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Chapter 1

First-order equations: theory

1.1 What is a differential equation?
Consider an object of mass 20 kg, that is falling through the Earth’s atmosphere

(gravitational constant is 9.8 m/sec2, drag coefficient 3 N sec/m), near sea level.
Let’s try to formulate an equation which describes the velocity of the object.
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1.1. What is a differential equation?

The setup on the previous page is an example of an ordinary differential equation.
More precisely:

Definition 1.1 An ordinary differential equation (ODE) is an equation involv-
ing an independent variable t and a function y = y(t), together with the derivatives of
y with respect to t.

Every such equation can be written as

Φ(t, y, y′, y′′, y′′′...) = 0

where Φ is some function of t, y and the derivatives of y with respect to t.

The point of this course is to learn how to solve as many ODEs (and systems of
ODEs) as possible, and learn how to analyze ODEs that are “too complicated” to
solve.

Notation: Throughout this course, the independent variable will be called t.
This is because in real-world applications of differential equations, the indepen-
dent variable usually represents time. Letters such as x, y or z are almost always
taken to be functions of t, i.e. most of the time x means x(t); y means y(t); etc.

Examples of ODEs

Example 1: y′ + ty = 3t (i.e. y′ + ty − 3t = 0)

Unwritten assumption: y is a function of t, i.e. y = y(t).

Goal: find explicit equation relating y and t (containing no derivatives), i.e.
find y = y(t).

This equation can also be written as

y′(t) + ty(t) = 3t
or

dy
dt

+ ty = 3t
or

ẏ + ty = 3t
etc.

Question: Is y(t) = e−t a solution of the ODE in Example 1?
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1.1. What is a differential equation?

Question: Is y(t) = 3 + e−t
2/2 a solution of the ODE in Example 1 (the ODE

was y′ + ty = 3t)?

Example 2: cos y(7) − y(4)ety
′′−3t2 + 2y′′(y′)3 − 4t2y′′′ + (t2 − 3ty)y′′ + 2y′y = 3ty′ − 4

Example 3: x′′ + c1x
′ + c0x = 0 (describes motion of damped oscillator)

Assumption: x = x(t) is a function of t

Ambiguity: c1 and c0: are they constants, or functions of t? In general, letters
near the beginning of the alphabet connote constants (and in this example, c1 and
c0 are constants). However, in the grand scheme of things, letters like this could be
constants or could be functions of t (c1(t) and c0(t)).

This equation can also be written as ẍ+ c1ẋ+ c0x = 0

Example 4: dy
dt

= 3y

Assumption: y = y(t)

In Example 4,

• y = e3t is a solution because dy
dt

= d
dt

(e3t) = 3e3t = 3y

• y = 2e3t is a solution because dy
dt

= d
dt

(2e3t) = 6e3t = 3 · 2e3t = 3y

• y = Ce3t is a solution for any constant C because dy
dt

= d
dt

(Ce3t) = 3Ce3t = 3y

• y = t2 is not a solution because dy
dt

= 2t but 3y = 3t2.
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1.1. What is a differential equation?

Question: Are there any solutions to Example 4 other than y = Ce3t?

Some ODEs are particularly easy to solve. Suppose dy
dt

= g(t) (i.e. there’s only a
t on the right-hand side). Then

y = y(t) =
∫
g(t) dt

by the Fundamental Theorem of Calculus (in particular, notice that there will be
infinitely many solutions, parameterized by a single constant C).

Example 5:
dy

dt
= 6t2

Example 6:
y′′ = cos 2t

These constants (the C in Example 4, the C in Example 5, and the C and D
in Example 6) are typical of solutions to ODEs, because solving an ODE is akin
to performing indefinite integration. For a general ODE (not just one of the form
dy
dt

= g(t)), we expect arbitrary constants in the description of the solution. We
will prove in this course that for the most common class of ODEs, the number of
constants in the solution is equal to the highest order of derivative occurring in
the equation, i.e.
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1.1. What is a differential equation?

y′′′ − 3y = t2 + 3⇒ there will be 3 arbitrary constants in the answer

y + t
d6y

dt6
= t3 − d2y

dt2
⇒ there will be 6 arbitrary constants in the answer

y(5) + 3 = t⇒ there will be 5 arbitrary constants in the answer

With that in mind, we make the following definition:

Definition 1.2 The order of a differential equation is the highest order of derivative
that appears in the equation. An ODE whose order is n is called nth order.

So in an ODE of order n, we expect n arbitrary constants in the answer.

Sometimes you know additional information which allows you to solve for the
constant(s):

Example 7: Suppose a bug travels along a line with velocity at time t given by
v(t) = 2t− 4. If at time 0, the bug is at position 7, what is the bug’s position at time
t?

In many real-world applications of ODEs, you are given a point (t0, y(t0)) that
the solution of the ODE is to pass through (for example, in Example 7, you are
given t0 = 0, y0 = y(t0) = 7).

Definition 1.3 A point (t0, y0) through which a solution to an ODE must pass is
called an initial value. (In this context y0 = y(t0).) An ODE, together with an
initial value, is called an initial value problem (IVP). A solution of an initial value
problem is called a particular solution of the ODE; the set of all particular solutions
of the ODE is called the general solution of the ODE.

Example: y′ = 2t is a first-order ODE, whose general solution is y = t2 + C.
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1.1. What is a differential equation?

Example: {
y′ = 2t
y(0) = 1

is an initial value problem, whose only particular solution is y = t2 + 1.

General rule of thumb: If you have an initial value problem, start by solving
the ODE (i.e. find the general solution). Then plug in the initial value(s) to solve
for the constant(s), and write the particular solution.

Why do we call these equations “ordinary”?

Notice that in Definition 1.1 above, there is one independent variable t. In multi-
variable calculus (Math 320), you learn about functions of more than one variable,
like

f(s, t) = s2 − 2s2t+ 5t3.

The natural kind of differentiation you do with these functions is to compute partial
derivatives fs = ∂f

∂s
and ft = ∂f

∂t
(see Section 2.5 for more on these). Differential

equations involving partial derivatives are called partial differential equations
(PDEs). An example of a PDE would be something like

∂f

∂s
− ∂f

∂t
= s2 − st or

1
2
∂2f

∂s2 + 1
2
∂2f

∂t2
= 1;

in this case the assumption is that f is some function of two independent variables
s and t (i.e. f = f(s, t).

PDEs are much harder to study than ODEs, in general. Your professor, for ex-
ample, knows next to nothing about PDEs.

We call differential equations “ordinary” to make clear that they are not PDEs,
i.e. that there is one independent variable and that there are therefore no partial
derivatives being taken.
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1.2. Linear versus nonlinear

1.2 Linear versus nonlinear
Numerical equations can be classified into different types:

EQUATION CLASS
5x+ 2 = 7(x− 1) linear

2x2 + 4x− 3 = x(x− 1) quadratic
x4 − 3x2 + x− 4 = 0 polynomial

3
x+1 + x

x−2 = 2
x

rational
2 sin x+ 1 = 0 trigonometric

5ex−2 = 3 exponential
ln x+ ln(x+ 2) = 1 logarithmic

...
...

Each class of equation is studied with its own techniques. (For example, to
solve a quadratic you set one side equal to zero and factor or use the quadratic
formula; to solve a rational function, you find a common denominator; etc.)

Question: What is the most important class of numerical equations to learn how
to solve?

Question: Why is this class particularly important to study? There are three rea-
sons:

1. Ubiquity:

2. Simplicity:

3. “Approximability”:

Similarly, ODEs can be classified into various types; the most important distinc-
tion to make when classifying an ODE is to determine whether or not that ODE is “linear”.

Whether or not a differential equation is “linear” has a lot to do with the subject
of linear algebra. In fact, linear algebra is essentially concerned with studying what
is meant by the word “linear” in a very general sense.
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1.2. Linear versus nonlinear

First, remember what we know about lines from high school: they all (other
than vertical lines) have an equation of the form

y = mx+ b

What operations are required to describe (the right-hand side of) this equation?

1.

2.

Based on this observation, if we are going to define “linear” in a general sense,
we probably need to assume that there is some notion of each of the two operations
above.

Vector spaces

A general setting in which we can add objects and multiply objects by real numbers
is called a vector space; elements of a vector space are called vectors. More precisely:

Definition 1.4 Informally, a (real) vector space V is a set of objects called vectors
such that:

1. you can add two vectors in V , and the sum is always a vector in V ;

2. you can multiply a vector in V by a real number (in this context the real number
is called a scalar), and the result is always a vector in V ;

3. these methods of addition and scalar multiplication obey a bunch of reasonable
“laws” (like the commutative property, the associative property, the distributive
property, the fact that multiplying a vector by 1 gives the same vector, etc.)

Exactly what laws need to be obeyed in condition (3) of this definition are
spelled out in Chapter 1 of my Linear Algebra (Math 322) Lecture Notes.

Examples of vector spaces

Pretty much any set of objects where you can (a) add the objects to one another,
and (b) multiply the objects by real numbers, is a vector space. Here are some
prototypical examples:

1. Real numbers: R is a real vector space (where the addition and scalar multi-
plication are the usual numerical operations).
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1.2. Linear versus nonlinear

2. Ordered pairs: R2 is the set of ordered pairs (x, y) of real numbers. To add two
ordered pairs, add them coordinate-wise. For example,

(2, 5) + (−3, 2) = (2 + (−3), 5 + 2) = (−1, 7).

Similarly, to multiply an ordered pair by a scalar, multiply coordinate-wise
(i.e. multiply each coordinate by the scalar). For example,

3(−1, 7) = (−3, 21).

3. Ordered n-tuples (“traditional” vectors): For any n ∈ N, Rn = {(x1, ..., xn) : xj ∈
R for all j} is a real vector space, where the addition and scalar multiplication
are defined coordinate-wise.

4. Matrices: The set of m× n matrices (this means m rows and n columns) with
elements in R, denoted Mmn(R), is a real vector space where the addition
and scalar multiplication are defined entry-wise. (Notation: the set of square
n×nmatrices with entries in R is denotedMn(R) rather thanMnn(R).) Matrix
spaces are discussed in more detail later in this course and in Chapter 2 of my
Math 322 lecture notes.

So among the things that can be thought of as vectors are numbers, ordered
pairs, ordered n-tuples (these are “traditional” vectors), and matrices. In this
course, we are most concerned with a different vector space, where the vectors
are functions:

Definition 1.5 Let C∞(R,R) denote the set of functions from R to R which are in-
finitely differentiable, i.e. functions f for which the nth derivative of f exists for all
n. Define the following operations on C∞(R,R):

Addition: Given f, g ∈ C∞(R,R), define f+g ∈ C∞(R,R) by setting (f+g)(t) =
f(t) + g(t);

Scalar multiplication: Given f ∈ C∞(R,R) and c ∈ R, define cf ∈ C∞(R,R) by
setting (cf)(t) = c f(t).

These are the usual definitions of addition and scalar multiplication of func-
tions that you already know. For example, if f(t) = sin t and g(t) = 4 sin 2t, then

(f + g)(t) = sin t+ 4 sin 2t (3f)(t) = 3 sin t (2f − 5g)(t) = 2 sin t− 20 sin 2t

Theorem 1.6 C∞(R,R), with the operations defined above, is a vector space.
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1.2. Linear versus nonlinear

Linear operators

Definition 1.7 Let V be a vector space. A function T : V → V is called an operator
(on V ). A function T : V → V is called a linear operator (on V ) (or just linear) if
it preserves the vector space operations on V , i.e.

T preserves addition: T (v + w) = T (v) + T (w) for any v,w ∈ V ; and

T preserves scalar multiplication: T (cv) = c T (v) for any c ∈ R and any v ∈ V .

Notation: “f : A → B” means f is a function whose inputs are in set A and
whose outputs are in set B.

Note: In linear algebra, you learn about functions called linear transformations.
A linear operator is the same thing as a linear transformation, except that for an
operator, the domain and range are the same vector space.

Motivating Example: What are the linear operators on the vector space R?

• T , defined by T (t) = 5t, is a linear operator:

• More generally, multiplication by any fixed constant a is linear. Let T : R→ R
be defined by T (t) = at:

T preserves addition: T (s+ t) = a(s+ t) = as+ at = T (s) + T (t);

T preserves scalar multiplication: T (ct) = a(ct) = c(at) = cT (t).

Since T preserves addition and scalar multiplication, it is a linear operator.

• T , defined by T (t) =
√
t, is not linear:

• T , defined by T (t) = 3
2t+ 5

2 , is not linear.
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1.2. Linear versus nonlinear

Theorem 1.8 The only linear operators on R are multiplication by constants. In
other words, if T : R→ R is linear, then T (t) = at for some constant a ∈ R.

PROOF Suppose T : R→ R is linear. Let a = T (1). Then for any t ∈ R,

T (t) = T (t1) = tT (1) = ta = at. �

Question: How do you decide whether a numerical equation is linear?

Definition 1.9 A numerical equation is called linear if there is a linear operator T
on R and a real number b ∈ R such that the equation can be written in the form

T (t) = b.

(The goal here is to solve for t.) Equivalently, this means that there are real numbers a
and b so that the equation can be rewritten as

at = b.

The first line of this definition will generalize to ODEs, but we need to start with a
different vector space (other than R).

Question: Let V = C∞(R,R). What operators on this vector space are linear?

Example 1: operator T on C∞(R,R) defined by T (y) = t2y.
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1.2. Linear versus nonlinear

Example 1, generalized: Let f : R → R be any function. Then the operator T on
C∞(R,R) defined by T (y) = f(t)y is linear:

T (x+ y) = T (x(t) + y(t)) = f(t)(x(t) + y(t)) = f(t)x(t) + f(t)y(t)
= T (x(t)) + T (y(t))
= T (x) + T (y).

T (cy) = T (cy(t)) = f(t)cy(t) = c[f(t)y(t)] = cT (y(t)) = cT (y).

Since T preserves addition and scalar multiplication, it is a linear operator.

So multiplication by any function is a linear operator on C∞(R,R). This is
analogous to multiplication by any fixed constant being a linear operator on
R (see Theorem 1.8). But there are other linear operators on C∞(R,R) (see
Example 3 below).

Example 2: operator T defined by T (y) = y2 is not linear:

T (x+ y) = (x+ y)2 6= x2 + y2 = T (x) + T (y).

Example 3: operator D (D is for differentiation) defined by D(y) = y′ is linear:

D(x+ y) = (x+ y)′ = x′ + y′ = D(x) +D(y);

D(cy) = (cy)′ = c y′ = cD(y).
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1.2. Linear versus nonlinear

You can make more complicated linear operators out of simpler ones by adding
them, multiplying by scalars, and composing them:

Lemma 1.10 Suppose T1 and T2 are linear operators on vector space V . Then:

Sums of linear operators are linear: T1+T2 is a linear operator on V (where (T1+
T2)(v) = T1(v) + T2(v));

Scalar multiples of linear operators are linear: for any constant c ∈ R, cT1 is a
linear operator on V (where (cT1)(v) = c T1(v));

Compositions of linear operators are linear: T2 ◦ T1 is a linear operator on V
(where T2 ◦ T1(v) = T2(T1(v))).

PROOF See Section 5.4 of my Math 322 lecture notes. �

Example: Suppose D : C∞(R,R) → C∞(R,R) is differentiation (D(y) = y′),
and T : C∞(R,R)→ C∞(R,R) is multiplication by t2 (T (y) = t2y).
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1.2. Linear versus nonlinear

Lemma 1.10 has the following important consequence:

Theorem 1.11 For any collection of n + 1 functions p0, p1, p2, ..., pn : R → R, the
function T : C∞(R,R)→ C∞(R,R) defined by

T (y) =
n∑
j=0

pj(t)y(j)(t) = p0y + p1y
′ + p2y

′′ + p3y
′′′ + ...+ pny

(n)

is a linear operator.

Recall: for a function y : R→ R, y(j) denotes the jth derivative of y; in particu-
lar y(0) = y and y(1) = y′.

PROOF From Example 3 earlier in this section, the differentiation operator D de-
fined by D(y) = y′ is linear, and from Example 1 (generalized) of this section,
multiplication by a fixed function is linear. T is made up of a sum of compositions
of these types of operators, so T is linear by Lemma 1.10. �

Definition 1.12 An operator T on C∞(R,R) is called a linear differential opera-
tor (or just a differential operator) if it can be written as

T (y) =
n∑
j=0

pjy
(j) = p0y + p1y

′ + p2y
′′ + p3y

′′′ + ...+ pny
(n)

for functions p0, p1, p2, ..., pn : R → R. We say the linear differential operator is nth

order if pn 6= 0 but pj = 0 for all j > n.

Example: Consider the third-order linear differential operator T defined by
setting p0(t) = cos t, p1(t) = t3, p2(t) = 0 and p3(t) = t. Write the formula for T (y)
and compute T (y) where y = t4.

We are now in position to define what it means for a differential equation to be
linear:
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1.2. Linear versus nonlinear

Definition 1.13 An ODE is called linear if there is a linear differential operator T
and a function q ∈ C∞(R,R) such that the equation can be written as

T (y) = q.

In other words, an ODE is linear if there are functions p0, p1, p2, ..., pn : R → R and
an infinitely differentiable function q : R → R such that the equation can be written
as

p0y + p1y
′ + p2y

′′ + p3y
′′′ + ...+ pny

(n) = q

i.e. the equation is of the form

p0(t)y(t) + p1(t)y′(t) + p2(t)y′′(t) + p3(t)y′′′(t) + ...+ pn(t)y(n)(t) = q(t).

An ODE is called nonlinear if it is not linear.

(Compare the first line of this definition with the first line of Definition 1.9. In gen-
eral, a linear equation is any equation of the form T (x) = b where T is a linear
transformation, and b is given.)

Note: A linear ODE is nth-order if and only if the corresponding differential
operator has order n.

More vocabulary

Definition 1.14 A linear ODE is called homogeneous if the equation can be written
as T (y) = 0 for some linear differential operator T . Equivalently, this means the
function q as in Definition 1.13 is zero and the equation looks like

p0y + p1y
′ + p2y

′′ + p3y
′′′ + ...+ pny

(n) = 0

for functions p0, p1, p2, ..., pn : R→ R.
A linear ODE is called constant-coefficient if the functions pj as in Definition

1.13 are all constants (the function q need not be constant).

Example: Classify each of the following equations as linear or nonlinear; it it is
linear, give its order, determine whether or not it is homogeneous, and determine
whether or not it is constant-coefficient:

(a) y′ + t2y = t3

18



1.2. Linear versus nonlinear

(b) y′′′ + t2y′′′ = y′′

(c) y′′ − 3y′ + 5y = 6t

(d) y′ = y2 + t

Generally speaking:

• linear equations are easier to work with/solve than nonlinear equations;

• the smaller the order, the easier the equation is to solve;

• homogeneous equations are easier to solve than non-homogeneous equa-
tions;

• constant-coefficient equations are easier than those which do not have con-
stant coefficients.
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1.3. A first example: exponential growth and decay

1.3 A first example: exponential growth and decay
Suppose that you have an ODE which is “as easy as possible”. It should there-

fore be linear, first-order, homogeneous, and constant-coefficient.

Since it is linear and first-order, it must look like

Since it is homogeneous,

Since it is constant-coefficient,

This is the world’s most common class of ODEs, because this class represents
situations where the rate of change of quantity y is proportional to y itself. Exam-
ples from the real-world include:

• the amount of money in an account which earns interest compounded con-
tinually;

• the population of bacteria in a petri dish;

• the amount of radioactive isotopes of a substance like U-238;

• the processing power of the world’s most powerful computer, expressed as a
function of time.

The ODE y′ = ry is easy to solve:
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1.3. A first example: exponential growth and decay

Because this particular ODE occurs so often, we don’t repeat this method of
solution over and over. We just memorize the answer:

Theorem 1.15 (Exponential growth/decay) Every linear, first-order, homogeneous,
constant-coefficient ODE can be written in the form

y′ = ry a.k.a.
dy

dt
= ry

where r ∈ R is a nonzero constant. The general solution of this ODE is

y = y0e
rt

where y0 = y(0), the value of y when t = 0. In this setting, r is called the rate or
proportionality constant.

If you graph the solution curve y = y(t), there are two possibilities (really three,
but we’ll ignore the r = 0 situation: in that case, since y′ = 0, y is constant):

1. When r > 0, this model is called exponential growth. The graph of the
solution y(t) = y0e

rt looks like this (assuming y0 > 0):

y0

2. When r < 0, this model is called exponential decay. The graph of the solu-
tion y(t) = y0e

rt looks like this (assuming y0 > 0):

y0
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1.3. A first example: exponential growth and decay

Example: Experiments have shown that the rate at which a radioactive element
decays is directly proportional to the amount present. (Radioactive elements are
chemically unstable elements that decay, or decompose, into stable elements as
time passes.) Suppose that if you start with 40 grams of a radioactive substance, in
12 years you will have 20 grams of radioactive substance left.

1. Write down the initial value problem which models the situation.

2. What is the rate of the model?

3. How much radioactive substance will you have after 7 years?

4. How long will it take for you to only have 5 grams of radioactive substance
left?
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1.4 Qualitative analysis of first-order ODEs (slope fields)
Let’s consider the initial value problem{

y′ = 1
4y

y(0) = 3

From the previous section on exponential growth, we know the particular solution
of this IVP is

and the graph of this solution is given below:
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Suppose we draw “mini-tangent lines” to this curve at various points on the
curve, and measure the slopes of these mini-tangent lines.
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1.4. Qualitative analysis of first-order ODEs (slope fields)

The observation that that the slope of any mini-tangent line to a solution of an
ODE must be equal to y′ suggests a graphical method of looking at any first-order
ODE which can be rewritten as y′ = φ(t, y).

Definition 1.16 Consider a first-order ODE which is written in the form y′ = φ(t, y)
for some function φ. At each point (t, y) in the plane, imagine a “mini-tangent line”
passing through the point (t, y) with slope φ(t, y). The collection of all these “mini-
tangent lines” is called the slope field or vector field associated to the ODE.

Example: y′ = t
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The slope field suggests what the graphs of solutions of the first-order ODE
y′ = φ(t, y) look like. If y = y(t) is a solution, then the graph of y(t) must be
tangent to all of the mini-tangents at all the points (t, y) on the graph. Put another
way,

“the solutions have to have graphs which flow with the mini-tangents of the vector field”

In the example y′ = t, it appears that the solutions are parabolas. That is the
case, because
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1.4. Qualitative analysis of first-order ODEs (slope fields)

Example: y′ = y − t
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Observations:

• there appear to be infinitely many different solutions to this ODE,

• but given any one initial value (t0, y0), there is one and only one particular
solution which passes through that point.
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1.4. Qualitative analysis of first-order ODEs (slope fields)

Using Mathematica to draw slope fields

The computer algebra system Mathematica is an extremely useful tool for drawing
slope fields. To sketch the slope field associated to ODE y′ = φ(t, y), use the follow-
ing code (which is explained below). The code is to be typed in one Mathematica
cell and executed all at once.

phi[t_,y_] := 3y;
VectorPlot[{1,phi[t,y]}, {t, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

An explanation of the code (and things you can change):

1. The first line defines φ(t, y). For example, this code will produce the vector
field for y′ = 3y.

2. The second line controls the range of the picture; for example, this will sketch
the vector field for t ranging from −3 to 3 and y ranging from −3 to 3.

3. The third line tells Mathematica how many arrows to draw in each direction,
and to include the t− and y−axes in the picture.

4. The fourth line controls the size of the arrows and is optional, but I think
these choices make for a nice picture.

5. The last line tells Mathematica what color to draw the arrows.

Note: In principle, you don’t type this code over and over. You can get this code
from the file slopefields.nb (available on my webpage) and you simply copy and
paste the cells into your Mathematica notebooks, editing the formula for φ(t, y), the
number of vectors you want to draw, and the plot range as necessary.

The code above produces this picture:
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1.4. Qualitative analysis of first-order ODEs (slope fields)

Reading pictures of slope fields

As mentioned earlier, solutions to an ODE must “flow with” the slope field of the
ODE. This allows you to qualitatively study solutions to ODEs by examining a pic-
ture of the slope field associated to the ODE.

Example: Below is a picture of the vector field associated to some first-order
ODE y′ = φ(t, y):
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1. Write the equations of two explicit solutions to this ODE:

2. On the above picture, sketch the graph of the solution satisfying y(−2) = 1.

3. Suppose y(−2) = 0. Estimate y(2).

4. Suppose y(−2) = 3. Find lim
t→∞

y(t).

5. Suppose y(2) = 0. Find lim
t→−∞

y(t).
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1.4. Qualitative analysis of first-order ODEs (slope fields)

More Mathematica code

All this code can be found in the file slopefields.nb, downloadable from my
website:

mcclendonmath.com/330.html

Code to sketch the slope field and several solution curves

The following code will sketch a slope field and also sketch several solution
curves (passing through randomly chosen points). Execute all this in a single Math-
ematica cell:

phi[t_,y_] := 3y;
VectorPlot[{1,phi[t,y]}, {t, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> 35,
StreamScale -> Full,
StreamStyle -> {Blue, Thick}]

The first five lines are the same as the command described earlier; the sixth line
directs Mathematica to sketch 35 solution curves at random locations on the picture.
The last line tells Mathematica what color to draw the solution curves.

Code to sketch the slope field and a solution curve passing through a specific
point

The following code (executed in a single cell) will sketch a slope field and sketch
a single solution curve passing through a given point (t0, y0). In this case the initial
value is (−1, 2):

phi[t_,y_] := 3y;
VectorPlot[{1,phi[t,y]}, {t, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> {{-1,2}},
StreamScale -> Full,
StreamStyle -> {Blue, Thick}]
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1.5. Numerical techniques: Euler’s method

1.5 Numerical techniques: Euler’s method
In the previous section we saw that the solution to an initial value problem of

the form {
y′ = φ(t, y)
y(t0) = y0

can be estimated by sketching a slope field for the ODE, and drawing a curve
through the point (t0, y0) so that the “flows with” the slope field.

Example: y′ = t+ y; (t0, y0) = (−1, 1.5).
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You can see from the picture that for the solution y = y(t) to this IVP, y(.5) ≈ 5.

But, what is y(2)?
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1.5. Numerical techniques: Euler’s method

Suppose you wanted to know what y(2) was, and tried to used Mathematica to
draw a picture with an appropriate scale on the y-axis. You’d get something like
this:
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Based on this picture, a reasonable person might estimate that y(2) is anything
from 20 to 30.

Question: How could you estimate what y(2) was without solving the ODE or
relying on reading a picture of the slope field?

What we want is what is called a “numerical method” to approximate informa-
tion about the ODE. In general, a numerical method is any computational method
(by “computational”, I mean a method that usually can be implemented on a com-
puter by writing some appropriate code) which will approximate the solution to
some problem. The study of numerical methods is called numerical analysis.
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1.5. Numerical techniques: Euler’s method

Euler’s method

Goal: Given initial value problem of form{
y′ = φ(t, y)
y(t0) = y0

estimate y(tn) for some value tn.
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How the method works: first, you pick a positive integer n and divide the inter-
val [t0, tn] into n equal subintervals. Then let ∆t be the length of each subinterval.

Next, start at (t0, y0). Use tangent line approximation to estimate the change in
y as t changes from t0 to t1 = t0 + ∆t:

This gives you a point (t1, y1) which probably isn’t on the solution curve y(t),
but is pretty close to being on that curve.

Next, repeat the process as if you started at (t1, y1): use tangent line approxima-
tion to estimate the change in y as t changes from t1 to t2 = t1 + ∆t:
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1.5. Numerical techniques: Euler’s method

Repeat this over and over. In general, you obtain the point (tj+1, yj+1) from the
point (tj, yj) by the equations{

tj+1 = tj + ∆t
yj+1 = yj + φ(tj, yj)∆t

Keep going until you get to tn, the value at which you wanted to approximate the
y−coordinate of the solution curve. To summarize:

Definition 1.17 Given a first-order initial value problem of the form{
y′ = φ(t, y)
y(t0) = y0

,

given a number tn 6= t0, and given a natural number n, set ∆t = tn−t0
n

. Define a
sequence of points (tj, yj) recursively by setting{

tj+1 = tj + ∆t
yj+1 = yj + φ(tj, yj)∆t

The yn obtained by this method is called the approximation to y(tn) obtained by
Euler’s method with n steps. n is called the number of steps and ∆t is called the
step size.

Example: Let y(t) be the solution to the IVP y′ = t + y; (t0, y0) = (−1, 1.5). Use
Euler’s method with three steps to approximate y(2).
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1.5. Numerical techniques: Euler’s method

Having computed (t2, y2) = (1, 4), repeat the procedure again to find (t3, y3):

φ(t2, y2) = φ(1, 4) = 1 + 4 = 5;{
t3 = t2 + ∆t = 1 + 1 = 2
y3 = y2 + φ(t2, y2)∆t = 4 + 5(1) = 9

Therefore (t3, y3) = (2, 9) so from execution of Euler’s method with 3 steps, y(2) ≈
9.

-4 -2 0 2 4

-2

0

2

4

6

8

10

-6 -4 -2 0 2 4 6

0

5

10

15

20

25

30

Why was our approximation so far off?

How might this approximation improve?

33



1.5. Numerical techniques: Euler’s method

Suppose we repeated the same problem (y′ = t+ y; (t0, y0) = (−1, 1.5); y(2) =?)
with 100 steps. That means

∆t = 2− (−1)
100 = 3

100 = .03,

so we obtain {
t1 = t0 + ∆t = −1 + .03 = −.97
y1 = y0 + φ(t0, y0)∆t = 1.5 + (.5) (.03) = 1.515{

t2 = t1 + ∆t = −.97 + .03 = −.94
y2 = y1 + φ(t1, y1)∆t = 1.515 + (−.97 + 1.515)(.03) = 1.53135

...

...{
t100 = t99 + ∆t = 1.97 + .03 = 2
y100 = y99 + φ(t99, y99)∆t = 25.8279

Therefore y(2) ≈ 25.8279.

Plots of points obtained by Euler’s method for this example

3 steps 10 steps 100 steps
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So if your step size ∆t is small enough (i.e. if you use enough steps), Euler’s
method does a really good job of producing a sequence of points which will ap-
proximate the solution curve y(t).

Bad news: Doing this by hand would take too long.

Good news: We have computers that will perform Euler’s method quickly and
easily.
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1.5. Numerical techniques: Euler’s method

Mathematica code to implement Euler’s method

I have written some Mathematica code which will implement Euler’s method quickly.
Using this code requires two steps. First, you need to type exactly this code (or
copy and paste it from the eulermethod.nb file on my web page); this code defines
a program called “euler”:

euler[f_, {t_, t0_, tn_}, {y_, y0_}, steps_] :=
Block[{told = t0, yold = y0, thelist = {{t0, y0}}, t, y, h},
h = N[(tn - t0)/steps];
Do[tnew = told + h;
ynew = yold + h *(f /.{t -> told, y -> yold});
thelist = Append[thelist, {tnew, ynew}];
told = tnew;
yold = ynew, {steps}];

Return[thelist];]

The above code has to be run once each time you restart Mathematica (to define
“euler”). Once it is executed, you can then implement Euler’s method with the
following type of command:

euler[3y, {t,1,3}, {y,-1}, 2]

This command performs Euler’s method for the differential equation y′ = 3y
where the initial point is (t0, y0) = (1,−1). The procedure stops when t = 3 and
uses 2 steps. If you are given a different ODE of the form y′ = φ(t, y), you change
the “3y” to whatever φ(t, y) is. If you are given a different initial value, you change
the 1 and −1 to the coordinates of your initial value. You change the 3 to wherever
you want Euler’s method to stop, and you change the 2 to the number of steps you
want.
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1.5. Numerical techniques: Euler’s method

The output you get in this situation is

{{1,-1},{2,-4},{3,-16}}

which means that the points coming from Euler’s method are

(t0, y0) = (1,−1) (t1, y1) = (2,−4) (t2, y2) = (3,−16).

The great thing about Mathematica is that you can quickly perform Euler’s
method with a very large number of steps. If you run the command

euler[3y, {t,1,3}, {y,-1}, 400]

this will perform Euler’s method with 400 steps. The bad news is that your
output will be an enormous list (of 401 points). To get only the last point in the list
(which is usually what you are most interested in), tweak this command as follows:

euler[3y, {t,1,3}, {y,-1}, 400][[401]]

The number in the double brackets should always be one more than the num-
ber of steps.

If you only care about a picture of the points you would get by implementing
Euler’s method, you can use a command like the one below. It plots all the points
(tn, yn) obtained by running Euler’s method using the same parameters as in the
previous commands. If you use a large number of points, it will often appear as
though they make a curve (since the points are really close together):

ListPlot[euler[3y, {t, 1,3}, {y, -1}, 400]]
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1.5. Numerical techniques: Euler’s method

A potential pitfall with Euler’s method

Example: y′ = −t
y

.

The solution to this ODE passing through (3, 4) is t2 + y2 = 25. The graph of
this solution is a...

Note that for this solution, y is not a function of t, because its graph does not
pass the Vertical Line Test.

Suppose you tried Euler’s method for this solution (starting at (3, 4) with ∆t =
.01). You would get a sequence of points graphed here:
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Suppose you wanted to estimate y(tn) where y is a solution of the IVP{
y′ = φ(t, y)
y(t0) = y0

.

You can use Euler’s method to get an answer, but to know if the Euler’s method
computation is valid, you would have to know whether or not the solution even
exists at t = tn (more generally, whether it exists for all t ∈ [t0, tn]), and you would
have to know that the solution can be written where y is a function of t. We address
this problem in the next section.
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1.6 Existence and uniqueness of solutions
Recall that in the last section we were concerned about whether an IVP of the

form y′ = φ(t, y), y(t0) = y0 had a solution where y could be written as a function
of t. More generally, we might be interested in how many solutions of this form
might exist. Questions of this type in mathematics are called existence/uniqueness
questions:

Existence:

Uniqueness:

Here is a very important theoretical result (used in many settings outside of
ODEs) which settles these questions in the context we have been discussing. Recall
from Math 320 (or look ahead to Section 2.5) that ∂φ

∂y
is the partial derivative of φ

with respect to y (this is obtained from function φ(t, y) by treating t as a constant
and differentating φ with respect to y, i.e.

φ(t, y) = t2 + 3ty3 + ty5 ⇒ ∂φ

∂y
=

Theorem 1.18 (Existence/Uniqueness Theorem for first-order ODEs) Suppose
φ : R2 → R is a function such that both φ and ∂φ

∂y
are continuous for all (t, y) is some

rectangle in R2 containing (t0, y0). Then for some interval I of values of t containing
t0, the initial value problem {

y′ = φ(t, y)
y(t0) = y0

has one and only one solution which is of the form y = f(t) for some function f : R→
R.

PROOF First, without loss of generality, we can assume that the initial value is
y(0) = 0 (otherwise translate the axes so that the initial condition is at the origin).

Next, we rephrase the IVP of this theorem in a different way: suppose (for now)
that there is some function y = f(t) which solves this IVP. Then the function φ(t, y)
can be rewritten as φ(t, f(t)). This gives the equation

f ′(t) = φ(t, f(t)) a.k.a. f ′(s) = φ(s, f(s))
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1.6. Existence and uniqueness of solutions

Integrate both sides of this equation from s = 0 to s = t to get∫ t

0
f ′(s) ds =

∫ t

0
φ(s, f(s)) ds

f(t)− f(0) =
∫ t

0
φ(s, f(s)) ds

f(t) =
∫ t

0
φ(s, f(s)) ds

The last line above is called the integral equation associated to the IVP; it is equiv-
alent to the original IVP (in that it has exactly the same set of solutions as the
original IVP). We solve this integral equation by a scheme somewhat like Euler’s
method; this scheme is called Picard’s method (of successive approximations):

Picard’s method

Recall that our goal is to solve the integral equation

f(t) =
∫ t

0
φ(s, f(s)) ds.

Start by guessing what the solution is. Call this guess f0. (If you aren’t a good
guesser, choose any function f , like the constant function f0(t) = 0; the method
will still work, but might take longer to get an accurate approximation.)

Now substitute this f0 into the right-hand side of the integral equation and
evaluate the right-hand side to obtain a function. Call this function f1:

f1(t) =
∫ t

0
φ(s, f0(s)) ds

Repeat this procedure to obtain a sequence of functions {f0, f1, f2, ...}

f1(t) =
∫ t

0
φ(s, f0(s)) ds

f2(t) =
∫ t

0
φ(s, f1(s)) ds

f3(t) =
∫ t

0
φ(s, f2(s)) ds

...
...

fj+1(t) =
∫ t

0
φ(s, fj(s)) ds

...
...
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1.6. Existence and uniqueness of solutions

Definition 1.19 The sequence f0, f1, f2, ... of functions so obtained are called the
successive approximations or Picard approximations to the solution y = f(t) of
the original IVP.

You can show that under the assumptions of this theorem,

f(t) = lim
j→∞

fj(t)

exists for all t in some interval containing the initial value, and that the function
f so obtained is the only solution of the IVP on that interval. (This is a technical
argument using some difficult concepts from higher mathematics, and is omitted.)
�

An example

Consider the initial value problem y′ = 2(1 + y), y(0) = 0. Find the solution of this
IVP using Picard’s method of successive approximations.

Picard approximations can also be computed using Mathematica; the relevant
code is in Appendix A.9.
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1.7. Autonomous equations; equilibria and phase lines

1.7 Autonomous equations; equilibria and phase lines
Another view of exponential growth/decay

Recall that the ODE y′ = ry has as its solutions y = y0e
rt.

Suppose we were only interested in determining (or estimating) the value of
y(t) for large t. In other words, we want to know

This is pretty easy to figure out in the context of exponential models:

Observe: There is a “special” solution to y′ = ry which is constant (i.e. its graph
is a horizontal line).

This behavior generalizes to a large class of ODEs called autonomous equations:
the “special” solutions of an autonomous ODE are called equilibria of that ODE;
in general (but not always) each equilibrium solution of an ODE either “attracts”
other solutions as t→∞, or “repels” them as t→∞.

Analysis of autonomous equations

Definition 1.20 A first-order ODE is called autonomous if it is of the form

y′ = φ(y)

for some function φ : R→ R.
An IVP is called autonomous if its differential equation is autonomous.

Example: The exponential growth/decay equation y′ = ry is autonomous with
φ(y) = ry.
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1.7. Autonomous equations; equilibria and phase lines

Example: y′ = 2y cos y

Non-example: y′ = y2t

Consider an autonomous IVP:{
y′ = φ(y)
y(t0) = y0

. (1.1)

Let’s suppose that what we are really interested in is the long-term behavior of the
solutions, i.e. we want to know

lim
t→∞

y(t).

Since there is no t in the formula for φ, and based on our discussion of exponential
growth and decay, we expect that the answer to this question depends on what y0
is.

First observation: Suppose y0 is some number such that φ(y0) = 0. Then the
constant function y(t) = y0 is a solution of the autonomous IVP (1.1).

Definition 1.21 Let y′ = φ(y) be an autonomous ODE. A constant function which is
a solution of this ODE is called an equilibrium (solution) of the ODE. (The plural
of equilibrium is equilibria.)

Based on the discussion above, we can find equilibria by solving a numerical
equation:

Theorem 1.22 The constant function y = y0 is an equilibrium solution of the au-
tonomous ODE y′ = φ(y) if and only if φ(y0) = 0.

Once you find the equilibria of an autonomous ODE, you can conclude that the
slope field associated to the autonomous ODE must look like this:
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1.7. Autonomous equations; equilibria and phase lines

In fact, you know even more about the slope field associated to an autonomous
ODE y′ = φ(y):

Key observation: Since the slope of the mini-tangent line depends only on y
(and not on t), that means

In other words, for an ODE of the form y′ = φ(y), the slope field can be de-
scribed by another picture which “ignores” the t:

The picture above is called a phase line for the autonomous ODE y′ = φ(y). It
is a picture of a y-axis, with the equilibria indicated by dots or dashes, and arrows
drawn between the equilibria which indicate the behavior of the solutions as t →
∞.
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1.7. Autonomous equations; equilibria and phase lines

Example: Suppose this is a phase line for an autonomous ODE:

-2 1 3 7

y

(a) Write the equation of four explicit equations of this ODE.

(b) Sketch the slope field associated to this ODE.
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(c) Suppose y(0) = 4. Find lim
t→∞

y(t).

(d) Suppose y(5) = 0. Find lim
t→−∞

y(t).

(e) Suppose y(1) = 8. Is y(t) an increasing function, a decreasing function, or a
constant function?

(f) Suppose y(0) = y0. For what values of y0 is lim
t→∞

y(t) = 3?
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1.7. Autonomous equations; equilibria and phase lines

Classification of equilibria

Definition 1.23 An equilibrium solution y = y0 of an autonomous ODE is called
stable (or asymptotically stable or attracting or a sink) if there is an open interval
I of initial values containing y0 such that if y(t0) ∈ I ,

lim
t→∞

y(t) = y0.

Example: In the preceding example, y = −2 and y = 7 are stable equilibria.

General pictures of stable equilibria (sinks):

-4 -2 0 2 4

-4

-2

0

2

4

y0

Definition 1.24 An equilibrium solution y = y0 of an autonomous ODE is called
unstable (or asymptotically unstable or repelling or a source) if there is an open
interval I of initial values containing y0 such that if y(t0) ∈ I but y(t0) 6= y0,

lim
t→∞

y(t) 6= y0.

Example: In the preceding example, y = 1 is an unstable equilibrium.

General pictures of unstable equilibria (sources):

-4 -2 0 2 4
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-2

0

2

4

y0
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1.7. Autonomous equations; equilibria and phase lines

Definition 1.25 An equilibrium solution y = y0 of an autonomous ODE is called
semistable (or neutral) if it is neither stable nor unstable.

Example: In the preceding example, y = 3 is a semistable equilibrium.

Example picture of semistable equilibria: In general, any equilibrium with
pictures unlike either of the previous two cases is semistable. Here is an example
of the kind of pictures you might see:

-4 -2 0 2 4

-4

-2

0

2

4

y0

To find the equilibria of an autonomous ODE y′ = φ(y), you set φ(y) = 0 and
solve for y (using Theorem 3.38). To classify the equilibria as stable, unstable or
semistable, we use calculus:

Theorem 1.26 (Classification of equilibria) Suppose y = y0 is an equilibrium so-
lution of autonomous ODE y′ = φ(y), where φ is differentiable at y0. Then:

1. φ(y0) = 0;

2. If φ′(y0) < 0, then y0 is stable.

3. If φ′(y0) > 0, then y0 is unstable.

4. If φ′(y0) = 0 and φ′′(y0) 6= 0, then y0 is semistable.

5. If φ′(y0) = φ′′(y0) = 0, then you need to analyze the graph of φ near y0 to
classify y0.

PROOF Suppose y0 is an equilibrium. Then φ(y0) = 0 by Theorem 1.22.
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1.7. Autonomous equations; equilibria and phase lines

Case 1: Suppose the function φ is decreasing at y0 (this occurs if φ′(y0) < 0).
Then the graph of φ looks like

so the phase line looks like

and therefore y0 is stable. This proves statement (2) of the theorem.

Case 2: Suppose the function φ is increasing at y0 (this occurs if φ′(y0) > 0).
Then the graph of φ looks like

so the phase line looks like

and therefore y0 is unstable. This proves statement (3) of the theorem.

Case 3: Suppose the function φ has a local maximum or a local minimum at y0
(this occurs if φ′(y0) = 0 but φ′′(y0) 6= 0). Then the graph of φ looks like

so the phase line looks like

and therefore y0 is semistable. This proves statement (4) and finishes the proof of
the theorem. �
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1.7. Autonomous equations; equilibria and phase lines

Example: For each autonomous ODE, find the equilibrium solutions and clas-
sify them as stable, unstable or semistable. Then sketch the phase line associated
to the ODE.

