
Math 28S Orthogonal and unitary matrices Fall 2011

Definition 1 A matrix Q ∈Mn(R) is called orthogonal if Q−1 = QT . The set of n× n orthogonal
matrices is denoted On.

Theorem 1 (Equivalent characterizations of orthogonal matrices) The following are equiv-
alent:

1. Q is orthogonal;
2. QT is orthogonal;
3. Q is invertible, and Q−1 is orthogonal;
4. the columns of Q form an orthonormal basis of Rn (w.r.t. the Euclidean inner product);
5. the rows of Q form an orthonormal basis of Rn (w.r.t. the Euclidean inner product);
6. Q “preserves dot product”, i.e. < Qx, Qy >=< x,y > for all x,y ∈ Rn (<,> is the Euclidean

inner product);
7. Q “preserves angles”, i.e. for every x,y ∈ Rn, the angle (computed w.r.t. Euclidean inner

product) between x and y is the same as the angle between Qx and Qy;
8. Q “preserves norms”, i.e. for every x ∈ Rn, ||Qx|| = ||x|| (where || · || is the Euclidean norm);
9. Q “preserves distances”, i.e. for every x,y ∈ Rn, the distance (computed w.r.t. Euclidean

inner product) between x and y is the same as the distance between Qx and Qy;

To get a handle on what orthogonal matrices are, let’s describe all the 2×2 orthogonal matrices,
using property 4 of Theorem 1:

Theorem 2 (Classification of 2× 2 orthogonal matrices) Q ∈ O2 if and only if Q has one of
the following two forms:(

cos θ − sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ − cos θ

)
.

Suppose Q is of the first type, i.e. Q =

(
cos θ − sin θ
sin θ cos θ

)
. Then for every x ∈ R2, Qx is the

vector x, rotated counterclockwise by the angle θ. In other words, the first class of 2× 2 orthogonal
matrices are rotations by θ.

Suppose Q is of the second type, i.e. Q =

(
cos θ sin θ
sin θ − cos θ

)
. Then, for every x ∈ R2, Qx is

the vector x reflected through a line which sits at angle θ/2 to the positive x−axis. In other words,
the first class of 2× 2 orthogonal matrices are reflections.

In high-school Euclidean geometry you learn about various notions of congruence of geometric
objects, i.e. two triangles are congruent if they have the same side lengths and same angle measures,
two line segments are congruent if they have the same length, two circles are congruent if they have
the same radius, etc. There is really only one notion of congruence that encompasses all these,
however:

Definition 2 Two subsets A and B of R2 are congruent if there is an orthogonal matrix Q ∈ O2

and a vector v ∈ R2 such that QA+ v = B.

(Here, QA is a set... QA = {Qx : x ∈ A}). In other words, this definition says A and B are
congruent objects if you can get from A to B by rotating or reflecting A and then translating it
(by v) to get B (and gives an algebraic characterization of this). This idea generalizes to higher
dimensions:

Definition 3 Two subsets A and B of Rn are congruent if there is an orthogonal matrix Q ∈ On

and a vector v ∈ Rn such that QA+ v = B.
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One caveat: higher-dimensional orthogonal matrices are not all rotations and reflections; classi-
fying them is the kind of thing you would do in an upper-level geometry course.

Remark: Here we are using the standard inner product to describe all the geometric objects. If
you start with a different inner product, then we can define a class of matrices which are orthogonal
relative to that inner product by saying Q is “orthogonal relative to <,>” if Q the columns of Q form
an orthonormal (relative to <,>) basis of Rn. Such matrices will preserve the inner product you
start with, and will preserve the associated (weird) notions of angle, distance and norm. Then you
can call two subsets of Rn “congruent” (relative to <,>) if there is an orthogonal matrix (relative
to <,>) Q and a vector v such that B = QA+ v.

The complex analogues of orthogonal matrices are called unitary matrices:

Definition 4 A matrix U ∈ Mn(C) is called unitary if U−1 = UH . The set of n × n orthogonal
matrices is denoted Un.

Theorem 3 (Equivalent characterizations of unitary matrices) The following are equivalent:
1. U is unitary;
2. UT is unitary;
3. UH is unitary;
4. U is unitary;
5. U is invertible and U−1 is unitary;
6. the columns of U form an orthonormal basis of Cn (w.r.t. the Hermitian inner product);
7. the rows of U form an orthonormal basis of Cn (w.r.t. the Hermitian inner product);
8. U “preserves dot product”, i.e. < Ux, Uy >=< x,y > for all x,y ∈ Cn (<,> is the Hermitian

inner product);
9. U “preserves norms”, i.e. for every x ∈ Cn, ||Ux|| = ||x|| (where || · || is the norm associated

to Hermitian inner product);
10. U “preserves distances”, i.e. for every x,y ∈ Cn, the distance (computed w.r.t. Euclidean

inner product) between x and y is the same as the distance between Ux and Uy;


