
Math 28S Proof of the (real, not complex) Spectral Theorem Fall 2011

In this document we will prove:

Theorem 1 (Spectral Theorem (real version)) Let A ∈Mn(R). The following are equivalent:
1. A is symmetric.
2. There exists an orthonormal basis of Rn, consisting of eigenvectors of A.
3. A is “orthogonally diagonalizable”, i.e. there exists an orthogonal matrix Q such that Q−1AQ =

QTAQ is diagonal.
4. There exists a diagonal matrix Λ and an orthogonal matrix Q such that A = QΛQ−1 = QΛQT .

It is clear that statements 3 and 4 are equivalent; the Q in statement 3 is the QT in statement 4
and vice versa. The equivalence of statements 2 and 3 is similar to the proof given in class for the
complex version of the spectral theorem (substitute the word “unitary” for “orthogonal” and take
Hermitian rather than transpose and it is exactly the same). So we are left to show the equivalence
of statement 1 to the others. To prove this, we first need a couple of lemmas:

Lemma 1 Suppose A ∈Mn(R) is symmetric. Suppose α and β are real constants such that α2 < 4β.
Then the matrix A2 + αA+ βI is invertible.

Proof: Let v 6= 0. Then

< (A2 + αA+ βI)v,v > =< A2v,v > +α < Av,v > +β < v,v >

=< Av, AHv > +α < Av,v > +β||v||2 (dual relations)

=< Av, Av > +α < Av,v > +β||v||2 (since A is symmetric)

= ||Av||2 + α < Av,v > +β||v||2

> ||Av||2 + α < Av,v > +
1

4
α2||v||2 (since α2 < 4β).

Treat this last expression as a function of α, and minimize it using calculus techniques: its minimum
value occurs when α = −2<Av,v>

||v||2 and its minimum value is

||Av||2 − 2
< Av,v >2

||v||2
+
< Av,v >2

||v||2
= ||Av||2 − < Av,v >2

||v||2
.

This last expression is guaranteed to be ≥ 0 by the Cauchy-Schwarz inequality. Therefore, <
(A2 + αA+ βI)v,v > is nonzero, so (A2 + αA+ βI)v 6= 0. Consequently N(A2 + αA+ βI) = {0}
so A2 + αA+ βI is invertible. �

Lemma 2 Suppose A ∈Mn(R) is symmetric. Then A has a real eigenvalue.

Proof: Let v 6= 0 be a vector in Rn. Then the list of n+ 1 vectors

{v, Av, A2v, ..., Anv}

is linearly dependent by the Exchange Lemma, so there exist constants c0, ..., cn ∈ R, not all zero,
such that

n∑
j=0

cjA
jv = 0.

Define p(x) = c0 + c1x + c2x
2 + ...+ cnx

n ∈ Pn. Factor the polynomial p(x), first by factoring out
the constant cn and then by factoring it into linear factors and quadratic factors with no real root.
We obtain

p(x) = cn
[
(x− λ1)(x− λ2) · · · (x− λr)(x2 + α1x+ β1)(x2 + α2x+ β2) · · · (x2 + αsx+ βs)

]
.
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In this factorization we are assuming the quadratic factors x2 + αjx + βj cannot be factored into
two linear terms over the reals, i.e. that these quadratic factors have no real roots. But a quadratic
of this type has no real roots if and only if α2

j < 4βj by the quadratic formula. Therefore, we have

0 =

n∑
j=0

cjA
jv

= cn
[
(A− λ1I)(A− λ2I) · · · (A− λrI)(A2 + α1A+ β1I)(A2 + α2A+ β2I) · · · (A2 + αsA+ βsI)

]
v

Notice that all the matrices (A2 +αjA+ βjI) are invertible by Lemma 1. Thus, it must be the case
that

0 = cn [(A− λ1I)(A− λ2I) · · · (A− λrI)]v

which means N(A− λjI) 6= {0} for some j (keep in mind v 6= 0). Therefore λj is an eigenvalue of
A. �

Proof of the spectral theorem: (4 ⇒ 1) Suppose A = QΛQT for some orthogonal matrix Q
and some diagonal matrix Λ (since Λ is diagonal, we have ΛT = Λ). Then AT = (QΛQT )T =
(QT )T ΛTQT = QΛTQT = QΛQT = A so A is symmetric.

(1 ⇒ 2) We prove this by induction on n. When n = 1 the statement is obvious. Now we
assume the statement is true when n = k, and suppose A is (k + 1)× (k + 1). By Lemma 2, A has
an eigenvalue λ with eigenvector x; without loss of generality we can assume ||x|| = 1 (otherwise
normalize x). Let W = Span(x).

Claim: v ∈W⊥ implies Av ∈W⊥.
Proof of claim: A vector is in W⊥ if and only if it is orthogonal to x, since x spans W . Now

suppose v ∈ W⊥, i.e. < v,x >= 0. Then < Av,x >=< v, ATx >=< v, Ax >=< v, λx >= λ <
v,x >= 0 so Av ∈W⊥ as well; this proves the claim.

From the claim, if we define a linear transformation T : Rk+1 → Rk+1 by T (x) = A(x), we see
T (W⊥) ⊆ W⊥. By the induction hypothesis, there is an orthonormal basis of W⊥, say {v1, ...,vk}
of eigenvectors of A. It is not hard to see that {x,v1, ...,vk} is therefore an orthonormal basis of
Rk+1 of eigenvectors of A. This proves the theorem.


