × k matrix Ak). Prove that a Hermitian matrix A is positive definite if and
only if all of its upper left submatrices A1, A2, ..., An have positive determinant.

Note: This is how you actually check whether or not a Hermitian matrix is
positive definite.

Hints: To prove the “only if” part, prove by contradiction: suppose that there
is a vector x such that xHAx ≤ 0. Write x = (x1, x2, ..., xk, 0, ..., 0) where
xk 6= 0 and show that (x1, ..., xk)

HAk(x1, ..., xk) ≤ 0. Explain why this means
detAk ≤ 0 (use a previous part of this problem).

To prove the “if” part, use the spectral theorem to diagonalize A by a unitary
matrix U . Then write x = (x1, ..., xn), calculate xHAx directly and show why
this must be positive.

15.4 Singular value decomposition

10. In class I will prove the Polar Decomposition Theorem which says: let A ∈ Mn(F )
where F = R or C. Then A = U

√
AHA for some unitary matrix U . Why is this called

the Polar Decomposition Theorem?

11. Find a singular value decomposition of the matrix

A =

(
4 11 14
8 7 −2

)
.

15.5 Pseudoinverses and least-squares solutions

12. Let A ∈Mmn(F ) have rank r, and let its singular value decomposition be A = UΣV H .
Let Ur be the matrix of the columns of U corresponding to the nonzero singular values
of A and let Vr be the matrix of the columns of V corresponding to the nonzero singular
values of A. In other words, let

Σ =

(
D 0

0 0

)
m×n

where D is a diagonal r × r matrix with the nonzero singular values of A down the
diagonal, and partition U and V as

U =
(

u1 · · · ur ur+1 · · · um
)
m×m V =

(
v1 · · · vr vr+1 · · · vn

)
n×n

=
(
Ur Um−r

)
=
(
Vr Vn−r

)
Show that the equation A = UΣV H reduces to A = UvDV

H
r by considering the

product of the partitioned matrices. Remark: this factorization A = UvDV
H
r is called

the reduced singular value decomposition of A.

13. Let A ∈ Mmn(F ) and let A = UvDV
H
r be its reduced singular value decomposition.

Define the pseudoinverse (a.k.a. Moore-Penrose pseudoinverse) of A to be the matrix

A+ = VrD
−1UHr .
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(a) Show that if A is invertible, then A+ = A−1.

(b) Prove that for any y ∈ Fm, AA+y is the projection (with respect to the standard
inner product) of y onto C(A).

Hint: To do this, by uniqueness of orthogonal decomposition, it is sufficient to
show AA+y ∈ C(A) and y −AA+y ∈ [C(A)]⊥.

(c) Prove that for any y ∈ Fn, A+Ay is the projection (with respect to the standard
inner product) of y onto R(A).

(d) Prove A+AA+ = A+ and AA+A = A.

(e) Suppose b ∈ Fm is not in the column space of A (so the system Ax = b has no
solution). Let x+ = A+b. This x+ is called the least-squares solution to Ax = b.

i. Show x+ ∈ R(A).

ii. Show that b+ = Ax+ is the projection of b onto C(A). (As a consequence,
we know that dist(b+,b) ≤ dist(Ax,b) for any x ∈ Fn by problem 8.54
(a).)

iii. Show that x+ is a solution of Ax = b.

iv. Show that for any solution u of Ax = b, ||x+|| ≤ ||u||, with equality holding
only when u = x+.

14. Compute the pseudoinverse of each of these matrices: 4 −2
2 −1
0 0

  7 1
0 0
5 5


15. Find the least-squares solution x+ and the corresponding vector b+ for the system of

equations 
x+ 5y = 4
3x+ y = −2
−2x+ 4y = −3

16. Find the equation of the least-squares line that best fits the points (1, 0), (2, 1), (4, 2)
and (5, 3).

17. A certain experiment produces the data (1, 7.9), (2, 5.4) and (3,−.9). If you theorize
that your model for the experiment should be some function of the form y = A sinx+
B cosx, describe a procedure that you would use to solve for A and B (actually, you
would only solve for a least-squares solution for A and B).