(a) y′ = y − 3

(b) y′ = y2 − 4y + 3
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1.7. Autonomous equations; equilibria and phase lines

(c) y′ = sin y

(d) y′ = y(y − 2)2
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1.7. Autonomous equations; equilibria and phase lines

Logistic models

Population biology models seek to determine or estimate the population y of a
species in terms of the time t. Suppose the species reproduces at rate r > 0. This
means that the rate of change in y should be something like r times y. This makes
sense if the population is small. But if the population gets too big (say greater
than some constant L > 0), there is not enough food in the ecosystem to support
all of the organisms, so the population won’t grow despite reproduction, because
the organisms starve. A differential equation representing this type of situation is
called a logistic equation and has the following form:

y′ = r y (L− y)

In a logistic equation, r is a constant called the rate of reproduction and L is a
constant called the carrying capacity or limiting capacity of the system.

Often L is set equal to 1, in which case y measures not the raw population of
the species, but the fraction of the largest possible population of the species.

Note that r and L are always positive.

Let’s analyze the logistic equation by finding and classifying its equilibria:
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1.8. Bifurcations

1.8 Bifurcations
Idea: In many applications of ODEs, you obtain a model which has some con-

stants in it:

Ex. 1: Exponential models: y′ = ry

Ex. 2: Logistic models: y′ = ry(L− y)

These constants are often determined experimentally. For example, if a biologist
studying the population of bacteria in a petri dish observes that at t = 0 there
are 200 bacteria and that at time t = 3 there are 420 bacteria, the biologist would
estimate the r as follows (see Section 1.3):

y(t) = y0e
rt

y(t) = 200ert

⇒ 420 = 200er(3)

⇒ 2.1 = e3r

⇒ r = 1
3 ln 2.1 ≈ .2473.

Potential problem(s):

For instance, if there were actually 445 bacteria at time t = 2.95, then the value of r
(by the same calculation as above) would be r ≈ .2711.

To get around this, scientists take lots of readings and compile the data to es-
timate r using what is called “least-squares” approximation. But this is still error-
prone. Because of this error, it is good to sometimes think of the r (or the r and L
in a logistic equation) as only being determined up to a small error.

Suppose you are interested in the long-term behavior of your model, i.e. what
happens as t→∞. For an exponential model, suppose you estimate r ≈ 3. Then

and even if your r is a little off, the same limit statement holds, so you can say with
certainty that y(t) will increase without bound as t → ∞. So qualitatively, your
estimates can be assured of accuracy.
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1.8. Bifurcations

BUT... if you estimate r ≈ .001 and you figure that your r value might be off by
as much as .004, then r might be positive or negative! Then (assuming y0 > 0)

lim
t→∞

y(t) = lim
t→∞

y0e
rt =


so you cannot predict even the qualitative behavior of y(t) for large t with any cer-
tainty.

In this section we are interested in studying families of autonomous ODEs that
have an experimental constant (like r) in them (the constant is called a parame-
ter). We want to determine whether or not small changes in the parameter wildly
change the behavior of y(t) for t large; equivalently, we want to find the values of
the parameter for which the behavior of the family “qualitatively changes”. These
qualitative changes in the system are called bifurcations.

Remark on notation: In general, we describe an ODE with a parameter by writing

y′ = φ(y; r) or y′ = φr(y)

The semicolon or subscript tells you that the letter that follows is a parameter, and
not the independent variable (i.e. y = y(t), not y = y(r)).

Bifurcations of ODEs of the form y′ = φ(y; r) can be classified into four types:

Saddle-node bifurcations (as r changes, a pair of equilibria appear/disappear -
one equilibrium attracts and the other repels)

Pitchfork bifurcations (as r changes, one equilibrium changes behavior and turns
into three equilibria - one on either side)

Transcritical bifurcations (as r changes, two equilibria “cross” and change behav-
ior

Degenerate bifurcations anything that isn’t in the other three classes (these are
rare)
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1.8. Bifurcations

Saddle-node bifurcations

Example: y′ = y2 − r
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1.8. Bifurcations

Pitchfork bifurcations

Example: y′ = y3 − ry

Equilibria:

Stability/instability of equilibria: first, φ′(y) = d
dy
φ(y) = 3y2 − r.

• y = 0 (all r):

φ′(0) = −r ⇒


0 is stable if r > 0
0 is neutral if r = 0
0 is unstable if r < 0

• y =
√
r (r > 0):

φ′(
√
r) = 3(

√
r)2 − r = 3r − r = 2r > 0 ⇒

√
r is unstable if r > 0

• y = −
√
r (r > 0):

φ′(−
√
r) = 3(−

√
r)2 − r = 3r − r = 2r > 0 ⇒ −

√
r is unstable if r > 0

Bifurcation diagram:

-6 -4 -2 2 4 6

-4

-2

2

4
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1.8. Bifurcations

Transcritical bifurcations

Example: y′ = y2 − ry

Equilibria: y2 − ry = 0 ⇒ y(y − r) = 0 ⇒ y = 0, y = r

Stability/instability of equilibria: first, φ′(y) = d
dy
φ(y) = 2y − r.

• y = 0 (all r):

φ′(0) = −r ⇒


0 is stable if r > 0
0 is neutral if r = 0
0 is unstable if r < 0

• y = r (all r):

φ′(r) = r ⇒


r is unstable if r > 0
r is neutral if r = 0
r is stable if r < 0

Bifurcation diagram:

-6 -4 -2 2 4 6

-4

-2

2

4

A second example: y′ = ry

Equilibria: y = 0 (for all r); all y (if r = 0)
Stability/instability: y = 0 is stable if r < 0 and unstable if r > 0
Bifurcation diagram:

-6 -4 -2 2 4 6

-4

-2

2

4

55



1.8. Bifurcations

Example: The bifurcation diagram for a family of ODEs of the form y′ = φ(y; r)
is given below. For this system, find the locations of all bifurcations, and classify
each bifurcation as a saddle-node, pitchfork or transcritical bifurcation:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-5

5

10

Example: Consider the family of ODEs y′ = r arctan y. Find the locations of all
bifurcations, and classify each bifurcation as a saddle-node, pitchfork, transcritical
or degenerate bifurcation. Sketch the bifurcation diagram for this family.
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1.8. Bifurcations

Procedure to find bifurcations in family y′ = φ(y; r):

1. Find the equilibria in terms of r (by solving φ(y; r) = 0), keeping track of
the values of r for which equilibrium exists.

2. For each equilibrium y0 found in Step 1, classify the equilibrium by
computing d

dy
φ(y0; r). Keep in mind that in general, this classification

will depend on the value of r.

3. Sketch the bifurcation diagram (start by graphing the formulas for y
in terms of r obtained in Step 1; then fill in with vertical arrows based
on the classification in Step 2).

Example: Consider the family of ODEs y′ = ey − r. Find the locations of all
bifurcations, and classify each bifurcation as a saddle-node, pitchfork, transcritical
or degenerate bifurcation. Sketch the bifurcation diagram for this family.
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1.9 Summary of Chapter 1
Background and vocabulary

An ordinary differential equation (ODE) is an equation involving an independent
variable t and a function y = y(t), together with derivatives of y with respect to t.
The order of an ODE is the highest order of derivative that occurs in the equation.
The goal is to solve for an equation relating y and t that has no derivatives in it, i.e.
to find y = y(t).

A point (t0, y0) through which an ODE must pass is called an initial value. An
ODE together with an initial value is called an initial value problem (IVP). A so-
lution of an IVP is called a particular solution; the set of all particular solutions of
an ODE is called the general solution of the ODE.

Generally, to solve an IVP you start by solving the ODE to obtain the general
solution (which should have one or more arbitrary constants in it... you expect that
the number of constants equals the order of the equation). Then you plug in the
initial value(s) to solve for the constant(s).

An ODE is called linear if there are functions p0, p1, ..., pn : R → R and a func-
tion q : R→ R such that the equation can be written as

p0y + p1y
′ + p2y

′′ + ...+ pny
(n) = q.

A linear equation is called homogeneous if q = 0.

Qualitative and numerical approaches to first-order ODEs

To study a first-order ODE qualitatively, sketch a picture of its slope field by draw-
ing “mini-tangent lines” at every point in the plane (in practice, one does this with
a computer). Solutions to the ODE must “flow with” the slope field.

To numerically approximate a solution to an ODE, use Euler’s method: given
IVP y′ = φ(t, y); y(t0) = y0, to approximate y(tn), set ∆t = tn−t0

n
and define points

recursively by {
tj+1 = tj + ∆t
yj+1 = yj + φ(tj, yj)∆t

;

the yn obtained by this method (usually implemented on a computer) is an approx-
imation to y(tn). The larger n is, the better the approximation.

The existence/uniqueness theorem for first-order ODEs gives conditions un-
der which an IVP y′ = φ(t, y); y(t0) = y0 has one and only one solution. This the-

58



1.9. Summary of Chapter 1

orem is proved using Picard’s method of successive approximations, which come
from the formula

fj+1(t) =
∫ t

0
φ(s, fj(s)) ds.

The fj converge to the solution y = f(t) as j →∞.

Autonomous ODEs and bifurcations

A first-order ODE is called autonomous if it is of the form y′ = φ(y). A constant
function which is a solution of this ODE is called an equilibrium of the ODE; to
find the equilibia, set φ(y) = 0 and solve for y. We classify equilibria y0 of an
autonomous system as follows:

• If φ′(y0) < 0, then y0 is stable (it attracts on both sides as t→∞);

• If φ′(y0) > 0, y0 is unstable (it repels on both sides as t→∞);

• If φ′(y0) = 0 but φ′′(y0) 6= 0, y0 is semistable (or neutral).

Having classified the equilibria of an autonomous ODE, we draw a phase line
which describes the behavior of the solutions as t→∞.

Given a parameterized family of autonomous ODEs y′ = φ(y; r), values of r
at which qualitative changes of the solutions to the ODE occur are called bifurca-
tions. There are three main types of bifurcations:

Saddle-node bifurcations: two equilibria appear or disappear
Pitchfork bifurcations: one equilibria turns into three (and reverses behavior)
Transcritical bifurcations: two equilibria cross each other and reverse behavior
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Chapter 2

First-order equations: solution
techniques

2.1 Solution of first-order homogeneous linear equations
Recall: A first-order ODE is linear if it of the form

p1(t)y′ + p0(t)y = q(t)

for functions p1, p0 and q, where p1 6= 0. The equation is called homogeneous if
q = 0 and is called constant-coefficient if p1 and p0 are constants.

Recall also: In Section 1.3, we studied the simplest ODE (first-order linear,
constant-coefficient and homogeneous): the exponential growth/decay model:

y′ = ry a.k.a. y′ − ry = 0 ⇒ y = y0e
rt

Example: Find the particular solution of the IVP
{

4y′ + y = 0
y(0) = 6 .
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2.1. Solution of first-order homogeneous linear equations

Solution of first-order homogeneous linear equations

Any homogeneous first-order linear equation can be written in the form

p1(t)y′ + p0(t)y = 0.

To solve an equation of this type, first divide through by p1(t) to make the equation
have the form

y′ + p(t)y = 0.

Then, write the y′ in Leibniz notation, “separate the variables” and integrate both
sides (more on this technique later in Chapter 2):

STEPS GENERAL SITUATION EXAMPLE

p1(t)y′(t) + p0(t)y(t) = 0 t3y′ + t5y = 0
Divide through by p1

y′ + p(t)y = 0
Move py term to other side

y′ = −p(t)y
Write y′ in Leibniz notation

dy
dt

= −p(t)y
Move y to left, dt to right

(i.e. “separate the variables”)
1
y
dy = −p(t) dt

Integrate both sides ∫ 1
y
dy =

∫
−p(t) dt

ln y =
∫
−p(t) dt

Solve for y
y = e−

∫
p(t) dt
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Theorem 2.1 (Solution of a first-order homogeneous linear equation) The gen-
eral solution of the first-order, homogeneous linear equation

y′ + p(t)y = 0

is
y = exp

(
−
∫
p(t) dt

)
= e−

∫
p(t) dt.

Note: general solutions of first-order equations should (and do) have arbitrary
constants in them. The arbitrary constant in this general solution is the “+C” that
appears when you calculate

∫
p(t) dt. This constant manifests itself as follows:

Therefore the general solution of a homogeneous, first-order linear equation is
always a constant times one particular solution of that equation. More generally:

Theorem 2.2 (Solution of a homogeneous, first-order linear equation) Let yh(t)
be any nonzero solution of a homogeneous, first-order linear ODE

p1(t)y′ + p0(t)y = 0.

Then:

1. the only solutions of that equation are of the form Cyh(t) for some constant C.

2. for any constant C, the function Cyh(t) is a solution of the same equation; and

PROOF By the preceding discussion, the set of solutions is the setKe−P (t) whereK
is an arbitrary constant and P is an antiderivative of p(t) = p0(t)

p1(t) . The result follows.
�
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How this theorem is applied: Suppose you have some homogeneous, linear
first-order ODE and somehow, someway, you know that

yh(t) = sin t+ e−t

is a solution. Then you know

Subspaces

The theorem of the previous section can be rephrased in the language of linear
algebra. Recall that a vector space is a set of objects which can be added to one
another and multiplied by constants. If one vector space is a subset of another, we
say that the first space is a subspace of the second. More precisely:

Definition 2.3 Let V be a vector space and let W ⊆ V . We say W is a subspace (of
V ) if

1. W is closed under addition, i.e. for any two vectors w1 and w2 inW , w1 +w2 ∈
W ; and

2. W is closed under scalar multiplication, i.e. for any vector w ∈ W and any
scalar r, rw ∈ W .

The most important example of a subspace is the set of multiples of a single
vector.

Definition 2.4 Let V be a vector space and let v ∈ V be a vector. The span of v,
denoted Span(v), is the set of linear multiples of v:

Span(v) = {cv : c ∈ R}

If W ⊆ V is such that W = Span(v), we say W is spanned by v.
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2.1. Solution of first-order homogeneous linear equations

Examples of spans of a single vector:

• V = R2; v = (3, 2)

• V = R4; v = (1, 1, 1, 1)

• V = C∞(R,R); y = sin t

Lemma 2.5 (Spans are subspaces) The span of any vector is a subspace.

PROOF Essentially, this is because the sum of two multiples of a vector is also a
multiple of that vector, and because any constant times a multiple of a vector is
also a multiple of that vector. For a precise proof, see Theorem 3.5 of my Math 322
lecture notes.

Lemma 2.6 If W is spanned by v, then W is also spanned by cv for any nonzero
constant c.

PROOF The set of multiples of v is the same as the set of multiples of cv, so long
as c 6= 0.

We can restate Theorem 2.2 as follows:

Theorem 2.7 The set of solutions of a homogeneous, first-order linear ODE form a
subspace of C∞(R,R) which is spanned by any one nonzero solution of the equation.

Consequence: If you know one nonzero solution yh = yh(t) of a homogeneous,
first-order linear ODE, then you know them all. They are all of the form

A preview: The set of solutions to a homogeneous, nth-order linear ODE will
also be a subspace of C∞(R,R); this subspace will be spanned by n linearly inde-
pendent functions rather than just one.
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A last remark: Suppose p(t) is constant. Then the first-order homogeneous
linear equation is

2.2 Solution of first-order linear equations by integrating factors
To solve a general first-order linear equation, first write it in the form

p1(t)y′ + p0(t)y = q(t)

and divide through by p1(t) to get

y′ + p0(t)
p1(t)y = q(t)

p1(t) .

After doing this, any first-order linear equation has the following standard
form:

y′ + p(t)y = q(t).

From this point, there are two methods of solution:

1. integrating factors (§2.2)

2. undetermined coefficients (§2.3)

Much of the time, either method works, but you should know both.
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Integrating factors

Definition 2.8 Given an ODE, an integrating factor for that equation is some ex-
pression µ (which may have a t and/or y in it) such that if you multiply through the
equation by µ, the equation becomes “easier”.

Consider the first-order linear ODE

y′(t) + p(t)y(t) = q(t).

Now we look for an integrating factor of the form µ(t). After multiplying through
by this function, the equation would be

µ(t)y′(t) + p(t)µ(t)y(t) = µ(t)q(t). (2.1)

Note that if µ(t) were some function such that

µ′(t) = p(t)µ(t),

then equation (2.1) would look like

µ(t)y′(t) + µ′(t)y(t) = µ(t)q(t). (2.2)

This works if µ′(t) = p(t)µ(t), i.e. if µ satisfies the differential equation

µ′ − p(t)µ = 0.

But this is a first-order, homogeneous linear equation, so we know from the previ-
ous section that the general solution is given by

µ = exp
(
−
∫
−p(t) dt

)
= e

∫
p(t) dt

Since in this context, we don’t need all the µs that work (we only need one µ), we
can ignore the +C in this integral.
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This works! Here is the procedure we just went through:

Procedure to solve first-order linear ODEs via integrating factors

1. Rewrite the equation in the form y′(t) + p(t)y(t) = q(t).

2. Multiply through both sides by the integrating factor µ(t) = e[
∫
p(t) dt]

(ignore the +C in the integral). This yields the equation

µ(t)y′(t) + µ′(t)y(t) = µ(t)q(t).

3. The left-hand side of the equation you get in Step 2 is always a deriva-
tive coming from the Product Rule. This makes the equation

d

dt
[µ(t)y(t)] = µ(t)q(t).

4. Integrate both sides with respect to t to get µ(t)y(t) =
∫
µ(t)q(t) dt.

(You need the +C when doing this integral to get the general solu-
tion.)

5. Divide through by µ(t) to solve for y: y(t) = 1
µ(t) [

∫
µ(t)q(t) dt].

You can solve any first-order linear ODE by this procedure (theoretically). The
only drawback is that the integrals∫

p(t) dt and
∫
µ(t)q(t) dt

have to be doable (and you don’t always know if they are doable when you start).

Example 1: Find the general solution of ty′ + 2y = 4t2.
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Example 2: Find the particular solution of the IVP{
y′ + (cos t)y = cos t
y(π) = 0 .
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Example 3: Find the general solution of y′ + y = 6t.
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2.3 Solution of first-order linear equations by undetermined coef-
ficients

It turns out that the structure of the solutions of a non-homogeneous linear
equation has a lot to do with an associated homogeneous equation:

Definition 2.9 Given a first-order linear ODE p1(t)y′ + p0(t)y = q(t), the ODE

p1(t)y′ + p0(t)y = 0

is called the corresponding homogeneous equation.

Theorem 2.10 Suppose y and ŷ are two solutions of the first-order linear ODE p1(t)y′+
p0(t)y = q(t). Then the function y− ŷ is a solution of the corresponding homogeneous
equation p1(t)y′ + p0(t)y = 0.

PROOF The corresponding homogeneous equation is

p1(t)y′ + p0(t)y = 0.

Plug the function y − ŷ into the left-hand side:
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2.3. Solution of first-order linear equations by undetermined coefficients

As a consequence, suppose yp is any one particular solution of the ODE

p1(t)y′ + p0(t)y = q(t).

If y(t) is any solution of that ODE, then y − yp is a solution of the corresponding
homogeneous equation, i.e.

y − yp = Cyh

where yh is any nonzero solution of the corresponding homogeneous equation.
Therefore

y(t) = yp(t) + Cyh(t)

where yp is any solution of the original ODE, and yh is any nonzero solution of the
corresponding homogeneous equation. We have proven:

Theorem 2.11 (Solution of the non-homogeneous first-order linear equation)
Let yp(t) be any particular solution of the first-order, linear ODE

p1(t)y′ + p0(t)y = q(t).

Let yh(t) be any nonzero solution of the corresponding homogeneous equation

p1(t)y′ + p0(t)y = 0

Then y(t) is a solution of the original ODE if and only if

y(t) = yp(t) + Cyh(t),

where C is an arbitrary constant.

Restated in linear algebra language: This theorem says that the solution set of
a first-order, linear ODE is an affine subspace of C∞(R,R) whose dimension is 1.

How this is applied: Suppose you have some first-order linear ODE and you
know that yp(t) = t2− t is a solution of this ODE. Furthermore, suppose you know
that yh(t) = e3t is a solution of the corresponding homogeneous equation. Then
the general solution of the ODE is
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How does this theorem fit with the method of solution obtained via integrat-
ing factors? Recall from the previous section that the solution to first-order linear
ODE

y′(t) + p0(t)y(t) = q(t)

is given by

y(t) = 1
µ(t)

[∫
µ(t)q(t) dt

]
where µ(t) = exp

(∫ t
0 p0(s) ds

)
is the integrating factor.

Method of undetermined coefficients

Theorem 2.11 motivates an alternate way to solve first-order, linear ODEs. After
writing the equation in the form

y′ + p(t)y = q(t) (2.3)

if you can find a solution yh of the corresponding homogeneous equation y′ +
p(t)y = 0 (which we can do by the methods described in Section 2.1), and if you
can find any one solution yp of (2.3) (which we can sometimes do by “guessing”),
then the general solution of (2.3) is

y = yp + Cyh.

This method of solving an ODE is called the method of undetermined coefficients.
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2.3. Solution of first-order linear equations by undetermined coefficients

Example: Find the general solution of the ODE y′ − 3y = et (without using
integrating factors).
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2.3. Solution of first-order linear equations by undetermined coefficients

Example: Find the general solution of the ODE y′ + 2y = 8 cos t (without using
integrating factors).
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2.3. Solution of first-order linear equations by undetermined coefficients

Method of undetermined coefficients

1. Start with an equation of the form y′(t) + py(t) = q(t), where p is
usually constant.

2. If p is constant: a solution of the corresponding homogeneous equa-
tion is yh(t) = e−pt (from exponential growth/decay).
If p is non-constant: solve the homogeneous equation y′(t)+py(t) = 0
for yh by the method of §2.1.

3. Try to “guess” a particular solution yp of the ODE based on what q(t)
is:

What you see in q(t) What you should guess for yp
linear At+B

quadratic At2 +Bt+ C
polynomial polynomial (of same degree as q)

sin t and/or cos t A sin t+B cos t
sin 2t and/or cos 2t A sin 2t+B cos 2t
sin bt and/or cos bt A sin bt+B cos bt
t sin bt and/or t cos bt At sin bt+Bt cos bt+ C sin bt+D cos bt

et Aet

ebt Aebt

tebt Atebt +Bebt

WARNING: If your guess for yp is part of yh, you need to do some-
thing extra (which you learn in the HW).

4. Plug your guess into the ODE and try to find values of A,B,C, ...
which work. This tells you yp(t).

5. The general solution of the ODE is y(t) = Cyh(t) + yp(t).

6. If given an initial value, plug it in and solve for C. Then write the
particular solution.
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2.4. Separation of variables

2.4 Separation of variables

Question: Can you explicitly solve a first-order ODE y′ = φ(t, y) for the solu-
tions y(t)?

Answer:

Definition 2.12 A first-order ODE is called separable if it can be rewritten in the
form f(y)y′ = h(t) for functions f of y and h of t.

In other words, an ODE is separable if one can separate the variables, i.e. put
all the y on one side and all the t on the other side.

Theoretical solution of separable, first-order ODEs

Suppose you have a separable, first-order ODE. Then, by replacing the y′ with dy
dt

,
it can be rewritten as

f(y) dy
dt

= h(t).

Integrate both sides with respect to t to get

∫
f(y) dy

dt
dt =

∫
h(t) dt

On the left-hand side, perform the u−substitution u = y(t), du = dy
dt
dt to get∫

f(u) du =
∫
h(t) dt

Assuming F and H are antiderivatives of f and h, respectively, we get

F (u) = H(t) + C

which, since u = y = y(t), is equivalent to the solution

F (y) = H(t) + C.

Note: We only need a constant on one side of the equation, because the constants
on the two sides can be combined into one.
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2.4. Separation of variables

A shortcut:

The following method involves the writing of things that are technically incorrect,
but always works. Again start with a separable, first-order ODE. Again, replace
the y′ with dy

dt
to get

f(y) dy
dt

= h(t).

Now, pretend that the dy
dt

is a fraction (it isn’t) and “multiply” through by dt to get

f(y) dy = h(t) dt.

Now, integrate both sides: ∫
f(y) dy =

∫
h(t) dt

This gives the same solution as before:

F (y) = H(t) + C.

The shortcut above suggests the following method to solve separable ODEs:

Procedure to solve separable ODEs

1. Write the derivative y′ in Leibniz notation as dy
dt

.

2. Separate the variables, i.e. put all the y (with the dy) on one side of
the equation, and all the t (with the dt) on the other side of the equa-
tion.

WARNING: The equation has to end up in the form f(y) dy = h(t) dt.
(For example, you don’t want something like f(y) dy + y = h(t) dt.)

3. Integrate both sides, putting the arbitrary constant on one side.

4. If given an initial value, plug it in and solve for C. Then write the
particular solution.

5. If the problem asks for a solution of the form y = y(t) or y = f(t),
solve the solution for y.
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2.4. Separation of variables

Example 1: Find the general solution of the ODE y′ = ty.

Example 2: Find the particular solution of this initial value problem:{
y′ = 2t− 2ty
y(1) = −2

78



2.4. Separation of variables

Example 3: Find the particular solution of this initial value problem:{
y′ = y cos t

1+2y2

y(0) = 1

Example 4: Find the particular solution of this initial value problem:{
y′ = 2−et

3+2y
y(0) = 0

Find the value of t for which the solution of this IVP is maximized.
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2.4. Separation of variables

Example 5: Find the general solution of the logistic equation:

y′ = ry(L− y)

We have proven:

Theorem 2.13 (Solution of the logistic equation) The general solution of the lo-
gistic equation y′ = ry(L− y) is

y = L

1 + Ce−rLt
.
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2.4. Separation of variables

Example 6: Find the general solution of this ODE.

y′ = ty3(1 + t2)−1/2

Write your answer in the form y = f(t).
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2.5. Exact equations

2.5 Exact equations
Question: Suppose you are given a first-order ODE which is neither linear nor

separable. Is there any hope of solving it?

Answer:

A review of some multivariable calculus

In multivariable calculus, you study (among other things) functions of two vari-
ables z = ψ(s, t). For such a function, the natural method of differentiation is partial
differentiation. Without going into much detail, here are some informal definitions:

Definition 2.14 Let ψ : R2 → R be a function of two variables, i.e. z = ψ(s, t).

1. The partial derivative of ψ with respect to s, denoted ψs or ∂ψ
∂s

, is the expres-
sion obtained by treating t as a constant and differentiating the formula defining
ψ(s, t) with respect to s.

2. The partial derivative of ψ with respect to t, denoted ψt or ∂ψ
∂t

, is the expres-
sion obtained by treating s as a constant and differentiating the formula defining
ψ(s, t) with respect to t.

Example: Let ψ(s, t) = 2t3 cos s+ et sin s− 4t.

ψs = ∂ψ

∂s
=

ψt = ∂ψ

∂t
=

Example: Suppose ψ(s, t) is some function such that ∂ψ
∂t

= 12s2t3 +6t. What can
you say about ψ(s, t)?

The following theorem (or a more general version of it) is proven in multivari-
able calculus (Math 320):
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2.5. Exact equations

Theorem 2.15 (Chain Rule) Suppose ψ : R2 → R is a differentiable function of
variables t and y. Suppose further that both t and y are functions of a third variable s.
Then

dψ

ds
= ∂ψ

∂t

dt

ds
+ ∂ψ

∂y

dy

ds
.

Suppose we let s = t in this theorem. Then dt
ds

= dt
dt

= 1 so the formula in the
Chain Rule becomes

dψ

dt
= ∂ψ

∂t
+ ∂ψ

∂y

dy

dt
a.k.a.

∂ψ

∂t
+ ∂ψ

∂y
y′ = dψ

dt
.

What does this have to do with ODEs?

Example: Find the general solution of 2t+ y2 + 2tyy′ = 0.

Bad news: This is not a separable equation.

Good news: This looks a bit like the equation at the above right.

Definition 2.16 A first-order ODE is called exact if there is a function ψ : R2 → R
such that the equation has the form

∂ψ

∂t
(t, y) + ∂ψ

∂y
(t, y)y′ = 0.

Theorem 2.17 (Characterization of exact equations) A first order ODE of the form

M(t, y) +N(t, y)y′ = 0

is exact if and only if ∂M
∂y

= ∂N
∂t

.

PROOF (⇒) Suppose the equation is exact. Then there is a function ψ = ψ(t, y) :
R2 → R so that M = ∂ψ

∂t
and N = ∂ψ

∂y
. Then

∂M

∂y
= ∂2ψ

∂y∂t
and

∂N

∂t
= ∂2ψ

∂t∂y
;
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2.5. Exact equations

by a theorem from multivariable calculus (called the “Equality of Mixed Partials”),
these two quantities are equal (because it doesn’t matter the order in which you
compute a mixed second-order partial derivative).

(⇐) Now we assume ∂M
∂y

= ∂N
∂t

. Define

ψ(t, y) =
∫
M(t, y) dt+

∫ [
N(t, y)−

∫ ∂

∂y
M(t, y) dt

]
dy.

Observe that for this ψ,

∂ψ

∂t
= ∂

∂t

(∫
M(t, y) dt+

∫ [
N(t, y)−

∫ ∂

∂y
M(t, y) dt

]
dy

)

= ∂

∂t

∫
M(t, y) dt +

∫ [
∂

∂t
N(t, y)− ∂

∂t

∫ ∂

∂y
M(t, y) dt

]
dy

= M(t, y) +
∫ [

∂

∂t
N(t, y)− ∂

∂y
M(t, y)

]
dy

= M(t, y) +
∫

0 dy (by the hypothesis
∂M

∂y
= ∂N

∂t
)

= M(t, y)

and

∂ψ

∂y
= ∂

∂y

(∫
M(t, y) dt+

∫ [
N(t, y)−

∫ ∂

∂y
M(t, y) dt

]
dy

)

=
∫ ∂

∂y
M(t, y) dt+N(t, y)−

∫ ∂

∂y
M(t, y) dt

= N(t, y)

as desired. �

Remark: To find the ψ for a given exact equation, don’t use the formula in the
preceding theorem. Use the method outlined in forthcoming examples.

Theorem 2.18 (Solution of an exact equation) The exact ODE

∂ψ

∂t
(t, y) + ∂ψ

∂y
(t, y)y′ = 0

has general solution
ψ(t, y) = C

where C is an arbitrary constant.
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2.5. Exact equations

PROOF By the preceding discussion, we know that the left-hand side of an exact
equation can be rewritten as dψ

dt
, and since this is equal to zero, ψ must be a con-

stant. �

Back to the example: 2t+ y2 + 2tyy′ = 0.

New example: 2ty3 − 2y2 + 4t2 + (3t2y2 − 4ty + 8y)y′ = 0
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2.5. Exact equations

How to solve an exact equation

1. Write the equation in the form M(t, y) +N(t, y)y′ = 0.

2. Check that the equation is exact by verifying that ∂M
∂y

= ∂N
∂t

.

3. If the equation is exact, the solution is ψ(t, y) = C where

ψ(t, y) =
∫
M(t, y) dt =

∫
N(t, y) dy.

Keep in mind that when integratingM with respect to t, your answer
includes a “+A(y)”, and when you integrateN with respect to y, your
answer includes a “+B(t)”.

4. Choose A(y) and B(t) to reconcile two versions of ψ obtained by in-
tegration.

5. If given an initial value, plug it in and solve for C. Then write the
particular solution.

6. If the problem asks for a solution of the form y = y(t) or y = f(t),
solve the solution for y.

Example: y′ = 1−2tey

t2
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2.6. Applications of first-order equations

2.6 Applications of first-order equations
Compartmental models

Many mathematical models involve processes that can be divided into “compart-
ments” or “stages”. You build the model by listing the compartments, and then
describing the interactions between the compartments. These are called compart-
mental models and generate ODEs (or systems of ODEs) which can be analyzed
with the methods of this course.

General setup:

Example 1: Malthusian population model

Let y(t) = population at time t; assume the birth and death rates are proportional
to the population.

Example 2: Logistic population model

Let y(t) = population at time t; assume the birth rate is proportional to the popula-
tion; assume the death rate is proportional to the number of interactions between
two living beings.
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2.6. Applications of first-order equations

Examples 1 and 2 are models with one compartment. A population model with
more than one compartment might look like this:

In this context, you would get a system of two ODEs{
x′(t) = birth rate - aging rate - death rate of young
y′(t) = aging rate - death rate of old

Under reasonable assumptions, you might get something like{
x′(t) = λy − ax− µx
y′(t) = ax− µy

We don’t know how to solve systems yet, but we’ll return to these in Chapter 3.

88



2.6. Applications of first-order equations

Example 3: Mixing problems

Consider a large tank containing 1000 L of pure water, into which a brine solution
of salt water (whose concentration is .1 kg / L) is poured at a constant rate of 6 L
/ min. The solution inside the tank is kept well mixed, and is flowing out of the
tank at a rate of 6 L / min. Find the concentration of salt in the tank at time t.
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2.6. Applications of first-order equations

Newtonian mechanics

Recall from physics the three Newtonian laws of motion:

1. When an object is subject to no external force, it continues with constant ve-
locity.

2. When a body is subject to external forces, the time rate of change of the ob-
ject’s momentum (i.e. the mass times acceleration) is equal to the sum of the
forces acting on it.

3. When one body interacts with a second, the force of the first body on the
second is equal in magnitude, but opposite in direction to the force of the
second body on the first.

Newton’s Second Law is of particular use in modeling the motion of objects
using ODEs: let v = v(t) be the velocity of an object at time t. Then

Example: (from page 4 of these lecture notes) Consider an object of mass 20 kg,
that is falling through the Earth’s atmosphere (gravitational constant is 9.8 m/sec2;
drag coefficient 3 N sec/m), near sea level. Formulate an ODE which describes the
velocity of the object, and solve it.
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2.6. Applications of first-order equations

Heating and cooling

Goal: formulate (and solve) an ODE which models the temperature inside a build-
ing as a function of time.

Assumptions:

• The temperature T (t) inside the building at time t will depend on the follow-
ing things (and nothing else):

–

–

–

• Newton’s Law of Cooling (or Heating): the rate of change in temperature
inside the building, absent other forces, is proportional to the temperature
difference between the outside and the inside

Let T (t) be the temperature inside the building at time t. We obtain the following
ODE:

This equation is first-order, and linear. Let’s solve it:
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2.6. Applications of first-order equations

Theorem 2.19 (Heating and cooling model) Suppose T (t) is the temperature of a
compartment at time t. If the outside temperature is given by M(t), the compartment
itself generates heat H(t), and a furnace/air conditioner generates heat U(t) (U is
positive if you’re heating and negative if you’re cooling), then the temperature satisfies
the ODE

dT

dt
= K [M(t)− T (t)] +H(t) + U(t)

where K is a constant. The solution of this ODE (obtained via integrating factors) is

T (t) = e−Kt
(∫

eKt [KM(t) +H(t) + U(t)] dt
)
.

Example 1: Suppose we have the simplest possible situation: no one in the
building (so H(t) = 0), no A/C or furnace (so U(t) = 0), and a constant outside
temperature M(t) = M0. Find T (t).
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2.6. Applications of first-order equations

Example 2: Suppose the outside temperature t hours after midnight is

M(t) = 70− 10 cos
(
π

12t
)
.

Assuming there is no air conditioning or heating and that the constant from New-
ton’s Law is K = 1

4 , find the temperature of the house at time t, if the temperature
inside the house at midnight is 65.
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2.6. Applications of first-order equations

In: M[t_] = 70 - 10 Cos[Pi t / 12];

K = 1/4;

f[t_] = Integrate[E^(K t) K M[t] , t]

Out: −
10et/4

(
−7(9 + π2) + 9 cos

(
πt
12

)
+ 3π sin

(
πt
12

))
9 + π2

Therefore the solution is 1
µ(t) = e−Kt times the previous output which is

T (t) = e−t/4 (f(t) + C) .

To find C, plug in the initial value t0 = 0, T0 = 65 and solve for C. We do this with
Mathematica:

In: Solve[65 == E^(-0/4) (f[0] + C), C]

Out: C = −5(−9 + π2)
9 + π2

Now we know what the temperature T (t) is:

T (t) = e−t/4(f(t) + C)

= e−t/4

−10et/4
[
−7(9 + π2) + 9 cos

(
πt
12

)
+ 3π sin

(
πt
12

)]
9 + π2 − 5(−9 + π2)

9 + π2

 .
Below, the interior temperature is graphed with the dashed curve (the exterior

temperature is the solid curve):
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2.6. Applications of first-order equations

Electrical circuits

Kirchoff’s laws govern the physics of electrical circuits. They are:

Current law: The sum of the current flowing into any junction point is zero.

Voltage law: The sum of the instantaneous changes in potential (i.e. the sum of
the voltage drops) around any closed loop is zero.

Things that can be hooked up to form electrical circuits:
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2.6. Applications of first-order equations

Example 1: RC circuit

ES

R

C

Given: ES(t) = voltage from source as function of time; R = resistance, C =
capacitance

Goal: Describe EC(t) = voltage across the capacitor at time t

Kirchoff’s voltage law: ER(t) + EC(t) = ES(t) (1)

Ohm’s Law: ER(t) = RIR(t) (2)
(I = current)

Only one current in circuit: IR(t) = IC(t) = I(t) (3)

Plug equation (3) and ER(t) = RIC(t) = RC dEC

dt
(4)

voltage/current relationship
into equation (2):

Plug into equation (1): RC dEC

dt
+ EC(t) = ES(t) (5)

Equation (5) above is a first-order, linear ODE which can be solved using in-
tegrating factors for EC(t). This works even if the resistance is variable (i.e. R =
R(t)).

Remark: If there is more than one current running at different spots in the circuit
(for example, if you have a more complicated circuit), you may need a system of
two or more ODEs (or a higher-order ODE). We will study these in Chapter 4.
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2.6. Applications of first-order equations

Example 2: RL circuit

ES

R

L

Given: ES(t) = voltage from source as function of time; R = resistance, L =
inductance

Goal: Describe I(t) = current at time t

Kirchoff’s voltage law: ER(t) + EL(t) = ES(t) (1)

Ohm’s Law: ER(t) = RIR(t) (2)

Faraday’s Law: EL(t) = LdI
dt

(3)

Only one current in circuit: IR(t) = IL(t) = I(t) (4)

Plug into equation (1): LdI
dt

+RI(t) = ES(t) (5)

Equation (5) above is a first-order, linear ODE which can be solved using inte-
grating factors for I(t). (If you need to know the voltage across the resistor, apply
Ohm’s Law to the answer: ER(t) = RI(t).)
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2.7. Summary of Chapter 2

2.7 Summary of Chapter 2
Theory of first-order linear ODEs

The general solution of any first-order, homogeneous linear equation

p1(t)y′(t) + p0(t)y(t) = 0

is a subspace spanned by one nonzero solution, i.e. is of the form Cyh(t) for any
nonzero solution yh. The general solution of any first-order (not necessarily homo-
geneous) linear equation

p1(t)y′(t) + p0(t)y(t) = q(t)

is the solution of the corresponding homogeneous equation plus any one particu-
lar solution of the original equation, i.e. has the form yp(t) + Cyh(t).

Solution techniques

• Every linear, first-order, homogeneous, constant-coefficient ODE is of the
form y′ = ry; the solution of such an equation is y = y0e

rt where y0 = y(0).
This is the exponential growth/decay model.

• To solve a linear, first-order equation

p1(t)y′(t) + p0(t)y(t) = q(t),

first divide through by p1, to rewrite the equation as

y′ + p(t)y = q(t).

Then use one of these two methods:

Integrating factors: multiply through both sides of the equation by the inte-
grating factor µ(t) = exp (

∫
p(t) dt) and then identify the left-hand side

as d
dt

(µ(t)y(t)); the general solution is eventually

y(t) = 1
µ(t)

[∫
µ(t)q(t) dt

]
.

Undetermined coefficients: first, solve the corresponding homogeneous equa-
tion

y′ + p(t)y = 0
and call the solution yh. Then, to a particular solution of the original
equation, “guess” what yp is based on what the function q is. Substitute
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2.7. Summary of Chapter 2

your guess for yp into the ODE and use that equation to solve for the
constant(s) in your guess. The general solution of the equation is then

y = yp + Cyh.

• To solve a first-order equation which is not linear, try one of two methods:

Separation of variables: a first-order ODE is called separable if it can be
rewritten as f(y)y′ = h(t). To solve a separable ODE, separate the vari-
ables and integrate both sides.
Note: homogeneous linear equations are also separable and can be solved
via separation of variables.

Exact equations: a first-order ODE is exact if it is of the form

M(t, y) +N(t, y)y′ = 0.

where ∂M
∂y

= ∂N
∂t

. The solution of an exact equation is ψ(t, y) = C where

ψ(t, y) =
∫
M(t, y) dt =

∫
N(t, y) dy.

Applications

Applications of first-order models include compartmental models, population dy-
namics, mixing problems, Newtonian mechanics, heating and cooling, and electri-
cal circuits.
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2.8. Exam 1 Review

2.8 Exam 1 Review
What should you expect on the exam:

Solve first-order ODEs/IVPs: separable equations, exact equations, first-order lin-
ear equations

Solve second-order ODEs that either have no y or no t in them (HW # 79-82)

Verifying whether or not a given equation is or is not a solution of an ODE or IVP

Sketch and/or analyze pictures of slope fields and/or phase lines

Euler’s method: perform a couple of steps for a simple equation

Applications: heating & cooling, population models, circuits, etc. You will be
given formulas (the heating/cooling equation, the RL equation, the RC equa-
tion, etc.) if necessary.

Question(s) on vocabulary

Some practice questions:

1. a) What is the difference between a “general solution” and a “particular
solution”?

b) What is meant by the “order” of an ODE?

c) What does it mean for an ODE to be “linear”?

d) What is meant by “existence/uniqueness” (in the context of ODEs)?

e) What is the general form of the general solution of a first-order linear
ODE?

2. Consider the initial value problem{
y′ = 2y − t
y(0) = 1

Suppose you wanted to estimate y(30) by performing Euler’s method with
15 steps. Find the points (t1, y1) and (t2, y2) that would be obtained by this
method.

3. Here is the picture of a slope field associated to an ODE of the form y′ =
φ(t, y):
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2.8. Exam 1 Review

-5 0 5

-5

0

5

a) Estimate the value of y′ when t = 5 and y = −2.

b) Suppose y(−2) = 4. Estimate y(2).

c) Suppose y(−2) = 4. Estimate y′(2).

d) Suppose y(0) = −2. Find lim
t→∞

y(t).

e) Sketch the solution of this ODE satisfying y(0) = 3 on the slope field.

f) Find the equation of one particular solution of this ODE.

g) Is the equation which generates this slope field autonomous? Why or
why not?

4. Here is the picture of the phase line associated to an ODE of the form y′ =
φ(y):

-6 -1 2 5

a) Suppose y(1) = 3. Find lim
t→∞

y(t).

b) Suppose y(−4) = 3. Find lim
t→−∞

y(t).

c) Find the equilibria of this system, and classify them as stable, unstable
or semistable.

d) Suppose y(0) = y0. Find all values of y0 for which lim
t→∞

y(t) = 5.

5. Sketch the phase lines for each ODE. Find the equilibria and classify them as
stable, unstable or semistable:
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a) y′ = y2 − 7y + 12
b) y′ = y4 − 8y3

c) y′ = sin y + 1

6. Solve each given differential equation or initial value problem. In questions
(a), (c) and (i), your answer must be written in the form y = f(t).

a) dy
dt

= t
y2

b)
{

dy
dt

= t2

y3

y(0) = −1

c)
{

dy
dt

= (y2 + 1)t
y(0) = 1

d) y′ = y
7

e) y′ = t
1+t2

f) y′ = y
1+y2

g) 3t3y2 dy
dt

+ 3t2y3 = 5t4

h) t2y3 + t(1 + y2)y′ = 0

i) y′ = −2ty + 4e−t2

j) tdy
dt

+ 2y = t2 − t

k)
{

dy
dt

= −y
t

+ 2
y(1) = 3

l) y′′ − 4y′ = e2t

m) y′ − 2y = 4 sin t− 7 cos t

n) yy′′ = (y′)3

7. A 5% sulfuric acid solution is pumped into a 24 L tank at a rate of 3 L / min.
The tank initially contains 10% sulfuric acid, and is kept well-stirred at all
times. If the tank drains at a rate of 4 L / min, find the amount of sulfuric
acid in the tank at time t = 3.

