- 1. Let $\mathbf{v} = (1, 2, -1, 1, 1, -1)$ and $\mathbf{w} = (2, 3, -1, 0, 0, 2)$. Compute:
 - (a) $\mathbf{v} \cdot \mathbf{w}$
 - (b) a vector of length 4 which is parallel to \mathbf{v}
 - (c) the projection of \mathbf{w} onto \mathbf{v}
 - (d) the distance from \mathbf{v} to \mathbf{w}
 - (e) the norm of $\mathbf{v} + \mathbf{w}$
- 2. Given each vector space V and each subspace W of V, find the dimension of W^{\perp} and a basis of W^{\perp} .
 - (a) $V = \mathbb{R}^3$; W = Span(1, -5, 2)
 - (b) $V = \mathbb{R}^6$, W = Span((1, 0, 0, 0, 0, 0), (2, 1, 0, 0, 0, 0), (-3, 4, 5, 0, 0, 0))
 - (c) $V = \mathbb{R}^4$; W = Span((2, 1, -3, 0), (4, 2, -6, 0), (1, 1, 1, 1))
- 3. Circle the letter of the correct answer to each question.
 - (a) If A is a matrix with 9 columns and 5 rows, then C(A) is...

A. ... a subspace of \mathbb{R}^9 B. ... a subspace of \mathbb{R}^5 C. ... a subspace of \mathbb{R} D. ... not a subspace

- (b) If $T : \mathbb{R}^8 \to V_2$ is a surjective linear transformation, then dim (V_2) ...
 - A. ... must be at least 8
 - B. ... must be at most 8
 - C. ... must be equal to 8
 - D. ... could be anything

(c) If $T : \mathbb{R}^4 \to V_2$ is an injective linear transformation, then dim (V_2) ...

- A. ... must be at least 4
- B. ... must be at most 4
- C. ... must be equal to 4
- D. ... could be anything
- (d) If A is a 11×14 matrix with 8 linearly independent columns, then N(A) ...
 - A. ... is a 3-dimensional subspace of \mathbb{R}^{11}
 - B. ... is a 3-dimensional subspace of \mathbb{R}^{14}
 - C. ... is a 6-dimensional subspace of \mathbb{R}^{11}
 - D. ... is a 6-dimensional subspace of \mathbb{R}^{14}

- (e) If the standard matrix of T is a 6×8 matrix with 6 linearly independent columns, then the equation $T(\mathbf{x}) = \mathbf{b}$...
 - A. ... either has no solution or infinitely many solutions, depending on what \mathbf{b} is
 - B. ... always has one solution
 - C. ... always has no solution
 - D. ... always has infinitely many solutions
- (f) If the standard matrix of T is a 7×7 matrix with 7 linearly independent rows, then the equation $T(\mathbf{x}) = \mathbf{b}$...
 - A. ... either has no solution or infinitely many solutions, depending on what b is
 - B. ... always has one solution
 - C. ... always has no solution
 - D. ... always has infinitely many solutions
- 4. (a) Let W be the subspace of \mathbb{R}^4 spanned by (2,0,0,0) and (2,-1,0,-2). Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be defined by setting $T(\mathbf{v}) = \mathbf{v}^W$, the projection of \mathbf{v} onto W. Find the standard matrix of T.
 - (b) Use your answer to part (a) to compute the projection of (2, -5, 6, 1) onto W.
- 5. Let \mathbf{v} and \mathbf{w} be nonparallel vectors in some real vector space V. Prove that if \mathbf{v} and \mathbf{w} have the same length, then the angle between \mathbf{v} and $\mathbf{v} + \mathbf{w}$ is the same as the angle between \mathbf{w} and $\mathbf{v} + \mathbf{w}$.
- (a) Find the normal equation of the plane in ℝ³ which contains the point (2, -1, 4) and the line whose parametric equations are

$$\begin{cases} x = 1 - 3t \\ y = 1 + 7t \\ z = -3 - t \end{cases}$$

- (b) Write the normal equation of any plane in \mathbb{R}^3 which is parallel to the plane you found in part (a). (Two planes in \mathbb{R}^3 are called *parallel* if they don't intersect.)
- 7. In each part of this question you are given a function $T: V_1 \to V_2$, where V_1 and V_2 are real vector spaces. Determine, with proof, whether or not T is a linear transformation:
 - (a) $V_1 = \mathbb{R}^4$; $V_2 = \mathbb{R}^2$; $T(x_1, x_2, x_3, x_4) = (x_2 x_1, x_1 + x_4)$. (b) $V_1 = M_{33}(\mathbb{R})$; $V_2 = M_{23}(\mathbb{R})$; T(A) = BA where B is the matrix $B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \end{pmatrix}$.

- 8. Here are three linear transformations (you do not need to prove that these transformations are linear).
 - (a) $R: \mathbb{R}^2 \to \mathbb{R}^2$ defined by R(x, y) = (x + y, x 2y)
 - (b) $S: \mathbb{R}^3 \to \mathbb{R}^4$ defined by S(x, y, z) = (x 2y + z, x + y + z, -3x + 6y 3z, 0)
 - (c) $T: \mathbb{R}^5 \to \mathbb{R}$ defined by $T(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ where $\mathbf{v} = (1, 2, 3, 4, 5)$

For each of these transformations,

- if the kernel has a basis, write a basis of the kernel in the first row of the chart below (otherwise, write "NO BASIS").
- if the image has a basis, write a basis of the image in the second row of the chart below (otherwise, write "NO BASIS").
- Is the transformation injective? Answer "YES" or "NO" in the third row of the chart below.
- Is the transformation surjective? Answer "YES" or "NO" in the fourth row of the chart below.
- Is the transformation bijective? Answer "YES" or "NO" in the fifth row of the chart below.

	R	S	T
basis of kernel			
basis of image			
injective?			
surjective?			
bijective?			