DATE	DUE	SECTION AND TOPIC
M 8.29		1.1: Course introduction
W 8.31		1.2: Vector spaces
F 9.2		1.3: Examples of vector spaces
M 9.5		No class - Labor Day
W 9.7	1-10	2.1-2.2: Matrix vocabulary
F 9.9		2.2-2.3: Matrix operations
M 9.12		3.1: Subspaces
W 9.14	11-25	3.2-3.3: Linear independence and dimension
F 9.16		3.4: Affine subspaces of \mathbb{R}^n (lines and planes)
M 9.19		3.5: A more rigorous discussion of linear independence
W 9.21	26-34	3.5-3.6: Basis and dimension
F 9.23		3.6: More on basis and dimension
M 9.26		4.1-4.2: Dot product (definition and properties)
W 9.28	35-49	4.2-4.3: Dot product and geometry (norm, distance, etc.)
F 9.30		4.4: Orthogonality and projection
M 10.3	EXAM 1	4.4: Orthogonal decomposition theorem
W 10.5	2,4121,12	4.5: Gram-Schmidt procedure
F 10.7	50-57	4.6: More on projections; Cauchy-Schwarz inequality;
M 10.10	0007	4.7: Normal equations of hyperplanes; review of dot products
W 10.12	58-70	5.1: Linear transformations: introduction
F 10.14		5.2: Standard matrices of linear transformations
M 10.17		5.3: How to prove transformations are linear
W 10.19	71-80	5.4: Examples of linear transformations
F 10.21	7100	5.5: Subspaces associated to linear transformations
M 10.24		5.6: Injectivity, surjectivity, bijectivity
W 10.24		5.7: Fundamental subspaces associated to a matrix
F 10.28	81-90	5.8: Invertibility; review of linear transformations
M 10.31	01 70	6.1: Systems of linear equations
W 11.2	91-98	6.2: Theoretical approach to linear systems
F 11.4	EXAM 2	6.3: Row reduction and echelon forms I
M 11.7	2,4,1,1,1	6.3: Row reduction and echelon forms II
W 11.9		6.4: Row reduction and echelon forms III
F 11.11		6.5: Matrix inverses; Gauss-Jordan method
M 11.14		6.5: Review of systems of linear equations
W 11.14	99-116	6.6: Least-squares approximations
F 11.18) 110	7.1: Determinants: definition and properties
M 11.21	117-124	7.2: Determinants: computational techniques
W 11.23	117 121	No class - Thanksgiving break
F 11.25		No class - Thanksgiving break
M 11.28	125-129	8.1: Eigenvalues and eigenvectors I
W 11.30	120 127	8.1-8.2: Eigenvalues and eigenvectors II
F 12.2		8.2: Diagonalization of a matrix
M 12.5		8.3: Matrix powers and exponentials
W 12.7		8.3: Applications to difference and differential equations
F 12.9	130-141	Review/ catch-up / reflection on course material
M 12.12	EXAM 3	
R 12.15	L/MIVI J	FINAL EXAM: 10-11:40 AM in STR 137
1 12.10	I	22. 7. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.