Solutions

WARNING: I did these by hand. There might be errors.

1. a) Given an ODE, the set of all solutions of that ODE is called the general
solution of the ODE. This solution will have one or more arbitrary con-
stants in it. If you are given an initial value, you can plug that initial
value into the general solution, solving for the constant in the general
solution. This produces a solution of the ODE with no arbitrary con-
stants, which is called a particular solution of the ODE.

b) The order of an ODE is the highest-order of derivative appearing in the
equation; it is also equal to the number of arbitrary constants in the gen-
eral solution.

c) An ODE is linear if it is of the form q(t) = p0(t)y+p1(t)y′+p2(t)y′′+ ...+
pn(t)y(n) where q, p0, p1, ..., pn are functions of t. Equivalently, an ODE is
linear if it is of the form T (y) = q where T is a linear differential operator
on C∞(R,R).
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d) A first-order initial value problem of the form y′ = φ(t, y); y(t0) = y0 has
one and only one solution, which is of the form y = f(t), so long as the
function φ is “nice” (i.e. φ and ∂φ

∂y
are both continuous).

e) The general solution of a first-order linear ODE always has the form y =
yp + Cyh, where yp = yp(t) is any one particular solution of the equation
and yh = yh(t) is any nonzero solution of the associated homogeneous
equation.

2. To use Euler’s method, first compute ∆t = tn−t0
n

= 30−0
15 = 2.

(t0, y0) = (0, 1) so φ(t0, y0) = 2(1)− 0 = 2. Therefore

t1 = t0 + ∆t = 0 + 2 = 2 and y1 = y0 + φ(t0, y0)∆t = 1 + 2(2) = 5

so (t1, y1) = (2, 5). Now φ(t1, y1) = 2(5)− 2 = 8. Therefore

t2 = t1 + ∆t = 2 + 2 = 4 and y2 = y1 + φ(t1, y1)∆t = 5 + 8(2) = 21

so (t2, y2) = (4, 21).

3. a) At (5,−2), the slope y′ appears to be about −1
b) Follow the slope field from (−2, 4) until t = 2 and read off the y value to

get y(2) ≈ 1.5.

c) Follow the slope field from (−2, 4) until t = 2 and read off the slope at 2
to get y′(2) ≈ 0.

d) As the solution through (0,−2) goes to the right, its y-value approaches
lim
t→∞

y(t) = −4.

e) -5 0 5

-5

0

5

f) y = −4, y = 0 and y = 6 all appear to be solutions.

g) Notice that the slope at (0, 2) is different from the slope at (5, 2). There-
fore the slope y′ cannot depend only on y, so this equation cannot be
autonomous.

4. a) lim
t→∞

y(t) = 5 (follow the arrow forward from y = 3).

b) lim
t→−∞

y(t) = 2 (follow the arrow backward from y = 3).
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c) y = −6 is stable; y = −1 is semistable; y = 2 is unstable; y = 5 is stable.
d) If y(0) > 2, then lim

t→∞
y(t) = 5. (Equivalent answer: (2,∞).)

5. a) Set φ(y) = y2−7y+12 equal to zero and solve for y to get y = 3 and y = 4
(those are the equilibria). To classify them, note that φ′(y) = 2y − 7. So
φ′(3) = −1 < 0 so 3 is stable; φ′(4) = 1 > 0 so 4 is unstable. (So the phase
line has arrows going from −∞ toward 3, 4 towards 3, and 4 towards
∞.)

b) Set φ(y) = y4 − 8y3 = y3(y − 8) equal to zero to get y = 0 and y = 8
(those are the equilibria). To classify them, compute φ′(y) = 4y3 − 24y2.
φ′(8) = 512 > 0 so 8 is unstable. As for y = 0, φ′(0) = 0 so compute
φ′′(y) = 12y2 − 48y. That means φ′′(0) = 0. Now compute φ′′′(y) =
24y − 48; φ′′′(0) = −24 < 0. Since the first nonzero derivative at 0 is odd
(it was the third derivative) and negative, it is as if the first derivative
was negative, so the function φ is decreasing at zero, which makes y = 0
a stable equilibria. (So the phase line has arrows going from−∞ toward
0, from 8 toward 0 and from 8 toward∞).

c) Set φ(y) = sin y + 1 = 0 and solve for y to get y = 3π
2 + 2πN where N

is an integer. To classify these, compute φ′(y) = cos y and observe that
cos(3π

2 +2πN) = 0. Therefore, go to the second derivative: φ′′(y) = − sin y
so φ′′(3π

2 + 2πN) = −1 < 0. That makes all these equilibria semistable
(all the arrows in the phase line go from left to right since φ(y) ≥ 0 for
all y).

6. a) This is a separable equation. Write it as y2 dy = t dt and integrate both
sides to get 1

3y
3 = 1

2t
2 + C; then solve for y to get y = 3

√
3
2t

2 + 3C which

could also be written as y = 3
√

3
2t

2 + C.

b) This equation is separable: write it as y3 dy = t2 dt and integrate both
sides to get 1

4y
4 = 1

3t
3+C. Then plug in the initial condition (0,−1) to get

1
4 = 0 + C, i.e. C = 1

4 . Therefore the particular solution is 1
4y

4 = 1
3t

3 + 1
4 .

c) This equation is separable: write it as 1
y2+1 dy = t dt and integrate both

sides to get arctan y = 1
2t

2 + C. Plug in the initial condition (0, 1) to get
π
4 = 0 + C, i.e. C = π

4 . Thus the particular solution is arctan y = 1
2t

2 + π
4 ,

i.e. y = tan
(

1
2t

2 + π
4

)
.

d) This is an exponential growth model whose solution is y = y0e
(1/7)t.

e) This equation is already separated: integrate both sides to get y = 1
2 ln(1+

t2) + C. (The t-integral needs the u-substitution u = 1 + t2.)

f) This equation is separable: write it as y2+1
y
dy = 1 dt and integrate both

sides to get 1
2y

2 + ln y = t + C. (To integrate the left-hand side, rewrite
y2+1
y

as y2

y
+ 1

y
= y + 1

y
.)
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g) First, rewrite this equation as 3t3y2 dy
dt

+(3t2y3−5t4) = 0. This equation is
exact since ∂

∂t
(3t3y2) = 9t2y2 = ∂

∂y
(3t2y3 − 5t4). Therefore, the solution

is ψ(t, y) = C where ψ can be found by integrating:

ψ(t, y) =
∫

3t3y2 dy = t3y3 + C(t)

ψ(t, y) =
∫

(3t2y3 − 5t4) dt = t3y3 − t5 +D(y)

These integrals can be rectified by choosing C(t) = −t5 and D(y) = 0, so
ψ(t, y) = t3y3 − t5 so the general solution is t3y3 − t5 = C.

h) This equation is separable; rewrite using algebra to get 1+y2

y3 dy = −t dt,
i.e.

(
y−3 + 1

y

)
dy = −t dt. Integrate both sides to obtain −1

2 y
−2 + ln y =

−1
2 t

2 + C.

i) Write this as y′ + 2ty = 4e−t2 . This is first-order linear, so multiply
through by the integrating factor

exp
[∫ t

0
p0(s) ds

]
= exp

[∫ t

0
2s ds

]
= et

2
.

This produces the equation written below, which is solved by usual
methods:

et
2
y′ + 2tet2y = 4e−t2et2

d

dt

(
yet

2) = 4

yet
2 = 4t+ C

y = 4te−t2 + Ce−t
2
.

j) This is first-order linear, so divide through by t to write the equation
in the standard form dy

dt
+ 2

t
y = t − 1. Now multiply through by the

integrating factor

exp
[∫ t

0
p0(s) ds

]
= exp

[∫ t

0

2
s
ds
]

= e2 ln t = t2.

This produces the equation written below, which is solved by usual
methods:

t2y′ + 2ty = t3 − t2

d

dt

(
t2y
)

= t3 − t2

t2y = 1
4t

4 − 1
3t

3 + C

y = 1
4t

2 − 1
3t+ Ct−2.
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k) Rewrite this first-order linear equation as dy
dt

+ 1
t
y = 2. Then multiply

through by the integrating factor

exp
[∫ t

0
p0(s) ds

]
= exp

[∫ t

0

1
s
ds
]

= eln t = t.

This produces the equation written below, which is solved by usual
methods:

t
dy

dt
+ y = 2t

d

dt
(ty) = 2t

ty = t2 + C

y = t+ C

t
.

Now plug in the initial condition (1, 3) to get 3 = 1 + C
1 , so C = 2. Thus

the particular solution is y = t+ 2
t
.

l) This is a second-order equation with no y: start with the substitution
v = y′ to rewrite the equation as v′ − 4v = e2t. This is first-order linear
with constant coefficients. The corresponding homogeneous equation
is v′ − 4v = 0 which has nonzero solution vh = e4t. Find a particular
solution by undetermined coefficients: guess vp = Ae2t and plug into
the left-hand side to get v′p − 4vp = 2Ae2t − 4e2t = (2A− 4)e2t. Since the
right-hand side should be e2t, we have 2A−4 = 1, i.e. a = 5

2 so vp = 5
2e

2t.
That means the general solution is

v(t) = yp + Cyh = 5
2e

2t + Ce4t.

Last, integrate this to obtain y =
∫
v(t) dt = 5

4e
2t + Ce4t +D.

m) This is first-order linear with constant coefficients. The corresponding
homogeneous equation is y′ − 2y = 0 which has nonzero solution yh =
e2t. Find a particular solution via undetermined coefficients: guess yp =
A sin t+B cos t and plug into the left-hand side to get

y′p−2yp = A cos t−B sin t−2A sin t−2B cos t = (−B−2A) sin t+(A−2B) cos t.

Therefore we know that −B − 2A = 4 and A − 2B = 7. Solve these
equations to get A = −1

5 , B = −18
5 . Thus the particular solution is yp =

−1
5 sin t− 18

5 cos t so the general solution is

y(t) = yp + Cyh = −1
5 sin t− 18

5 cos t+ Ce2t.
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n) This is a second-order equation with no t: start with the substitution
v = y′ = dy

dt
and rewrite the equation as yv dv

dy
= v3. Divide through by

v, then separate variables to get v−2 dv = y−1 dy. Integrate both sides
to obtain −1

v
= ln y + C, i.e. v = −1

ln y+C . Now, since v = dy
dt

, we have
the equation dy

dt
= −1

ln y+C . This equation is also separable: rewrite it as
(ln y + C) dy = −dt and integrate both sides (you need parts on the left-
hand side) to get y ln y − y + Cy = −t+D.

7. Let y(t) be the amount of sulfuric acid in the tank at time t; we have y(0) =
(10%)(24) = 2.4. Since 5% sulfuric acid is pumped into the tank at a rate of
3 L/min, the “rate in” is (.05)(3) = .15. Since the tank drains at 4 L/min, the
“rate out” is 4y, so we have the initial value problem{

y′ = .15− 4y
y(0) = 2.4

Solving this either with integrating factors or undetermined coefficients, we
obtain the general solution y = .15

4 +Ce−4t. The particular solution is obtained
by setting t = 0 and y = 2.4 and solving for C to get C = 2.4 − .15

4 , making
the particular solution y = .15

4 +
(
2.4− .15

4

)
e−4t. Therefore at time t = 3, the

amount of sulfuric acid in the tank is y(3) = .15
4 +

(
2.4− .15

4

)
e−12.
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Chapter 3

First-order linear systems

3.1 Language for systems of ODEs
Example: Consider an ecosystem with two species: predators (think wolves or

lynx) and prey (think rabbits). Let{
x(t) = prey population at time t
y(t) = predator population at time t

Each of these quantities can be modeled by a compartmental diagram:
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This chapter is about first-order systems of ODEs. This means that instead of
having one function of t, we have several (say x = x(t) and y = y(t), or y1, y2, ..., yd)
which satisfy a collection of equations of the form{

x′(t) = φ1(t, x, y)
y′(t) = φ2(t, x, y) Ex:

{
x′ = 2tx+ y − 4t2
y′ = xy + 4y cos t− 2etx

or 
y′1(t) = φ1(t, y1, y2, ..., yd)
y′2(t) = φ2(t, y1, y2, ..., yd)

...
y′d(t) = φd(t, y1, y2, ..., yd)

Ex:


y′1 = 2y1 − y2 + y3
y′2 = y1 + 4y3 + et

y′3 = 5y1 + y2 − 3y3 − 6t− 1

A solution of a system is a collection of functions (x(t), y(t)) or (y1(t), ..., yd(t))
which satisfy all the equations in the system. For example, for the system{

x′ = −y
y′ = x

one solution would be x = cos t, y = sin t:

To establish notation for systems, we borrow language from parametric equa-
tions (discussed in Math 230 and/or 320). Recall that if an object is moving in a
plane so that the x- and y-coordinates of its position at time t are given by functions
x = x(t) and y = y(t), then we combine these into a single function:

p(t) = −→p (t) = (x(t), y(t)) (or just p = −→p = (x, y))

We do the same thing here: given two functions of t, say x and y, we combine these
into a single object and write

y = y(t) = (x(t), y(t)) =
(
x(t)
y(t)

)

and given d functions of t, say y1, ..., yd, we combine these into a single object and
write

y = y(t) = (y1(t), ..., yd(t)) =


y1(t)
y2(t)

...
yd(t)

 .
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In either case y can be thought of in two (equivalent) ways:

1. as a vector, whose entries are functions of t; or

2. as a “d× 1 column matrix”, where the entries are listed one above the other.

The reason for writing the entries in a column matrix (as opposed to a row matrix)
will become apparent later when we discuss matrix multiplication.

The graph of a set of parametric equations is a curve (which lives in a plane if
d = 2 and in 3D space if d = 3):

Example: y = (3− t2, t+ 2) i.e.
{
x(t) = 3− t2
y(t) = t+ 2

t x y (x, y)
−2 −1 0 (−1, 0)
−1 2 1 (2, 1)
0 3 2 (3, 2)
1 2 3 (2, 3)
2 −1 4 (−1, 4)

t=-2 t=-1

t=0

t=1

t=2

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6
x

-2

-1

1

2

3

4

5

6
y

Notation: a first-order system of ODEs has the form
y′1(t) = φ1(t, y1, y2, ..., yd)
y′2(t) = φ2(t, y1, y2, ..., yd)

...
y′d(t) = φd(t, y1, y2, ..., yd)

;

we shorthand this entire system by writing

y′ = Φ(t,y) or −→y ′ = Φ(t,−→y ).

In this context,

y means


y1(t)
y2(t)

...
yd(t)

 ; y′ means


y′1(t)
y′2(t)

...
y′d(t)

 ; and Φ(t,y) means


φ1(t, y1, ..., yd)
φ2(t, y1, ..., yd)

...
φd(t, y1, ..., yd)

 .

In Math 330, the number of equations in the system (which we will denote by
d) is always the same as the number of functions we are solving for (also d).
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FIRST-ORDER
FIRST-ORDER ODE d× d SYSTEM

y′ = φ(t, y) y′ = Φ(t,y)
METHOD OF Euler’s method:

APPROXIMATING tj+1 = tj + ∆t
SOLUTION yj+1 = yj + φ(tj, yj)∆t

EXISTENCE/ If φ and ∂φ
∂y

are cts
UNIQUENESS in a rectangle containing

THEOREM (t0, y0), then the IVP has
a unique solution

WHAT DOES IT MEAN y′ + p(t)y = q(t)
TO BE “LINEAR”? (homogeneous if q = 0)

STRUCTURE OF Solution of homogeneous:
GENERAL SOLUTION Cyh

OF LINEAR CLASS (subspace of C∞(R) spanned
by any one nonzero solution)

Solution of general eqn:
yp + Cyh

where yp is any one solution

SIMPLEST exponential growth/decay
MODEL y′ = ry ⇒ y(t) = y0e

rt

AUTONOMOUS y′ = φ(y)
EQUATIONS equilibrium solutions:
(SYSTEMS) y = y0 where φ(y0) = 0

(stable if φ′(y0) < 0;
unstable if φ′(y0) > 0)

METHODS OF separation of variables
SOLUTION methods for exact equations

integrating factors
undetermined coefficients

APPLICATIONS compartmental models
Newtonian mechanics

heating and cooling
electrical circuits
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3.2 Euler’s method for systems
Recall from Chapter 1: Given a first-order IVP{

y′ = φ(t, y)
y0 = y(t0)

we can define (t1, y1), (t2, y2), ... recursively by the formula{
tj+1 = tj + ∆t
yj+1 = yj + φ(tj, yj)∆t

where ∆t 6= 0. The sequence of points obtained by this process approximates the
solution y = y(t), and in particular the yn obtained by this method is an approx-
imation to y(tn). (The smaller ∆t is, or the larger n is, the better the approximation.)

In Chapter 3 we have a system of ODEs, which together with an initial value
y0 = y(t0) gives: {

y′ = Φ(t,y)
y0 = y(t0)

Euler’s method adapts in a straight-forward way:

Definition 3.1 Given a first-order system of IVPs of the form{
y′ = Φ(t, y)
y(t0) = y0

,

given a number tn 6= t0, and given a natural number n, set ∆t = tn−t0
n

. Define a
sequence of points (tj,yj) recursively by setting{

tj+1 = tj + ∆t
yj+1 = yj + Φ(tj,yj)∆t

The yn obtained by this method is called the approximation to y(tn) obtained by
Euler’s method with n steps. n is called the number of steps and ∆t is called the
step size.

As with single IVPs, the smaller ∆t is, the better the approximation.
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Example: Consider the system{
x′ = y − x
y′ = x+ y{
x(0) = 2
y(0) = 0

Estimate (x, y) when t = 3 using 3 steps.

Solution: First, the step size is ∆t = tn−t0
n

= 3−0
3 = 1.

Now we use the formula of Euler’s method to find (y1 and t1) from (y0 and t0):

Having found y1 = (x1, y1) = (0, 2) and t1 = 1, use the formula again:
t2 = t1 + ∆t = 1 + 1 = 2
y2 = y1 + Φ(t1,y1)∆t = (0, 2) + Φ(1, (0, 2)) · 1 = (0, 2) + (2− 0, 0 + 2)

= (0, 2) + (2, 2)
= (2, 4).

Therefore y2 = (2, 4) and t2 = 2. Use the formula one more time:
t3 = t2 + ∆t = 2 + 1 = 3
y3 = y2 + Φ(t2,y2)∆t = (2, 4) + Φ(2, (2, 4)) · 1 = (2, 4) + (4− 2, 2 + 4)

= (2, 4) + (2, 6)
= (4, 10).

We conclude that y(3) ≈ (4, 10).
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On the previous page, we got the following points from Euler’s method with
three steps:

(t0,y0) = (0, (2, 0)) (t1,y1) = (1, (0, 2)) (t2,y2) = (2, (2, 4)) (t3,y3) = (3, (4, 10))

Let’s plot these points as if they are coming from a set of parametric equations (i.e.
you drop the t and just plot the y = (x, y) points, labeling them with the values of
t):

-4 -2 2 4 6
x

-2

2

4

6

8

10

12
y

Suppose you approached the same problem using 20 steps, or 300 steps, rather
than 3. You get the following pictures:

-4 -2 2 4 6
x

-2

2

4

6

8

10

12
y

-4 -2 2 4 6
x

-2
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4

6

8

10

12
y

It is apparent from these pictures that:

1. both x and y are approaching∞ as t→∞;

2. x decreases initially but then starts increasing;

3. y increases at all times.
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Euler’s method for systems on Mathematica

As with Euler’s method for single equations, we don’t usually do Euler’s method
for systems by hand. The Mathematica notebook eulermethodsystems.nb (avail-
able on my web page) has the requisite code for implementing Euler’s method for
systems of 2 or 3 ODEs. Details of the commands are in this file (as with single
equations, you need to run commands once to create modules called “euler2D”
and “euler3D” when you start Mathematica), but the Euler’s method command for
systems of 2 ODEs is this:

euler2D[{y-x, x+y}, {t, 1, 7}, {x, 3}, {y, -1}, 100]

For systems of 3 ODEs, run something like this:

euler3D[{y, x t-2, 3x y^2 z}, {t, 1, 7}, {x, 3}, {y, -1}, {z, 2}, 300]

The file eulermethodsystems.nb also contains commands to produce plots com-
ing from Euler’s method.
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3.3. Existence and uniqueness of solutions

3.3 Existence and uniqueness of solutions
Recall from Chapter 1: An IVP {

y′ = φ(t, y)
y0 = y(t0)

is guaranteed to have a unique solution y = f(t) in some interval containing t0 if
the functions φ and ∂φ

∂y
are both continuous in some rectangle containing (t0, y0).

The proof of this statement comes from converting the IVP into an integral
equation

f(t) =
∫ t

0
φ(s, f(s)) ds

and then solving this using Picard approximations: let f0 be any function satisfying
the initial condition and define

fj+1(t) =
∫ t

0
φ(s, fj(s)) ds

for each j; the functions fj converge to a solution f as t→∞.

Picard’s method for systems

All the material above translates directly to systems of ODEs. Consider the IVP{
y′ = Φ(t,y)
y0 = y(t0)

This can be converted into a system of integral equations by assuming y = f(t):
f1(t) =

∫ t
0 φ1(s, f(s)) ds

...
...

fd(t) =
∫ t

0 φd(s, f(s)) ds

Choose any d functions satisfying the initial conditions; put them into a vector
and call them f0 = (f0,1, f0,2, ..., f0,d). Then, the Picard approximations are given
recursively by defining

fj+1 = (fj+1,1, fj+1,2, ..., fj+1,d)

in terms of fj as follows: 
fj+1,1(t) =

∫ t
0 φ1(s, fj(s)) ds

fj+1,2(t) =
∫ t

0 φ2(s, fj(s)) ds
...

...
fj+1,d(t) =

∫ t
0 φd(s, fj(s)) ds
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Under certain reasonable hypotheses, you can show that each fj,k converges
as j → ∞ to a function fk. The limit f = (f1, f2, ..., fd) is a solution to the system,
and this f is the only solution of the system. We won’t actually do this procedure in
this class, but you should be aware of the conclusion of all this due to its theoretical
importance. That conclusion is:

Theorem 3.2 (Existence/uniqueness for first-order systems) Suppose that Φ =
(φ1, φ2, ..., φd) is a function from Rd+1 to Rd such that for all i and j, both φj and ∂φj

∂yi

are continuous in some rectangular box in Rd+1 containing (t0,y0). Then for some
interval I of values of t containing t0, the system of initial value problems{

y′ = Φ(t,y)
y0 = y(t0)

has one and only one solution, which is of the form y = f(t) = (f1(t), f2(t), ..., fd(t))
for functions f1, ..., fd : R→ R.

3.4 Matrices and matrix operations
In linear algebra, you consider linear systems of numerical equations. These

look like 
2x− y + 4z = 4
x+ 3y − 2z = −2
5x− 2y + z = 0

(with maybe a different number of variables and/or equations).

To study these systems, you rely heavily on the theory of matrices and linear
transformations. The same theory works to describe linear systems of ODEs, so we
need to cover some linear algebra machinery here.
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Definition 3.3 Given positive integers m and n, an m × n matrix is an array of
numbers (or functions) aij where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We arrange the entries
of the matrix in a rectangle as follows:

A =



a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n

a31 a32
. . . ...

...
... . . . ...

am1 am2 · · · · · · amn


The set of m × n matrices with entries in R is denoted Mmn(R). The set of m × n
matrices with entries that are functions of some variable t is denoted Mmn(C∞). Two
matrices are equal if they are the same size and if all their entries coincide, i.e. A = B
if they are both m× n and if aij = bij for all i, j.

In particular, aij is the entry of A in the ith row and jth column. m is the number of
rows of A; n is the number of columns of A.

In Math 330, for the most part we only care about matrices which have the same
number of rows as columns:

Definition 3.4 A matrix is called square if it has the same number of rows as columns.
The set of square n × n matrices with entries in R is denoted Mn(R) (as opposed to
Mnn(R)).

Example:

A =
(

1 6
−4 5

)
is square B =

(
1 5 7

)
is not square

Definition 3.5 Given a matrixA, the diagonal entries ofA are the numbers a11, a22,
a33, ...ann. A matrix A is called diagonal if it is square and all of its nondiagonal en-
tries are zero.

Example:

A =


2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 4

 is diagonal; the diagonal entries are 2, −1, 0 and 4
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Definition 3.6 A square matrix is called upper triangular (abbreviated upper ∆)
if all its entries below its diagonal are zero. A matrix is called lower triangular
(abbreviated lower ∆) if all the entries above its diagonal are zero. A matrix is called
triangular if it is either lower triangular or upper triangular.

Example:

A =
(

2 3
0 −4

)
B =

 −7 0 0
3 −2 0
1 −3 4


Note: diagonal matrices are both upper and lower triangular.

Definition 3.7 The trace of a matrix, denoted tr(A), is the sum of the diagonal en-
tries of A.

Example:

A =

 7et cos t 4t
1 −2t2 sin 3t
0 −t −e−t

 tr(A) = 7et − 2t2 − e−t.

Definition 3.8 The n × n identity matrix, denoted I or In, is the diagonal n × n
matrix with all diagonal entries equal to 1.

I =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 ...
...

... . . . 0
0 0 · · · 0 1


=



1
1

1
. . .

1


In general, a blank entry in a matrix means that entry is zero.
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Example: For the matrix

A =

 1 2 3
0 −5 −6
0 0 4


1. Give the size of the matrix.

2. Write down the (3, 2)−entry of the matrix.

3. Write down the diagonal entries of the matrix.

4. What is the trace of the matrix?

5. Is the matrix diagonal? upper triangular? lower triangular?

Addition, scalar multiplication and differentiation of matrices

You can add two matrices of the same size and multiply a matrix by a real number,
by performing these operations entry-by-entry.

Note: You can only add two matrices of the same size.

Example: Let

A =
(

2 −1 −3
3 0 −2

)
B =

(
0 2 2
3 1 −1

)
C =

(
2 0
−1 −5

)
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You also differentiate matrices (whose entries are functions) term-by-term:

Definition 3.9 Given A ∈Mmn(C∞), we define the derivative of A, denoted

dA

dt
= d

dt
(A) = A′(t) = Ȧ = A′,

to be the m× n matrix obtained from A by differentiating its entries term-by-term.

Example: A =
(

et cos t
4e2t sin t

)

Example: y = y(t) =
(
y1
y2

)
=
(
y1(t)
y2(t)

)

Matrix multiplication

There is another operation one can perform on matrices. The importance of this
operation will be seen later; for now we simply define it.

Definition 3.10 Given matrices A ∈ Mmn(F ) and B ∈ Mpq(F ), if n = p then we
can define the productAB, which is anm×q matrixAB defined entrywise by setting

(ab)ij =
n(=p)∑
k=1

aikbkj = ai1b1j + ai2b2j + ...+ ainbnj.

(If n 6= p, AB is undefined.)

Note:

• If A is a square matrix, we write A2 for AA, A3 for AAA, etc.

• If A isn’t square, then A2 is undefined.

• In general matrix multiplication is not commutative: AB 6= BA most of the
time, even if both products are defined.
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Example: Let

A =
(

1 −1 0
2 1 −3

)
; B =

(
−2 1
1 3

)
; C =

 5 −1
1 2
0 1

 ; v =
(
x
y

)
.

Compute each of the following quantities, or state that they are undefined (with
justification).

(a) AB

(b) BA

(c) A2

(d) B2

(e) Bv
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Theorem 3.11 (Properties of elementary matrix operations) LetA,B,C be ma-
trices, let I be the identity matrix of the appropriate size and let k ∈ R. Then,
so long as everything is defined, we have:

1. IA = A and BI = B;

2. A(BC) = (AB)C;

3. k(AB) = (kA)B = A(kB);

4. A(B + C) = AB + AC and (A+B)C = AC +BC.

A useful fact we will need later is the following:

Theorem 3.12 (Powers of a diagonal matrix) If A ∈Mn(R) is a diagonal matrix,
then Ar is also diagonal for each r, and the (j, j)−entry of Ar is (aj,j)r.

Example: Let A =

 −2 0 0
0 3 0
0 0 −1

.

Then A2 =

 (−2)2 0 0
0 32 0
0 0 (−1)2

 =

 4 0 0
0 9 0
0 0 1

.

WARNING: Computing the powers of a non-diagonal matrix is much harder
(see the example of B2 on the previous page).
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Reasons that matrix multiplication is defined the way that it is (and why vec-
tors are thought of as columns rather than rows): Consider this system of three
equations in three variables:

4x− 2y + z = 7
8x+ 3y + 7z = 12
x+ y − 4z = −4

More generally, given any system of d numerical equations in d variables, you
can write down an d× d matrix A, a d× 1 matrix b, so that the equation, in matrix
multiplication language, is

Ax = b

(the goal being to solve for x = (x1, x2, ..., xd) =


x1
x2
...
xd

).

Recall from Chapter 1: a function T : V → V is a linear operator if T (v + w) =
T (v) + T (w) and T (rv) = rT (v) for all v,w ∈ V , all r ∈ R.

Another reason for the definition of matrix multiplication is that every linear
operator on Rd is multiplication by a d× d square matrix:
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Theorem 3.13 (Characterization of linear operators on Rd) For any matrixA ∈
Md(R), the function T : Rd → Rd described by

T (v) = Av

is a linear operator on Rd.
Conversely, given any linear operator T : Rd → Rd, there is a matrix A ∈ Md(R)

such that
T (v) = Av

for all v ∈ Rd.

PROOF To show that every function of the form T (x) = Ax is linear is pretty easy:

T (v + w) = A(v + w) = Av + Aw = T (v) + T (w)⇒ T preserves addition;

T (rv) = A(rv) = rAv = rT (v)⇒ T preserves scalar multiplication.

Since T preserves addition and scalar multiplication, it is linear.
Conversely, to show that every linear operator on Rd is matrix multiplication is

given by matrix multiplication is harder. See Theorem 5.5 of my Math 322 lecture
notes. �

Recall that a “linear” equation is one of the form T (x) = b where T is a linear
operator. In light of the previous theorem, we now know:

Theorem 3.14 (Characterization of linear numerical systems) Every linear sys-
tem of d numerical equations in d variables is of the form

Ax = b

where A is an d× d matrix and b is a vector in Rd.

How would you solve such a system?
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Inverses and determinants

We know what it means to add, subtract, and/or multiply two matrices. What
does it mean to divide one matrix by another?

For real numbers, two things are true about division:

1.

2.

So to define “division” of matrices, we really only need to define the “reciprocal”
of a matrix. However, with matrices we use the word “inverse” rather than “recip-
rocal”:

Definition 3.15 A matrix A ∈Mn(R) is called invertible if there is another matrix
A−1 ∈Mn(R) and called an inverse (matrix) of A, such that

AA−1 = I and A−1A = I.

Remark: Non-square matrices are never invertible.

Theorem 3.16 (Properties of inverses) Let A,B ∈Mn(R) be invertible. Then

1. A has only one inverse.

2. (A−1)−1 = A.

3. (AB)−1 = B−1A−1.

In linear algebra, you learn a lot about inverses (including how to compute
them in general). In Math 330, you need to memorize these two formulas for in-
verses of 1× 1 and 2× 2 matrices:

Theorem 3.17 (1 × 1 inverses) Let A = (a). Then A is invertible if and only if
a 6= 0, in which case

A−1 =
(1
a

)
.

PROOF AA−1 = (a)
(

1
a

)
= (1) = I and A−1A =

(
1
a

)
(a) = (1) = I . �
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Theorem 3.18 (2 × 2 inverses) Let A =
(
a b
c d

)
. Then A is invertible if and

only if ad− bc 6= 0, in which case

A−1 = 1
ad− bc

(
d −b
−c a

)
=
(

d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)
.

PROOF If you actually matrix multiply A and A−1 in either order, you will get I .
Details are in Theorem 5.32 of my linear algebra notes. �

Example: Find A−1 if A =
(

3 7
−2 1

)
.

To compute the inverse of a 3 × 3 or larger (square) matrix, use a computer
(there is a way to do it by hand that you learn in linear algebra, but you don’t need
that in Math 330). See the next section for the appropriate Mathematica commands.

We saw above that in order for a 1× 1 or 2× 2 matrix to be invertible, there is a
formula in terms of its entries that has to be nonzero:

what has to be nonzero
Size of matrix Matrix for A to be invertible

1× 1 A = (a) a

2× 2 A =
(
a b
c d

)
ad− bc

3× 3 A =

 a b c
d e f
g h i

 ?

n× n ?

In linear algebra, you learn that for any square matrix A, there is a magic num-
ber, defined as a formula of the terms of the entries of that matrix. This magic
number is called the determinant of A, is denoted detA or det(A), and tells you
whether or not A is invertible:

Theorem 3.19 A square matrix is A is invertible if and only if detA 6= 0.
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For a 1× 1 matrix A = (a), detA = a.

For a 2× 2 matrix A =
(
a b
c d

)
, detA = ad− bc.

Here is the formula for 3× 3 matrices:

Theorem 3.20 Let A =

 a b c
d e f
g h i

 ∈M3(R). Then

detA = aei+ cdh+ bfg − bdi− ceg − afh.

The proof of this theorem is beyond the scope of this course.

The formula in the preceding theorem is hard to remember, but there is a trick.
Given a 3× 3 matrix, copy the first two columns to the right of the matrix:

 a b c
d e f
g h i

 a b
d e
g h

Then multiply along the diagonals, and add the “upper” and “lower” prod-
ucts. The determinant is the bottom sum minus the top sum.

WARNING: This technique does not work for 4× 4 and larger matrices. For
large matrices, find the determinant using a computer (see the next section).

Example: A =

 1 −2 3
2 4 −1
3 −1 1

. Find detA.
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A major reason why we care about determinants in Math 330 is that an ap-
propriate determinant tells us whether or not a system of linear equations has a
unique solution:

Theorem 3.21 The system of d linear, numerical equations in d variables

Ax = b ⇔


a11x1 + a12x2 + ...+ a1dxd = b1
a21x1 + a22x2 + ...+ a2dxd = b2

...
...

...
ad1x1 + ad2x2 + ...+ addxd = bd

has a unique solution if and only if detA 6= 0, in which case the unique solution is
x = A−1b.

PROOF If detA 6= 0, then A is invertible, i.e. A−1 exists. Start with the matrix
equation

Ax = b
⇔ A−1Ax = A−1b
⇔ Ix = A−1b
⇔ x = A−1b. �

3.5 Matrix operations on Mathematica
Defining a matrix: To store a matrix whose entries are numbers as a variable, there

are two methods.

1. Type in the matrix (carefully) using braces to separate the entries. For
example, to save the matrix (

2 4 7
−5 3 1

)

as A, execute
A = {{2,4,7}, {-5,3,1}}
Note that the entries are separated by commas, every row of the matrix
needs braces around it, and the entire matrix needs braces around it.
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To type in a column vector, you need only one set of braces, so if you

execute b = {1,2,3} this defines the column vector

 1
2
3

.

2. Use the Basic Math Assistant Pallette. Click “Pallettes” and “Basic Math
Assistant”, then on the Basic Math Assistant click the fourth tab under
“Basic Commands” that looks like a matrix. In the Mathematica note-
book, type A=, then click the large button that looks like a matrix, then
click “AddRow” or “AddColumn” until the matrix is the appropriate
size. Click in each box of the matrix and type in the appropriate num-
bers. For example, your command to define theA above would look like

A =
(

2 4 7
-5 3 1

)

To define a matrix whose entries are functions, you must define the matrix as
a function: type A[t_] = , then type the matrix and execute. For example:

A[t_] = {{Cos[t], Sin[t]}, {E^t, E^(-t)}}

defines the matrix A = A(t) =
(

cos t sin t
et e−t

)
. To call this matrix later, type

A[t] (no underscore).

Matrix multiplication: To multiply two matrices in Mathematica, you need a pe-
riod between the matrices. For example, after defining matrices A and B,
you can compute the matrix product by

A.B

The output you will get won’t look like a matrix; to make it look like a matrix
you can type

A.B //MatrixForm

For matrix powers, you will need to type A.A rather than A^2 (the command
A^2 just squares each entry of A). For a larger matrix power (say A100), run
the following: MatrixPower[A,100] //MatrixForm

Other matrix operations: Once you have saved a matrix as a letter or string, you
can perform standard operations on it as follows (add //MatrixForm to the
end of the command to make the output look like a matrix):

1. For the trace of A, execute Tr[A].

2. To multiply A by a scalar (say 5), execute 5 A.

3. To add two matrices (say A and B), execute A + B.
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4. To get the i, j entry of a matrix, use double braces: execute A[[2,3]] (to
get the 2, 3−entry).

5. To call the n×n identity matrix, use a command like IdentityMatrix[4]
(this generates the 4× 4 identity matrix).

6. For the inverse of a matrix, type Inverse[A].

7. For the determinant of a matrix, type Det[A].

8. To take the derivative of a matrix of functions, execute A’[t].

3.6 First-order linear systems of ODEs
We can adapt our definition of “linear” from Chapter 1 from this setting. Recall

that an ODE is called linear if there are functions p0, p1, ..., pn (with pn 6= 0) and q
such that the equation has the form

Let’s generalize this to systems. The key idea is that instead of multiplying each
derivative of y by a single function (like p0, p1 or pn), we have to multiply a vector
of functions (like y′ = (y′1, y′2, ..., y′d)) by an object that will produce another vector
of functions. The most general object that does this is a

This means we can describe linear systems of ODEs as follows:

Definition 3.22 An nth order, linear d× d system of ODEs is any equation of the
form

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = q

where An, An−1, ..., A1, A0 ∈ Md(C∞) are n d × d matrices of functions with An
invertible for all t, where q = q(t) = (q1, q2, ..., qd) is a list of d functions of t, and
where y = (y1, ..., yd) is a list of d functions of t (the goal is to find y).

If all the entries of theAj are constants, we say the system is constant-coefficient.
If every entry of q is 0 (i.e. q = 0), we say the system is homogeneous.
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Example: {
t3x′ + (sin t)y′ +3x− ety = cos 2t

5tx′ − 2y′ +4t2x = e−t

Example:
4x′′ − 3y′′ + z′′ +2x′ + 3y′ − 8z′ −x+ y − 3z = 0
−2x′′ + 5y′′ − z′′ −3x′ + 7y′ +y − 4z = 0

x′′ −6y′ +3x− y − 2z = 0
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3.7 The structure of the solution set of a linear system
Definition 3.23 Given the d× d linear system

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = q,

the corresponding homogeneous system is the system

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = 0.

Theorem 3.24 Suppose y and ŷ are two solutions of the d× d linear system

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = q.

Then y− ŷ is a solution of the corresponding homogeneous system

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = 0.

(Compare this result with Theorem 2.10.)

PROOF This is a direct calculation:

An(y− ŷ)(n) + An−1(y− ŷ)(n−1) + ...+ A1(y− ŷ)′ + A0(y− ŷ)
=
[
Any(n) + An−1y(n−1) + ...+ A1y′ + A0y

]
−
[
Anŷ(n) + An−1ŷ(n−1) + ...+ A1ŷ′ + A0ŷ

]
= q − q
= 0. �

Consequence: if yp is any one solution of the d× d system, then for any solution y
of the system, we have
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Example: Suppose some 2× 2 system of (non-homogeneous) equations has the
following solution of its corresponding homogeneous system:

yh(t) = C1e
t

(
1
2

)
+ C2e

4t sin t
(

1
3

)

=
(

C1e
t + C2e

4t sin t
2C1e

t + 3C2e
4t sin t

)

i.e.
{
xh(t) = C1e

t + C2e
4t sin t

yh(t) = 2C1e
t + 3C2e

4t sin t .

If one particular solution of the system is

yp(t) =
(

sin 2t
3 cos 2t

)
i.e.

{
xp(t) = sin 2t
yp(t) = 3 cos 2t ,

describe all solutions of the system.

The solution set of the homogeneous equation

Recall from Chapter 2 the idea of a subspace:

Definition 3.25 Let V be a vector space and let W ⊆ V . We say W is a subspace
(of V ) if

1. W is closed under addition, i.e. for any two vectors w1 and w2 inW , w1 +w2 ∈
W ; and

2. W is closed under scalar multiplication, i.e. for any vector w ∈ W and any
scalar r, rw ∈ W .
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In Chapter 2, we showed that the solution to any first-order linear, homoge-
neous ODE is a subspace of C∞(R), spanned by a single nonzero solution:

Definition 3.26 Let V be a vector space and let v ∈ V be a vector. The span of v,
denoted Span(v), is the set of linear multiples of v:

Span(v) = {cv : c ∈ R}

If W ⊆ V is such that W = Span(v), we say W is spanned by v.

We now show the analogous property for first-order linear, homogeneous sys-
tems. (The difference is that the solution will be a subspace spanned by d solu-
tions.) First, a definition:

Definition 3.27 Let V be a vector space and let v1,v2, ...,vd ∈ V be vectors. The
span of v1, ...,vd, denoted Span(v1, ...,vd), is the set of linear combinations of the vj :

Span(v1, ...,vd) =


d∑
j=1

cjvj : cj ∈ R

 = {c1v1 + ...+ cdvd : cj ∈ R}

If W ⊆ V is such that W = Span(v1, ...,vd), we say W is spanned by v1, ...,vd.

In Math 330, we care about spans where the vectors are functions:

Example 1: V = C∞(R); f1(t) = sin t; f2(t) = cos t.

Example 2: V = C∞(R); f1(t) = t2; f2(t) = 3t2.

Example 3: V = C∞(R); f1(t) = sin2 t; f2(t) = cos2 t; f3(t) = 1.
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3.7. The structure of the solution set of a linear system

Example 4: V = (C∞(R))2 (i.e. V is the set of ordered pairs of differentiable
functions);

f1(t) =
(

2 sin t
sin t+ cos t

)
; f2(t) =

(
2 sin t− cos t

cos t

)

Notice that in Examples 2 and 3, you could drop one of the functions f1, f2, f3
without changing the span. This is essentially because

Question: Under what circumstances can you do this in general? In other
words, given a list of d functions f1, ..., fd, is there an identity relating the func-
tions?
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Definition 3.28 Given vectors v1, ...vd in vector space V , we say the set of vectors is
linearly independent if the only constants c1, ..., cd which make

c1v1 + c2v2 + ...+ cdvd = 0

are c1 = c2 = ... = cd = 0.
We say the set of vectors is linearly dependent if there are constants c1, ..., cd,

not all zero, which make

c1v1 + c2v2 + ...+ cdvd = 0.

In linear algebra, you learn a lot about what makes vectors linearly indepen-
dent or linearly dependent in general. Among other things, you learn:

Theorem 3.29 Given a list of vectors v1, ...vd in vector space V :

1. If the vectors are linearly independent, then you cannot remove any of the vectors
from the list without changing the span of the list.

2. If the vectors are linearly dependent, then there is at least one vector which can
be removed from the list without changing the span.

So in some sense, a list of linearly independent vectors is a “minimal” list of
vectors which span a particular subspace. With that in mind, we make the follow-
ing definition:

Definition 3.30 If W is a subspace of V spanned by d linearly independent vectors,
then we say W is a subspace of dimension d, and we write dimW = dim(W ) = d.
In this situation, any collection of d linearly independent vectors in d is called a basis
of W .

