1. Let A be the matrix

$$\left(\begin{array}{cccc}
2 & -1 & 3 \\
0 & 1 & 2 \\
-4 & 1 & 0 \\
0 & 2 & 0
\end{array}\right)$$

and let \mathbf{x} be the vector (-2,3,2). Compute each of the following expressions (unless the expression is nonsense, in which case you should indicate that it is nonsense):

- (a) Ax
- (b) $a_{23}\mathbf{x} + a_{12}(1, -1, 3)$
- (c) $(\mathbf{x}^T \mathbf{x}) A$
- (d) $\mathbf{x}^T(\mathbf{x}A)$

(e)
$$\begin{pmatrix} 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 5 \end{pmatrix} A$$

- 2. (a) Find the parametric equations of the line in \mathbb{R}^4 passing through the points (1,3,5,0) and (5,-1,4,1).
 - (b) Does the line described in part (a) of this problem pass through the point (13, -9, 2, 2)? Explain your answer.
- 3. Sketch a picture of the following subsets of \mathbb{R}^2 :
 - (a) Span((1,-3)) + (5,-1)
 - (b) Span((2,3),(4,3))
- 4. In this question, you are given various subsets of \mathbb{R}^3 . Determine whether each given subset is a point, line, plane, or all of \mathbb{R}^3 :
 - (a) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((3, -2, 5))
 - (b) POINT LINE PLANE ALL OF \mathbb{R}^3 (2, -1, 5)
 - (c) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((1,0,0),(0,0,1),(3,0,-2))
 - (d) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((2,1,-3)) + (4,0,2)
 - (e) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((4,0,0),(0,2,0),(0,0,-3))
 - (f) POINT LINE PLANE ALL OF \mathbb{R}^3 $\{(x,y,z): x=2t, y=4t, z=12t\}$
 - (g) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((2,1,-1),(4,2,-2),(-8,-4,4))
 - (h) POINT LINE PLANE ALL OF \mathbb{R}^3 Span((1,0,0),(0,1,0)) + (0,0,1)

- 5. Classify the following statements as true or false.
 - (a) TRUE FALSE The set of points (x, y) lying on the line y = mx + b is a subspace of \mathbb{R}^2 .
 - (b) TRUE FALSE The following set of vectors in \mathbb{R}^4 is linearly independent: $\{(1, 2, -1, 5), (2, -1, 6, -9), (0, 4, -1, 3), (-1, 3, 6, 8), (0, 2, -1, 6)\}$
 - (c) TRUE FALSE The following set of vectors in $C(\mathbb{R}, \mathbb{R})$ is linearly independent: $\{\sin x, \cos x\}$
 - (d) TRUE FALSE There is a basis of \mathbb{R}^3 consisting of four vectors.
 - (e) TRUE FALSE The xz-plane (i.e. the set of points whose y-coordinate is zero) is a subspace of \mathbb{R}^3 .
 - (f) TRUE FALSE Any five linearly independent vectors in \mathbb{R}^5 must also span all of \mathbb{R}^5 .
 - (g) TRUE FALSE If W_1 and W_2 are subspaces of the same vector space V, then the union $W_1 \cup W_2$ must also be a subspace of V.
 - (h) TRUE FALSE If W_1 and W_2 are subspaces of the same vector space V, then the intersection $W_1 \cap W_2$ must also be a subspace of V.
- 6. (a) Let $V = \mathbb{R}^3$ and let $W = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$. Determine, with proof, whether or not W is a subspace of V.
 - (b) Let $V = \mathbb{R}^5$ and let $W = \{(x_1, x_2, x_3, x_4, x_5) : x_1 = x_3 \text{ and } x_4 = 2x_2 x_5\}$. Determine, with proof, whether or not W is a subspace of V.
- 7. Let $V = M_3(\mathbb{R})$ and let $W = \{A \in M_3(\mathbb{R}) : A = A^T\}$. W is a subspace of V (you do not need to prove that W is a subspace).
 - (a) Find a basis of W. (You do not need to justify that your answer is a basis.)
 - (b) Give the dimension of W.
- 8. Let $V = \mathbb{R}^3$ and let $W = \{(x, y, z) : 3x + 5y z = 0\}$. W is a subspace of V (you do not need to prove that W is a subspace).
 - (a) Find a basis of W; completely justify that your answer is in fact a basis of W.
 - (b) Give the dimension of W.
 - (c) What kind of geometric object is W?