A reasonable question is to ask whether a vector space or subspace can be of
two different dimensions: more precisely, can a space W be spanned by 3 linearly
independent vectors, and also be spanned by 4 linearly independent vectors? Lin-
ear algebra theory tells us that the answer is NO:

Theorem 3.31 If V is a vector space or subspace with dim V = d, then

1. Any collection of d linearly independent vectors must also span V , and hence be
a basis of V .

2. Any collection of d vectors which span V must also be linearly independent,
hence must be a basis of V .
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So if v1, ...,vd are linearly independent vectors in a d-dimensional subspace W ,
then

W = Span(v1, ...,vd) = {C1v1 + ...+ Cdvd : Cj ∈ R for all j}.

The Wronskian

In Math 330, we only care about whether a set of functions (as opposed to a set of
more general vectors) is linearly independent or not, and there is an easy test for
that:

Definition 3.32 Given d functions f1, ..., fd ∈ C∞(R), the Wronskian of the func-
tions is the function

W = W (t) = W (f1, ..., fd)(t) = det



f1(t) f2(t) · · · fd(t)
f ′1(t) f ′2(t) · · · f ′d(t)
f ′′1 (t) f ′′2 (t) · · · f ′′d (t)

...
... . . . ...

f
(d−1)
1 (t) f

(d−1)
2 (t) · · · f

(d−1)
d (t)

 .

Given d elements of (C∞(R))d, namely f1 = (f11, f12, ..., f1d), f2 = (f21, ..., fd2), ...,
fd = (fd1, ..., fdd), the Wronskian of these functions is the function

W = W (t) = W (f1, ..., fd)(t) = det



f11(t) f21(t) · · · fd1(t)
f12(t) f22(t) · · · fd2(t)
f13(t) f23(t) · · · fd3(t)

...
... . . . ...

f1d(t) f2d(t) · · · fdd(t)

 .

Example: Find the Wronskian of f1(t) = sin t and f2(t) = cos t.
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Example: Find the Wronskian of f1(t) = sin2 t, f2(t) = cos2 t and f3(t) = 1.

Example: Find the Wronskian of f1(t) = (et, e2t) and f2(t) = (2et, 4e2t + et).

Example: Find the Wronskian of f1(t) = (2 sin t, cos t) and f2(t) = (4 sin t, 2 cos t).

The importance of the Wronskian is seen in the following theorem:
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3.7. The structure of the solution set of a linear system

Theorem 3.33 Given functions f1, ..., fd ∈ C∞(R), if the Wronskian of the functions
W (f1, ..., fd)(t) 6= 0 for at least one value of t, the functions are linearly independent.

Given functions f1, ..., fd ∈ (C∞(R))d, the Wronskian W (f1, ..., fd)(t) 6= 0 for at
least one value of t, then f1, ..., fd are linearly independent.

PROOF Suppose that there are constants c1, ..., cd such that

c1f1(t) + c2f2(t) + ...+ cdfd(t) = 0.

Repeatedly differentiating both sides of this equation, we obtain the system

c1f1(t) + c2f2(t) + ...+ cdfd(t) = 0
c1f
′
1(t) + c2f

′
2(t) + ...+ cdf

′
d(t) = 0

c1f
′′
1 (t) + c2f

′′
2 (t) + ...+ cdf

′′
d (t) = 0

...
c1f

(d)
1 (t) + c2f

(d)
2 (t) + ...+ cdf

(d)
d (t) = 0

This system of linear equations has at least one solution: (c1, c2..., cd) = (0, 0, ..., 0).
By Theorem 3.21, this is the only solution (i.e. the functions are linearly indepen-
dent) if W (t) 6= 0. This proves the first statement; the second statement has a
similar proof. �

Theorem 3.34 Given any linear, homogeneous d× d system of ODEs

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = 0,

the set of solutions of this ODE is a subspace of (C∞(R))d.

PROOF First, we show the solution set is closed under addition. Let y and ŷ be
solutions. Then, plugging y + ŷ into the system, we get

An(y + ŷ)(n) + An−1(y + ŷ)(n−1) + ...+ A1(y + ŷ)′ + A0(y + ŷ)
=
[
Any(n) + An−1y(n−1) + ...+ A1y′ + A0y

]
+
[
Anŷ(n) + An−1ŷ(n−1) + ...+ A1ŷ′ + A0ŷ

]
= 0 + 0
= 0. �

Therefore the solution set is closed under addition.
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3.7. The structure of the solution set of a linear system

Next, we show the solution set is closed under scalar multiplication: let y be a
solution and let r ∈ R. Then, by plugging in ry to the system, we get

An(ry)(n) + An−1(ry)(n−1) + ...+ A1(ry)′ + A0(ry)
= r

[
Any(n) + An−1y(n−1) + ...+ A1y′ + A0y

]
= r0
= 0.

Therefore the solution set is closed under scalar multiplication, so it is a subspace.
�

Knowing that the solution set of the homogeneous is a subspace, it is natural to
ask what its dimension is:

Theorem 3.35 Given any linear, first-order, homogeneous d× d system of ODEs

A1y′ + A0y = 0,

the set of solutions of this system is a d-dimensional subspace of (C∞(R))d.

PROOF Let

e1 =



1
0
0
...
0

 , e2 =



0
1
0
...
0

 , ..., ed =



0
0
...
0
1

 .

For j ∈ {1, ..., d}, let y[j] be the unique solution of the system satisfying the initial
value y[j](0) = ej .

Claim 1: y[1],y[2], ...,y[d] are linearly independent.
Proof of Claim 1:

W (y[1],y[2], ...,y[d])(0) = det


y

[1]
1 (0) y

[2]
1 (0) · · · y

[d]
1 (0)

y
[1]
2 (0) y

[2]
2 (0) · · · y

[d]
2 (0)

...
... . . . ...

y
[1]
d (0) y

[2]
d (0) · · · y

[d]
d (0)



= det



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 0 1

 = 1.
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3.7. The structure of the solution set of a linear system

Since the Wronskian is nonzero at t = 0, it is everywhere nonzero, so the solutions
y[1],y[2], ...,y[d] are linearly independent, proving the claim.

Claim 2: y[1],y[2], ...,y[d] span the solution set.
Proof of Claim 2: Let y be any solution of the system. To prove the claim, it is

sufficient to prove that there are constants c1, ..., cd so that

c1y[1] + c2y[2] + ...+ cdy[d] = y.

Writing this coordinate-wise, this means we need to solve the system

(∗)


c1y

[1]
1 + c2y

[2]
1 + ...+ cdy

[d]
1 = y1

c1y
[1]
2 + c2y

[2]
2 + ...+ cdy

[d]
2 = y2

...
c1y

[1]
d + c2y

[2]
d + ...+ cdy

[d]
d = yd

for c1, ..., cd. But since the Wronskian W (y[1],y[2], ...,y[d]) is everywhere nonzero,
by Theorem 3.21 we see that the system (∗) can always be solved. This proves the
claim.

Since we have a set of d functions (namely y[1],y[2], ...,y[d]) which are linearly
independent and span the solution set, by Definition 3.30 the dimension of the
solution set is d, and the set {y[1],y[2], ...,y[d]} is a basis of the solution set. �
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3.7. The structure of the solution set of a linear system

Putting this all together

Solution of first-order linear, homogeneous systems

Given the d× d linear, first-order homogeneous system

A1y′ + A0y = 0,

the solution set is a d-dimensional subspace. Therefore for any d linearly
independent solutions y1,y2, ...,yd of the system, the general solution of
the homogeneous equation is

y = yh = C1y1 + C2y2 + ...+ Cdyd

where C1, C2, ..., Cd are arbitrary constants.

(To verify that the functions y1,y2, ...,yd are linearly independent, compute
their Wronskian and show that the Wronskian is nonzero for at least one
value of t.)

Solution of general linear systems

Given the d× d linear nth-order system

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = q,

the general solution is any one particular solution yp plus the solution of
the corresponding homogeneous system, i.e. the general solution is

y = yp + yh

If the equation is first-order, this means the general solution has the form

y = yp + C1y1 + C2y2 + ...+ Cdyd

where C1, C2, ..., Cd are arbitrary constants and y1,y2, ...,yd are linearly in-
dependent solutions of the corresponding homogeneous system.
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3.8 Autonomous systems; slope fields and phase planes
Recall from Chapter 1: A first-order ODE is called autonomous if it is of the

form
y′ = φ(y);

to study such a system qualitatively we look for equilibrium solutions of such an
ODE: y = y0 is an equilibrium solution if and only if φ(y0) = 0. An equilibrium is
attracting (a.k.a. stable a.k.a. a sink) if φ′(y0) < 0, it is repelling (a.k.a. unstable
a.k.a. a source) if φ′(y0) > 0 and is neutral (a.k.a. semistable) if φ′(y0) = 0 and
φ′′(y0) 6= 0. We describe the behavior of a first-order ODE by drawing a phase line
where the arrows indicate what happens to a solution y(t) as t→∞:

-2 1 3 7

y

In this section generalize these ideas to systems.

Definition 3.36 A first-order d× d system of ODEs is called autonomous if it is of
the form

y′ = Φ(y)

for some function Φ : Rd → Rd.
An IVP is called autonomous if its differential equation is autonomous.

Definition 3.37 Let y′ = Φ(y) be an autonomous system. A constant function y
which is a solution of this ODE is called an equilibrium (solution) of the ODE.

Theorem 3.38 The constant function y = y0 is an equilibrium solution of the au-
tonomous ODE y′ = Φ(y) if and only if Φ(y0) = 0.

Example: Find the equilibria of the system x′ = x+ 2y, y′ = y2 + 4xy − 2x.
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3.8. Autonomous systems; slope fields and phase planes

Example: Find the equilibria of the system y′ = (xy + x2, x− 2y + 1).

Slope fields for autonomous 2× 2 systems

Recall that for a first-order ODE y′ = φ(t, y), we drew pictures called slope fields
which describe, at each point (t, y), a “mini-tangent” of slope φ(t, y).

Now, let’s consider a first-order 2× 2 system:

y′ = Φ(t,y) ⇔
{
x′ = φ1(t, x, y)
y′ = φ2(t, x, y)

In order to draw a slope field that incorporates the t, you would need a 3-
dimensional picture (because you need a dimension for each variable t, x and y).
You can do this theoretically, but such a picture is usually really hard to read (be-
cause you can’t interpret the perspective). Here is an example:
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However, if the system is autonomous:

y′ = Φ(y) ⇔
{
x′ = dx

dt
= φ1(x, y)

y′ = dy
dt

= φ2(x, y)

then you don’t have to account for the t. You can draw a picture which includes
“mini-tangents” at each point (x, y). The slope of the mini-tangent at (x, y) is

dy

dx
=

dy
dt
dx
dt

= φ2(x, y)
φ1(x, y) .

Example:
{
x′ = −2y
y′ = x

x 0 0 1 1 2 2 −1 −1 −1
y 1 2 1 −1 1 2 1 −1 0

(x, y) (0, 1) (0, 2) (1, 1) (1,−1) (2, 1) (2, 2) (−1, 1) (−1,−1) (−1,−3)
dx
dt = φ1(x, y) −2 −4 −2 2 −2 −4 −2 2 0
dy
dt = φ2(x, y) 0 0 1 1 2 2 −1 −1 −1

dy
dx 0 0 − 1

2
1
2 −1 − 1

2
1
2 − 1

2 DNE

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Here is a computer-generated picture of the slope field of the system;

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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As with single equations, the graph of a set of parametric equations which com-
prise a solution of the system must “flow with” the slope field. In this case, it
appears that the solutions are ellipses centered at the origin:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

We can verify that the solutions are ellipses by actually solving the system; we’ll
learn how to do this in the forthcoming sections.

Phase plane analysis

If you take a slope field (as described above), and you sketch many solution curves
on that slope field, you obtain a picture called a phase plane for the system. Often,
you “erase” the mini-tangents from this picture and draw only the solution curves.
Here is the phase plane for the above example (x′ = −2y, y′ = −x):

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Phase planes are the analogue of phase lines for autonomous equations: they
tell you how the solutions of a system behave as t changes.
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Example: Below is the phase plane for some first-order 2× 2 autonomous sys-
tem y′ = φ(y):

-2 0 2 4 6

-2

0

2

4

6

1. Consider the solution to this system satisfying x(0) = 1, y(0) = 4.

a) Sketch the graph of this solution on the phase plane.

b) Find lim
t→∞

x(t) for this solution.

c) Find lim
t→∞

y(t) for this solution.

d) Find lim
t→−∞

x(t) for this solution.

2. Consider the solution to this system with initial condition y(0) = (5, 3). For
this solution, does x increase or decrease as t increases? Does y increase or
decrease as t increases?

3. Find all constant functions which solve the system.
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Mathematica commands for slope fields and phase planes for
systems

These commands can be found in the file phaseplanes.nb, available on my web-
site.

Code to sketch the slope field

The following code will sketch a slope field and also sketch several solution
curves (passing through randomly chosen points). Execute all this in a single Math-
ematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

Code to sketch the slope field and several solution curves

The following code will sketch a slope field and also sketch several solution
curves (passing through randomly chosen points). Execute all this in a single Math-
ematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> 35,
StreamScale -> Full,
StreamStyle -> Blue]

The first six lines are the same as the command above; the seventh line directs
Mathematica to sketch 35 solution curves at random locations on the picture. The
last line tells Mathematica what color to draw the solution curves.
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Code to sketch the slope field and a solution curve passing through a specific
point

The following code (executed in a single cell) will sketch a slope field and sketch
a single solution curve passing through a given point (x0, y0). In this case the initial
value is (−1, 2):

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> {{-1,2}},
StreamScale -> Full,
StreamStyle -> Blue]

Code to sketch phase planes (solution curves only; no mini-tangent lines)

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
StreamPlot[{phi1[x,y], phi2[x,y]}, {x, -4, 4}, {y, -4, 4},
StreamPoints -> 100,
StreamStyle -> Black,
StreamScale -> Full]

Code to sketch a single solution curve (no mini-tangent lines)

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
StreamPlot[{phi1[x,y], phi2[x,y]}, {x, -4, 4}, {y, -4, 4},
StreamPoints -> {{-1,2}},
StreamStyle -> Black,
StreamScale -> Full]
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3.9 First-order, constant-coefficient homogeneous systems
Preliminaries

Since we assume A1 is invertible, given any first-order, linear system

A1y′ + A0y = q,

we can multiply through by A−1
1 , rearrange and redefine terms:

We have proven:

Theorem 3.39 Every first-order, linear d× d system of ODEs can be rewritten as

y′ = Ay + q

for some d × d matrix of functions A and some list of functions q = (q1, ..., qd). The
system is homogenous if and only if q = 0, and constant-coefficient if and only if the
entries of A are constants.

Example: {
x′ = 3x− y + sin t
y′ = x+ 2y − cos t

Example: 
x′ = etx+ 2e3ty − e−tz
y′ = e3tx− ety + 4e−tz
z′ = e−tx+ etz
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Recall from Chapters 1 & 2: the most simple first-order ODE is linear, homo-
geneous and constant-coefficient:

Now let’s think about the most simple first-order system.

Since it is linear and first order, it must look like

Since it is homogeneous,

Since it is constant-coefficient,

Theorem 3.40 Every first-order, linear, homogeneous, constant-coefficient of dODEs
can be written as

y′ = Ay

where y = y(t) = (y1(t), y2(t), ..., yd(t)) and A is an d × d matrix whose entries are
numbers.

Note that any such system is autonomous, and its only equilibrium is y = 0.

What should the solution of such a system be? In light of the answer for single
equations

y′ = ry ⇒

the solution of y′ = Ay is probably something like
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Matrix exponentials

Question: Given a square matrix A, what is eA = exp(A)? What is eAt = exp(At)?

To answer this question, recall from Calculus II the Taylor series of et:

Lemma 3.41 Let t be a real number. Then

et =
∞∑
n=0

tn

n! = 1 + t+ t2

2 + t3

3! + t4

4! + ...

(this series converges absolutely for all t).

Notice that the Taylor series formula for et involves only nonnegative integer
powers of t, and addition. These are operations that are well-defined for square
matrices, so we can define the exponential of a square matrix as follows:

Definition 3.42 Let A ∈ Md(R). The (matrix) exponential of A, denoted eA or
exp(A), is

eA = exp(A) =
∞∑
n=0

1
n!A

n = I + A+ 1
2A

2 + 1
3!A

3 + 1
4!A

4 + ...

Remarks:
• If A is not square, then A2, A3, ... do not exist, so eA does not exist.
• If A is d× d, then A2, A3, A4, ... are all d× d so eA is also d× d.
• It is not clear that this series converges (or what the word “converges” even

means in this sense). Fact: this series converges for all square matrices A.
• You cannot compute matrix exponentials entry-by-entry:

exp
(
a b
c d

)
6=
(
ea eb

ec ed

)
.

• For any constant t,

exp(tA) = exp(At) =
∞∑
n=0

1
n! (At)

n =
∞∑
n=0

1
n!A

ntn

= I + At+ 1
2A

2t2 + 1
3!A

3t3 + ...

• If A = 0, the zero matrix, then eA = I + 0 + 0 + ... = I . So e0 = I .
• It is not always the case that

eA+B = eAeB.

This holds only if AB = BA (which as we know is false, in general).
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Theorem 3.43 Let A ∈ Mn(R) be a matrix whose entries are numbers. The only
solution y = y(t) to the first-order system{

y′ = Ay
y(0) = y0

is
y(t) = eAty0.

PROOF First, let’s check that the equation y′ = Ay is satisfied. Let y(t) = eAty0.

Next, let’s check the initial condition. If y(t) = eAty0, then when t = 0 we have

y(0) = eA0y0 = e0y0 = Iy0 = y0

as desired.

Since both the ODE and initial value are satisfied by y, y is a solution of the sys-
tem. By the existence/uniqueness theorem, such a system has only one solution,
so y = eAty0 is the only solution. �
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3.9. First-order, constant-coefficient homogeneous systems

Computing matrix exponentials

Example: Consider the first-order system{
x′ = x+ 3y
y′ = 2x+ 2y

with initial condition x(0) = 1, y(0) = −3. Find the solution of this system.

Theoretical solution:

Problem: How do you compute eAt?

Easier Example: Consider the first-order system{
x′ = 7x
y′ = −3y

with initial condition x(0) = 1, y(0) = −3. Find the solution of this system.

Theoretical solution 1: WriteA =
(

7 0
0 −3

)
and y0 =

(
1
−3

)
. Then the solution

is

y(t) =
(
x(t)
y(t)

)
= eAty0 = exp

(
7t 0
0 −3t

)(
1
−3

)

Theoretical solution 2: This system is “uncoupled” (the x and y have nothing
to do with one another); from our study of exponential models in Chapter 1, the
solution is
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In fact, what we saw in the previous example is more general:

Theorem 3.44 (Exponentiation of diagonal matrices) If Λ is diagonal with diag-
onal entries λ1, λ2, ..., λn, then

exp(Λ) =


eλ1

eλ2

. . .
eλn

 and exp(Λt) =


eλ1t

eλ2t

. . .
eλnt

 .

PROOF Let Λ be as in the theorem. It is sufficient to prove the second statement,
because by letting t = 1 in the second statement you get the first statement. By
Theorem 3.12, for any k

(Λt)k =


(λ1t)k

(λ2t)k
. . .

(λnt)k


so

eΛt =
∞∑
k=0

1
k! (Λt)

k =



∞∑
k=0

1
k!(λ1t)k

∞∑
k=0

1
k!(λ2t)k

. . .
∞∑
k=0

1
k!(λnt)

k



=


eλ1t

eλ2t

. . .
eλnt

 as desired. �

Example: If Λ =

 1 0 0
0 0 0
0 0 −2

, then eΛt =

 et 0 0
0 1 0
0 0 e−2t

.

Question: What do you do if the matrix is not diagonal?
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3.9. First-order, constant-coefficient homogeneous systems

Suppose A ∈ Mn(R) can be “factored” into a product of three matrices as fol-
lows:

A = SΛS−1.

Then for any k,

Ak = (SΛS−1)k =

so

eA =
∞∑
k=0

1
k!A

k =

We have proven:

Theorem 3.45 Let S be any invertible n× n matrix, and let Λ be any n× n matrix.
Then if A = SΛS−1, we have

eA = exp(SΛS−1) = SeΛS−1 and eAt = exp(S(Λt)S−1) = SeΛtS−1.

These ideas lead to the following definition:

Definition 3.46 A square n × n matrix A is called diagonalizable (a.k.a. similar
to a diagonal matrix) if there is an invertible matrix S ∈ Mn(R) and a diagonal
matrix Λ ∈Mn(R) such that A = SΛS−1.

Application: Suppose A =
(

5 2
7 3

)(
2 0
0 −3

)(
5 2
7 3

)−1

.
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3.9. First-order, constant-coefficient homogeneous systems

At this point we have reduced the problem of computing the matrix exponen-
tials of a diagonalizable matrix A to figuring out what the diagonal matrix Λ is and
what the invertible matrix S is:

The following theory is derived in linear algebra (see Chapter 8 of my Math 322
notes):

Definition 3.47 Let A ∈ Mn(R). A number λ is called an eigenvalue of A if and
only if one of the two equivalent conditions hold:

1. λ is a solution of the equation det(A− λI) = 0;

2. there is a nonzero vector v (called an eigenvector (of A corresponding to λ))
such that Av = λv.

Note: eigenvectors, by definition, are never the zero vector.

Note: an eigenvector corresponding to an eigenvalue λ is never unique: if v is
an eigenvector corresponding to λ, then so is cv for any nonzero constant c.

Recall our example from the beginning of this section:

A =
(

1 3
2 2

)

Find the eigenvalues and eigenvectors of this matrix A.

158



3.9. First-order, constant-coefficient homogeneous systems

Note that in this example, the eigenvalues sum to 4 + (−1) = 3 = tr(A) and the
eigenvalues multiply to (4)(−1) = −4 = 1(2)−2(3) = detA. This is true in general:

Theorem 3.48 Assume the eigenvalues of a matrix A are listed according to their
multiplicities. Then:

1. The sum of the eigenvalues is tr(A).

2. The product of the eigenvalues is det(A).

The phrase “according to their multiplicities” means, for instance, that if det(A−
λI) ends up being (λ − 2)(λ + 3)(λ + 3), then λ = −3 should be listed twice (i.e.
λ = −3 is an “eigenvalue of multiplicity 2”).

The importance of eigenvalues and eigenvectors is seen in the following theo-
rem:

Theorem 3.49 Let A ∈Mn(R) be a square matrix. If A has n different real eigenval-
ues, then A is diagonalizable, in which case A = SΛS−1 where Λ is a diagonal matrix
whose entries are the eigenvalues of A, and S is a matrix whose columns are the cor-
responding eigenvectors (written in the same order as the eigenvalues are written in
Λ).

Example: Diagonalize the matrix A =
(

1 3
2 2

)
.
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3.9. First-order, constant-coefficient homogeneous systems

Using diagonalization to solve a system

Here was the example from the beginning of this section:

Consider the first-order system{
x′ = x+ 3y
y′ = 2x+ 2y

with initial condition x(0) = 1, y(0) = −3. Find the solution of this system.
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3.9. First-order, constant-coefficient homogeneous systems

How to compute matrix exponentials

1. Given a d × d square matrix A, find the eigenvalues of A by solving
the equation det(A − λI) = 0 for λ. Hopefully, you get d distinct λs,
and hopefully all the λ are real numbers. This would guarantee that
A is diagonalizable.

(We’ll talk about what to do if you don’t get distinct, real λs later.)

2. For each λ, find an eigenvalue corresponding to λ by finding a nonzero
v which satisfies the vector equation Av = λv.

3. Let Λ be a diagonal matrices whose entries are the eigenvalues of A;
let S be a matrix whose entries are the eigenvectors of A (written in
the same order as the eigenvalues). Then

A = SΛS−1.

(Find the inverse of S by methods from earlier in this chapter.)

4. exp(Λt) is diagonal, whose entries are eλts. Then

exp(At) = S exp(Λt)S−1

(multiply these matrices back together to get the exponential).

What do the eigenvalues and eigenvectors “mean”?

Simple Example 1: {
x′ = −2x
y′ = −6y ↔ y′ =

(
−2 0
0 −6

)
y

Here is the vector field for this system:

-10 -5 0 5 10

-10

-5

0

5

10
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3.9. First-order, constant-coefficient homogeneous systems

This isn’t a very interesting system, because it is “uncoupled” (the x equation
has all the xs and the y equation has all the ys. Since both equations represent
exponential decay, we know the general solution is{

x = x0e
−2t

y = y0e
−6t

Suppose we were interested in the solution to this system with initial value y0 =
y(0) = (5, 4). We know that its parametric equations are{

x = 5e−2t

y = 4e−6t

and its graph is

-10 -5 0 5 10

-10

-5

0

5

10

Question: What is the Cartesian equation of this curve?

More generally, given any initial value y0 = (x0, y0) with x0 6= 0 and y0 6= 0, the
solution of this system is{

x = x0e
−2t

y = y0e
−6t ↔ y = Kx3 for some constant K.

So most of the solution curves are cubic. This matches the following picture of the
phase plane for this system:

-4 -2 0 2 4

-4

-2

0

2

4
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3.9. First-order, constant-coefficient homogeneous systems

However: there are some “special” solutions of the system which are not cubic:

• Suppose y0 = 0, x0 6= 0:

• Suppose x0 = 0, y0 6= 0:

• Suppose x0 = y0 = 0: Then x(t) = 0, y(t) = 0 for all t. This is a constant
solution y = 0.

These straight-line solutions have a lot to do with the behavior of the other solu-
tions. Think of the straight-line solutions as representing “forces” acting on a point
in the xy-plane, where the coefficient on the exponential term of the correspond-
ing variable is the “magnitude” of the force. The curve another point will travel
reflects the sum effect of these “forces”.

Simple Example 2:{
x′ = −x
y′ = y

↔ y′ =
(
−1 0
0 1

)
y ⇒

{
x = x0e

−t

y = y0e
t ⇒ y = K

x

y = 0 is again a constant solution; the straight-line solutions are again x = 0 and
y = 0.

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4
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3.9. First-order, constant-coefficient homogeneous systems

Harder Example (studied earlier in this section):{
x′ = x+ 3y
y′ = 2x+ 2y ↔ y′ = Ay where A =

(
1 3
2 2

)

Eigenvalues and eigenvectors of A:

λ = −1↔ (3,−2) λ = 4↔ (1, 1)

General solution of the system:

y = eAty0 =
(

3
5e
−t + 2

5e
4t −3

5 e
−t + 3

5e
4t

−2
5 e
−t + 2

5e
4t 2

5e
−t + 3

5e
4t

)(
x0
y0

)
.

=
 (

3
5x0 − 3

5y0
)
e−t +

(
2
5x0 + 3

5y0
)
e4t(

−2
5 x0 + 2

5y0
)
e−t +

(
2
5x0 + 3

5y0
)
e4t


Let’s suppose we wanted to see if there are any straight-line solutions which solve
this system. To do this, let’s try to choose the initial condition (x0, y0) so that either
the e−t terms or the e4t terms drop out of the general solution:

• To make the e−t terms drop out: we need

So if x0 = y0 = 1, we get the solution

y =
(
e4t

e4t

)
= e4t

(
1
1

)

which has Cartesian equation y = x.

• To make the e4t terms drop out: we need

2
5x0 + 3

5y0 = 0,

in which case y0 = −2
3 x0 and the solution when x0 = 3, y0 = −2 reduces to

y =
(

3e−t
−2e−t

)
= e−t

(
3
−2

)

which has Cartesian equation y = −2
3 x.
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Summary: For the 2× 2 linear, constant-coefficient system{
x′ = x+ 3y
y′ = 2x+ 2y ↔ y′ = Ay where A =

(
1 3
2 2

)
,

we have found two solutions:

y1 = e4t
(

1
1

)
=
(
e4t

e4t

)
and y2 = e−t

(
3
−2

)
=
(

3e−t
−2e−t

)
.

From the theory, we know that the solution set is 2 dimensional (since there are
2 equations), so any two linearly independent solutions will span the solution set.
Let’s verify that y1 and y2 are linearly independent by computing their Wronskian:

W (y1,y2) = det
(
e4t 3e−t
e4t −2e−t

)
= −5e3t 6= 0

so y1 and y2 are linearly independent, so the general solution of the system is

y = C1y1 + C2y2 = C1e
4t
(

1
1

)
+ C2e

−t
(

3
−2

)
.

Slope field and phase plane of this system:

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4
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3.9. First-order, constant-coefficient homogeneous systems

The behavior in this example is not a coincidence: suppose you have any
straight-line solution of any d × d linear, constant-coefficient system y′ = Ay.
Choose a vector v which goes along that straight line; then parameterize the straight
line by the equations y = eλtv, where λ ∈ R is some constant. That means
y′ = λeλtv so by plugging in to the equation y′ = Ay, we get

In other words, v is an eigenvector of A with eigenvalue λ.

Assuming there are d different λs, there will be d different straight-line solu-
tions which can be shown to be linearly independent using the Wronskian. There-
fore we can conclude:

Theorem 3.50 (General sol’n of const.-coeff. system with distinct eigenvalues)
Let A ∈Md(R) be a matrix with d distinct, real eigenvalues λ1, λ2, ..., λd whose corre-
sponding eigenvectors are v1, ...,vd. Then if y = (y1, y2, ..., yd), the general solution
of the d× d system of ODEs

y′ = Ay

is
y = C1e

λ1tv1 + C2e
λ2tv2 + ...+ Cde

λdtvd.

Example: Find the general solution of
{

dx
dt

= 8x− y
dy
dt

= 11x− 4y .
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Example: (same system from previous pages){
dx
dt

= 8x− y
dy
dt

= 11x− 4y

What is the particular solution if you have an initial value given to you, like x(0) =
2, y(0) = 14?

First, find the general solution (previous page):

Let A =
(

8 −1
11 −4

)
; eigenvalues and eigenvectors of A are

λ = −3↔ (1, 11) λ = 7↔ (1, 1)

so the general solution is

y = C1e
−3t

(
1
11

)
+ C2e

7t
(

1
1

)
=
(

C1e
−3t + C2e

7t

11C1e
−3t + C2e

7t

)
.

i.e. {
x(t) = C1e

−3t + C2e
7t

y(t) = 11C1e
−3t + C2e

7t

Now, for the particular solution:

Plug in the known initial values and solve for C1 and C2.
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3.9. First-order, constant-coefficient homogeneous systems

Putting all this together

Example:

1. Find the general solution of the system{
x′ = x+ 3y
y′ = −4x− 6y

2. Find the particular solution of this system satisfying x(0) = 2, y(0) = −1.

3. Find a basis of the solution set and verify that the functions in this basis are
linearly independent.

4. For the particular solution found in # 2, find (x, y) when t = 3, and find
lim
t→∞

x(t) and lim
t→∞

y(t).

Solution:
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3.9. First-order, constant-coefficient homogeneous systems

Mathematica code for eigenvalues, eigenvectors and matrix
exponentials

It is unreasonable to solve (by hand) first-order linear, constant-coefficient systems
of ODEs if there are three or more equations / variables in the system. Even com-
puting the eigenvalues requires you to factor a cubic (or higher-degree) polynomial
in λ, which is hard. Therefore, we use computers.

Example: Use Mathematica to find the general solution of the system of ODEs
x′ = 3x+ 2z
y′ = 3y − 2z
z′ = 2x− 2y + z

Solution: First, define the matrix A:

A = {{3,0,2}, {0,3,-2}, {2,-2,1}}

Now, find the eigenvalues and eigenvectors of A: execute

Eigensystem[A] // MatrixForm

which produces output(
5 3 -1

{1, -1, 1} {1, 1, 0} {-1, 1, 2}

)
This means the eigenvalues and eigenvectors of A are

λ = 5↔

 1
−1
1

 λ = 3↔

 1
1
0

 λ = −1↔

 −1
1
2


so the general solution is

y = C1e
5t

 1
−1
1

+ C2e
3t

 1
1
0

+ C3e
−t

 −1
1
2

 .
i.e. 

x(t) = C1e
5t + C2e

3t − C3e
−t

y(t) = −C1e
5t + C2e

3t + C3e
−t

z(t) = C1e
5t + 2C3e

−t
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Example: Use Mathematica to find the particular solution of the preceding sys-
tem with initial value x(0) = 2, y(0) = −1, z(0) = 3.

Solution # 1: Find the general solution as on the previous page. Then, plug in the
initial condition (since t = 0, all the exponential terms are 1) and solve for the con-
stants with a command like this (I’ll call the constants K, L, M rather than C1, C2, C3):

Solve[{2 == K + L - M, -1 == -K + L + M, 3 == K + 2M}, {K,L,M}]

You get output{{
K→ 2, L→ 1

2 , M→
1
2

}}
which means that C1 = 2, C2 = 1

2 , C3 = 1
2 . Plug these into the general solution to

get 
x(t) = 2e5t + 1

2e
3t − 1

2e
−t

y(t) = −2e5t + 1
2e

3t + 1
2e
−t

z(t) = 2e5t + 2 · 1
2e
−t

⇒


x(t) = 2e5t + 1

2e
3t − 1

2e
−t

y(t) = −2e5t + 1
2e

3t + 1
2e
−t

z(t) = 2e5t + e−t

Solution # 2: We know the theoretical solution is y = eAty0, so define A and y0
and compute the matrix exponential directly:

A = {{3,0,2}, {0,3,-2}, {2,-2,1}}
y0 = {2,-1,3}
y[t_] = MatrixExp[A t].y0

This gives the answer which, after expanding with the Expand[%] command, in
Mathematica output looks like

{−e
−t

2 + e3t

2 + 2e5t,
e−t

2 + e3t

2 − 2e5t, e−t + 2e5t}

and hand-written, this answer is
x(t) = −1

2 e
−t + 1

2e
3t + 2e5t

y(t) = 1
2e
−t + 1

2e
3t − 2e5t

z(t) = e−t + 2e5t
,

the same as what was found in Solution # 1.
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Useful Mathematica commands in this context:

• MatrixExp[A] computes eA;

• Eigensystem[A] gives the eigenvalues of A, together with their eigenvectors.
If you get output that looks like

{{-5, 0}, {{-1, 2}, {-3, 1}}}

that means the eigenvalues and eigenvectors are

λ = −5↔ (−1, 2) λ = 0↔ (−3, 1);

the output looks better if you run Eigensystem[A] // MatrixForm

• Eigenvalues[A] gives just the eigenvalues of A;

• Eigenvectors[A] gives just the eigenvectors of A (in the same order as the
eigenvalues were given with the preceding command);

• CharacteristicPolynomial[A,x] gives a formula for det(A− λI) (with x in-
stead of λ);

• DiagonalizableMatrixQ[A] asks whether or not A is a diagonalizable matrix
(it returns True if it is, and False if it isn’t).

171



3.10. A crash course in complex numbers

3.10 A crash course in complex numbers
Example: Solve the system, with the given initial value:{

x′ = −y
y′ = x

{
x(0) = 1
y(0) = 0

Slope field and phase plane:

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

Notice that there are no straight line solutions (which makes sense, given that the
matrix had no eigenvalues). The solutions appear to be circles.

Question: where do the circles come from?
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A brief history of complex numbers

Recall: Quadratic formula (method of solution known 1600 BC, written down in
628 AD by Brahmagupta):

ax2 + bx+ c = 0 ⇒ x = −b±
√
b2 − 4ac

2a

Potential dilemma: what if b2 − 4ac < 0?

History: up to the 1500s, people were happy to say that ax2 + bx + c = 0 has
no solution (because they believed you “can’t” take the square root of a negative
number).

What about a “cubic formula”?

ax3 + bx2 + cx+ d = 0 ⇒ x = ?

Such a formula exists! (discovered by Cardano in 1545) Here it is:

x = − b

3a + 3

√√√√√( −b3

27a3 + bc

6a2 −
d

2a

)
+

√√√√( −b3

27a3 + bc

6a2 −
d

2a

)2

+
(
c

3a −
b2

9a2

)3

+ 3

√√√√√( −b3

27a3 + bc

6a2 −
d

2a

)
−

√√√√( −b3

27a3 + bc

6a2 −
d

2a

)2

+
(
c

3a −
b2

9a2

)3

.

Bad news: there are two square roots in this formula, and often the number
under these square roots is negative.

Cardano’s fix: he “pretended” that square roots of these negative numbers ex-
isted and found that in the cubic formula, eventually these “pretend” numbers
drop out and x ends up being a real number which solves the cubic equation.

Bombelli in 1572 called Cardano’s pretend numbers “imaginary numbers”. He
decided to see what kinds of arithmetic one could do with these “imaginary” num-
bers, and showed that you could make sense of addition, multiplication, division,
powers and roots of them.

Imaginary numbers were controversial until 1742, when Euler proved the Fun-
damental Theorem of Algebra, which states that any polynomial whose coeffi-
cients are real numbers has a root, if you allow imaginary numbers as solutions. In
other words, if you write down the equation

anx
n + an−1x

n−1 + ...+ a1x+ a0 = 0,
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then there is a solution x if you allow for the possibility that x is imaginary (the
theorem is true even if the aj are allowed to be imaginary).

Today: we have discovered that square roots of negative numbers are not re-
ally “imaginary”. They describe physical quantities in fluid dynamics, electromag-
netism, signal and image processing, quantum mechanics, and special and general
relativity. As such, we don’t call these numbers “imaginary”; we call them complex
numbers.

The basics of complex numbers

Definition 3.51 A complex number is any number of the form z = x+ iy where x
and y are real numbers (for now, i is just a symbol... this symbol will be given meaning
later). The set of complex numbers is denoted C.

Given a complex number z = x+ iy, the real part of z, denoted <(z) or Re(z), is
x, and the imaginary part of z, denoted =(z) or Im(z), is y.

A complex number z is called pure imaginary if <(z) = 0; a complex number z
is real if =(z) = 0.

The set ofm×nmatrices with entries in C is denotedMmn(C), and the set of square
n× n matrices with entries in C is denoted Mn(C). Operations on these matrices are
defined the same way they are for other types of matrices. The real part and imaginary
part of a complex vector or matrix are computed term-by-term.

Note: for z ∈ C, <(z) and =(z) are real numbers. For example:

<(2 + 5i) = 2 =(−1− 4i) = −4

Comments on notation: Usually a complex number is denoted by z, w, or a Greek
letter like ζ (zeta) or ξ (xi) or ω (omega). The letters s, t, u, v, x and y should not
be used to denote complex numbers; they connote real numbers. In particular it
is always understood with complex numbers that “z” means the complex number
z = x+ iy.

Remark: in general you want to avoid immediately thinking of a complex number
as x+ iy. Just think of it as z.

Definition 3.52 The (complex) conjugate of z = x + iy ∈ C is z = x − iy. The
(complex) conjugate of a matrix or vector whose entries are complex numbers is
obtained by taking the conjugate of each entry of the matrix/vector.

Example: If z = 2− 7i, then z = 2 + 7i.
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Example: Find <(v) and v, if v = (3− 2i, 7 + i,−i).

Arithmetic in C
Addition and subtraction in C are defined by combining like terms. For example,

(2− 3i) + (1 + i) = 3− 2i and (−3 + i)− (2 + 7i) = −5− 6i.

Multiplication is defined by distributing terms, together with the law that i2 = −1
(this is the first time we need the idea that i =

√
−1). For example:

(2 + 5i)(−1− 2i) = −2− 5i− 4i− 10i2 = −2− 9i+ 10 = 8− 9i.

Division is trickier; to divide one complex number by a nonzero complex number,
what you do is multiply through the numerator and denominator of the fraction
by the conjugate of the denominator. An example:

(1 + i)÷ (3− 4i) = 1 + i

3− 4i = (1 + i)(3 + 4i)
(3− 4i)(3 + 4i) = −1 + 7i

25 = −1
25 + 7

25i.

The operations thus defined satisfy all the elementary arithmetic properties: addi-
tion and multiplication are commutative and associative, addition and multiplica-
tion have identity elements (0 = 0 + 0i and 1 = 1 + 0i respectively); every element
has an additive inverse; every nonzero element has a reciprocal; the distributive
property holds. Also:

Lemma 3.53 Let z1, z2 ∈ C. Then z1 + z2 = z1 + z2 and z1z2 = z1 z2.

PROOF Write z = x+ iy. If you worked out both sides of the equations in terms of
x and y, you would see the left- and right- hand sides of the equations are equal.
�

Lemma 3.54 Let z ∈ C. Then z + z = 2<(z) and z − z = 2i=(z).

PROOF Write z = x + iy; then z + z = x + iy + (x − iy) = 2x = 2<(z). Also,
z − z = (x+ iy)− (x− iy) = 2iy = 2i=(z). �
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Geometric interpretation of C
We think of the complex number z = x + iy as if it is the vector (x, y) (which lies
in a plane). Thus C is a plane (in the same way that R is a line). The “x−axis”
of this plane is called the real axis and the “y−axis” of this plane is called the
imaginary axis. Addition of complex numbers corresponds to “head-to-tail” or
“parallelogram” addition of vectors, i.e.

(3 + 2i) + (1− 3i) = 4− i

is essentially the same as

(3, 2) + (1,−3) = (4,−1).

Observe that if we think of z as a vector, then z is the vector obtained by reflect-
ing z through the real axis (note that z = z if and only if z is real):

z = 3 + 2 i

w = -4

q = 2i

-4 -2 2 4

-3

-2

-1

1

2

3

Question: How is multiplication of complex numbers interpreted geometri-
cally?

Answer:

Lemma 3.55 Let z ∈ C. Then zz is real, and zz ≥ 0.

PROOF Let z = x+iy, then zz = (x+iy)(x−iy) = x2 +iyx−iyx−i2y2 = x2 +y2 ≥ 0.
�

Definition 3.56 The absolute value a.k.a. norm a.k.a. modulus of a complex
number z = x+ iy is |z| =

√
zz =

√
x2 + y2.

z = x+iy

x

y
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3.10. A crash course in complex numbers

The norm of a complex number is its distance from zero, so the “norm of a com-
plex number” generalizes the notion of “absolute value of a real number”.

Another view of division in C: given z1, z2 ∈ C, we have

z1 ÷ z2 = z1

z2
= z1z2

z2z2
= z1z2

|z2|2
.

Special case (reciprocals): If z 6= 0, then

z−1 = 1
z

= z

zz
= z

|z|2
.

In particular, if |z| = 1, then z−1 = z (useful special case: 1
i

= i−1 = i = −i).

Lemma 3.57 Let z1, z2 ∈ C. Then |z1z2| = |z1||z2|.

PROOF Write z1 = x1 + iy1 (same for z2), if you work out both sides in terms of the
xs and ys you would see that they are equal.

Definition 3.58 Let z = x + iy ∈ C. The argument of z, denoted arg(z), is any
angle θ (in radians) such that x = |z| cos θ and y = |z| sin θ.

z = x+iy

x

y

Given z, you can solve for θ = arg z by setting θ = arctan
(
y
x

)
if x 6= 0; if x = 0

then θ = π/2 if y > 0 and θ = −π/2 if y < 0. Notice that arguments are only
defined up to multiples of 2π.

Definition 3.59 The polar coordinates of a complex number z are (r, θ) where r =
|z| and θ = arg z. If the polar coordinates of z are (r, θ), we write

z = r cos θ + ir sin θ = r(cos θ + i sin θ)

or z = r cis θ.
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3.10. A crash course in complex numbers

z = x+iy
= r cis θ r = |z|

θ = arg(z)

x

y

Euler’s formula

To define functions like exponentials and trig functions of complex numbers, we
use power series (because power series are made up only of addition, subtraction,
multiplication and division, and all these operations are already defined for com-
plex numbers).

There is an issue regarding what it means for a series of complex numbers to
converge, but it turns out that any power series which converges for all real num-
bers also converges for all complex numbers.

Definition 3.60 For any complex number z ∈ C, define

ez = exp(z) =
∞∑
n=0

zn

n!

cos z =
∞∑
n=0

(−1)nz2n

(2n)!

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)! .

From this, you can show that all the usual trigonometric and exponential identities
that hold for real numbers also hold for complex numbers. Additionally, these
operations preserve conjugation:

Lemma 3.61 Let z ∈ C. Then

ez = ez; cos z = cos z; sin z = sin z.

PROOF Conjugation is preserved under multiplication and addition, and these
three operations are made up of only multiplication and addition. �

More importantly, we have the following amazing identity which links expo-
nential and trigonometric functions:
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3.10. A crash course in complex numbers

Theorem 3.62 (Euler’s formula) For any z ∈ C, eiz = cos z + i sin z.

PROOF

eiz =
∞∑
n=0

(iz)n
n!

= 1 + iz + (iz)2

2! + (iz)3

3! + (iz)4

4! + ...

= 1 + iz + i2
z2

2! + i3
z3

3! + i4
z

4! + ...

= 1 + iz − z2

2! − i
z3

3! + z4

4! + i
z5

5! −
z6

6! − i
z7

7! + ...

=
[
1− z2

2! + z4

4! − ...
]

+ i

[
z − z3

3! + z5

5! − ...
]

= cos z + i sin z. �

As an important consequence, we see that if z has polar coordinates (r, θ), then

z = r cis θ = r(cos θ + i sin θ) = r cos θ + ir sin θ = reiθ.

For such a z,

z = r cos θ − ir sin θ = r cos(−θ) + i sin(−θ) = re−iθ.

In particular, if we write z = reiθ where r ≥ 0 and θ ∈ R, this means (r, θ) are
the polar coordinates of z, so r = |z| and θ = arg z.

z = x+iy
= r cis θ
= reiθ

r = |z|

θ = arg(z)

x

y

Theorem 3.63 Suppose z1 = r1 cis θ1 and z2 = r2 cis θ2 (this means r1 = |z1|, r2 =
|z2|). Then z1z2 = r1r2 cis (θ1 + θ2).

PROOF Let z1 = r1e
iθ1 and z2 = r2e

iθ2 , then by elementary properties of exponen-
tials, z1z2 = r1r2e

i(θ1+θ2). �

This theorem tells us how to interpret multiplication geometrically in C. Given
two complex numbers, if those numbers are multiplied, then the “moduli multi-
ply” (since |z1z2| = |z1||z2|) and the “arguments add” (since this theorem implies
arg(z1z2) = arg z1 + arg z2).
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3.11. Complex eigenvalues

3.11 Complex eigenvalues
Recall the example at the start of the previous section that led us to complex

numbers: {
x′ = −y
y′ = x

{
x(0) = 1
y(0) = 0

To solve this, remember that we let A =
(

0 −1
1 0

)
and let y =

(
x
y

)
so that the

system became y′ = Ay. We then tried to find the eigenvalues of A:

det(A− λI) = 0

det
(
−λ −1
1 −λ

)
= 0

λ2 + 1 = 0
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3.11. Complex eigenvalues

From the previous page, we have(
0 −1
1 0

)
= A = SΛS−1 =

(
i −i
1 1

)(
i 0
0 −i

)
1
2i

(
1 i
−1 i

)

Therefore the solution of the system is

eAty0 = S eΛt S−1
(

1
0

)

=
(
i −i
1 1

) (
eit 0
0 e−it

)
1
2i

(
1 i
−1 i

)(
1
0

)

= 1
2i

(
i −i
1 1

)(
cos t+ i sin t 0

0 cos(−t) + i sin(−t)

)(
1 i
−1 i

)(
1
0

)
(using Euler’s formula)

= 1
2i

(
i −i
1 1

)(
cos t+ i sin t 0

0 cos t− i sin t

)(
1
−1

)
(using identities cos(−t) = cos t; sin(−t) = − sin t)

= 1
2i

(
i −i
1 1

)(
cos t+ i sin t
− cos t+ i sin t

)

= 1
2i

(
i cos t− sin t+ i cos t+ sin t
cos t+ i sin t− cos t+ i sin t

)

Just as in Cardano’s cubic formula, the complex numbers are a means to an end:
they drop out once Euler’s formula is applied and everything is multiplied out.

To summarize, we have found that the solution to the system{
x′ = −y
y′ = x

{
x(0) = 1
y(0) = 0

is {
x = cos t
y = sin t .

The Cartesian equation of this set of parametric equations is x2 + y2 = 1, whose
graph is a circle of radius 1 centered at the origin. This matches the slope field we
started with.
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The general situation

Theorem 3.64 (Complex Roots Theorem) Suppose f is a polynomial with real co-
efficients, i.e. f(x) = a0 + a1x + a2x

2 + ... + anx
n. Then if z is any root of f (i.e.

f(z) = 0), then the conjugate z is also a root of f .

PROOF Suppose f(z) = 0. Then (using Lemma 2.39) we see f(z) = f(z) = 0 = 0
as well. �

Recall that to find eigenvalues of a matrix with real entries, we find roots of the
polynomial det(A − λI). The Complex Roots Theorem implies, therefore, that for
a real matrix, whenever a complex number is an eigenvalue of that matrix, so is its
conjugate. More generally:

Theorem 3.65 Let A ∈Mn(R) be a matrix whose entries are real. If λ = a+ ib ∈ C
is an eigenvalue of matrix A with eigenvector v (v may have complex entries), then
the conjugate λ = a− ib is also an eigenvalue, whose eigenvector is v.

PROOF We are given that Av = λv. Take the conjugate of both sides:

To summarize:

Theorem 3.66 If A ∈ Mn(R) has n distinct (real or complex) eigenvalues, then A is
diagonalizable over the complex numbers, i.e. A = SΛS−1 where S,Λ ∈ Mn(C) are
such that Λ is a diagonal matrix whose entries are the eigenvalues of A, and S is a
matrix whose columns are the corresponding eigenvectors (written in the same order
as the eigenvalues are written in Λ).

Moreover, any non-real eigenvalues and eigenvectors of A come in complex conju-
gate pairs.
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3.11. Complex eigenvalues

A shortcut in the complex case

Suppose you have a 2× 2 system

y′ = Ay

where the eigenvalues of A are not real. In light of Theorem 3.50, the solution of
the system is

y = C1e
λ1tv1 + C2e

λ2tv2

Since the eigenvalues and eigenvectors are complex-conjugate pairs, this solution
can be rewritten as

y = C1e
λtv + C2e

λtv.

In other words, a basis of the solution space is given by the two functions

y1 = eλtv; y2 = eλtv.

Notice that since t is real, t = t so λt = λ t = λt. Since exponentiation preserves
conjugation, we have

y2 = eλtv = eλtv = eλt v = eλtv = y1.

Therefore a basis of the solution space is given by {y1,y1}. The problem is that
these solutions have complex numbers in them.

Goal: Find a basis of the solution space which has only real numbers in it.

Idea: Since the solution space is a subspace, the sum of the two basis elements
is also a solution:

y1 + y1 = 2<(y1)

Multiplying this sum by 1
2 doesn’t change whether or not it is a solution, so we

now know <(y1) is a solution. This solution is real!

Similarly, since the solution space is a subspace, the difference of the two basis
elements is also a solution:

y1 − y1 = 2i=(y1)

Multiplying this sum by 1
2i doesn’t change whether or not it is a solution, so we

now know =(y1) is a solution. This solution is also real!
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3.11. Complex eigenvalues

What are these real and imaginary parts? Well, y1 = eλtv. Write λ = α+ iβ and
write v = a + ib to get

y1 = e(α+iβ)t(a + ib)
= eαteiβt(a + ib)
= eαt(cos(βt) + i sin(βt))(a + ib)
= eαt cos(βt) a + ieαt cos(βt) b + ieαt sin(βt) a − eαt sin(βt) b

=
[
eαt cos(βt) a − eαt sin(βt) b

]
+ i

[
eαt cos(βt) b + eαt sin(βt) a

]

Claim: The two solutions

eαt cos vt a − eαt sin vtb and eαt cos vtb + eαt sin vt a

are linearly independent.

Proof of claim: Compute their Wronskian:

W (t) = det
(
a1e

αt cos(βt)− b1e
αt sin(βt) b1e

αt cos(βt) + a1e
αt sin(βt)

a2e
αt cos(βt)− b2e

αt sin(βt) b2e
αt cos(βt) + a2e

αt sin(βt)

)
...

(lots of work with algebra and trig identities that I am omitting)
...

= e2αt(a1b2 − a2b1)

= e2αt det
(
a1 b1
a2 b2

)
= e2αt det

(
a b

)
.

Because a and b are the real and imaginary parts coming from non-real eigenvector
v, they must be linearly independent (if they weren’t, then the eigenvector could
be taken to be real, in which case v = v, in which case v would be an eigenvector
corresponding to eigenvalues λ and λ 6= λ. But this is impossible, since Av cannot
be both λv and λv, since λ is not real.)

Therefore the determinant det
(

a b
)

is never zero, so W (t) 6= 0, so the two
solutions are linearly independent, proving the claim.

At this point, we have two linearly independent real solutions (namely <(v1)
and =(v1)), which must form a basis of the solution space since the solution space
is two-dimensional. To summarize:
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Theorem 3.67 (Solution of 2 × 2 system with complex eigenvalues) Suppose

y′ = Ay

is a 2×2 linear, constant-coefficient system of ODEs whereA has non-real eigenvalues
λ = α + iβ and λ = α − iβ. Let the corresponding eigenvectors be v = a + ib and
v = a − ib. Then the solution of the ODE is

y = C1[eαt cos(βt) a − eαt sin(βt) b] + C2[eαt cos(βt) b + eαt sin(βt) a].
= C1<(eλtv) + C2=(eλtv).

Example 1: Find the general solution of{
x′ = 4x+ y
y′ = −5x+ 2y

Solution: Let A =
(

4 1
−5 2

)
and y =

(
x
y

)
, so that the system becomes y′ = Ay.

First, find the eigenvalues:

0 = det(A− λI) = det
(

4− λ 1
−5 2− λ

)
= (4− λ)(2− λ) + 5 = λ2 − 6λ+ 13

Next, find the corresponding eigenvectors:

Apply Theorem 3.67:
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3.11. Complex eigenvalues

Example 2: Suppose x′(t) = −11x(t) + 4y(t) and y′(t) = −8x(t) − 3y(t). If
x(0) = 2 and y(0) = −3, find x(t) and y(t).

Below are the phase planes for Examples 1 and 2:

Example 1: λ = 3± 2i Example 2: λ = −7± 4i
(soln’s have e3t cos 2t, e3t sin 2t) (soln’s have e−7t cos 4t, e−7t sin 4t)

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10
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3.12 Repeated eigenvalues
Example: {

x′ = 3x+ 2y
y′ = 3y

Let’s try this the same way as our previous examples: let A =
(

3 2
0 3

)
and

let y = (x, y) so that the system is y′ = Ay. Then the solution is y = eAty0. Let’s
compute this as usual:

Eigenvalues and eigenvectors of A:

det(A− λI) = det
(

3− λ 2
0 3− λ

)
= (3− λ)2 ⇒ λ = 3

This suggests that maybe the solution should look like

y = C1e
3t
(

1
0

)
i.e.

{
x = C1e

3t

y = 0

However: our theory tells us that the solution space should be two-dimensional,
so it should be spanned by two linearly independent functions (and have two ar-
bitrary constants). We only have one such function in the solution space: e3t (and
only one constant). So this can’t be right.

187



3.12. Repeated eigenvalues

Actually, this system is fairly easy to solve, because it is uncoupled (“uncou-
pled” means the y′ equation has only y in it, so you can solve the equation for y
while ignoring x). {

x′ = 3x+ 2y
y′ = 3y

From the second equation, y = C1e
3t (exponential growth). Substituting this into

the first equation, we get

x′ = 3x+ 2C1e
3t ⇒ x′ − 3x = 2C1e

3t

This equation is first-order, linear (but not homogeneous) and can therefore be
solved with integrating factors:

Question: What does this solution have to do with eigenvalues and eigenvec-
tors?
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Suppose you have a 2 × 2 system y′ = Ay where A has a repeated eigenvalue
λ, whose eigenvector is v. We know one nonzero solution is

y1 = eλtv;

we need to find a second linearly independent solution.

First try: y2 = teλtw.
Plug this into the system y′ = Ay and see what happens:

Second try: y2 = teλtw1 + eλtw2.
Plug this into the system y′ = Ay:
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Theorem 3.68 Suppose A ∈M2(R) is not a scalar multiple of the identity. If A has a
repeated eigenvalue λ of multiplicity 2, then the general solution of the system of two
ODEs given by y′ = Ay is

y(t) = C1e
λtv + C2

[
eλtw + teλtv

]
where v is an eigenvector of A corresponding to eigenvalue λ, and w is some other
nonzero vector satisfying (A− λI)w = v; w is called a generalized eigenvector of
A corresponding to λ.

Example: Find (x, y) when t = 3, if x′(t) = 12x(t) + 4y(t) and y′(t) = −x(t) +
16y(t), and if (x, y) = (2,−1) when t = 0.
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3.13 Summary of linear, const.-coeff., homogeneous linear systems
2× 2 systems

SupposeA ∈M2(R) and consider the system y′ = Ay where y = (x, y). The unique
solution to such a system with initial value y(0) = y0 is always y(t) = eAty0; the
general solution of the system is given by y = C1y1 + C2y2, where y1 and y2 are
any two linearly independent solutions of the system. There are four cases which
describe all possible solutions:

Case 1:
A has two distinct, real
eigenvalues λ1 and λ2,
whose eigenvectors are

v1 and v2

⇒
The general solution is

y = C1e
λ1tv1 + C2e

λ2tv2

Case 2:
A has a pair of complex
conjugate eigenvalues
λ = α + iβ, λ = α− iβ
whose eigenvectors are
v = a + ib, v = a − ib

⇒

The general solution is

y = C1 [eαt cos(βt) a − eαt sin(βt) b] +
C2 [eαt cos(βt) b + eαt sin(βt) a]

= C1<(eλtv) + C2=(eλtv)

Case 3:
A is not a scalar multiple
of the identity, but A has
a repeated eigenvalue λ
with one eigenvector v

⇒

The general solution is

y = C1e
λtv + C2

[
eλtw + teλtv

]
where w satisfies (A− λI)w = v

Case 4:
A = λI

(i.e. A is a scalar multiple
of the identity matrix)

⇒

The system is uncoupled;
the equations can be solved

separately to obtain
the general solution

{
x = C1e

λt

y = C2e
λt
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Systems of more than two ODEs
Suppose A ∈ Mn(R) and consider the system y′ = Ay where y = (y1, ..., yn). The unique
solution to such a system with initial value y(0) = y0 is always y(t) = eAty0; the general
solution of the system is given by y = C1y1 + C2y2 + ...Cdyd, where y1,y2, ...,yd are any
d linearly independent solutions of the system. To describe the solutions, you need to find
the eigenvalues of A. In general:

• You might get some real eigenvalues of multiplicity one, say λ1, λ2, ..., λk, with re-
spective eigenvectors v1, ...,vk.

Each real eigenvalue λj of this type generates a solution of the form eλjtvj .

• You might get some complex eigenvalues (coming in pairs of complex conjugates),
say

λ1, λ1 = α1 ± iβ1; λ2, λ2 = α2 ± iβ2; ...; λk, λk = αk ± iβk,
whose corresponding eigenvectors are

v1,v1 = a1 ± ib1; v2,v2 = a2 ± ib2; ...; vk,vk = ak ± ibk.
Each pair of eigenvalues αj ± iβj of this type generates a pair of solutions

<(eλjtvj) = eαjt cosβjtaj − eαjt sin βjtbj and =(eλjtvj) = eαjt cosβjtbj + eαjt sin βjtaj .

• You might get some repeated real eigenvalues of multiplicity greater than one, say

λ1(multiplicity m1), λ2(multiplicity m1), ..., λl(multiplicity ml),

where each eigenvalue λj has exactly one linearly independent eigenvector vj . Each
such eigenvalue λj of multiplicity mj generates a list of mj solutions of the form

eλjtvj , eλjtw1 + teλjtvj , eλjtw2 + teλjtw1 + t2eλjtvj , ...,

eλtwm−1 + teλjtwm−2 + t2eλjtwm−3 + ...tmj−1eλjtw1 + tmj−1eλjtvj .
where wi satisfies (A− λI)iwi = vj .

• You might get repeated real eigenvalues which have more than one linearly inde-
pendent eigenvector. This is beyond the scope of Math 330, but for each such eigen-
value λj of multiplicitymj , there aremj solutions generated by this eigenvalue; each
of these is a polynomial in t multiplied by eλjt.

• You might get some repeated complex eigenvalues (coming in pairs of complex con-
jugates), say

α1 ± iβ1(multiplicity n1), α2 ± iβ2(multiplicity n1), ..., αm ± iβm(multiplicity nm).

This too is beyond the scope of Math 330, but for each pair of eigenvalues of multi-
plicity mj , there are 2mj solutions generated by this eigenvalue; each of these solu-
tions is a polynomial in t multiplied by something like the solutions in the second
bullet point above.

Each solution of y′ = Ay is a linear combination of the n total functions generated by
the eigenvalues of the n× n matrix A.
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Example: Suppose A is some 9×9 matrix whose eigenvalues are 2,−1, 5, 3±2i,
and ±6i, where 5 has multiplicity 3 and all others have multiplicity 1. Assuming
that there is one linearly independent eigenvector corresponding to each eigen-
value, this tells you that the general solution of y′ = Ay is

y(t) = C1e
2tv

+ C2e
−tv

+ C3e
5tv + C4(e5tw1 + te5tv) + C5(e5tw2 + te5tw1 + t2e5tv)

+ C6(e3t cos 2t a − e3t cos 2tb) + C7(e3t cos 2tb + e3t cos 2t a)

+ C8(cos 6t a − sin 6tb) + C9(cos 6tb + sin 6t a).

Note: The vs, as and bs in different lines of this solution are not the same
vectors. If the letters appear in the same horizontal line, they are the same vector.
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An example with Mathematica

Solve y = Ay, y(0) = y0 where

A =



4 −6 6 0 −6 6
6 −8 6 0 −5 5
6 −6 4 0 −5 5
5 −5 0 3 −4 3
2 −2 0 2 −4 5
2 −2 0 2 −2 3


; y0 =



1
2
−1
−3
1
4


.

Step 1: Type in the matrices and save them as something like A and y0.

Step 2: Find the eigenvalues of A:

In: Eigenvalues[A]

Out: {4, 2+i, 2-i, -2, -2, -2}

This tells you that the solutions yj should each be of the form

C1e
4t + C2e

2t cos t+ C3e
2t sin t+ C4e

−2t + C5te
−2t + C6t

2e−2t.

Step 3: Compute the solution y(t) = eAty0:

In: y[t_] = MatrixExp[A t].y0

Out: some stuff

In: Expand[y[t]] // MatrixForm

Out: 

e4t

e−2t + e4t − 3e−2tt
−2e−2t + e4t − 3e−2tt

−2e−2t −
(

1
2 + 5i

2

)
e(2−i)t −

(
1
2 −

5i
2

)
e(2+i)t − 3e−2tt

−3e−2t + (2− 3i)e(2−i)t + (2 + 3i)e(2+i)t

(2− 3i)e(2−i)t + (2 + 3i)e(2+i)t


To simplify this, we need a bit more theory of complex numbers:
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3.13. Summary of linear, const.-coeff., homogeneous linear systems

Theorem 3.69 For any real numbers a, b, u and v,

(a+ ib)e(u+iv)t + (a− ib)e(u−iv)t = 2aeut cos vt− 2beut sin vt.

PROOF First, notice that for any complex number z = x+ iy,

z + z = (x+ iy) + (x− iy) = 2x = 2<(z).

Now, let w = u+ iv and c = a+ ib. Then the left-hand side of the theorem is

cewt + cewt = cewt + cewt = 2<(cewt).

Finally,

<(cwt) = Re((a+ ib)(eut cos vt+ ieut sin vt)) = aeut cos vt− beut sin vt.

Put these equations together to prove the theorem. �

Using this theorem, the solution Mathematica produced on the previous page:

y(t) =



e4t

e−2t + e4t − 3e−2tt
−2e−2t + e4t − 3e−2tt

−2e−2t −
(

1
2 + 5i

2

)
e(2−i)t −

(
1
2 −

5i
2

)
e(2+i)t − 3e−2tt

−3e−2t + (2− 3i)e(2−i)t + (2 + 3i)e(2+i)t

(2− 3i)e(2−i)t + (2 + 3i)e(2+i)t


can (and should) be rewritten as

y(t) =



e4t

e−2t + e4t − 3te−2t

−2e−2t + e4t − 3te−2t

−2e−2t − e2t cos t− 5e2t sin t− 3te−2t

−3e−2t + 4e2t cos t− 6e2t sin t
4e2t cos t− 6e2t sin t


.
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3.14. Non-homogeneous systems

3.14 Non-homogeneous systems
Recall from Chapter 2 that to solve a first-order, linear, constant-coefficient ODE

that is not homogeneous, you use the method of undetermined coefficients:

Example: y′ + 4y = et

Solution: First, the corresponding homogeneous is y′ + 4y = 0, i.e. y′ = −4y
which has solution yh = Ce−4t.

Now, “guess” a particular solution. Let’s try yp = Aet. Plugging this into the
left-hand side of the original equation, we have

(Aet)′ + 4(Aet) = et

⇒ 5Aet = et

⇒ A = 1
5

Therefore yp = 1
5e
t, so the general solution is y(t) = yp + yh = 1

5e
t + Ce−4t.

This same technique works for systems of the form y′ = Ay + q where A has
constant coefficients. First, solve the corresponding homogeneous system y′ = Ay
using the techniques of the previous sections; then find a particular solution yp
using the method of undetermined coefficients.

Example: Find the general solution of the system{
x′ = x− 3y + e2t

y′ = 4x− 6y

Solution: First, establish notation: define

A =
(

1 −3
4 −6

)
q =

(
e2t

0

)
y =

(
x
y

)

This means we are trying to solve the system

y′ = Ay + q

so we start with the corresponding homogeneous system

y′ = Ay
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3.14. Non-homogeneous systems

Eigenvalues of A:

0 = det(A− λI) = det
(

1− λ −3
4 −6− λ

)
= (1− λ)(−6− λ) + 12

= λ2 + 5λ+ 6
= (λ+ 2)(λ+ 3)
⇒ λ = −2, λ = −3

Eigenvectors:

λ = −2 : Ax = −2x⇒
{
x− 3y = −2x
4x− 6y = −2y ⇒ x = y ⇒

(
1
1

)

λ = −3 : Ax = −3x⇒
{
x− 3y = −3x
4x− 6y = −3y ⇒ 4x = 3y ⇒

(
3
4

)
Therefore the solution of the homogeneous is

yh = C1e
−2t

(
1
1

)
+ C2e

−3t
(

3
4

)
.

Undetermined coefficients: Now we find yp. Since

q =
(
e2t

0

)
, let’s try yp =

(
Ae2t

Be2t

)
.

We have

y′p =
(

2Ae2t

2Be2t

)
;

this should equal

Ayp + q =
(

1 −3
4 −6

)(
Ae2t

Be2t

)
+
(
e2t

0

)
=
(

(A− 3B + 1)e2t

(4A− 6B)e2t

)
.

Equating terms of y′p with those of Ayp + q, we get{
2A = A− 3B + 1
2B = 4A− 6B

From the second equation, A = 2B, and from the first equation, we get 5B = 1 so
B = 1

5 (and therefore A = 2B = 2
5 ).

Therefore

yp =
(

2
5e

2t

1
5e

2t

)
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and the general solution of the original system is

y = yh + yp =
(

2
5e

2t + C1e
−2t + 3C2e

−3t

1
5e

2t + C1e
−2t + 4C2e

−3t

)
,

i.e. {
x(t) = 2

5e
2t + C1e

−2t + 3C2e
−3t

y(t) = 1
5e

2t + C1e
−2t + 4C2e

−3t .

3.15 Classification of equilibria
Recall from Chapter 1 that to classify an equilibrium y0 of a single first-order au-
tonomous equation y′ = φ(y), you find the sign of the derivative φ′(y0):

φ′(y0) > 0⇔ y0 is unstable
φ′(y0) < 0⇔ y0 is stable

φ′(y0) = 0 and φ′′(y0) 6= 0⇔ y0 is semistable

So classifying the equilibria of a system y′ = Φ(y) should have something to
do with the “derivative” of Φ. But Φ is a function of several variables, which has
several components. What is the “derivative” of Φ?

Definition 3.70 Let Φ : Rd → Rd be a function of the form

Φ(x1, ...xd) = (φ1(x1, ...xd), φ2(x1, ...xd), ..., φd(x1, ...xd)).

The total derivative of Φ is the d× d matrix

DΦ = DΦ(x1, ..., xd) =


∂φ1
∂x1

∂φ1
∂x2

· · · ∂φ1
∂xd

∂φ2
∂x1

∂φ2
∂x2

· · · ∂φ2
∂xd...

... . . . ...
∂φd

∂x1

∂φd

∂x2
· · · ∂φd

∂xd

 .

Example: Find the total derivative of Φ, where Φ : R2 → R2 is defined by

Φ(x, y) = (3x2 + 2xy, 4xy3 − 2x2y).
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3.15. Classification of equilibria

Example: Find DΦ(π, 0, π2 ) of Φ = (φ1, φ2, φ3), if

φ1(x, y, z) = 2 sin x+ cos y;φ2(x, y, z) = 3 cosx− 2 sin z;

φ3(x, y, z) = 3 cosx− 2 sin y + 5 cos z.

Example: Suppose Φ(y) = Ay, where A ∈Md(R). Find DΦ.

For a system, you classify an equilibrium y0 of a system of first-order autonomous
systems by finding the signs of the eigenvalues of the total derivative DΦ(y0):

Definition 3.71 An equilibrium solution y = y0 of an autonomous system is called
stable (or asymptotically stable or attracting or a sink) if there is an open disk E
(an open disk is the set of points inside a circle) of initial values, centered at y0, such
that if y(t0) ∈ E,

lim
t→∞

y(t) = y0.

An equilibrium solution y = y0 of an autonomous system is called semistable (or
neutral) if it is not stable, but there is an open disk E (an open disk is the set of
points inside a circle) of initial values, centered at y0, such that if y(t0) ∈ E, then y(t)
stays close to y0 for all t ≥ 0.

An equilibrium solution y = y0 of an autonomous system is called unstable (or
asymptotically unstable) if it is neither stable nor semistable.
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3.15. Classification of equilibria

To classify equilibria, we look at the signs of the (real parts of the) eigenvalues
of DΦ(y0) (these play the same role as the signs of φ′(y0) for single equations):

Theorem 3.72 (Classification of equilibria) Suppose y = y0 is an equilibrium
solution of autonomous ODE y′ = Φ(y). Then:

1. Φ(y0) = 0;

2. If the real part of every eigenvalue of DΦ is negative, then y0 is stable.

3. If the real part of any eigenvalue of DΦ is positive, then y0 is unstable.

4. If DΦ has only eigenvalues with nonpositive real parts, and has at least one
eigenvalue with zero real part, then y0 is semistable.

Example: Consider the autonomous (but not linear) 2× 2 system of ODEs{
x′(t) = x2 − 2x
y′(t) = 4− (x+ 2)(y − 1)

Find the equilibria of this system and classify them as stable, unstable or semistable.
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3.15. Classification of equilibria

Note that in the previous problem, the eigenvalues of DΦ(y0) could be read off
from the matrix. This is because the matrix is triangular:

Theorem 3.73 If A is a triangular matrix, then the eigenvalues of A are its diagonal
entries.

PROOF See Chapter 8 of my Math 322 lecture notes.

Example: Find and classify all the equilibria of the 2× 2 system{
x′ = x− y + 1
y′ = y(x− 2)
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3.15. Classification of equilibria

CLASSES OF STABLE EQUILIBRIA:

Stable node (two negative, real eigenvalues)

λ1 = λ2 < 0 λ1 = λ2 < 0
w/ 2 lin. indep. w/ 1 eigenvector v

eigenvectors v1,v2 λ1 < λ2 < 0 and 1 gen. eigenvec. w

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Stable spiral (two non-real eigenvalues with negative real part)

λ = α± iβ, α < 0 λ = α± iβ, α < 0

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

CLASSES OF UNSTABLE EQUILIBRIA:

Unstable node (two positive, real eigenvalues)

λ1 = λ2 > 0 λ1 = λ2 > 0
w/ 2 lin. indep. w/ 1 eigenvector v

eigenvectors v1,v2 λ1 > λ2 < 0 and 1 gen. eigenvec. w

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2
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Unstable spiral (two non-real eigenvalues with positive real part)

λ = α± iβ, α > 0 λ = α± iβ, α > 0

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Saddle (one positive, real eigenvalue and one negative, real eigenvalue)

λ1 > 0, λ2 < 0 λ1 > 0, λ2 < 0
λ1 ↔ v1, λ2 ↔ v2 λ1 ↔ v1, λ2 ↔ v2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

CLASSES OF SEMISTABLE EQUILIBRIA:

Center (two non-real eigenvalues with zero real part)

λ = ±iβ λ = ±iβ

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2
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3.16. The trace-determinant plane

3.16 The trace-determinant plane
Recall that an equilibrium y0 of an autonomous equation y′ = Φ(y) can be clas-

sified by looking at the eigenvalues of its determinant.

Suppose y′ = Φ(y) is a 2×2 system and that y0 is an equilibrium of this system.
It turns out that you can classify this equilibrium without finding the eigenvalues
of DΦ(y0): you only need to compute the trace and determinant of DΦ(y0).

Suppose DΦ(y0) =
(
a b
c d

)
. Then the eigenvalues of D(Φ(y0)) can be com-

puted as usual, in terms of a, b, c and d:

0 = det(DΦ(y0)− λI) = det
(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc
= ad− aλ− dλ+ λ2 − bc
= λ2 − (a+ d)λ+ (ad− bc)
= λ2 − (trA)λ+ detA.

Solve for λ using the quadratic formula to get

λ =
trA±

√
(trA)2 − 4 detA

2 = t±
√
t2 − 4d
2

where t = trA and d = detA.

Suppose the equilibrium is a saddle. That means one of the eigenvalues is
positive and one is negative, i.e.

In this case, the product of the eigenvalues is(
t+
√
t2 − 4d
2

)(
t−
√
t2 − 4d
2

)
= t2 − (t2 − 4d)

4 = d.

This shows that the equilibrum is a saddle if and only if d < 0.
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3.16. The trace-determinant plane

From the previous page,

λ =
trA±

√
(trA)2 − 4 detA

2 = t±
√
t2 − 4d
2

where t = trA and d = detA.

Next, recall that the eigenvalues of a matrix sum to the trace t. So if the eigen-
values have the same sign, their sign will coincide with the sign of the trace.

Last, take a look at the expression under the square root:

1. if d > 1
4t

2, then the number under the square root is negative. This means
the eigenvalues are (non-real) complex numbers with real part trA

2 , so the
equilibrium is

2. if d = 1
4t

2, then the number under the square root is zero. This means the
eigenvalue trA

2 is real and repeated, so the equilibrium is a

3. if 0 < d < 1
4t

2, then the number under the square root is positive. This means
there are two real eigenvalues which must have the same sign since their
product is d (which is positive). This makes the equilibrium a node.

To summarize, we have proven this statement:

Theorem 3.74 (Trace-determinant plane) Suppose y0 is an equilibrium of a 2× 2
autonomous system y′ = Φ(y). Let t = trDΦ(y0) and let d = detDΦ(y0).

1. If d < 0, then y0 is a saddle.

2. If 0 < d ≤ t2

4 , then y0 is a node. The node is stable if t < 0 and unstable if t > 0.

3. If d > t2

4 , then y0 is a spiral or center. y0 is a stable spiral if t < 0, a center if
t = 0, and an unstable spiral if t > 0.
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3.16. The trace-determinant plane

The previous theorem is sometimes described with the following picture, called
the trace-determinant plane:

saddle

unstable spiralstable spiral

stable node unstable node
t = tr DΦ

d = det DΦ

Example: Suppose y0 is an equilibrium of some 2 × 2 system y′ = Φ(y) and

DΦ(y0) =
(

5 7
2 3

)
. Classify this equilibrium.

Example: Suppose y0 is an equilibrium of some 2 × 2 system y′ = Φ(y) such
that trDΦ(y0) = 3 and detDΦ(y0) = 11. Classify this equilibrium.

Example: Suppose y0 is an equilibrium of some 2 × 2 system y′ = Φ(y) such
that trDΦ(y0) = 0 and detDΦ(y0) = −2. Classify this equilibrium.
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3.17. Applications of first-order systems

3.17 Applications of first-order systems
Compartmental models

Example: Consider two tanks (say A and B) connected by two pipes which pump
fluid between the tanks. Each tank holds 24 liters of a brine solution. Fresh water
flows into tank A at a rate of 6 L/min, and fluid is drained out of tank B at the
same rate. Suppose that 8 L of fluid per minute is being pumped from tank A to
tank B, and 2 L/min of fluid per minute is pumped from tank B to tank A. If the
tanks are kept well-stirred, and if tank A initially contains 3 kg of salt, and tank B
initially contains 1 kg of salt, find the amount of salt in each tank at time t > 0.

This yields the following linear, constant-coefficient system of ODEs:

{
A′(t) = −1

3 A+ 1
12B

B′(t) = 1
3A−

1
3B

⇔ y′ =
(
−1
3

1
12

1
3

−1
3

)
y initial value y(0) =

(
3
1

)
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3.17. Applications of first-order systems

From the previous page:{
A′(t) = −1

3 A+ 1
12B

B′(t) = 1
3A−

1
3B

⇔ y′ =
(
−1
3

1
12

1
3

−1
3

)
y; y(0) =

(
3
1

)

Eigenvalues:

0 = det
(
−1
3 − λ

1
12

1
3

−1
3 − λ

)
= λ2+ 2

3λ+ 1
12 =

(
λ+ 1

2

)(
λ+ 1

6

)
⇒ λ = −1

2 , λ = −1
6

Eigenvectors:

λ = −1
2 ↔

(
−1
2

)
λ = −1

6 ↔
(

1
2

)
General solution:

y = C1e
(−1/2)t

(
−1
2

)
+ C2e

(−1/6)t
(

1
2

)
i.e.

{
A(t) = −C1e

−t/2 + C2e
−t/6

B(t) = 2C1e
−t/2 + 2C2e

−t/6

Find the particular solution using the initial condition:

y0 =
(
−C1 + C2
2C1 + 2C2

)
=
(

3
1

)
⇒ C1 = −1.25

C2 = 1.75 ⇒
{
A(t) = 1.25e−t/2 + 1.75e−t/6
B(t) = −2.5e−t/2 + 3.5e−t/6

-4 -2 0 2 4

-4

-2

0

2

4

5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0
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Predator-prey population dynamics

We started this chapter with an example taken from the population dynamics of
interacting species. Here is a more formal version of this setup:

Let

R(t) = rabbit population at time t (i.e. prey)
L(t) = lynx population at time t (i.e. predators)

From the discussion at the beginning of the chapter, we saw that the compartments
behaved as follows:

R

aR bRL

L

cRL dL

where a, b, c and d are positive constants. Thus we have the following system of
ODEs, called the Lotka-Volterra equations:{

R′ = aR− bRL
L′ = cRL− dL

This system is not linear, but it is autonomous, so we can study it via phase planes
and equilibria analysis.

Equilibria:

Classification of equilibria: First, find the total derivative:

Φ(R,L) = (aR− bRL, cRL− dL)⇒ DΦ =
(

∂φ1
∂R

∂φ1
∂L

∂φ2
∂R

∂φ1
∂L

)
=
(
a− bL −bR
cL cR− d

)
.
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3.17. Applications of first-order systems

Equilibrium (0, 0):

DΦ(0, 0) =
(
a 0
0 −d

)
⇒ Eigensystem λ = a↔

(
1
0

)
;λ = −d↔

(
0
1

)

Therefore (0, 0) is a saddle (one positive eigenvalue, one negative eigenvalue).

Equilibrium
(
d
c
, a
b

)
:

DΦ
(
d

c
,
a

b

)
=
(
a− b(a/b) −b(d/c)
c(a/b) c(d/c)− d

)
=
(

0 −bd/c
ca/b 0

)

⇒ Eigenvalues λ = ±i
√
ad

Therefore
(
d
c
, a
b

)
is a center.

Phase plane analysis:

d/c

a/b
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SIR model of disease spread

The study of how diseases spread across a population is called epidemiology.
Let’s consider an example which shows how systems of ODEs are used in this
context.

Setup: Consider a contagious disease (think chicken pox) where once people
get the disease, they recover; if they recover, they build up an immunity to the
disease and can’t get the disease again. This divides the population into three
classes:

S(t) = fraction of susceptible individuals at time t
I(t) = fraction of infective individuals at time t
R(t) = fraction of recovered (or dead) individuals at time t

We assume that the disease acts more quickly than the population can reproduce,
so the total population S(t)+I(t)+R(t) is constant, and always equal to 1 (therefore
the birth rate is assumed to be zero). That means that there are really only two
unknown functions (S(t) and I(t)), because you can always find R(t) by taking
1 − S(t) − I(t). This leads to the following compartmental model, called the SIR
model:

S I R
rI IS rR I

In this model:

rI = rate of infection
rR = rate at which infected individuals recover (or die)

This model translates into the following system of ODEs:{
dS
dt

= −rIIS
dI
dt

= rIIS − rRI

(We also know that dR
dt

= rRI , but we don’t need this since S + I +R = 1.)
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3.17. Applications of first-order systems

From the previous page: {
dS
dt

= −rIIS
dI
dt

= rIIS − rRI

This system is not linear, but it is autonomous.

Equilibria: {
0 = −rIIS
0 = I(rIS − rR) ⇒ I = 0 or S = rR

rI

So every point with I = 0 is an equilibrium of his system.

Example phase planes:

rI = .3; rR = .05 rI = .3; rR = .2 rI = .3; rR = .8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SIR models can be adapted to account for diseases that take longer to act (in
which case there are births and deaths in the population). This is done in the
homework exercises.
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3.18 Exam 2 Review
On this exam, you may use: one 4” × 6” note card with whatever you want on
both sides.

What should you expect to be asked on the exam:
• Solve 2× 2 constant-coefficient, linear ODEs and/or IVPs
• Find and classify equilibria of 2×2 autonomous systems (using trace-determinant

plane if necessary)
• Analyze pictures of phase planes
• Perform one or two steps of Euler’s method for systems, given a simple equa-

tion
• Applications / story problems (interconnected tanks, population models,

etc.)
• Answer question(s) on theory and/or vocabulary

NOT on the exam:
• Eigenvalues of 3× 3 or larger matrices
• Computing matrix exponentials (unless you choose to use them)
• Matrix operations (unless you choose to use them)
• Spans / subspaces / linear independence / basis / Wronskian / other linear

algebra issues
• Picard’s method for systems / integral equation for systems
• Questions that require you to know any Mathematica code

Some practice questions:

1. a) What does it mean for a d× d system of ODEs to be “linear”?

b) What is the form of the general solution of a d × d first-order, linear
system of ODEs?

c) What is Euler’s formula? (Note: this is not Euler’s method) What is the
importance of Euler’s formula in differential equations?

2. Consider the initial value problem{
y′ = (y + t, 2y − x)
y(0) = (2, 1)

where y = (x, y). Estimate y(4) by using Euler’s method with two steps.

3. Find and classify the equilibria of the autonomous system{
x′ = 2x− xy
y′ = xy − 3y + 4x− 12 .
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4. Suppose y0 and y1 are the two equilibria of some 2 × 2 system y′ = Φ(y). If
DΦ(y0) has trace 8 and determinant 12, and if DΦ(y0) has trace 8 and deter-
minant 18, classify the equilibria y0 and y1.

5. Find the general solution of each system. In addition:

• In parts (a) and (c), write your answer coordinate-wise, i.e. as
{
x(t) = something
y(t) = something .

• In part (b), give a rough sketch of the phase plane of the system.

• In parts (b), (c) and (e), classify the equilibrium 0 as a node, spiral, sad-
dle or center.

a)
{
x′ = −4x+ 9y
y′ = −4x− 16y

b)
{
x′ = 7x+ 8y
y′ = 16x− y

c)
{
x′ = 3x− 8y
y′ = 4x− 5y

d)
{
x′ = −x+ 3y + 12e−t
y′ = 3x− y

e)
{
x′ = −3x+ 13y
y′ = −10x+ 3y

f) y′ = Ay where A is a 3 × 3 matrix with eigenvalues λ = 2, λ = −3 and
λ = 5 and respective eigenvectors (1, 2,−3), (1,−1, 5) and (0,−2, 1).

6. Find the particular solution of this initial value problem:
{

y′ = (−13x+ 2y, 3x− 8y)
y(0) = (5, 2)

7. Here is the phase plane corresponding to some 2 × 2 autonomous system of
ODEs y′ = Φ(y):

-10 -5 5 10

-10

-5

5

10

a) Sketch the graph of the solution of this system satisfying y(0) = (−6,−4).
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b) Suppose y = (x, y) is the solution of this system satisfying y(0) = (6, 2).
Find lim

t→−∞
y(t).

c) Suppose y = f(t) is the solution of this system satisfying f(0) = (4, 8).
Find r such that (8, r) is on the graph of f .

d) Find all saddles of this system (if any). Classify each saddle as stable or
unstable.

e) Find all nodes of this system (if any). Classify each node as stable or
unstable.

f) Find all spirals of this system (if any). Classify each spiral as stable or
unstable.

8. Two large tanks (call them X and Y) each hold 240 L of liquid. They are
interconnected by a pipe which pumps liquid from tank X to tank Y at a rate
of 8 L/min. A brine solution of concentration 0.1 kg/L of salt flows into tank
X at a rate of 10 L/min; the solution flows out of the system of tanks via two
pipes (one pipe allows flow out of tank X at 2 L/min and another pipe allows
flow out of tank Y at 8 L/min). Suppose that initially, tank Y contains pure
water but tank X contains 60 kg of salt; assume that at all times the liquids in
each tank are kept mixed.

a) Draw a compartmental diagram that models this situation.

b) Write down the initial value problem which models this situation, clearly
defining your variables.

c) Solve the initial value problem you wrote down in part (a).

d) Find the amount of salt in tank Y at time 240.

Solutions

WARNING: as always, these might have errors.

1. a) A d× d system of ODEs is linear if it can be written in the form

Any(n) + An−1y(n−1) + ...+ A1y′ + A0y = q

where the Aj are d × d matrices whose entries are functions of t, and q
is a vector whose entries are functions of t.

b) The general solution of a d × d, first-order linear system y′ = Ay + q is
of the form

y = yp + yh
= yp + (C1y1 + C2y2 + ...Cdyd)
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where yp is any one particular solution of the system, and y1, ....,yd are
linearly independent solutions of the corresponding homogeneous sys-
tem y′ = Ay.

c) Euler’s formula says that for any complex number θ, eiθ = cos θ+ i sin θ.
This formula explains why a system of differential equations y′ = Ay
has solutions with cosines and sines in them whenever A has non-real
eigenvalues.

2. Think of the system as y′ = Φ(t,y); y0 = y(t0). First, ∆t = tn−t0
n

= 4−0
2 = 2.

Now Φ(t0,y0) = Φ(0, (2, 1)) = (1 + 0, 2(1)− 2) = (1, 0) so{
t1 = t0 + ∆t = 0 + 2 = 2
y1 = y0 + Φ(y0)∆t = (2, 1) + (1, 0)2 = (4, 1).

Next, Φ(t1,y1) = Φ(2, (4, 1)) = (2 + 1, 2(1)− 4) = (3,−2) so{
t2 = t1 + ∆t = 2 + 2 = 4
y2 = y1 + Φ(y1)∆t = (4, 1) + (3,−2)2 = (10,−3).

Thus y(4) ≈ (10,−3).

3. Thinking of the system as y′ = Φ(y), we set Φ(y) = 0 and solve for y. Start
with the first equation:

0 = 2x− xy = x(2− y)⇒ x = 0 or y = 2.

If x = 0, plugging in the second equation gives −3y − 12 = 0, i.e. y = −4,
so one equilibrium is (0,−4). If y = 2, plugging in the second equation gives
2x − 6 + 4x − 12 = 0, i.e. x = 3, so the other equilibrium is (3, 2). To classify
the equilibria, find the eigenvalues of DΦ:

DΦ =
(

2− y −x
y + 4 x− 3

)
;

DΦ(0,−4) =
(

6 0
0 −3

)
; this matrix has negative determinant, so (0,−4) is

an unstable saddle.

DΦ(3, 2) =
(

0 −3
6 0

)
; this matrix has trace 0 and positive determinant, so

(3, 2) is a center.

4. Let t = tr(DΦ(y0)) and d = det(DΦ(y0)); we have t = 8 and d = 12. Since
d < t2

4 and t > 0, y0 is an unstable node.

Now, let t = tr(DΦ(y1)) and d = det(DΦ(y1)); we have t = 8 and d = 18.
Since d > t2

4 and t > 0, y0 is an unstable spiral.
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5. Answers may vary in this problem, due to different choices of eigenvectors.
All of these problems are approached by first finding eigenvalues via the
equation det(A−λI) = 0 and then finding eigenvectors by the equationAv =
λv.

a) Eigenvalue λ = −10 (repeated twice).
Eigenvector v (found by setting Av = λv): v = (−3, 2).
Then, solve (A − λI)w = v to find a generalized eigenvector: w =
(1,−1).

So the general solution is y = C1e
−10t

(
−3
2

)
+C2

[
e−10t

(
1
−1

)
+ te−10t

(
−3
2

)]
.

Written coordinate-wise:
{
x(t) = (−3C1 + C2)e−10t − 3C2te

−10t

y(t) = (2C1 − C2)e−10t + 2C2te
−10t .

b) The general solution, coming from eigenvalues and eigenvectors, is

y = C1e
15t
(

1
1

)
+ C2e

−9t
(

1
−2

)
;

0 is an unstable saddle since it has one positive and one negative eigen-
value (alternatively, because the matrix has negative determinant). The
straight-line solutions are y = x (which goes away from the origin since
its eigenvalue is positive) and y = −2x (which goes toward the origin
(since its eigenvalue is negative), so the phase plane looks roughly like
this:

-10 -5 0 5 10

-10

-5

0

5

10

c) Eigenvalues: λ = −1± 4i; eigenvectors: (1± i, 1).
Since the eigenvalues are non-real with negative real part (alternatively,
since the matrix has negative trace t and determinant d satisfying d >
t2

4 ), 0 is a stable spiral.
The general solution is

y = C1

[
e−t cos 4t

(
1
1

)
− e−t sin 4t

(
1
0

)]
+ C2

[
e−t cos 4t

(
1
0

)
+ e−t sin 4t

(
1
1

)]
.

Written coordinate-wise:{
x(t) = (C1 + C2)e−t cos 4t+ (C2 − C1)e−t sin 4t
y(t) = C1e

−t cos 4t+ C2e
−t sin 4t .
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d) Start by solving the homogeneous system y′ = Ay whereA =
(
−1 3
3 −1

)
.

By usual methods, this solution is yh = C1e
−4t

(
1
−1

)
+ C2e

2t
(

1
1

)
.

Next, find a particular solution by guessing yp =
(
Ae−t

Be−t

)
. Plugging in

the original system, we get
{
−A = −A+ 3B + 12
−B = 3A−B which has solution

A = 0, B = −4. Therefore yp =
(

0
−4e−t

)
so the solution of the original

system is

y = yp + yh =
(

0
−4e−t

)
+ C1e

−4t
(

1
−1

)
+ C2e

2t
(

1
1

)
.

e) Eigenvalues: λ = ±11i; eigenvectors: (3∓ 11i, 10)
Since the eigenvalues are pure imaginary (alternatively, since the matrix
A has zero trace and positive determinant), 0 is a center.
The general solution is

y = C1

[
cos 11t

(
3
10

)
− sin 11t

(
−11

0

)]
+ C2

[
cos 11t

(
−11

0

)
+ sin 11t

(
3
10

)]

=
(

(3C1 − 11C2) cos 11t+ (11C1 + 3C2) sin 11t
10C1 cos 11t+ 10C2 sin 11t

)
.

f) y = C1e
2t

 1
2
−3

+ C2e
−3t

 1
−1
5

+ C3e
5t

 0
−2
1

.

6. Eigensystem: λ = −14↔
(

2
−1

)
; λ = −7↔

(
1
3

)
.

General solution: y = C1e
−14t

(
2
−1

)
+ C2e

−7t
(

1
3

)
.

Plug in y(0) = (5, 2) to get
{

5 = 2C1 + C2
2 = −C1 + 3C2

Solve for C1 and C2 to get

C1 = 13
7 , C2 = 9

7 . Thus the particular solution is

y = 13
7 e
−14t

(
2
−1

)
+ 9

7e
−7t

(
1
3

)

=
(

26
7 e
−14t + 9

7e
−7t

−13
7 e−14t + 27

7 e
−7t

)
.
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7. a)

-10 -5 5 10

-10

-5
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b) lim
t→−∞

y(t) = −5.

c) r = 7.

d) This system has an unstable saddle at (0, 6) (saddles are always unsta-
ble).

e) This system has no nodes.

f) This system has an unstable spiral at (−1,−5).

8. a)
x(t) y(t)

1 y/30x/30

x/120

b) Let x(t) = the amount of salt in tank X at time t, and let y(t) = the
amount of salt in tank Y at time t. Then we have the initial value prob-
lem {

x′(t) = − x
30 −

x
120 + 1

y′(t) = x
30 −

y
30

{
x(0) = 60
y(0) = 0

c) We can rewrite the system as y′ = Ay + q where y = (x, y), q = (1, 0)

and A =
(
−1
24 0
1
30

−1
30

)
. To solve this, first solve the homogeneous sys-

tem using eigenvalues and eigenvectors (notice that since this matrix is
triangular, you can read off the eigenvalues as the diagonal entries):

det(A− λI) = (−1
24 − λ)(−1

30 − λ)⇒ λ = −1
24 ,
−1
30

The corresponding eigenvectors (letting v = (x, y) and solvingAv = λv)
are:

λ = −1
24 :

{
−1
24 x = −1

24 x
1
30x−

1
30y = −1

24 y
⇒ x− y = −5

4 y ⇒ x = −1
4 y ⇒ v = (1,−4)

λ = −1
30 :

{
−1
24 x = −1

30 x
1
30x−

1
30y = −1

30 y
⇒ x = 0⇒ v = (0, 1)

So the general solution of the homogeneous is

yh = C1e
−t/24

(
1
−4

)
+ C2e

−t/30
(

0
1

)
.
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Now for the particular solution. Since q has constant entries, guess yp =(
A
B

)
. Then, by plugging in the original system we have

{
0 = −A

24 + 1
0 = A

30 −
B
30

Therefore A = B = 24, so yp = (24, 24). Therefore

y = yp + yh =
(

24
24

)
+ C1e

−t/24
(

1
−4

)
+ C2e

−t/30
(

0
1

)
.

i.e. {
x(t) = C1e

−t/24 + 24
y(t) = −4C1e

−t/24 + C2e
−t/30 + 24

Plugging in the initial conditions x(0) = 60, y(0) = 0, we get 60 = C1 +24
(i.e. C1 = 26) and 0 = −4C1 + C2 + 24 (i.e. C2 = 80). Therefore the
particular solution is{

x(t) = 26e−t/24 + 24
y(t) = −104e−t/24 + 80e−t/30 + 24

d) y(240) = −104e−240/24 + 80e−240/30 + 24 = −104e−10 + 80e−8 + 24.
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Chapter 4

Higher-order linear equations

4.1 Reduction of order
Recall that a nth order, linear ODE has the form

We know from Chapters 1-3 how to approach first-order equations and sys-
tems. On the face of things, it seems like we would have to invent entirely new
theory to study nth-order equations and systems. However, there is a trick called
reduction of order. Here’s how this trick works for linear systems:

Start with the nth-order linear equation

pny
(n) + pn−1y

(n−1) + ...+ p2y
′′ + p1y

′ + p0 = q

and rewrite this equation (renaming the coefficient functions pj if necessary) by
solving for y(n) to get

y(n) = p0y + p1y
′ + p2y

′′ + ...+ pn−1y
(n−1) + q (4.1)

Here comes the trick. We turn the nth-order equation (4.1) into a first-order sys-
tem as follows: first, define for j ∈ {0, ..., n− 1},

yj(t) = y(j)(t)

and arrange these yj into a vector:

y(t) =



y0(t)
y1(t)
y2(t)

...
yn−1(t)

 =



y(t)
y′(t)
y′′(t)

...
y(n−1)(t)

 .
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Now,

y′ = d

dt



y0(t)
y1(t)
y2(t)

...
yn−2(t)
yn−1(t)


= d

dt



y(t)
y′(t)
y′′(t)

...
y(n−2)(t)
y(n−1)(t)


=



y′(t)
y′′(t)
y′′′(t)

...
y(n−1)(t)
y(n)(t)


=



y1(t)
y2(t)
y3(t)

...
yn−1(t)
y(n)(t)


Substituting in the formula from Equation (4.1) (previous page), we get

y′ =



y1(t)
y2(t)

...
yn−1(t)

p0y0(t) + p1y1(t) + ...+ pn−2yn−2(t) + pn−1yn−1(t) + q(t)



=



1
1

. . .
1

1
p0 p1 p2 · · · · · · pn−1





y0(t)
y1(t)
y2(t)

...
yn−2(t)
yn−1(t)


+



0
0
0
...
0
q(t)


= Ay + q

where

A =



1
1

. . .
1

1
p0 p1 p2 · · · · · · pn−1


and q =



0
0
0
...
0
q(t)


.

Note that if we can solve the first-order system

y′ = Ay + q,

then by reading the first row off this solution, we have solved the original nth-order
equation!

In general, an nth-order ODE can be turned into a linear n × n system of first-
order ODEs using this procedure, and a d × d system of nth-order ODEs can be
converted into a dn× dn system of first-order ODEs using similar techniques.
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Example: Convert the following second-order equation to a first-order system
of the form y′ = Ay + q:

y′′ + 4e−3ty′ − 3ety = 7e2t

Example: Convert the following third-order system to a first-order system of
the form y′ = Ay + q:{

x′′′ −4x′′ + 2y′′ −3x′ + 5y′ −x+ 7y = 0
x′′′ + y′′′ +3y′′ −2x′ +3x− 4y = et
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Since solving a nth-order system is equivalent to solving a first-order system
with more variables and more equations, the existence/uniqueness theory we de-
veloped for first-order systems lifts to this setting. The only issue is what consti-
tutes an initial value.

When solving a first-order system y′ = Φ(t,y), an initial value is some y(t0) =
y0, which is really a list of values of all the components of y at t = t0. In this setting,
since the components of y are the zeroth to (n− 1)th derivatives of y, to specify an
initial value for an nth-order equation means to specify the values of

at some value t0.

Definition 4.1 Given an nth-order ODE, an initial value of the ODE is a num-
ber t0, together with the values y(t0), y′(t0), ..., y(n−1)(t0) of y and its first (n − 1)
derivatives at t0. We write such an initial value as

(t0, y(t0), y′(t0), ..., y(n−1)(t0)) or (t0, y0, y
′
0, y
′′
0 , ..., y

(n−1)
0 ).

An nth-order ODE together with an initial value of this type is called a initial value
problem.

Theorem 4.2 (Existence/uniqueness for nth-order equations) Suppose

φ = φ(t, y, y′, ..., y(n−1)) : Rn+1 → R

is a function such that φ, ∂φ
∂y
, ∂φ
∂y′
, ..., ∂φ

∂y(n−1) are each continuous for all (t, y, y′, ..., yn−1)
in some box in Rn+1 containing (t0, y0, y

′
0, ..., y

(n−1)
0 ). Then for some interval of t val-

ues containing t0, the initial value problem{
y(n) = φ(t, y, y′, ..., y(n−1))
y(t0) = y0, y

′(t0) = y′0, ..., y
(n−1)(t0) = yn−1

0

has one and only one solution which is of the form y = f(t) for some function f : R→
R.
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Theorem 4.3 (Existence/uniqueness for nth-order systems) Suppose

Φ = (φ1, φ2, ..., φn) : Rn+1 → Rn

is a function whose components are

φj = φj(t, y, y′, ..., y(n−1)) : Rn+1 → R.

If for every j, φj,
∂φj

∂y
, ∂φj

∂y′
, ..., ∂φj

∂y(n−1) are continuous at all (t, y, y′, ..., yn−1) in some box

in Rn+1 containing (t0, y0, y
′
0, ..., y

(n−1)
0 ), then for some interval of t values containing

t0, the initial value problem{
y(n) = Φ(t,y,y′, ...,y(n−1))
y(t0) = y0,y′(t0) = y′0, ...,y(n−1)(t0) = yn−1

0

has one and only one solution which is of the form y = f(t) for some function f : R→
Rn.

4.2 nth-order, linear, constant-coefficient equations
The homogeneous case

Recall from Chapter 1 that an nth-order, linear, homogeneous constant-coefficient
ODE looks like

pny
(n) + pn−1y

(n−1) + ...+ p2y
′′ + p1y

′ + p0y = 0

where p0, ..., pn are constants, and pn 6= 0.

Motivating Example: 2y′′′ − 3y′′ − 9y′ + 10y = 0

Method of Solution: Convert this to a first-order system, and solve the system.
From the preceding discussion, we start by solving the equation for y′′′:

Then let

y =

 y
y′

y′′


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so that the equation is converted to the first order system

y′ = Ay =

 0 1 0
0 0 1
−5 9

2
3
2

y.

The solution of the original equation, which was

2y′′′ − 3y′′ − 9y′ + 10y = 0,

is the top row of y(t) = eAty0.

To compute this solution, we’d start by finding eigenvalues:

0 = det(A− λI) = det

 −λ 1 0
0 −λ 1
−5 9

2
3
2 − λ



=

 −λ 1 0
0 −λ 1
−5 9

2
3
2 − λ

 −λ 1
0 −λ
−5 9

2

This generalizes: starting with an nth-order, constant-coefficient ODE, you can
always read off the formula for det(A − λI) by looking at the constants in the
original equation.
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Definition 4.4 Given an nth-order linear, constant-coefficient ODE

pny
(n) + pn−1y

(n−1) + ...+ p2y
′′ + p1y

′ + p0y = q,

the nth degree polynomial equation

pnλ
n + pn−1λ

n−1 + ...+ p2λ
2 + p1λ+ p0 = 0

is called the characteristic equation of the ODE.

When you perform reduction of order on a constant-coefficient, nth-order equa-
tion to obtain a first-order system

y′ = Ay,

it turns out that the eigenvalues of A are exactly the roots of the characteristic
equation (to prove this in general, you would need to know how to compute de-
terminants of matrices via “minors”; you learn this technique in linear algebra).

Therefore, if the characteristic equation has distinct real roots, then the solution
of the system is

y = C1e
λ1tv1 + C2e

λ2tv2 + ...+ Cne
λntvn.

If we choose eigenvectors where the first component of each eigenvector is 1, and
then read off the top row of this solution to find y, we can conclude:

Theorem 4.5 Suppose that the characteristic equation of an nth-order linear, homoge-
neous constant-coefficient ODE has n distinct, real roots λ1, ..., λn. Then, the general
solution of the ODE is

y = y(t) = C1e
λ1t + C2e

λ2t + ...+ Cne
λnt.

Example: Find the particular solution of the ODE

y′′ − 7y′ + 10y = 0

satisfying y(0) = 2 and y′(0) = 17.
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What about complex roots of the characteristic equation?

Suppose the characteristic equation has complex eigenvalues α ± iβ with corre-
sponding eigenvectors a ± ib. That means (in the 2 × 2 case) that the solution of
the system is

y = C1
[
eαt cos(βt) a − eαt sin(βt) b

]
+ C2

[
eαt cos(βt) b + eαt sin(βt) a

]
.

As before, you can choose an eigenvector whose top entry is 1; reading off the
top row of this solution and combining the like terms, we get (after renaming the
constants)

y = C1e
αt cos(βt) + C2e

αt sin(βt).

This generalizes:

Theorem 4.6 Whenever the characteristic equation of an nth-order linear, homoge-
neous constant-coefficient ODE has a pair of complex conjugate roots α ± iβ, the
general solution of the ODE contains terms of the form

C1e
αt cos(βt) and C2e

αt sin(βt).

Example: Find the general solution of the ODE y′′′ + 2y′′ + 5y′ = 0.

228
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What about repeated real roots?

Recall that if you have a repeated eigenvalue in a system y′ = Ay, you get solutions
which contain eλt, teλt, etc. This translates into our setting as follows:

Theorem 4.7 Whenever the characteristic equation of an nth-order linear, homoge-
neous constant-coefficient ODE has a repeated root λ of multiplicity m, the general
solution of the ODE contains terms of the form

C1e
λt, C2te

λt, C3t
2eλt, ..., and Cmtm−1eλt.

Example: Find the general solution of the ODE y′′ − 6y′ + 9y = 0.

Summary

To solve a constant-coefficient homogeneous ODE, find the roots of the charac-
teristic equation:

• each real root λ of multiplicity 1 generates a solution of the form eλt;

• each pair of non-real roots α± iβ of multiplicity 1 generates two solutions of
the form eαt cos(βt) and eαt sin(βt);

• each repeated real root λ of multiplicity m > 1 generates m solutions of the
form eλt, teλt, t2eλt, ..., tm−1eλt;

• (not assessed in Math 330) each repeated pair of non-real roots α ± iβ of
multiplicity m > 1 generates 2m solutions of the form

eαt cos(βt), eαt sin(βt), teαt cos(βt), teαt sin(βt), ..., tm−1eαt cos(βt), tm−1eαt sin(βt).

Multiply each solution generated by a root of the characteristic equation by an ar-
bitrary constant, and add them up to get the general solution of the homogeneous
nth-order equation.
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What about non-homogeneous equations?

We already know from Chapters 1 and 2 that for linear nth-order equations, if yh is
the solution of the corresponding homogeneous equation, then for any particular
solution yp of the original equation, the solution set of the original equation is

y = yp + yh.

So to solve an nth-order, constant-coefficient non-homogeneous system, we first
solve the corresponding homogeneous and then find a particular solution yp using
undetermined coefficients.

Example: Solve the ODE y′′′ − 3y′′ + 3y′ − y = 4e2t.

Solution: The characteristic equation is

λ3 − 3λ2 + 3λ− 1 = 0
(λ− 1)3 = 0 (use Mathematica to factor if necessary)
⇒ λ = 1 (repeated three times)

(The Mathematica command to factor is Factor[x^3 - 3x^2 + 3x - 1].)

Therefore the solution of the homogeneous is

yh = C1e
t + C2te

t + C3t
2et.
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Example: Solve the ODE y′′′ − 3y′′ + 3y′ − y = et.

Solution: This has the same homogeneous equation as the example on the pre-
vious page, so

yh = C1e
t + C2te

t + C2t
2et.

We might try yp = Aet, but this is already part of the homogeneous solution yh, so
we need to try something else.
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4.3 Variation of parameters
Recall that to solve a second-order, linear, non-homogeneous ODE like

y′′ + p1(t)y′ + p0(t)y = q(t),

you first solve the corresponding homogeneous equation

y′′ + p1(t)y′ + p0(t)y = 0.

The solution to the homogeneous is the span of two linearly independent solutions
(say y1 and y2):

Then the solution to the original non-homogeneous equation is

Question: How do you find yp?

Answer # 1: Undetermined coefficients: guess yp (with some unknown constants),
and try to figure out what the constants have to be.

Upside of this method: It’s pretty easy to implement, if your guessed yp is correct.

Drawback of this method: You have to “guess” the class of yp correctly to get
started, and if the q(t) in the ODE is weird, you have no way to guess yp correctly,
so this method only works if q(t) is “nice”.

Answer # 2:
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How the method works

Goal: Find particular solution yp of

y′′ + p1(t)y′ + p0(t)y = q(t) (4.2)

given that the solution of the corresponding homogeneous is

yh(t) = C1y1(t) + C2y2(t).

Idea: replace the constants C1 and C2 in the above expression with functions c1(t)
and c2(t), and try to find functions that work in the original equation.

Suppose yp = c1(t)y1(t) + c2(t)y2(t). Differentiate both sides of this equation
twice (using the Product Rule) to get

y′p = c′1(t)y1(t) + c1(t)y′1(t) + c′2(t)y2(t) + c2(t)y′2(t)

y′′p = [c′1(t)y1(t) + c′2(t)y2(t)]′ + c′1(t)y′1(t) + c1(t)y′′1(t) + c′2(t)y′2(t) + c2(t)y′′2(t)

Trick: to simplify this, let’s assume that c′1(t)y1(t) + c′2(t)y2(t) = 0. Then the deriva-
tives become

yp = c1(t)y1(t) + c2(t)y2(t) (4.3)
y′p = c1(t)y′1(t) + c2(t)y′2(t) (4.4)

y′′p = c′1(t)y′1(t) + c1(t)y′′1(t) + c′2(t)y′2(t) + c2(t)y′′2(t) (4.5)

and by plugging in to the left-hand side of the original equation (4.2), we get

y′′p + p1y
′
p + p0yp = [c′1y′1 + c1y

′′
1 + c′2y

′
2 + c2y

′′
2 ] + p1 [c1y

′
1 + c2y

′
2] + p0 [c1y1 + c2y2]

= c1(y′1 + p1y
′
1 + p0y1) + c2(y′′2 + p1y

′
2 + p0y2) + c′1y

′
1 + c′2y

′
2

= c′1y
′
1 + c′2y

′
2.
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To summarize, we have shown:

Theorem 4.8 (Variation of parameters for second-order equations) If y1 and y2
are two linearly independent solutions of the second-order, linear, homogeneous equa-
tion y′′(t) + p1(t)y′(t) + p0(t)y(t) = 0, then for any functions c1 and c2 which solve
the system of equations {

c′1y1 + c′2y2 = 0
c′1y
′
1 + c2y

′
2 = q(t) ,

the function yp = c1(t)y1(t) + c2(t)y2(t) is a particular solution of the second-order
linear equation y′′(t) + p1(t)y′(t) + p0(t)y(t) = q(t).

Good news: The system in the above theorem can always be solved (uniquely)
for c′1 and c′2 by addition-elimination.

This is the advantage of variation of parameters (as opposed to undetermined coeffi-
cients): you can always do it, no matter the function q(t), and you don’t need to make any
guesses.

Bad news: The functions you get for c′1 and c′2 need to be integrated to get back
to c1 and c2; this integration is not always “doable”.

Example: y′′ − 2y′ + y = et

t
.
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Example: y′′ + 4y = 6 csc t.
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4.4 Applications of higher-order equations and systems
Mass-spring systems

Consider a mass attached to a fixed point by a spring:

m

Let x(t) be the horizontal position of the mass at time t, and scale the x-axis so that
x = 0 is the position of the mass when the spring is at rest.

Our goal is to determine the position of the mass at time t (i.e. find x(t)). To do
this, we will determine the forces acting on the mass:

1. the spring exerts a force on the mass, which by Hooke’s Law is proportional
to the distance the spring is stretched/compressed. Since the force acts in the
opposite direction to where the object moves, we have

Fspring(x) = −kx

The larger k is, the stiffer the spring.

2. as the object moves, it encounters friction from the surface it rolls/slides
across. This force is proportional to the velocity of the object, and acts in
the opposite direction that the object is moving:

Ffriction(x) = −bx′

The larger b is, the greater the friction.

3. there may be other external forces (magnetic or electrical fields, gravity, etc.)
Call these Fexternal.

From Newton’s laws of motion, we know that the sum of these forces on the object
must equal ma = mx′′(t). This gives the equation

which can be rewritten as follows:
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Definition 4.9 The second-order ODE

mx′′(t) + bx′(t) + kx(t) = Fext(t)

where m and k are positive constants and b is a nonnegative constant, is called the
oscillator equation (or just an oscillator). b is called the damping coefficient; if
b > 0 the oscillator is called damped; if b = 0 the oscillator is called undamped. If
Fext is nonzero, the oscillator is called driven. An oscillator that is undamped, but
not driven is called a simple oscillator.

Solution of the simple oscillator

The simple oscillator is the second-order, constant-coefficient homogeneous
equation

mx′′(t) + kx(t) = 0.
To solve it, consider the characteristic equation

mλ2 + k = 0

which has solution λ = ±i
√

k
m

. Thus the general solution is

x(t) = C1 cos
√ k

m
t

+ C2 sin
√ k

m
t

 .
This can be rewritten. Set

ψ = − arctan C2

C1
and A =

√
C2

1 + C2
2

Then notice that

A cos
√ k

m
t+ ψ

 = A cos
√ k

m
t

 cosψ − A sin
√ k

m
t

 sinψ

= (A cosψ) cos
√ k

m
t

− (A sinψ) sin
√ k

m
t


= C1 cos

√ k

m
t

− (−C2) sin
√ k

m
t

 .
which is the same as the original solution. We have proven:
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Theorem 4.10 (Solution of the simple oscillator) The simple oscillator

mx′′(t) + kx(t) = 0

has as its general solution

x(t) = A cos
√ k

m
t+ ψ


where A and ψ are the two arbitrary constants. A is called the amplitude and ψ is
called the phase shift.

The graph of a simple oscillator is something like this:
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4.4. Applications of higher-order equations and systems

Solution of the damped, but undriven, oscillator

The damped, undriven oscillator is the second-order, constant-coefficient ho-
mogeneous equation

mx′′(t) + bx′(t) + kx(t) = 0.
To solve it, consider the characteristic equation

mλ2 + bλ+ k = 0
which by the quadratic formula, has solution λ = −b±

√
b2−4mk

2m . Thus there are three
cases:

• If b is small (more precisely, if b2 − 4mk < 0), the oscillator is called under-
damped (the effects of the spring outweigh the friction). In this case, there
are two complex conjugate solutions λ1 and λ2 of the characteristic equation,
so the general solution is

x(t) = C1e
αt cos(βt) + C2e

αt sin(βt).
In particular, you can show α must be negative (HW), so the solutions have
graphs which look like

5 10 15 20

-4

-2

2

4

• If b is large (more precisely, if b2 − 4mk > 0), the oscillator is called over-
damped (the frictional force outweighs the harmonics coming from the spring).
In this case, there are two real solutions λ1 and λ2 of the characteristic equa-
tion, both of which must be negative (HW). Thus the general solution is

x(t) = C1e
λ1t + C2e

λ2t

and the graph of x looks something like

5 10 15 20
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4.4. Applications of higher-order equations and systems

• If b is such that b2−4mk = 0, then you get a repeated root in the characteristic
equation λ = −b

2m . Thus the general solution is

x(t) = C1e
(− b

2m
)t + C2te

(− b
2m

)t

and the graph of x looks like

5 10 15 20

-4

-2

2

4

so we again consider the oscillator to be overdamped (but the damping takes
longer to occur).

An example of a driven oscillator

Example: A mass-spring system is driven by an external force of 5 sin t. The
mass equals 1, the spring constant equals 3, and the damping coefficient is 4. If the
mass is initially located at x(0) = 1

2 and at rest, find its equation of motion.
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4.4. Applications of higher-order equations and systems

.

Here is the graph of x(t) = −1
2 e
−3t + 2e−t + 1

2 sin t− cos t:

5 10 15 20 25 30
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Coupled mass-spring systems
(A fancy way of saying “more than one mass hooked up by springs”)

m1 m2

k1 k2
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Recall: For the coupled mass-spring system

m1 m2

k1 k2

we obtained the second-order system of ODEs{
m1x

′′
1 + (k1 + k2)x1 − k2x2 = 0

m2x
′′
2 + k2x2 − k2x1 = 0

which is reduced in order to the first-order system

x′ =


0 0 1 0
0 0 0 1

−(k1+k2)
m1

k2
m1

0 0
k2
m2

−k2
m2

0 0

x

The eigenvalues of this matrix can be computed with Mathematica. Suppose we
have an example with m1 = 2, m2 = 1, k1 = 4 and k2 = 2. If both objects are
displaced 4 units to the right of their equilibrium positions and then released, then
the initial condition of the system is

x(0) = 4; y(0) = 4; x′(0) = 0; y′(0) = 0 i.e. x0 =


4
4
0
0

 .

So the solution is

x(t) = eAtx0 =


8
3 cos t+ 4

3 cos 2t
16
3 cos t− 4

3 cos 2t
−8
3 sin t− 8

3 sin 2t
−16

3 sin t+ 8
3 sin 2t


(computed with Mathematica). We need only the top two rows of this solution, so{

x1(t) = 8
3 cos t+ 4

3 cos 2t
x2(t) = 16

3 cos t− 4
3 cos 2t

Here are the graphs of x1(t) and x2(t) (x1 is the solid line):
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5 10 15 20 25 30
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Keep in mind, however, that the vertical axis on the above picture measures
each object’s displacement from when the respective springs are at rest. If you want a
picture that tracks the position of the two objects on the same scale, you need to
add the length of spring # 2 when it is at rest to x2, the position of mass # 2. This
yields the following picture, if that length is, for example, 10 units:

5 10 15 20 25 30

5

10

Pendulums

We start by considering a single pendulum where a mass m is at the end of a beam
of length l; the other end of the beam has fixed position.

We assume for simplicity that the pendulum is contained in a plane (so the
mass only moves back and forth, not in a circle or ellipse). We also suppose that
the only force acting on the pendulum is gravity (no friction or air resistance). By
Newton’s Second Law (in the context of rotational forces),
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4.4. Applications of higher-order equations and systems

Definition 4.11 The undamped pendulum equation which gives the angle θ at
which the mass hangs as a function of t is

θ′′ + g

l
sin θ = 0.

This is NOT a linear equation. However, if θ is small, then we can use a Taylor
polynomial (of order 1 to approximate sin θ:

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

Thus the pendulum equation, when θ is small, can be rewritten as

θ′′ + g

l
θ = 0.

This IS linear (and homogeneous and constant-coefficient).

Remark: This equation is called the linearization of the pendulum equation. In
general, to study a nonlinear ODE one starts by constructing a “linearization” of
that differential equation, then applying the methods of this course. If only there
was a Math 331: Differential Equations 2.....

In fact, we’ve seen the linearized equation before:

The solution is
θ(t) = A cos

(√
g

l
t+ ψ

)
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4.4. Applications of higher-order equations and systems

where A and ψ are the arbitrary constants. As with the simple oscillator, you
get you get simple harmonic (i.e. periodic) motion.

2 4 6 8

-0.2

-0.1

0.1

0.2

Moreover, so as long as the angle θ0 where the pendulum starts is small, notice
that if you started two identical pendulums at two very slightly different angles
(say θ0 and ψ0), the solution curves would stay very close together (their graphs
would be cosine functions with slightly different amplitude and phase shift):

1 2 3 4 5 6

θ0
ψ0

In other words the pendulums would be very close to moving in harmony (and
they have the exactly the same frequency

√
g
l
).

Double pendulums

Now let’s consider a double pendulum, which looks like this:
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The double pendulum satisfies the second-order (non-linear) system of ODEs
(trust me on this):{

(m1 +m2)l1θ′′1 +m2l2 cos(θ1 − θ2)θ′′2 −m2l2 sin(θ1 − θ2)(θ′2)2 + g(m1 +m2) sin θ1 = 0
m2l2θ

′′
2 +m2l1 cos(θ1 − θ2)θ′′1 −m2l1 sin(θ1 − θ2)θ2

1 +m2g sin θ2 = 0

In this system, g ≈ 9.8 is the gravitational constant, m1 and m2 are the masses at
the ends of the pendulums, and l1 and l2 are the lengths of the pendulums.

Again, this is non-linear, but assuming θ1 and θ2 are small, we can assume
sin θj ≈ θj , cos(θ1−θ2) ≈ 1 and sin(θ1−θ2) ≈ 0. This yields the linearized equations{

(m1 +m2)l1θ′′1 +m2l2θ
′′
2 + (m1 +m2)gθ1 = 0 (1)

m2l2θ
′′
2 +m2l1θ

′′
1 +m2gθ2 = 0 (2)

which can be solved via reduction of order, followed by eigentheory/etc. (HW)

It is hopeless to solve the double pendulum equation analytically, so we ap-
proximate solutions numerically (using Euler’s method or another method) on a
computer. See the file doublependulum.nb on my webpage for Mathematica code
that will do this.

What’s significant about the double pendulum is that very similar initial values
lead to wildly different behavior.

Trajectories of the double pendulum with m1 = m2 = 1, l1 =
√

2, l2 = 1:

θ1(0) = π
4 , θ2(0) = π θ1(0) = π

4 , θ2(0) = π − .02 θ1(0) = π
4 , θ2(0) = π − .05
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The idea of similar initial values leading to wildly different future behavior is
the subject of a branch of mathematics called chaos theory.
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Electrical circuits

In Chapter 2 we examined very simple (RC and RL) circuits. Using ideas from
systems and higher-order equations, we can examine more complicated circuits.

Example: RLC circuit

ES

R

C

L

From the physics equations in Chapter 2, we can derive an ODE for the charge in
the circuit at time t:

(q = charge; I = q′ = current; E = voltage; R = resistance; C = capacitance; L =
inductance)

Kirchoff’s voltage law: EL(t) + ER(t) + EC(t) = ES(t) (1)

Ohm’s Law: ER(t) = RIR(t) (2)

Faraday’s Law: EL(t) = LdI
dt

(3)

Only one current in circuit: IR(t) = IL(t) = IC(t) = I(t) (4)

Capacitor formula: EC(t) = 1
C
q(t) (5)

Plug into equation (1): LdI
dt

+RI(t) + 1
C
q(t) = ES(t) (6)

Definition of current: Lq′′(t) +Rq′(t) + 1
C
q(t) = ES(t) (7)

(I(t) = q′(t))

Equation (7) is a second-order, linear ODE called the RLC circuit equation
which can be solved using the usual methods.
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4.4. Applications of higher-order equations and systems

Note the analogies between this equation and the damped oscillator. These
connections reveal some initial parallels between gravitational mechanics and elec-
tromagnetism, two of the four fundamental mechanisms in physics (the other two
being the weak and strong nuclear forces).

Mass-spring system RLC electrical
with damping series circuit

EQUATION mx′′ + bx′ + kx = Fext(t) Lq′′ +Rq′ + 1
C
q = ES(t)

SOLVING FOR displacement x charge q

OTHER velocity x′ current I = q′

ANALOGOUS (I = q′)
QUANTITIES

mass m inductance L

damping constant b resistance R
(from friction)

spring constant k (capacitance)−1 1
C

external force Fext(t) voltage source ES(t)

The analogies between these systems are really only seen when you build the
mathematical models for them. This exemplifies what (higher-level) math is really
about: math is really about placing physical (or economic or biological) models
into a sufficiently abstract framework so that we can see the similarities (and/or
distinctions) between seemingly different things.

THE END
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4.5 Final Exam Review
On the final exam, you may use: one sheet of paper (max size 8.5” × 11”) with
whatever you want on both sides.

What you should expect to be asked on the final exam: Essentially everything:
Theory: Answer questions on course vocabulary and/or concepts (existence/uniqueness,

general vs. particular solution, linear vs. nonlinear, etc.)
Qualitiative: Create and/or analyze pictures of vector fields, phase lines, phase

planes, etc.; compute and classify equilibria for equations and/or systems
Numerical: Euler’s method for single equations and/or systems
Analytic: Solve ODEs and/or systems of ODEs, using the various methods dis-

cussed during the semester
Applications: Set up and/or solve story problems involving ODEs and/or sys-

tems of ODEs
Including: population models, heating and cooling problems, tank problems, predator-
prey models, SIR models, mass-spring systems, pendulums, RC, RL and RLC elec-
trical circuits

Practice questions on the material of Chapter 4:

1. a) Why did I say “there is no such thing as a higher-order linear ODE” in
class?

b) What is meant by an “initial value” of a nth-order ODE (or system of
ODEs)?

c) What is meant by the phrase “characteristic equation” (in the context of
ODEs)?

2. Convert each equation or system to a first-order system of the form y′ =
Ay + q. Be sure to clearly define what y, A and q are.

a) y′′′ + 5ty′′ − 2t2y′ = 7et

b)
{
x′′ + x′ − 2y′ + 5x− 6y = 0
x′′ − y′′ − x′ + 3x− y = 0

3. Find the general solution of each system:

a) y′′ − 3y′ − 40y = 0
b) y(4) + 9y(3) + 18y′′ = 0
c) y′′ − 4y′ + 10 = 0
d) 2y′′ + 32y′ + 128y = 5e−2t

e) y′′ − 7y′ − 44y = 1037 sin t
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f) y′′ + 5y′ − 6y = 2et

g) y′′ + 4y = 8e2t

4. Suppose the characteristic equation of a nth-order, linear, constant-coefficient
ODE is

(λ− 3)3(λ+ 2)λ2.

a) What is the order of this equation?

b) Write the general solution of this equation.

5. Find the particular solution of each system:

a)


y′′ + 12y′ + 32y = 0
y(0) = 14
y′(0) = −4

b)


y′′ + 2y′ + 10y = 0
y(0) = 3
y′(0) = 1

6. Two large tanks (call them X and Y) each hold 240 L of liquid. They are
interconnected by a pipe which pumps liquid from tank X to tank Y at a rate
of 8 L/min. A brine solution of concentration 0.1 kg/L of salt flows into tank
X at a rate of 10 L/min; the solution flows out of the system of tanks via two
pipes (one pipe allows flow out of tank X at 2 L/min and another pipe allows
flow out of tank Y at 8 L/min). Suppose that initially, tank Y contains pure
water but tank X contains 60 kg of salt; assume that at all times the liquids in
each tank are kept mixed.

a) Draw a compartmental diagram that models this situation.

b) Write down the initial value problem which models this situation, clearly
defining your variables.

c) Solve the initial value problem you wrote down in part (a).

d) Find the amount of salt in tank Y at time 240.

7. Consider an object attached to a fixed point by a spring, as in this picture:

m

Suppose that the mass of the object is 5 kg, the spring constant is 15 N/m
and the damping coefficient (i.e. coefficient of friction) is 20 N sec/m, and
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the entire system (at time t) is subject to no external force. If at time 0, the
mass has initial velocity 1 m/sec to the right but is 2 m to the left of where
it would be at rest, find the equation of motion of the object. Is this system
overdamped or underdamped (explain your answer)? Which is the more
significant part of the system, the frictional force or the harmonics from the
spring?

8. Consider an undamped pendulum of length 4.9 m and mass 15 kg.

a) Write the (nonlinear) undamped pendulum equation which governs this
motion.

b) Write the linearization of this undamped pendulum equation.

c) Find the general solution of the linearized equation you wrote in part
(b).

9. A series RLC circuit has a constant voltage source of ES(t) = 20 volts, a
resistor of 80 Ω, an inductor of 4 H, and a capacitor of 1

1000 F. If the initial
current is zero and the initial charge on the capacitor is 4 coulombs:

a) Find the charge in the circuit as a function of time t.

b) Find the current in the circuit as a function of time t.

Solutions

WARNING: as always, these might have errors.

1. a) Every higher-order linear ODE can be converted to a first-order system
of ODEs, so we really only need to know how to solve first-order linear
ODEs and systems to solve higher-order ODEs.

b) An initial value is a list of values of y, y′, y′′, y′′′, ..., y(n−1) at the same t0.

c) The characteristic equation of the higher-order, constant-coefficient ODE
pny

(n)+pn−1y
(n−1)+...+p2y

′′+p1y
′+p0y = q(t) is the polynomial equation

pnλ
n + ...+ p2λ

2 + p1λ+ p0 = 0.

2. a) First, rewrite the equation as y′′′ = 2t2y′ − 5ty′′. Then we can let y =

(y, y′, y′′); let q = (0, 0, 7et) and let A =

 0 1 0
0 0 1
0 2t2 −5t

. Then y′ =

Ay + q as wanted.

b) From the first equation, we know x′′ = −5x + 6y − x′ + 2y′. Next, by
multiplying the second equation by −1 and then adding it to the first
equation, we get y′′ + 2x′ − 2y′ + 2x − 5y = 0, i.e. y′′ = −2x + 5y −
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2x′ + 2y′. Therefore, we can let y = (x, y, x′, y′); let q = 0 and let A =
0 0 1 0
0 0 0 1
−5 6 −1 2
−2 5 −2 2

. Then y′ = Ay + q as wanted.

3. a) The characteristic equation is λ2 − 3λ− 40 = (λ− 8)(λ+ 5) so λ = 8 and
λ = −5. Thus the general solution is y = C1e

8t + C2e
−5t.

b) The characteristic equation is λ4 + 9λ3 + 18λ2 = λ2(λ+ 6)(λ+ 3) so λ = 0
(repeated twice), λ = −6 and λ = −3. Thus the general solution is
y = C1 + C2t+ C3e

−6t + C4e
−3t.

c) The characteristic equation is λ2 − 4λ + 10 so λ = 4±
√

16−40
2 = 4±i2

√
6

2 =
2±
√

6 i. Thus the general solution is y = C1e
2t cos(

√
6 t)+C2e

2t sin(
√

6 t).

d) First, solve the homogeneous equation; the characteristic equation is
2λ2 + 32λ + 128 = 2(λ + 8)2 so λ = −8 (repeated twice). Therefore
yh = C1e

−8t + C2te
−8t.

Next, find a particular solution using undetermined coefficients: guess
yp = Ae−2t and plug in to obtain 8Ae−2t − 64Ae−2t + 128Ae−2t = 5e−2t,
i.e. 72A = 5, i.e. A = 5

72 so yp = 5
72e
−2t.

Finally, y = yp + yh = 5
72e
−2t + C1e

−8t + C2te
−8t.

e) First, solve the homogeneous equation; the characteristic equation is
λ2 − 7λ − 44 = (λ − 11)(λ + 4) so λ = −11 and λ = 4 Therefore
yh = C1e

−11t + C2e
4t.

Next, find a particular solution using undetermined coefficients: guess
yp = A sin t+B cos t and plug in to obtain (−A sin t−B cos t)−7(A cos t−
B sin t)− 44(A sin t+B cos t) = 13 sin t, i.e.{

−A+ 7B − 44A = 1037
−B − 7A− 44B = 0

so A = −45
2 , B = 7

2 . Thus yp = −45
2 sin t+ 7

2 cos t.
Finally, y = yp + yh = −45

2 sin t+ 7
2 cos t+ C1e

−11t + C2e
4t.

f) First, solve the homogeneous equation; the characteristic equation is
λ2 + 5λ − 6 = (λ + 6)(λ − 1) so λ = −6 and l = 1. Therefore yh =
C1e

−6t + C2e
t.

Next, find a particular solution using undetermined coefficients: guess
yp = Atet and plug in to obtain (2Aet+Atet)+5(Aet+Atet)−6Atet = 2et,
i.e. 7A = 2, i.e. A = 2

7 . Therefore yp = 2
7te

t.
Finally, y = yp + yh = 2

7te
t + C1e

−6t + C2e
t.
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g) First, solve the homogeneous equation; the characteristic equation is
λ2 + 4 = (λ− 2i)(λ+ 2i) so λ = ±2i. Therefore yh = C1 cos 2t+ C2 sin 2t.
Next, find a particular solution using undetermined coefficients: guess
yp = Ae2t and plug in to obtain 4Ae2t+4Ae2t = 8e2t, i.e. 8A = 8 so A = 1.
Therefore yp = e2t.
Finally, y = yp + yh = e2t + C1 cos 2t+ C2 sin 2t.

4. a) Since the characteristic equation has degree 3 + 1 + 2 = 6, this equation
has order 6.

b) y = C1e
3t + C2te

3t + C3t
2e3t + C4e

−2t + C5 + C6t.

5. a) First, solve the system; the characteristic equation is λ2 + 12λ + 32 =
(λ + 8)(λ + 4) so the general solution is y = C1e

−8t + C2e
−4t. Now, plug

in the initial values to get{
14 = C1 + C2
−4 = −8C1 − 4C2

and solve to get C1 = −13, C2 = 27. Therefore the particular solution is
y = −13e−8t + 27e−4t.

b) First, solve the system; the characteristic equation is λ2 + 2λ + 10 = 0
which has solution λ = −2±

√
4−40

2 = −2±6i
2 = −1 ± 3i. Therefore the

general solution is y = C1e
−t cos 3t+C2e

−t sin 3t. Plug in the initial values
to get {

3 = C1
1 = −C1 + 3C2

so C1 = 3, C2 = 4
3 . Therefore the particular solution is y = 3e−t cos 3t +

4
3e
−t sin 3t.

6. a)
x(t) y(t)

1 y/30x/30

x/120

b) Let x(t) = the amount of salt in tank X at time t, and let y(t) = the
amount of salt in tank Y at time t. Then we have the initial value prob-
lem {

x′(t) = − x
30 −

x
120 + 1

y′(t) = x
30 −

y
30

{
x(0) = 60
y(0) = 0

c) We can rewrite the system as y′ = Ay + q where y = (x, y), q = (1, 0)

and A =
(
−1
24 0
1
30

−1
30

)
. To solve this, first solve the homogeneous system

using eigenvalues and eigenvectors:

det(A− λI) = (−1
24 − λ)(−1

30 − λ)⇒ λ = −1
24 ,
−1
30
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The corresponding eigenvectors (letting v = (x, y) and solvingAv = λv)
are:

λ = −1
24 :

{
−1
24 x = −1

24 x
1
30x−

1
30y = −1

24 y
⇒ x− y = −5

4 y ⇒ x = −1
4 yv = (1,−4)

λ = −1
30 :

{
−1
24 x = −1

30 x
1
30x−

1
30y = −1

30 y
⇒ x = 0⇒ v = (0, 1)

So the general solution of the homogeneous is

yh = C1e
−t/24

(
1
−4

)
+ C2e

−t/30
(

0
1

)
.

Now for the particular solution. Since q has constant entries, guess yp =(
A
B

)
. Then, by plugging in the original system we have

{
0 = −A

24 + 1
0 = A

30 −
B
30

Therefore A = B = 24, so yp = (24, 24). Therefore

y = yp + yh =
(

24
24

)
+ C1e

−t/24
(

1
−4

)
+ C2e

−t/30
(

0
1

)
.

i.e. {
x(t) = C1e

−t/24 + 24
y(t) = −4C1e

−t/24 + C2e
−t/30 + 24

Plugging in the initial conditions x(0) = 60, y(0) = 0, we get 60 = C1 +24
(i.e. C1 = 26) and 0 = −4C1 + C2 + 24 (i.e. C2 = 80). Therefore the
particular solution is{

x(t) = 26e−t/24 + 24
y(t) = −104e−t/24 + 80e−t/30 + 24

d) y(240) = −104e−240/24 + 80e−240/30 + 24 = −104e−10 + 80e−8 + 24.

7. Use the oscillator equation:

mx′′(t) + bx′(t) + kx(t) = Fext(t)
⇒ 5x′′ + 20x′ + 15x = 0
⇒ x′′ + 4x′ + 3x = 0
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Now solve this; the characteristic equation is λ2 + 4λ + 3 = (λ + 3)(λ + 1)
so the general solution is y = C1e

−3t + C2e
−t. Plugging in the initial values

x(0) = −2, x′(0) = 1, we get{
−2 = C1 + C21 = −3C1 − C2

Therefore C1 = 1
2 and C2 = −5

2 so the particular solution is y = 1
2e
−3t − 5

2e
−t.

Last, this system is overdamped since the eigenvalues coming from the char-
acteristic equation are real. Since the system is overdamped, the frictional
force outweighs the harmonics coming from the spring.

8. a) θ′′ + 9.8
4.9 sin θ = 0

b) θ′′ + 9.8
4.9θ = 0, i.e. θ′′ + 2θ = 0.

c) The characteristic equation is λ2 + 2 = 0, which has roots λ = ±i
√

2.
Therefore the general solution is θ = C1 cos(t

√
2) + C2 sin(t

√
2).

9. a) Start with the RLC circuit equation (q is the charge, and I = q′ is the
current):

Lq′′ +Rq′ + 1
C
q = ES(t)

4q′′ + 80q′ + 1000q = 20
q′′ + 20q′ + 250q = 5

To solve this, start with the characteristic equation λ2 + 20λ + 250 = 0,
which has solutions λ = −10 ± i5

√
6. Thus the general solution of the

homogeneous is

qh = C1e
−10t cos(5

√
6 t) + C2e

−10t sin(5
√

6 t).

Now we can find the particular solution by guessing qp = A: we get
0 + 0 + 250A = 5 so A = 1

50 . That makes the general solution

q(t) = qp + qh = 1
50 + C1e

−10t cos(5
√

6 t) + C2e
−10t sin(5

√
6 t).

To find the particular solution, plug in the given values q′(0) = 0 and
q(0) = 4 to get{

4 = 1
50 + C1

0 = −10C1 + 5
√

6C2
⇒ C1 = 199

50 , C2 = 199
25
√

6
.

Thus the particular solution, which gives the charge at time t, is

q(t) = 1
50 + 199

50 e
−10t cos(5

√
6 t) + 199

25
√

6
sin(5

√
6 t).
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b) The current is the derivative of the charge:

I(t) = q′(t) = −199
√

6
10 e−10t cos(5

√
6 t) + 199

√
6

15 e−10t sin(5
√

6 t).
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Appendix A

Homework

Algebra and calculus review

1. Solve for y in terms of t:

a) 1√
y+1 = 3t2 + 2

b) 1
y

= 2t− 3
c) 1

y2 = 1
t

+ 2
d) arctan y = 5t− 4

2. Solve for y in terms of t:

a) y2 − 2y = t+ 4
b) sin 3y = 4 cos t

c) t2 + 2y2 = 8
d) ln(y + 1) = ln(t+ 1)− 2

3. Solve for y in terms of t; simplifying your answer as much as possible.

a)
√
ty = t

b) ln y = 4 ln t+ 3
c) ey−2 = 3et−1

d) e3y = et + 1

4. Compute the following limits:

a) lim
t→∞

et

b) lim
t→∞

e−2t

c) lim
t→∞

3
2+et

d) lim
t→∞

3
2+e−t

5. Compute the following limits:

a) lim
t→∞

(e−3t + 2e−t)

b) lim
t→∞

sin 2t

c) lim
t→∞

et sin t

d) lim
t→∞

e−2t cos t
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6. Find the derivative of each function:

a) f(t) = 3t2 − 7t+ 5
b) f(t) = (t2 + 3)8

c) f(t) = t2e2t + 4te2t

d) f(t) = 4te−t

7. Find the derivative of each function:

a) f(t) = sin 4t b) f(t) = e−t sin 2t

8. Find the derivative of each function:

a) f(t) = sin3(4t2) b) f(t) = e3t cos 4t− 2e3t sin 4t

9. Find the first, second and third derivative of each function:

a) f(t) = e−2t

b) f(t) = sin 4t+ cos 4t
c) f(t) = t cos t
d) f(t) = −te3t + 2e3t

10. Compute the following integrals:

a)
∫
t dt

b)
∫

(3t4 − 2t7) dt
c)
∫
t−1 dt

d)
∫
t−2 dt

11. Compute the following integrals:

a)
∫ 4
t
dt

b)
∫ 1
t
dt

c)
∫ 6
t2
dt

d)
∫ 1√

t
dt

12. Compute the following integrals:

a)
∫

12
√
t dt

b)
∫ 3
√
t dt

c)
∫

(
√
t+ 1) dt

d)
∫ √

t+ 1 dt

13. Compute the following integrals:

a)
∫

2 sin t dt
b)

∫
(sin 3t+ cos t) dt

c)
∫ 1
t2+1 dt

d)
∫

(11e2t − 18e−3t + 7e−t) dt

14. Compute the following integrals. Your answer will have a t in it.
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a)
∫ t
0(2s+ 1) ds

b)
∫ t
1 2s−1/2 ds

c)
∫ t

0 e
−s ds

d)
∫ t

1
4
s
ds

15. Compute the following integrals (using integration by parts):

a)
∫
te−3t dt b)

∫
t ln t dt

16. Compute the following integrals:

a)
∫ 2
t2−4 dt b)

∫
sin t cos t dt

17. Compute the following integrals:

a)
∫ et

et+1 dt b)
∫ et+1

et dt

18. Compute the following integrals:

a)
∫ t2+2

(t−1)2 dt b)
∫ (t−2)2

t
dt

19. Some sequences in mathematics are defined by a method called recursion:
this means that each term in the sequence is given by a formula which de-
pends on previous terms. For example, suppose you are given

x0 = 3 and xn+1 = 2xn.

Then you can find x1, x2, x3, ... by repeatedly plugging in to the second equa-
tion as follows:

x1 = 2x0 = 2(3) = 6
x2 = 2x1 = 2(6) = 12
x3 = 2x2 = 2(12) = 24

...
...

In each part of this problem, you are given a recursive formula and a value
of x0. Based on this formula, write down x1, x2, x3, and x4.

a) x0 = 1;xn+1 = −xn
b) x0 = 18;xn+1 = 1

3xn + 3
c) x0 = 1;xn+1 = 2xn

d) x0 = 3;xn+1 = 2− 1
2xn

20. Suppose x0 = 0, x1 = 1 and xn+2 = xn+1 + 2xn. Find x7.
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A.1. Problems from Chapter 1

A.1 Problems from Chapter 1
Problems from Section 1.1

21. In each part, you are given an ODE and a possible solution of that ODE.
Determine whether or not the possible solution is actually a solution of the
ODE.

Hint: Plug the possible solution in to both sides of the ODE and see if they
are equal.

a) ODE: dy
dt

= y2−1
t2+2t

Possible solution: y = 2t+ 1
b) ODE: y′′ + y = t2 + 2

Possible solution: y = sin t+ t2

c) ODE: d
2y
dt2
− dy

dt
= 2y

Possible solution: y = e2t − 3e−t

22. In each part, you are given an ODE and a possible solution of that ODE.
Determine whether or not the possible solution is actually a solution of the
ODE

Hint: To compute derivatives of the possible solutions, differentiate implic-
itly.

a) ODE: dy
dt

= t
y

Possible solution: t2 + y2 = 9
b) ODE: dy

dt
= 2ty

y−1

Possible solution: y − ln y − 1 = t2

23. In each part, you are given an initial value problem and a possible solution of
that IVP. Determine whether or not the possible solution is actually a solution
of the IVP:

a) IVP:
{
y′ = 6y
y(0) = 2

Possible solution: y = 2e6t

b) IVP:
{
y′ = 6y
y(0) = −1

Possible solution: y = 2e6t +−3

24. In each part, you are given an initial value problem and a possible solution of
that IVP. Determine whether or not the possible solution is actually a solution
of the IVP:

a) IVP:
{
y′ = −t

y

y(4) = 3
Possible solution: t2 + y2 = 20

b) IVP:
{
y′ = −t

y

y(4) = 3
Possible solution: t2 + y2 = 25
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Problems from Section 1.2

25. Determine whether each of the formulas T given below defines a linear op-
erator on C∞(R,R) (no proof is required, just write “linear” or “not linear”):

a) T (y) = y + t

b) T (y) = 4y(7)

c) T (y) = y′′ + ty′ − (3 sin t)y
d) T (y) = (y′)2 + 2y − 4y′′

26. Suppose T is the linear differential operator defined by

T (y) = ety′′′ − e−ty′′ + e4ty′ − 2y.

a) What is the order of this opera-
tor?

b) Find T (2et).

c) Find T (e2t).

d) Find T (4).

27. Suppose T is the fourth-order linear differential operator defined by setting
p0(t) = 2t2, p1(t) = t3, p2(t) = 8t4, p3(t) = 0 and p4(t) = 2t6 and using the
formula given in Definition 1.12 of the lecture notes.

a) Write the formula for T (y).
b) Find T (2t6).

In each part of Problems 28-31 you are given an ODE. For each equation:
(i) give the order of the equation;

(ii) give the number of arbitrary constants you would expect in the general solu-
tion;

(iii) classify the equation as linear or nonlinear;
(iv) if the equation is linear, determine whether or not it is homogeneous;
(v) if the equation is linear, determine whether or not it is constant-coefficient.

28. a) dy
dt

+ 5tdy
dt
− 3y2 = y7 sin t

b) 4y−cos y3 +y′′′′− t2y′′ = ety′′−y2
c) et+y d

2y
dt2

+ cos tdy
dt

= 0

29. a) t2 dy
dt

+ t4y = 3tdy
dt
− 2t

b) y8 + y′ = e3t
c) y(8) + y′ = e3t

30. a) 2y d2y
dt2
− y2 dy

dt
= 0

b) et d
2y
dt2

+ cos tdy
dt

= 0
c) 2d3y

dt3
+ 4d2y

dt2
− 8dy

dt
+ 6y = 0
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31. a) 8y′′ − 5y′ + 3y = 6ty′′

b) y(4) + y′′′ + y′′ + y′ + y = et
c) y′

y
= 2

Problems from Section 1.3

32. Suppose that some quantity is changing as time passes so that the rate of
increase of the quantity is equal to 4.7 times the size of the quantity.

a) Write the ODE represented by this model.

b) Write the general solution of this ODE.

c) Write the particular solution of this ODE corresponding to the situation
where you start with 5 units of the quantity.

d) Write the particular solution of this ODE corresponding to the situation
where at time 3, you have 12 units of the quantity.

33. Suppose that y(t) is some quantity which grows at a rate proportional to its
size.

a) Suppose that initially, I have exactly twice as much of the quantity as
you do. After 50 years, will I have more than twice as much as you, ex-
actly twice as much as you, or less than twice as much as you? Explain.

b) Suppose that initially, I have exactly one more unit of the quantity than
you do (we both have a positive amount). After 50 years, will the dif-
ference between our holdings be greater than one, equal to one, or less
than one? Explain.

34. The amount of money in a retirement account grows proportionally to the
amount of money in the account. Suppose initially that there is $100 in the
account, and that five years later, there is $118 in the account.

a) Find a formula for the amount of money y = y(t) in the account t years
after the account is opened.

b) Find the (exponential) rate of growth of the account, expressed as an
annual percentage rate.

c) Find the amount of money in the account thirty-five years after it is
opened.

35. The half-life of a substance which decays exponentially is the amount of time
it takes for the substance to decay to half of its original amount. Carbon-14
has a half-life of 5730 years.

a) Find the (exponential) rate of decay of carbon-14.
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b) If you have 25 grams of carbon-14 now, how much will you have 20000
years from now? (A decimal approximation is OK.)

c) If you wanted to have 5 g of carbon-14 10000 years from now, how much
should you start with now? (A decimal approximation is OK.)

Problems from Section 1.4

36. Consider the ODE y′ = t− 2y.

a) Find four points (t, y) where y′ = 0.

b) Find y′ at the points (2, 3), (0, 3), (0,−2), (2, 2), (−2, 0), (−1, 0), and (−2, 1).

c) Sketch the mini-tangent lines corresponding to the points used in parts
(a) and (b). (There should be one picture with all the mini-tangents on
it.)

37. Consider the ODE y′ = 1
35 (y4 + y3 − 20y2).

a) Use Mathematica to draw a picture of the slope field associated to this
ODE, in the viewing window [−8, 8] × [−8, 8]. Attach a printout of this
picture; please label the picture “37”.

b) Find the equation of three explicit solutions to this ODE.

c) Let g(t) be the solution to this ODE passing through (−2,−3).

i. Find lim
t→∞

g(t).

ii. Find lim
t→−∞

g(t).

d) Sketch (by hand) the graph of the solution to this ODE satisfying y(2) =
4 on the picture you printed in part (a).

38. Consider the ODE y′ = 1
10 (y3 − ty2 + 2y2 − 9y + 9t− 18), and let h(t) be the

solution to this ODE satisfying h(0) = 1.

a) Use Mathematica to draw a picture of the slope field associated to this
ODE, in the viewing window [−6, 10] × [−8, 8], with the stream line for
h shown. Attach a printout of this picture; please label the picture “38”.

b) Estimate h(3) and h(5).

c) Estimate h′(2).

d) Estimate all t > 0 (if any) for which h(t) = 2.

e) Estimate all t > 0 (if any) for which h(t) = 6.

f) Find lim
t→∞

h(t).

g) Find lim
t→−∞

h(t).
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39. Consider the initial value problem{
y′ = y − arctan t
y(0) = y0

where y0 is a constant.

a) Use Mathematica to draw a picture of the slope field associated to this
ODE, in the viewing window [0, 10] × [−5, 5], with several stream lines
shown. Attach a printout of this picture; please label the picture “39”.

b) Suppose you knew that y0 was between 1.5 and 2.5. Is this information
sufficient to describe the qualitative behavior of y for large t (i.e. to find
lim
t→∞

y(t))? Explain.

c) Suppose you knew that y0 was between 0 and 1. Is this information
sufficient to describe the qualitative behavior of y for large t (i.e. to find
lim
t→∞

y(t))? Explain.

Problems from Section 1.5

40. Consider the initial value problem{
y′ = 5 + 2t− 3y
y(0) = 5 .

Perform Euler’s method by hand (show your work) to compute (t1, y1), (t2, y2),
(t3, y3) and (t4, y4) for ∆t = 1.

41. Consider the initial value problem{
y′ = 1

2 − t+ 2y
y(0) = 2 .

Perform Euler’s method by hand (show your work) to estimate y(2), using
four steps.

42. Consider the initial value problem{
y′ = 5− 3√y
y(0) = 2 .

a) Use Mathematica to implement Euler’s method to estimate y(3), using
∆t = .01.

b) Attach a printout of the graph of the points obtained from Euler’s method
in part (a). Label the picture “42”.
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43. Consider the initial value problem{
y′ = 4−ty

1+y2

y(0) = 3 .

a) Use Mathematica to implement Euler’s method to estimate y(60) using
300 steps.

b) Attach a printout of the graph of the points obtained from Euler’s method
in part (a). Please label the picture “43 (b)”.

c) Based on the picture you get in part (b), do you trust your answer from
part (a)? Why or why not?

d) Use Mathematica to implement Euler’s method to estimate y(60) using
3000 steps.

e) Attach a printout of the graph of the points obtained from Euler’s method
in part (d). Please label the picture “43 (e)”.

f) Based on the picture you get in part (e), do you trust your answer from
part (d)? Why or why not?

g) (Optional; extra credit) Explain thoroughly why you got the picture you
did in part (b). (Saying “I didn’t use enough steps” is insufficient; you
need to describe the particular properties of the vector field of this ODE
that lead to the specific picture you get in part (b).)

Problems from Section 1.6

44. Consider the initial value problem{
y′ = 1− y3

y(0) = 0 .

a) Use Picard’s method of successive approximations, with f0(t) = 0, to
find f1(t), f2(t), and f3(t).

b) Graph f3 (for t ≥ 0 only) as obtained in part (a). If you use a Mathematica
graph, label it as “44 (b)”.

c) Plot the vector field associated to this ODE (viewing window [0, 4] ×
[0, 4]) with the stream line passing through the given initial value; label
the picture “44 (c)”.

d) Based on your pictures, would you say that the function f3 obtained in
part (a) is, or is not, a good approximation of the solution y = f(t) of the
IVP?

e) Would it be reasonable to estimate y(4) by computing f3(4)? Why or
why not?
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45. Consider the initial value problem{
y′ = −y − 1
y(0) = 0 .

a) Use Picard’s method of successive approximations, with f0(t) = 0, to
find f1(t), f2(t), f3(t) and f4(t).

b) Based on your answers to part (a), write f(t) = lim
j→∞

fj(t) as an infinite

series.

c) Recognize the infinite series from part (b) as being related to a “com-
mon” one, and find a formula for f(t).
Hint: the series you get will probably have initial index 1, not 0. Take
this into account.

Problems from Section 1.7

In problems 46-50, assume that this is the phase line of some autonomous ODE
y′ = φ(y):

-7 -2 3 6

46. a) Write the equation of one explicit solution of this ODE.

b) Find all sinks of this ODE (if there aren’t any, say so).

c) Find all unstable equilibria of this ODE (if there aren’t any, say so).

d) Find all semistable equilibria of this ODE (if there aren’t any, say so).

47. a) Suppose y(0) = 0. Find lim
t→∞

y(t).

b) Suppose y(0) = −10. Find lim
t→∞

y(t).

c) Suppose y(2) = 5. Find lim
t→−∞

y(t).

d) Suppose y(−1) = 6. Find lim
t→−∞

y(t).

48. a) Suppose y(0) = 4. Is y(t) an increasing function or decreasing function?

b) Suppose y(0) = y0. For what values of y0 is lim
t→∞

y(t) = −2?

c) Suppose y(0) = y0. For what values of y0 is lim
t→∞

y(t) > 0?

49. a) Sketch a (possible) graph of the function φ.

b) Sketch a (possible) slope field for this ODE.
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c) Sketch a graph of the particular solution of this ODE whose initial con-
dition is y(1) = 0.

d) (Optional; extra credit) Write down a formula for φ which would pro-
duce the phase line shown before Problem 46.

50. For each quantity, determine whether the quantity is positive, negative or
zero:

Hint: Your answer to Problem 49 (a) may be helpful.

a) φ(−7)
b) φ(0)

c) φ(4)
d) φ′(−2)

e) φ′(3)
f) φ′(6)

In each part of Problems 51-54, you are given an autonomous equation. For each
equation:

(i) find all equilibria of the equation;
(ii) classify each equilibrium as stable, unstable or semistable;

(iii) sketch the phase line of the equation.

51. a) y′ = y2 − 9 b) dy
dt

= 2 cos y

52. a) y′ = ey − 1 b) y′ = e−2y − 1

53. a) dy
dt

= 2y ln(6/y) b) y′ = y3(y − 2)2(y + 3)(y − 5)

Hint: In part (b) of Problem 53, graph the function, and estimate the values
of its derivative at the equilibria by looking at the graph.

54. y′ = φ(y), where φ is a function whose graph is as follows:

-4 -3 -2 -1 1 2 3 4
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55. Suppose that the population y of a certain species of fish in a given area of
the ocean (i.e. in a “fishery”) would be described by a logistic equation, if
there was no fishing. Since fish are delicious, we want to catch some of these
fish so we can eat them. But if we catch too many fish, the population may be
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driven to extinction. That would be bad. This question deals with a model
for managing the fishery (which is actually used in the real world, by the
way).

Let E be a constant which denotes the level of effort being put into fishing
(the greater E is, the harder people work at catching fish). It is reasonable to
assume that the rate at which they catch fish depends on the fish population
y (because the more fish there are, the easier to catch them). So a simple
expression which can be used to describe the rate at which fish are caught
is E times y. To model the fish population including this effect, you adapt
the logistic equation by subtracting the rate at which fish are caught, leading
to what is called the Schaefer model, used in biology and environmental
science. Here is that model:

dy

dt
= ry(L− y)− Ey.

a) Find the two equilibria of this equation (in terms of the constants r, L
and E).

b) Suppose E < Lr. What will the fish population be in the long run?
Explain.
Hint: This has something to do with whether or not the equilibria you
found in part (a) are stable or unstable.

c) Suppose E > Lr. What will the fish population be in the long run?
Explain.

d) A sustainable yield Y of the fishery is a quantity of fish that can be
caught indefinitely. It is the product of the effort E and the stable equi-
librium fish population corresponding to effort E. Find Y as a function
of E (this is called the yield-effort curve).

e) Determine the value of E which maximizes Y (and thereby produces
the maximum sustainable yield).
Hint: Maximize the function Y (E) using the method you learn in Calcu-
lus 1.

Problems from Section 1.8

In Questions 56 and 57, use the following bifurcation diagram for a parameterized
family of ODEs y′ = φ(y; r):
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56. a) Find all values of r (if any) at which the family has a saddle-node bifur-
cation.

b) Find all values of r (if any) at which the family has a transcritical bifur-
cation.

c) Find all values of r (if any) at which the family has a pitchfork bifurca-
tion.

d) Sketch the phase line corresponding to the equation where r = 2.
e) Find all equilibria corresponding to the situation where r = 6, and clas-

sify them as stable, unstable or semistable.
f) Suppose r = −2 and y(0) = 1. Find lim

t→∞
y(t).

57. a) Suppose you know that r is somewhere between 5 and 7 and that y(0) >
0. Can you accurately predict the long-term behavior of y(t)? If so, what
is this behavior? If not, why not?

b) Suppose you know that r is somewhere between −7 and −6 and that
y(0) is somewhere between 1 and 5. Can you accurately predict the long-
term behavior of y(t)? If so, what is this behavior? If not, why not?

c) Suppose you know that r is somewhere between 5 and 7 and that y(0) =
−5. Can you accurately predict the long-term behavior of y(t)? If so,
what is this behavior? If not, why not?

In each part of Problems 58-61 you are given a parameterized family of ODEs (r is
the parameter). For each parameterized family of ODEs:

(i) find all value(s) of r at which bifurcations occur;
(ii) classify each bifurcation as saddle-node, pitchfork, transcritical or degener-

ate;
(iii) sketch a bifurcation diagram for the family.
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58. a) y′ = y2 + 6y + r b) y′ = y2 − r2

59. a) y′ = y + ry
1+y2 b) y′ = (y2 − r)(y2 − 16)

60. (Optional; extra credit) y′ = ry + y3 − y5

61. y′ = f(y) + r, where f has the graph given below:
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Hint: As r changes, how does the graph of f(y) + r change? What changes in
this graph “cause” a bifurcation?

A.2 Problems from Chapter 2
Problems from Section 2.1

62. Find the general solution of each ODE:

a) y′ − 2y = 0 b) 7y′ = y

63. Find the general solution of each ODE:

a) y′ = y
√
t b) dy

dt
= y cos t

64. Find the particular solution of each IVP:

a)
{
y′ ln t = y

t

y(e) = 3 b)
{
y′et + y′ = yet

y(0) = 4

65. Suppose you know that y = 6e4t sin 2t is a solution to some homogeneous,
linear, first-order ODE.

271



A.2. Problems from Chapter 2

a) Is y = 9e4t sin 2t also a solution of this ODE? Why or why not?

b) Is y = 6e3t sin 2t also a solution of this ODE? Why or why not?

Problems from Section 2.2

66. Solve each given differential equation or initial value problem, using the
method of integrating factors:

a)
{
y′ − 2y = 3et
y(0) = 4

b) dy
dt

= te−t + 1− y

67. Solve each given differential equation or initial value problem, using the
method of integrating factors:

a) ty′ − y = t2e−t b)
{
t3y′ + 4t2y = e−t

y(−1) = 0

68. Solve each given differential equation or initial value problem:

a)
{
y′ = cos t−2ty

t2

y(π) = 0
b) tdy

dt
+ 2y = sin t

Problems from Section 2.3

69. Suppose you have a first-order linear ODE, where y = 3e2t sin 2t is a solution
of the equation and y = 2e4t sin 2t is a solution of the corresponding homoge-
neous equation. Write the general solution of the ODE.

70. Solve each given differential equation or initial value problem, using the
method of undetermined coefficients:

a) y′ + 3y = e−2t
b)

{
y′ − 4y = 2 cos 2t
y(0) = −3

71. Solve each given differential equation or initial value problem, using the
method of undetermined coefficients:

a)
{
y′ + y = te2t

y(0) = 24
b) y′ − 4y = 2t2 + 8t

72. Consider the ODE y′ + 7y = 20e−7t.

a) Find a nonzero solution of the corresponding homogeneous equation.
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b) Try the method of undetermined coefficients with guess yp = Ae−7t.
Does this work? Explain.

c) Try the method of undetermined coefficients with guess yp = Ate−7t.
Does this work? Explain.

d) Solve the ODE y′ − 3y = 9e3t, by first solving the corresponding homo-
geneous equation and then using the method of undetermined coeffi-
cients. To find the appropriate formula to guess for yp, use the previous
example in this question as a guide.

e) For each given ODE:
(i) find the solution yh of the corresponding homogeneous equation;

and
(ii) write down what you would need to guess for yp to utilize the method

of undetermined coefficients.
You do not need to solve the equation.

i. y′ + 6y = e4t

ii. y′ + 6y = e−6t
iii. y′ + 6y = e2t

iv. y′ − 2y = e2t

f) Write down a general rule which tells you when your “normal” guess
won’t work (when attempting the method of undetermined coefficients),
and how to adapt your guess so that it will work.
You are responsible for implementing this rule on Exam 1.

Problems from Section 2.4

73. Find the general solution of each ODE:

a) y′ =
√
y(t+ 1) b) dy

dt
= sec y sin t

74. Find the general solution of each ODE:

a) y′ = t2

y(4+t3) b) ty′ = 1− y2

75. Find the general solution of each ODE; write your answer as a function y =
f(t).

a) eyy′ = 4 b) dy
dt

= (y sec t)2

76. Find the particular solution of each initial value problem; write your answer
as a function y = f(t):
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a)
{

dy
dt

= 1−2t
y

y(1) = −2
b)

{
yy′ = 4t
y(1) = −3

77. a) Solve the following initial value problem:
{

2(y − 1)y′ = et

y(0) = 2
b) (Optional; extra credit) Write your answer to part (a) as a function y =

f(t), simplified as much as possible.

78. Let y = f(t) be the solution of the initial value problem
{
y′ = ty2 − 2y2

y(0) = 1 .

Find f(4).

Problems 79-82 introduce some methods to solve second-order ODEs. A second-
order ODE always has the form

φ(t, y, y′, y′′) = 0 a.k.a. φ
(
t, y,

dy

dt
,
d2y

dt2

)
= 0.

I haven’t said anything in class about how to solve second-order ODEs, but in two
special cases you can use a trick, together with our techniques for solving first-
order ODEs, to solve a second-order equation. You should be able to solve these
types of second-order equations on Exam 1.

• Case 1: The equation has no y in it, i.e. the equation is of the form

φ(t, y′, y′′) = 0.

To solve this, let v(t) = y′. Then y′′ = v′(t) so by substituting v for y′ and v′

for y′′, the equation can be rewritten as φ(t, v, v′) = 0. This rewritten equation
is first-order! Solve it for v, then integrate v to get the solution y(t) =

∫
v(t) dt

of the original second-order equation.

• Case 2: The equation has no t in it, i.e. the equation is of the form

φ(y, y′, y′′) = 0 a.k.a. φ
(
y,
dy

dt
,
d2y

dt2

)
= 0.

To solve this, pretend y is an independent variable and let v = v(y) = dy
dt

.
Then

d2y

dt2
= d

dt

(
dy

dt

)
= d

dt
(v(y)) = dv

dy
· dy
dt

= dv

dy
v.

This means you can replace dy
dt

with v and d2y
dt2

with dv
dy
v in the original equation

to get

φ

(
y, v,

dv

dy
v

)
= 0.
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This is a first-order equation in v, which can be solved by usual methods to
find v = v(y). Then solve the equation dy

dt
= v(y) (this equation is usually

separable) to find y in terms of t.

In Problems 79-82, solve the given second-order ODE or IVP. Write your final an-
swer in the form y = f(t).

79. a) td
2y
dt2

= 2dy
dt

+ 2 b) ty′′ey′ = ey
′ − 1

80. a)


d2y
dt2

+ 2
(
dy
dt

)2
tan y = 0

y(0) = 0
y′(0) = 1

b) y′′ = −2t(y′)2

81. a) y′′ = −y b) (y2 + 1)y′′ = 2y(y′)2

Hint: In part (a), you will need the following integration rule, which you can
use without proof: ∫ 1√

C − y2 dy = arcsin
(

y√
C

)
+D.

82. a) y′′ − 2y′ = 12 sin t b) y′′ + 4y′ = 10e3t

Hint: Combine this new technique with the method of undetermined coeffi-
cients.

Problems from Section 2.5

83. Determine whether or not each of the given differential equations is exact. If
the equation is exact, find its solution.

a) (2t+ 3) + (2y − 2)dy
dt

= 0
b) (2t+ 4y) + (2t− 2y)y′ = 0
c) (et cos y + 2 cos t)dy

dt
+ et sin y − 2y sin t = 0

d) y′ = et sin y+3y
3t−et sin y

84. Find the solution of each initial value problem:

a)
{

2t− y + 2yy′ − ty′ = 0
y(1) = 3

b)
{

y
t

+ 6t+ (ln t)y′ = 0
y(1) = 7

Note: this IVP could also be written as y
t

+ 6t+ (ln t)y′ = 0, y(1) = 7.
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85. Consider the differential equation y + (2t− ey)y′ = 0.

a) Show this equation is not exact.

b) Show that after you multiply through the entire equation by y, the equa-
tion becomes exact.

c) Solve the equation.

86. (Optional; extra credit) Find the general solution of the differential equation

(t+ 2) sin y + t cos ydy
dt

= 0.

Hint: You have to figure out something to multiply the equation through by
to make the equation become exact.

Problems from Section 2.6

In Problems 87-92, use the following setup: A nitric acid solution flows at a con-
stant rate of 6 L/min into a large tank that initially holds 200 L of a 0.5% nitric acid
solution. The solution inside the tank is kept well stirred, and flows out of the tank
at a rate of 8 L/min. The solution entering the tank is 20% nitric acid. Let y(t) be
the amount (i.e. volume) of nitric acid in the tank at time t (where t is in minutes).

87. a) Determine the volume of solution in the tank as a function of t.
Hint: The tank starts with 200 L of solution; 6 L of solution flows in per
minute and 8 L of solution flows out per minute.

b) Draw a compartmental diagram (with boxes and arrows) representing
this situation (the compartment should be y(t)).
WARNING: The “rate out” is tricky. To get this, you have to multiply
the rate at which fluid flows out of the tank by the concentration of fluid
in the tank; the concentration of fluid in the tank has to take into account
the fact that the volume of fluid in the tank is not constant.

c) Write an initial value problem which models this setup.

d) Using the initial value problem you wrote in part (c), use Euler’s method
with ∆t = 1 to estimate the amount of fluid in the tank at time 60.

e) Using the initial value problem you wrote in part (c), use Euler’s method
with ∆t = .001 to estimate the amount of fluid in the tank at time 60.

88. a) Use Mathematica to sketch the slope field for this differential equation,
with the stream line corresponding to y(t) included. Use the viewing
window [−5, 100] × [−5, 50]. Attach a printout of your slope field, la-
belled as “88 (a)”.
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b) Based on your slope field, estimate the amount of nitric acid in the tank
at time 20.

c) Based on your slope field, estimate all times t where there is exactly 10
L of nitric acid in the tank.

d) Based on your slope field, estimate the maximum amount of nitric acid
that is in the tank at any one instant.

e) Based on your slope field, estimate the time when the amount of nitric
acid in the tank is maximized.

89. Solve the IVP of Problem 87 (c), writing your answer in the form y = f(t).

Hint: Use integrating factors.

90. a) Have Mathematica sketch the graph of the solution you obtain in Prob-
lem 89 (where 0 ≤ t ≤ 100). Attach a printout of this graph, labelled
as “90 (a)”. (Check that the graph you get is consistent with the picture
you obtained in Problem 88 (a); if it isn’t, something is wrong.)

b) Use your answer to Problem 89 to find the exact value of y(60).
c) Find a decimal value of the value of y(60), and compare it to what you

got in parts (d) and (e) of Problem 87. Were those estimates accurate?
d) (Optional; extra credit) Find the exact answers (not decimal approxima-

tions) to the questions asked in parts (d) and (e) of Problem 87.

91. a) Find a formula for the concentration of nitric acid at time t.
Hint: This is tricky, because you have to divide the amount of nitric acid
in the tank by the volume, and unlike the example in class, the volume
of solution in the tank is not a constant.

b) Have Mathematica sketch the graph of the function you obtain in part (a)
(where 0 ≤ t ≤ 100). Attach a printout of this graph, labelled as “91 (b)”.

c) From the graph produced in part (b), estimate the first time t when the
solution in the tank is 10% nitric acid.

d) (Optional; extra credit) Find the exact value of the first time at which
the solution in the tank is 10% nitric acid.

92. Suppose you wanted to know how much nitric acid was in the tank at time
150. I claim that this is not computable by figuring y(150). Why not? What is
the amount of nitric acid in the tank at time 150? What is the concentration
of nitric acid in the tank at time 150? Explain your answers.

In Problems 93-96, use the following setup: A parachutist has mass 75 kg. She
jumps out of a helicopter (assume her initial velocity is 0) which is 2000 m above
the ground, and falls toward the ground under the influence of two forces: gravity
(which is 9.8 m/sec2) and air resistance (drag coefficient 30 N sec/m).
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93. a) Draw a free body diagram representing this situation.
b) Write an initial value problem which models this situation. Set the prob-

lem up so that v > 0 corresponds to downward motion.
c) Sketch the phase line for the equation you wrote in part (b).
d) What is the terminal velocity of the parachutist (assuming she never

pulls her rip cord)?
e) Use Mathematica to sketch the slope field for this differential equation,

with the stream line corresponding to v(t) included (use the viewing
window [−5, 50]×[−5, 50]). Attach a printout of your slope field, labelled
as “93 (d)”.

94. a) Solve the IVP you wrote down in Question 93 (b).
b) Use Mathematica to sketch the graph of v(t) (use the viewing window

[−5, 50] × [−5, 50]). Attach a printout of this graph, labelled as “94 (b)”.
(Check that this graph is consistent with the slope field obtained in Prob-
lem 93 (e); if it isn’t, something is wrong.)

95. a) Find a formula which gives the parachutist’s height above the ground
at time t.
Hint: In Problem 94 (a), you found the parachutist’s velocity at time t.
You know what the parachutist’s height at time 0 is (that is given in the
setup). How do you get from an object’s velocity back to its position
(the parachutists’ height is like her position)?
WARNING: Keep in mind that v > 0 corresponds to the parachutist
falling, given how we have set this problem up.

b) Her parachute is set to open automatically when her velocity reaches 20
m/sec. How many seconds after she jumps out of the helicopter will
her parachute open? (A decimal answer is OK; it might be useful to
have Mathematica solve an equation here.)

c) How high above the ground will she be when her parachute opens?
(Again, a decimal answer is OK.)

96. (Optional; extra credit)

a) After the parachutist’s chute opens, assume that the forces affecting her
velocity are gravity (still 9.8 m/sec2) and air resistance (but now, the
drag coefficient is 90 N sec/m rather than 30 because the chute provides
greater air resistance).
How many seconds after her parachute opens will she hit the ground?
(A decimal answer is OK.)
Hint: To solve this question, you need to write an appropriate initial
value problem, and then solve it.
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b) What will her velocity be when she hits the ground? (A decimal answer
is OK.)

c) Graph the parachutist’s velocity against elapsed time, starting at t = 0
(when she jumps out of the helicopter) and ending when she hits the
ground.

97. A bottle of champagne is originally at room temperature (70◦). It is chilled
in ice (32◦). Suppose that it takes 15 minutes for the champagne to chill to
60◦. How long (including the original 15 minutes) will it take for the wine
to reach 46◦? (A decimal answer is OK, but you need to actually solve the
equation... don’t rely on pictures or Euler’s method.)

Hint: This is a heating and cooling problem with U(t) = H(t) = 0, so this is
closely related to Example 1 on page 92 of the lecture notes.

98. Choose one of problems (a), (b):

a) An RC electrical circuit (see page 96 of the lecture notes) with a 1 Ω re-
sistor and a 10−4 F capacitor is driven by a voltage ES(t) = sin 2t V. If the
initial capacitor voltage is zero, find:

i. the voltage across the capacitor at time t;
ii. the voltage across the resistor at time t (to get this, apply Kirchoff’s

voltage law to the answer to (i); and
iii. the current at time t (to get this, apply Ohm’s law to the answer to

part (ii).
b) An RL electrical circuit (see page 97 of the lecture notes) with a 1 Ω resis-

tor and a .01 H inductor is driven by a generator whose voltage at time
t is ES(t) = sin 2t V. If the initial current across the inductor is 0, find:

i. the current at time t;
ii. the voltage across the resistor at time t (to get this, apply Ohm’s Law

to the answer to (i); and
iii. the voltage across the inductor at time t.

A.3 Problems from Chapter 3
Problems from Section 3.1

99. In each part, you are given a system of first-order ODEs and a possible solu-
tion of that system. Determine whether or not the possible solution is actually
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a solution of the system.

a)
{
x′(t) = 3x− 2y
y′(t) = 2x− 2y POSSIBLE SOL’N:

{
x(t) = 8e2t + e−t

y(t) = 4e2t + 2e−t

b)
{
x′(t) = x+ 3y
y′(t) = −4x− y POSSIBLE SOL’N:

{
x(t) = 2 cos 11t+ 2 sin 11t
y(t) = −8 sin 11t

100. In each part, you are given an IVP, together with a possible solution. Deter-
mine whether or not the possible solution is actually a solution of the IVP.

a) IVP:


{
x′(t) = 2y
y′(t) = x− y

y(0) = (2,−3)
POSSIBLE SOL’N:

{
x(t) = 2

3e
−2t − 2

3e
t

y(t) = −2
3 e
−2t − 1

3e
t

b) IVP:


{
x′(t) = 2y
y′(t) = x− y

y(0) = (2,−3)
POSSIBLE SOL’N:

{
x(t) = 8

3e
−2t − 2

3e
t

y(t) = −8
3 e
−2t − 1

3e
t

101. In each part, you are given a set of parametric equations y(t). For each set of
parametric equations:

(i) Write the set of parametric equations out, coordinate by coordinate (see
the answers if you don’t understand what this means).

(ii) Find the values of y(0), y(1) and y(2).

a) y(t) = (t2 − 2, t+ 3) b) y(t) = (2t, 5t,−7t)

In each part of Problems 102-104, you are given a set of two parametric equations
of the form y(t) = (x(t), y(t)). For each set of parametric equations:

(i) Use the following command in Mathematica to sketch the graph of these para-
metric equations in the xy-plane:

ParametricPlot[{formula for x(t), formula for y(t)},
{t, -100, 100}, PlotRange -> {{xmin, xmax}, {ymin, ymax}}]

This command plots the graph of the parametric equations in the viewing
window [xmin, xmax] × [ymin, ymax]. You are responsible for choosing an
appropriate viewing window for each set of equations (I’d start with [−10, 10]×
[−10, 10] and then zoom in or out as necessary).

(ii) Print the graph you get in Mathematica (labelling it with the problem num-
ber/letter).

(iii) On the graph you print, draw (by hand) an arrow on the curve indicating the
direction of motion.
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(iv) Indicate (by hand) the point on the graph corresponding to t = 0 by drawing
a thick point and labelling that point “t = 0”.

102. a) y(t) = (cos t, sin t) b) y(t) = (et, 3e−t)

Hint: In Mathematica, e is E, not e.

103. a) y(t) = (et cos 2t, et sin 2t) b) y(t) = (−2 sin 3t, cos 3t)

104. a) y(t) = (3et, e2t) b) y(t) =
(

4et+e−t

10 , 2et−5e−t

10

)
Problems from Section 3.2

105. Consider the initial value problem
{
x′ = x− y
y′ = 2x+ y

y(0) = (2, 1)
.

Perform Euler’s method by hand (show your work), to compute the points
(t1,y1), (t2,y2) and (t3,y3) when ∆t = 1.

106. Consider the initial value problem
{
x′ = −y
y′ = x

y(0) = (3, 0)
.

Perform Euler’s method by hand (show your work) to estimate y(2), using
four steps.

107. Consider the initial value problem
{
x′ = x+ 2y
y′ = −3x+ y

y(0) = (−2, 1)
.

Use Mathematica to implement Euler’s method to estimate y(4), using 1000
steps.

108. Consider the initial value problem
{
x′ = −4x− 8y
y′ = 8x+ 4y

y(0) = (1, 1)
.
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a) Use Mathematica to implement Euler’s method to estimate y(30), using
10000 steps.

b) Attach a printout of the graph of the points obtained from Euler’s method
in part (a) (use the viewing window [−10, 10] × [−10, 10]). Label the
graph “108 (b)”.

c) Based on the picture you get in part (b), describe (in your own words)
the qualitative behavior of the solutions as t increases.

109. Consider the initial value problem
{
x′ = −3x− 6y
y′ = 6x− 3y

y(0) = (−8, 7)
.

a) Use Mathematica to implement Euler’s method to estimate y(50), using
1000 steps.

b) Attach a printout of the graph of the points obtained from Euler’s method
in part (a) (use the viewing window [−10, 10] × [−10, 10]). Label the
graph “109 (b)”.

c) Based on the picture you get in part (b), describe (in your own words)
the qualitative behavior of the solutions as t increases.

110. Consider the initial value problem

x′ = −y − z
y′ = x
z′ = x− z

y(0) = (1, 2,−1)

.

a) Use Mathematica to implement Euler’s method to estimate y(5), using 5
steps.

b) Use Mathematica to implement Euler’s method to estimate y(5), using
100 steps.

c) Based on what you get in part (b), would you say your answer to (a) is
accurate? Why or why not?

d) Use Mathematica to implement Euler’s method to estimate y(5), using
1000 steps.

e) Based on what you get in part (d), would you say your answer to (b) is
accurate? Why or why not?

f) Use Mathematica to implement Euler’s method to estimate y(5), using
10000 steps.
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g) Use Mathematica to implement Euler’s method to estimate y(5), using
100000 steps. (This took my computer 34 seconds to run.)

h) Suppose you needed an approximation of y(5) correct to two decimal
places. Based on what you have done in this problem, is it sufficient to
use Euler’s method with 10000 steps? Explain.

i) If you needed an approximation of y(5) correct to three decimal places.
Based on what you have done in this problem, is it sufficient to use
Euler’s method with 10000 steps? Explain.

Problems from Section 3.4

In Problems 111-117, use the following matrices and vectors to compute the indi-
cated quantities. If the quantity does not exist, just write “does not exist”.

A =
(

5 −2
1 3

)
B =

(
−3 −1
0 4

)
C =

(
4 2
−8 −4

)
D =

(
2 0
0 −1

)

G =

 1 −3 0
2 2 −5
4 1 −2

 H =

 4 0 0
0 1

2 0
0 0 −2

 J =

 1 0 0
0 −1 0
0 0 −1


K =

(
cos 2t sin 3t

4 sin 2t − sin 3t

)
x = x(t) = (et cos t, et sin t) z = z(t) = (sin t, 2 cos 3t, 4e7t)

111. a) the trace of C

b) the trace of G

c) 3A
d) 2A−B + C

e) A− 2I (Hint: I is not given above. You should know what I is.)

f) C−λI (your answer should be in terms of λ, the Greek letter “lambda”.)

112. a) K ′

b) z′(t)
c) AB

d) G2

e) Ax
f) BCx

113. a) AK b) D8 c) J20 d) H3

114. a) Hn (your answer should be in terms of n).

b) (Dt)n (your answer should be in terms of n and t).
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115. a) A−1 b) C−1 c) AB−1A

116. a) detA b) detD c) detG

117. a) det(A− λI) b) det(B − λI)

Hint: Your answers should be in terms of λ.

118. a) Is the matrix A given before Problem 111 a diagonal matrix?

b) Is the matrix H given before Problem 111 a diagonal matrix?

Problems from Section 3.7

119. For each given set of functions, compute the Wronskian. Then, determine
whether or not the functions are linearly independent.

a) f1(t) = t2 + 5t, f2(t) = t2 − 5t
b) f1(t) = e3t, f2(t) = e3(t−1)

c) f1(t) = 1, f2(t) = t, f3(t) = t2

d) f1(t) = sin x, f2(x) = cos x, f3(x) = sin 2x, f4(x) = cos 2x
Hint: To compute a 4 × 4 determinant, use Mathematica (there’s also a
command which computes the Wronskian of a set of functions directly).

120. Show that the Wronskian of the functions f1(t) = (et, 2et − e−t, 3et), f2(t) =
(4et, e−t, 0) and f3(t) = (−2et, 4et − 3e−t, 6et) is zero. Then show these func-
tions are linearly dependent by finding constants c1, c2 and c3 (not all zero)
such that c1f1 + c2f2 + c3f3 = 0.

121. a) Prove that if a and b are different constants, then eat and ebt are linearly
independent.
Hint: Compute the Wronskian of the two functions in terms of a and b.

b) Prove that if a, b and c are three different constants, then {eat, ebt, ect} is
a linearly independent set.
Hint: Compute the Wronskian of the functions, and then use Mathemat-
ica to factor the Wronskian using the Factor[ ] command. This will
explain why the Wronskian is not equal to zero.

Note: the facts proved in this problem generalize: if a1, ..., ad are different
constants, then {ea1t, ea2t, ..., eadt} is a linearly independent set. (You should
remember this fact, so you don’t have to re-verify it over and over.)

122. (Optional; extra credit) Prove that for any constants a and b (with b 6= 0), the
functions eat sin bt and eat cos bt are linearly independent.
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123. Suppose that yp(t) = (2e5t,−3e5t, e5t) is a solution of some linear system
A1y′ + A0y = q, and suppose that the solution of the corresponding ho-
mogeneous system A1y′ + A0y = 0 is

yh(t) = C1e
4t

 2
−3
0

+ C2e
−2t

 1
−1
4

+ C3e
t

 5
1
0

 .
a) How many equations comprise this system?

b) Write the general solution of this system in vector form.

c) Write the general solution coordinate-wise.

d) Write the particular solution corresponding to C1 = 3, C2 = −2 and
C3 = 2.

e) Find the value of y(3) for the solution found in part (d).

f) Find the value of x(2) for the solution found in part (d).

g) Find the particular solution satisfying y(0) = (−1, 4, 2).

Problems from Section 3.8

124. Consider the system of ODEs {
x′ = x+ 4y
y′ = x− 2y .

For each point (x, y) below, compute the value of dy
dx

at that point. Then sketch
the mini-tangents corresponding to those points (there should be one picture,
with all the vectors on it; each mini-tangent should have an arrowhead on it,
drawn in the manner of the example on page 110 of the Fall 2017 lecture
notes).

(1, 0) (0, 2) (0,−2) (−3, 0)
(1, 3) (−2,−3) (3,−1) (−3, 2)
(−2, 2) (−1, 1) (1,−1) (2,−2)

125. For each given initial value problem, use Mathematica to sketch the slope field
of the system and the graph of the solution of the IVP (the intent here is for
you to use Command 3 from the file phaseplanes.nb). Label your pictures
with the problem number/letter:

a)

{
x′ = 3y
y′ = x{
x(0) = −2
y(0) = 3
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Note: this system of IVPs could also be written y′ = (3y, x); y(0) =
(−2, 3).

b) y′ = (x− xy, x+ 2y2 − x2y); y(0) = (1, 0)

126. Same directions as the previous problem:

a) y′ = (y sin(x+ y), xe−x−y); y(0) = (1,−1)
b) y′ = (2xy, x− 2y + x2y3); y(2) =

(
−1, 5

4

)
127. Find all equilibria of each autonomous system of ODEs:

a) y′ = (y2 − 3y − 4, 2x+ 3y) b) y′ = (y − x, y2 + xy − 4)

128. Find all equilibria of each autonomous system of ODEs:

a)
{
x′ = 4x2 − y
y′ = 1− y2 b)

{
x′ = (x− 2)(y + 3)
y′ = (y − 1)(x+ 4)

129. Consider the system of two ODEs:{
x′ = x− 3
y′ = 2− 2y

a) Use Mathematica to draw the phase plane (not the slope field) for this
system (use the viewing window [−8, 8] × [−8, 8] and ask Mathematica
to draw at least 200 solution curves). Print this picture, labelling it as
“129”.

b) On your picture, sketch the graph of the solution to this system satisfy-
ing y(0) = (0, 4).

c) Either by looking at your picture or by doing some algebra, find all con-
stant functions which solve the system.

d) Suppose y(0) = (0,−5). In this situation:

i. Is x(t) an increasing function, a decreasing function, or a constant
function of t?

ii. Is y(t) an increasing function, a decreasing function, or a constant
function of t?

iii. What is lim
t→∞

x(t)?

iv. What is lim
t→∞

y(t)?

e) Suppose y(1) = (5, 5). Answer the same questions (i)-(iv) as in part (d).

f) Suppose y(0) = (3,−2). Answer the same questions (i)-(iv) as in part
(d).
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130. Consider the system of two ODEs:{
x′ = 4y − xy − x+ 4
y′ = 2x− xy − y + 2

a) Use Mathematica to draw the phase plane (not the slope field) for this
system (use the viewing window [−10, 10]× [−8, 8] and ask Mathematica
to draw at least 200 solution curves). Print this picture, labelling it as
“130”.

b) Either by looking at your picture or by doing some (nontrivial) algebra,
find all constant functions which solve the system.

c) Suppose y(0) = (7,−7).

i. Which of these statements best describes the behavior of x(t) in this
situation?
A. x(t) increases for all t
B. x(t) decreases for all t
C. initially, x(t) is increasing, but then it becomes decreasing
D. initially, x(t) is decreasing, but then it becomes increasing

ii. Which of these statements best describes the behavior of y(t) in this
situation?
A. y(t) increases for all t
B. y(t) decreases for all t
C. initially, y(t) is increasing, but then it becomes decreasing
D. initially, y(t) is decreasing, but then it becomes increasing

d) Suppose y(1) = (1,−6). Answer the same questions (i) and (ii) as in part
(c).

e) Suppose y(0) = (8, 9). Answer the same questions (i) and (ii) as in part
(c).

f) Let E be the set of points (x0, y0) such that lim
t→∞

x(t) = 4 if y(0) ∈ E. On
the picture you obtained in part (a), shade the set of points which belong
to E.

131. A biologist is studying the population of two species, X and Y. He lets x(t)
and y(t) represent the population of these species at time t, and based on his
biology research, he comes up with a system of ODEs modeling this situation.
He asks Mathematica to sketch a picture of the phase plane for this system,
and Mathematica produces this:
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0 200 400 600 800 1000
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a) Suppose that the current population of species X is somewhere between
700 and 800, and that the current population of species Y is somewhere
between 800 and 900. Based on this model, can the biologist say what
will happen to the population of these species in the long run? If so,
what will happen? If not, why can’t he tell?

b) Suppose that the current population of species X is somewhere between
400 and 500, and that the current population of species Y is somewhere
between 200 and 250. Based on this model, can the biologist say what
will happen to the population of these species in the long run? If so,
what will happen? If not, why can’t he tell?

c) Suppose that the current population of species X is somewhere between
600 and 700, and that the current population of species Y is somewhere
between 400 and 600. Based on this model, can the biologist say what
will happen to the population of these species in the long run? If so,
what will happen? If not, why can’t he tell?

132. (Optional; extra credit) The observed growth of tumors can be explained by
the following mathematical model. Let N(t) be the number of cells in the
tumor at time t (so the bigger N is, the worse the tumor is). Some of the
cells in the tumor “proliferate” (i.e. they split to make more cancerous cells,
growing the tumor); let P (t) be the number of proliferating cells in the tumor
at time t. The functions P and N are modeled by the following system of
ODEs: {

P ′ = cP − r(N)P
N ′ = cP

where c is a positive constant and r : R → R is an increasing function which
represents the rate at which proliferating cells become non-proliferating (c
and r depend on things like the type of cancer, the patient’s age, weight,
height, sex, etc.). Suppose that a patient starts with a tumor consisting of one
proliferating cancerous cell (so that the initial condition is P (0) = 1, N(0) = 1)
and suppose that c = 30.
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For each of the following functions r(N), determine the long-term size of the
tumor, i.e. the number of cancerous cells the patient will end up with in the
long run.

a) r(N) = N2

b) r(N) = N

c) r(N) =
√
N lnN

d) r(N) = lnN

Based on what you observe in parts (a)-(d), describe (in English) some prop-
erty (or properties) of the function r and the long-term size of the tumor.

Hint: in parts (a)-(d), have Mathematica sketch the phase line starting at the
point (1, 1) for the appropriate system(s), and figure out where each solution
curve ends.

Problems from Section 3.9

Note: In Problems 133-136, you can (and probably should) use Mathematica to
check your answers, but I want to see all the steps worked out by hand.

133. Compute the exponential of the following matrix:(
1 −2
3 −4

)

134. Find the general solution of this system of ODEs:{
x′ = x+ y
y′ = 4x+ y

135. Find the particular solution of the system{
y′ = (2x− y, 3x− 2y)
y(0) = (−6, 4)

136. Find the general solution of this system of ODEs:{
x′ = 4x− 3y
y′ = 8x− 6y

137. Consider the 2× 2 system of ODEs y′ = Ay where

A =
(
−7 1
−6 −2

)
.

289



A.3. Problems from Chapter 3

a) Find the eigenvalues and eigenvectors of A.

b) Find a basis of the solution set, and verify that the functions in this basis
are linearly independent by computing their Wronskian.

c) Find the general solution of the system y′ = Ay.

d) If y = (x, y) is any solution of the system y′ = Ay, find lim
t→∞

x(t) and
lim
t→∞

y(t).

e) Find the Cartesian equation(s) of all straight-line solutions of the system.

f) Find the particular solution of y′ = Ay satisfying y(0) = (2,−1).

g) For the solution found in part (f), find (the exact values of) y(2) and
y(−2).

138. Consider the 3× 3 initial value problem
{

y′ = Ay
y(0) = (1, 3,−2) where

A =

 3 0 −1
−2 2 1
8 0 −3

 .
a) Use Mathematica to find the particular solution of this system (recall that

the command MatrixExp[ ] computes matrix exponentials).

b) Based on the solution you got in part (a), what are the eigenvalues of
the matrix A? Explain how you answered this question by looking at
the solution to part (a).

139. Use Mathematica to find the general solution of each following system of
ODEs:

a) 
x′ = 3x+ 2y + 4z
y′ = 2x + 2z
z′ = 4x+ 2y + 3z

b) 
x′ = x+ y + z
y′ = 2x+ y − z
z′ = −8x− 5y − 3z

c) 
w′ = 20w − 101x− 80y − 5z
x′ = 7w − 7x− 28y − 28z
y′ = −14w − 49x+ 56y − 7z
z′ = 3w − 75x− 12y + 36z
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Problems from Sections 3.11 to 3.14

140. Find the general solution of this system of ODEs:{
x′ = 3x− 2y
y′ = 4x− y

141. Find the particular solution of this initial value problem:{
y′ = (x− 5y, x− 3y)
y(0) = (1, 1)

142. a) Find the general solution of this system of ODEs:{
x′ = 3x− 4y
y′ = x− y

b) Write the Cartesian equation(s) of any straight-line solutions of this sys-
tem.

143. Find the particular solution of this initial value problem:{
y′ = (x− 4y, 4x− 7y)
y(0) = (3, 2)

144. Find the general solution of this system of ODEs:{
x′ = 2x− y + 8e2t

y′ = 3x− 2y + 20e2t

Write your answer coordinate-wise, i.e. as
{
x(t) = something
y(t) = something .

145. Find the particular solution of this initial value problem:{
y′ = (−3x+ 2y, x− 2y + 3)
y(0) = (1, 2)

146. Find the general solution of this system of ODEs:{
x′ = 2x− 5y − cos 3t
y′ = x− 2y + sin 3t

Write your answer coordinate-wise.
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147. Suppose you are given a system of ODEs y′ = Ay where A has the indi-
cated properties. Write the general solution of the system (write each answer
coordinate-wise):

a) A is a 4× 4 matrix with the following eigenvalues and eigenvectors:

λ = −3↔


3
0
1
4

 λ = 2↔


2
1
−3
1

 λ = 4↔


0
0
0
1

 λ = −6↔


0
3
5
1

 .

b) A is a 3 × 3 matrix with eigenvalues λ = 2 and λ = 4 (λ = 4 is repeated
twice). An eigenvector corresponding to λ = 2 is (1, 5, 0) and an eigen-
vector corresponding to λ = 4 is (1, 2,−1). A generalized eigenvector
for λ = 4 is (0, 3,−4).

c) A is a 4×4 matrix with eigenvalues λ = 3±2i and λ = 0 (λ = 0 is repeated
twice). An eigenvector corresponding to λ = 3 + 2i is (1 − i, 1 + 2i, i, 0)
and an eigenvector corresponding to λ = 0 is (1, 3,−2, 4). A generalized
eigenvector corresponding to λ = 0 is (0, 1, 4,−2).

148. Find the solution of each system (using Mathematica to compute quantities as
necessary). Write the answers coordinate-wise, and simplify them as much
as possible. In particular, your answers should not contain i.

a)


x′ = y + z
y′ = x+ z
z′ = x+ y

b)
{

y′ = (−45x− 90y − 45z, 16x− 116y − 4z, 76x− 191y − 244z)
y(0) = (1, 3,−2)

c)
{

y′ = (y1 − y2 + y3, 2y1 − 2y2 + 3y3,
4
3y1 − y2 + 2

3y4, 3y1 − y2 − 2y3 + y4)
y(0) = (2, 0, 1,−1)

Hint: use the ExpToTrig[ ] command, then the Simplify[ ] command
to get rid of the imaginary numbers in part (c).

Problems from Section 3.15

In Problems 149-151, find and classify the equilibria of each autonomous system.
Your classification should be specific (i.e. your answer should be “saddle”, “stable
node”, “unstable node”, “stable spiral”, “unstable spiral” or “center”).
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149. a)
{
x′ = 2x+ y − 3
y′ = x+ 4y + 1 b)

{
x′ = −2y − x− 1
y′ = x+ 3

150. a)
{
x′ = (x− 1)(4 + y)
y′ = −(x+ 2)(y − 3) b)

{
x′ = ex − e−y
y′ = e2x − ey

151. a) The system whose phase plane is

-2 2 4 6 8

-4

-2

2

4

b) The system whose phase plane is

-2 2 4 6 8

-2

2

4

6

8

Problems from Section 3.16

152. Consider a 2 × 2 autonomous system y′ = Φ(y); let y0 be an equilibrium of
this system. Classify the equilibrium y0 based on the given information:

a) trDΦ(y0) = 8 and detDΦ(y0) = 1.

b) trDΦ(y0) = −3 and detDΦ(y0) = −2.

c) trDΦ(y0) = −6 and detDΦ(y0) = 3.

d) trDΦ(y0) = 0 and detDΦ(y0) = 4.

153. Consider the 2 × 2 system y′ = Ay where A is a 2 × 2 matrix with constant
entries. Classify the equilibrium at the origin based on the given information:
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a) trA = −1 and detA = 7.

b) trA = 5 and detA = −1.

c) trA = 2 and detA = 3.

d) trA = 0 and detA = −6.

Problems from Section 3.17

154. Two large tanks (call them X and Y) each hold 100 L of liquid. They are
interconnected by pipes which pump liquid from tank X to tank Y at 3 L/min
and from tank Y to tank X at 1 L/min. A brine solution of concentration 0.2
kg/L of salt flows into tank X at a rate of 5 L/min; the solution flows out of
the system of tanks via two pipes (one pipe allows flow out of tank X at 2
L/min and another pipe allows flow out of tank Y at 2 L/min). Suppose that
initially, tank Y contains pure water but tank X contains 40 kg of salt; assume
that at all times the liquids in each tank are kept mixed.

a) Draw a compartmental diagram which models this situation.

b) Write an initial value problem modeling the situation, where x(t) and
y(t) represent the amount of salt in tanks X and Y respectively, at time t,
and y = (x, y).

c) Use Mathematica to draw a picture of the vector field for your system,
with the solution curve to your initial value problem indicated. Use the
viewing window [0, 60]×[0, 60]; attach a printout of this picture, labelled
as “154 (c)”.

d) Based on your picture from part (c), estimate the amount of salt in tank
X at the instant when tank Y has 10 kg of salt in it.

e) Estimate the amount of salt in each tank 8 minutes after the initial situa-
tion by having Mathematica implement Euler’s method with 10000 steps.

f) Solve the initial value problem you wrote down in part (b). Write your
answer coordinate-wise.

g) Have Mathematica graph the functions x(t) and y(t) on the same axes
(in the viewing window [0, 100] × [0, 60]). The appropriate Mathematica
commands are
x[t_] = whatever formula you get for x(t)
y[t_] = whatever formula you get for y(t)
Plot[{x[t],y[t]}, {t, 0, 100}, PlotRange -> {0,60}]
Attach a printout of these graphs (labelled as “154 (g)”). Make sure you
indicate which graph is x(t) and which is y(t).
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h) Find the amount of salt in each tank at time 8 (I want both the exact
amount and a decimal approximation). Compare your answer to part
(e); how accurate was your estimate in part (e)?

i) Find the concentration of salt in tank X at time 8.

155. In this problem, we explore a model (called the Gause competitive exclusion
model) which describes how the populations of two species behave, when
the species are in competition for the same resource. Let X and Y be two
species whose populations at time t are x(t) and y(t), respectively, where x
and y satisfy the system of differential equations

y′ = Φ(y) a.k.a.
{
x′ = rXx(LX − x− αy)
y′ = rY y(LY − y − βx) .

In this setting, α is a nonnegative number called the competition coefficient
of Y on X ; it measures the degree to which increased numbers of species Y
negatively impact the ability of species X to survive. Similarly, β ≥ 0 is the
competition coefficient of X on Y .

a) If α = β = 0 (i.e. the species are not in competition), the populations of
X and Y change according to what model? In light of this, what do the
constants rX , Lx, rY and LY represent?

b) This system of ODEs has four equilibria: three of them are (0, 0) (i.e.
both species are extinct), (0, LY ) (species X is extinct), and (LX , 0) (species
Y is extinct).

i. Find the fourth equilibrium.
ii. Explain why this fourth equilibrium is called the coexistence equi-

librium.

c) FindDΦ(0, 0). Compute the eigenvalues ofDΦ(0, 0) and show that (0, 0)
is an unstable equilibrium.
Hint: a matrix is called triangular if all the entries below its diagonal are
zero, or if all the entries above its diagonal are zero. The eigenvalues of
a triangular matrix are always its diagonal entries.

d) Find DΦ(0, LY ). Compute the eigenvalues of DΦ(0, LY ) (the hint of part
(c) is useful).

e) Based on your computations in part (d), show that (0, LY ) is a stable
equilibrium if and only if α > LX

LY
.

f) Find DΦ(LX , 0). Compute the eigenvalues of DΦ(LX , 0).

g) Based on your computations in part (f), show that (LX , 0) is a stable
equilibrium if and only if β > LY

LX
.
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h) Suppose that neither (0, LY ) nor (LX , 0) are stable.

i. Show that the following three inequalities hold:

LX − αLY > 0 βLX − LY < 0 αβ − 1 < 0

ii. Compute DΦ at the coexistence equilibrium.
iii. Compute and simplify detDΦ and tr DΦ at the coexistence equilib-

rium using Mathematica.
iv. Use the inequalities described in part (i) to show that the coexistence

equilibrium must be stable.

i) If the two species occupy the same ecological niche (i.e. they eat the
same food, live in the same places, etc.), then it is reasonable to assume
that β = 1

α
. For example, if X and Y are species of beetles where each Y

beetle eats twice as much grain as each X beetle, then α would be 2 and
β would be 1

2 . What happens to the coexistence equilibrium in this case?
What does that mean about the two species?

156. In the SIR model we studied in class, we assumed that the disease acted
quickly (before any births or deaths could occur). Now let’s assume that
the disease acts more slowly, so that we can account for births and deaths in
our model. Let:

S = the population of the susceptible class (as before)
I = the population of the infective class (as before)
R = the population of the recovered class (as before)
b = the birth rate (assume this is constant)
d = the death rate due to factors other than the disease
c = the death rate due to the disease
β = the rate at which infections take place
γ = the rate at which infected patients recover

This leads to the following compartmental diagram:

IS R
b βIS

cI

dIdS dR

γI

Note that we can no longer assume that S + I + R = 1, because the total
population may change as time passes.
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a) Write the system of differential equations for S, I and R. (In the rest of
this problem, we will call this system y′ = Φ(y) where y = (S, I, R).)

b) There is one equilibrium of the system which has the form (S#, 0, 0),
where S# 6= 0 (this is called the disease-free equilibrium; it represents
the situation where no one has the disease). Find S# in terms of the
variables listed above.

c) Find DΦ(S#, 0, 0), and have Mathematica compute the eigenvalues of
this matrix.

d) Show that the disease-free equilibrium is stable if and only if βb < d(c+
d+ γ).

e) There is a second equilibrium called the endemic equilibrium (because
in this situation the disease persists), which has the form (S∗, I∗, R∗).
Find S∗, I∗ and R∗ in terms of the variables listed above.

f) Find DΦ(S∗, I∗, R∗) and have Mathematica compute the eigenvalues of
this matrix.

g) Show that the endemic equilibrium is stable if and only if βb > d(γ+ c+
d).

h) Explain why your answers to parts (d) and (g) make sense, given what
the variables in the problem mean.

A.4 Problems from Chapter 4
Problems from Section 4.1

157. Rewrite this third-order ODE as a first-order system of the form y′ = Ay + q.
Be sure to carefully identify what y, A and q are.

y′′′ − 4y′′ + 7y′ − 8y = cos t

158. Rewrite this second-order system of equations as a first-order system of the
form y′ = Ay + q. Be sure to carefully identify what y, A and q are.

x′′ +2x′ −3y′ +4x = 0
y′′ −x′ +4y′ −7x +3y = 0

Problems from Section 4.2

159. Find the general solution of each differential equation:
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a) y′′ − 8y′ + 12y = 0
b) y′′ = −7y′ + 18y

c) y′′′ + 11y′′ + 30y′ = 0

160. Find the general solution of each differential equation:

a) y′′ + 4y′ + 11y = 0
b) y′′′ + 9y′ = 0

c) y′′ − 12y′ + 36y = 0

161. Find the general solution of each differential equation:

a) y′′ − 4y′ − 21y = e4t

b) y′′ + y = sin 2t
c) y′′ − 25y = t

162. Find the particular solution of each initial value problem:

a)


y′′ − 8y′ + 15y = 0
y(0) = 3
y′(0) = 2

b)


y′′ + 4y′ + 4y = 0
y(0) = −6
y′(0) = −1

c)


y′′ + 2y′ + 5y = 0
y(0) = 1
y′(0) = 0

163. Find the particular solution of this initial value problem:
y′′ − 16y′ + 63y = et

y(0) = 11
y′(0) = −5

164. Find the general solution of this differential equation:

y(5) + y(4) − 4y′′′ − 8y′′ − 32y′ − 48y = 0.

Hint: use Mathematica to factor the characteristic equation.

Problems from Section 4.4

165. a) Explain why the α on page 239 of the lecture notes must be negative.

b) Explain why the λ1 and λ2 on page 239 of the lecture notes must both be
negative.

166. Consider a 12 kg mass attached to a fixed point by a spring (like the picture
on the top of page 236 of the notes). If the spring constant is 1

4 N/m and
the damping coefficient (i.e. coefficient of friction) is 7

2 N sec/m, and the
entire system (at time t) is subject to an external force of 257 cos 2t N, find the
position of the mass at time t. Assume that at time 0, the mass has no initial
velocity but is 8 m to the right of where it would be at rest.
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167. Consider a coupled mass-spring system like the one pictured at the top of
page 243 in the notes. Assume that m1 = 6 kg and m2 = 2 kg, and the spring
constants are k1 = 3 N/m and k2 = 2 N/m. If the first mass is displaced 4
m left of its equilibrium position and the second mass is displaced 2 m right
of its equilibrium position, and then the masses are released with no initial
velocity:

a) Find the position of each mass at time t.

b) Assuming that the spring between the two masses is 10 m long at rest,
have Mathematica sketch a graph showing the positions of the masses
at time t in the viewing window [0, 50] × [−5, 20] (attach a printout of
this graph, labelled as “168”). The vertical axis should be scaled so that
height 0 corresponds to the first mass being at equilibrium, as in the
second picture on page 244 in the lecture notes.
To graph two functions at once; see Problem 154 (g) for the appropriate
commands.

168. Suppose that three identical springs, each with spring constant k = 3 and
two identical masses, each of mass 12, are attached in a straight line, with the
ends of the outside springs fixed. Here is a picture of the system:

12 kg 12 kg

k = 3 k = 3 k = 3

x = 0 y = 0

Suppose that the masses move along a frictionless surface; let x(t) and y(t) be
the displacement of the masses at time t, where x = 0 and y = 0 correspond to
the system being at rest, and positive values of x and y indicate displacement
to the right.

a) Write down a second-order system of differential equations describing
the system (coming from Newton’s laws).

b) Convert the system from part (a) to a first-order system of equations.

c) Find the general solution of the system you wrote down in part (a).
Hint: Use Mathematica to find eigenvalues and eigenvectors for the sys-
tem you obtained in part (b).
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d) Suppose that initially, the left-hand mass starts at x = 2 and the right-
hand mass starts at y = −1, and that both masses have an initial right-
ward velocity of 1.

i. Find x(t) and y(t) in this case.
ii. Graph x and y on the same axes (see Problem 154 (g) for the ap-

propriate Mathematica commands); attach a printout of this graph,
labelled as “168 (d)”. You are responsible for choosing a reasonable
viewing window.

iii. Find the positions of the masses (i.e. x and y) when t = 3.

169. Consider an undamped pendulum of length 2 m and mass 45 kg.

a) Write the undamped pendulum equation in this case.
b) Write the linearization of the equation you wrote in part (a).
c) Find the general solution of the linearized equation you wrote in part

(b).
d) Suppose that at time 0, the pendulum is at angle θ = .05 radians and has

angular velocity−.3 radians/second. What is the largest angle obtained
by the pendulum as it swings?
Hint: Find the particular solution corresponding to these initial condi-
tions; one aspect of this particular solution gives the answer to the ques-
tion.

170. (Optional; extra credit) Consider the linearized double pendulum equation
(coming from page 247 of the lecture notes; repeated here for convenience):{

(m1 +m2)l1θ′′1 +m2l2θ
′′
2 + (m1 +m2)gθ1 = 0

m2l2θ
′′
2 +m2l1θ

′′
1 +m2gθ2 = 0

a) Rewrite this system of two second-order equations as a first-order sys-
tem of four equations y′ = Ay.
Hint: To get started, pretend this is a system of two equations in the two
variables θ′′1 and θ′′2 and solve for those two quantities in terms of the
other variables.

b) Use Mathematica to find the eigenvalues and eigenvectors of the matrix
A, and write the general solution of the equation y′ = Ay you wrote in
part (a).

c) Write the formulas for θ1 and θ2.

171. A series RLC circuit (as in page 248 of these notes) has a voltage source given
by ES(t) = 10 cos 2t volts, a resistor of 2 Ω, an inductor of 1

4 H, and a capacitor
of 1

13 F. If the initial current is zero and the initial charge on the capacitor is
3.5 coulombs, find the current in the circuit as a function of time t.
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A.5 Selected answers to the homework problems

1. (b) y = 1
2t−3

2. a) y =
√
t+ 3 + 1

(c) y = ±1
2

√
8− t2

3. (c) y = 2 + ln 3 + t− 1

4. a) ∞
b) 0

6. a) f ′(t) = 6t− 7

9. a) f ′(t) = −2e−2t

f ′′(t) = 4e−2t

f ′′′(t) = −8e−2t

10. a) 1
2t

2 + C

12. (b) 3
4t

4/3 + C

(c) 2
3t

3/2 + t+ C

14. a) t2 + t

b) 4
√
t− 4

15. (b) −1
4 t

2 + 1
2t

2 ln t+ C

16. (a) 1
2 ln(2− x)− 1

2 ln(2 + x) + C

(b) 1
2 sin2 t+ C

18. a) −3
t−1 + (t− 1) + 2 ln(t− 1) + C

19. a) x1 = −1; x2 = 1; x3 = −1;
x4 = 1

20. 43

21. a) not a solution

22. a) solution

24. a) not a solution

25. a) not linear

b) linear

28. (b) order 4;
4 constants in gen. sol’n;
nonlinear

29. a) order 1;
1 constant in gen. sol’n;
linear;
not homogeneous;
not constant-coefficient

32. (d) y = 12
e14.1 e

4.7t

34. (c) $318.55.

35. (c) 16.7621 grams.

37. (b) y = 4, y = 0, y = −5

38. (a) -5 0 5

-5

0

5

40. (t4, y4) = (4, 61).

41. y(2) ≈ 33.

46. (a) There are four possible an-
swers: y = −7, y = −2, y = 3
or y = 6.

(b) y = −2 is the only sink.

47. a) −2

50. (a) φ(−7) is negative
(c) φ(4) is positive
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(d) φ′(−2) is negative

51. (a) y = −3 is stable; y = 3 is un-
stable

52. (a) y = 0 is unstable

53. (a) y = 0 is unstable; y = 6 is sta-
ble

55. (a) y = 0 and y = rL−e
r

.

(e) E = 1
2rL

57. (a) Yes; if 5 ≤ r ≤ 7 and y(0) > 0
we know that lim

t→∞
y(t) = 0,

so the long-term value of y is
zero.

58. (a) There is only one bifurcation
at r = 9; it is a saddle-node
bifurcation.

62. (a) y = Ce2t

63. (b) y = Cesin t

64. (a) y = 3 ln t

66. (a) y = 7e2t − 3et

67. (a) y = −te−t + Ct

70. (a) y = Ce−3t + e−2t

71. (b) y = Ce4t − 1
2t

2 − 9
4t−

9
16

72. (a) yh = e−7t

(b) No; on the left-side you get 0
which cannot equal 20e−7t.

(d) y = Ce3t + 9te3t

74. a) 1
2y

2 = 1
3 ln(4 + t3) + C

b) y = Ct2−1
Ct2+1

75. (a) y = ln(4t+ C)

79. (a) y = Ct3 − t+D

80. (a) y = arctan(Ct+D)

81. (a) y = C cos t+D sin t

82. (a) y = Ce2t − 2t3 − 3t2 − t+D

83. a) Exact; solution is y2−2y+t2 +
3t = C

b) Not exact

84. a) y2 − ty + t2 = 7

85. (c) y2t− yey + ey = C

87. (a) 200− 2t

(c)
{
y′ = 6

5 −
4y

100−t
y(0) = 1

(e) 15.0017

88. (d) ymax ≈ 20
(e) t ≈ 35

89. y = −2
5 (t− 100)− 39

108 (t− 100)4.

90. (b) f(60) = 9376
625 .

91. (a)
−2
5 (100−t)− 39

108 (100−t)4

200−2t .

(c) t ≈ 20.

93. (b)
{

dv
dt

= 9.8− 30
75v

v(0) = 0
(d) 24.5

94. v = 49
2 −

49
2 e
−(2/5)t.

95. (a) h(t) = 8245
4 −

49
2 t−

245
4 e
−(2/5)t.

(b) t = 2
5 ln 49

9 ≈ 4.2365.

96. t = 15 ln 7
19

ln 14
19
≈ 49.0466

99. a) solution

b) not a solution
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101. a) (i)
{
x(t) = t2 − 2
y(t) = t+ 3

(ii) y(0) = (−2, 3); y(1) = (−1, 4); y(2) = (2, 5).

102. (a) Use this code (all executed in one cell):
ParametricPlot[{Cos[t], Sin[t]}, {t, -100,100},
PlotRange -> {{-2,2},{-2,2}}]

You will find that the graph is a circle.

105. (t1,y1) = (1, (3, 6)); (t2,y2) = (2, (0, 18)); (t3,y3) = (3, (−18, 36)).

107. The x-coordinate when t = 4 is 92.1414.

109. (a) y(50) ≈ (−6.531 · 10−45, 5.708 · 10−45) ≈ (0, 0).

(b)

-10 -5 5 10
x

-10

-5

5

10

y

110. (d) y(5) ≈ (.515676, .362851, .326229).

(e) No, when more steps are used, the coordinates of y(5) change signifi-
cantly.

111. a) 0

(c)
(

15 −6
3 9

)

(e)
(

3 −2
1 1

)

(f)
(

4− λ 2
−8 −4− λ

)

112. a)
(
−2 sin 2t 3 cos 3t
8 cos 2t −3 cos 3t

)

b) (cos t,−6 sin 3t, 28e7t)

c)
(
−15 −13
−3 11

)

113. (b)
(

28 0
0 1

)

(c)

 1 0 0
0 1 0
0 0 1



115. a)
(

3
17

2
17

−1
17

5
17

)

116. (a) 17
(b) −2

117. (a) λ2 − 8λ+ 17

118. a) No

b) Yes
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119. a) W (t) = 20t2; the functions are linearly independent (since W (1) 6= 0).

(c) W (t) = 2; the functions are linearly independent (since W (0) 6= 0).

121. a) First, compute the Wronskian:

W (t) = det
(

eat ebt

(eat)′ (ebt)′
)

= det
(

eat ebt

aeat bebt

)
= be(a+b)t − ae(a+b)t

= (b− a)e(a+b)t.

Since a 6= b, W (t) 6= 0, so the functions eat and ebt are linearly indepen-
dent, as desired.

124. dy
dx

∣∣∣
(1,0)

= 1; dy
dx

∣∣∣
(0,2)

= −1
2 ; dy

dx

∣∣∣
(0,−2)

= −1
2 ; dy

dx

∣∣∣
(−3,0)

= 1. The slope field with
these four mini-tangents is:

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

125. (a) -4 -2 0 2 4

-4

-2

0

2

4

(b) -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

127. (a) (−6, 4) and
(

3
2 ,−1

)
128. (a)

(
1
2 , 1

)
and

(
−1
2 , 1

)
129. (c) y(t) = (3, 1).

(d) i. x(t) is decreasing
ii. y(t) is increasing

iii. lim
t→∞

x(t) = −∞
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iv. lim
t→∞

y(t) = 1

135. y = C1e
t
(

1
1

)
+ C2e

−t
(

1
3

)
137. (c) y = C1e

−4t
(

1
3

)
+ C2e

−5t
(

1
2

)
.

141. y =
(
e−t cos t−3e−t sin t
e−t cos t−e−t sin t

)
143. y =

(
3e−3t+4te−3t

2e−3t+4te−3t

)
144.

{
x(t) = 4e2t + C1e

t + C2e
−t

y(t) = 8e2t + C1e
t + 3C2e

−t

147. a)


y1(t) = 3C1e

−3t + 2C2e
2t

y2(t) = 2C2e
2t + 3C4e

−6t

y3(t) = C1e
−3t − 3C2e

2t + 5C4e
−6t

y4(t) = 4C1e
−3t + C2e

2t + C3e
4t + C4e

−6t

148. a)


x(t) = C1e

2t − C2e
−t − C3e

−t

y(t) = C1e
2t + C3e

−t

z(t) = C1e
2t + C2e

−t

149. a) The only equilibrium is
(

13
7 ,
−5
7

)
, which is an unstable node.

151. (b) There are four equilibria: (2, 0) (stable node), (5, 0) (unstable saddle), (5, 4)
(unstable node) and (2, 4) (unstable saddle).

152. a) Unstable node

b) Unstable saddle

c) Stable node

154. (b)


{
x′ = −1

20 x+ 1
100y + 1

y′ = 3
100x−

3
100y

y(0) = (40, 0)

155. a) When α = β = 0, the populations of X and Y behave according to logistic
models.

b) i. The fourth equilibrium is
(
αLY −LX

αβ−1 , βLX−LY

αβ−1

)
.

c) DΦ(0, 0) =
(
rXLX 0

0 rYLY

)
. The eigenvalues of this matrix are rXLX

and rYLY , both of which are positive, so (0, 0) is unstable.
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(d) DΦ(0, LY ) =
(
rXLX − αrXLY 0
−βrYLY −rYLY

)
. One eigenvalue of this ma-

trix is −rYLY < 0; the other is rX(LX − αLY ).

(e) If α > LX

LY
, then LX − αLY < 0 so both eigenvalues of DΦ(0, LY ) are

negative, in which case (0, LY ) is stable.

(i) In this case, there is no coexistence equilibrium (since the denominators
in the coexistence equilibrium would have to be zero).

156. (b) S# = b
d

(c) DΦ( b
d
, 0, 0) =


−d −β b

d
0

0
0 β b

d
− c− d− γ 0

0 γ −d

;

the eigenvalues are −d (repeated twice) and 1
d
(bβ − d(c+ d+ γ)).

(e) S∗ = c+d+γ
β

; I∗ = bβ−d(c+d+γ)
β(c+d+γ) ; R∗ = γ(bβ−d(c+d+γ))

βd(c+d+γ) .

157. y =

 y
y′

y′′

; A =

 0 1 0
0 0 1
8 −7 4

; q =

 0
0

cos t

.

159. a) y = C1e
2t + C2e

6t.

160. a) y = C1e
2t cos

(√
7t
)

+ C2e
2t sin

(√
7t
)
.

161. a) y = −1
21 e

4t + C1e
7t + C2e

−3t.

162. a) y = 13
2 e

3t − 7
2e

5t.

165. a) If you convert the second-order equation mx′′(t) + bx′(t) + kx(t) = 0 to
a first-order system via reduction of order, the system becomes

x′ =
(

0 1
−k
m

−b
m

)
x = Ax.

We have tr(A) = −b
m
< 0 and detA = k

m
> 0. Since the trace is negative

and the determinant is positive, the equilibrium 0 is either a stable spiral
or stable node, so both of its eigenvalues must have negative real part.

166. x(t) = −764
145 cos 2t+ 112

145 sin 2t− 396
145e

−t/6 + 16e−t/8.

167. a)

 x(t) = −16
7 cos

(
t
√

3
2

)
− 12

7 cos
(

t√
3

)
y(t) = 32

7 cos
(
t
√

3
2

)
− 18

7 cos
(

t√
3

)
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168. a)
{

12x′′ = −3x+ 3(y − x)
12y′′ = −3(y − x)− 3y (or something equivalent to this)

(d) i.
{
x(t) = 1

2 cos t
2 + 3

2 cos t
√

3
2 + 2 sin t

2
y(t) = 1

2 cos t
2 −

3
2 cos t

√
3

2 + 2 sin t
2

169. a) θ′′ + 9.8
2 sin θ = 0.

b) θ′′ + 9.8
2 θ = 0.

(d)
√

409
140 radians (which is about 0.1444).

171. I(t) = 1
2 cos 2t− 3

2 sin 2t− 1
2e
−4t cos 6t− 47

2 e
−4t sin 6t.
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A.6 Extra credit problems
1. The Snowplow Problem: Suppose that one morning it starts snowing hard,

but at a constant rate. A snowplow sets out at 9 AM to clear a road. At 11
AM, it has cleared 15 miles, and at 1 PM, it has cleared an additional 10 miles.
When did it start snowing?

To solve this problem, carry out the following steps:

a) Let t be the time, measured in hours, with t = 0 corresponding to 9 AM.
Let h = h(t) be the height of the snow at time t. We will assume the
rate of snowfall is constant, and equal to r. Write down a differential
equation which could be used to solve for h(t), if there was no plowing.

b) Solve the equation from part (a) for h in terms of t (there will be an ar-
bitrary constant; let’s call this constant B so everyone is using the same
notation).

c) Let x(t) be the distance the snowplow has travelled at time t. It is rea-
sonable to assume that the deeper the snow is, the slower the snowplow
has to travel. A simple mathematical model for this is to assume that the
velocity of the snowplow at time t is inversely proportional to the height
h(t). Use this to write a differential equation satisfied the function x(t)
(let’s agree to use the letter k for the proportionality constant).

d) Solve the differential equation of part (c) to obtain a formula for x(t)
(let’s agree to call the arbitrary constant that appears here D).

e) Use the initial conditions of this problem (given before part (a)) to solve
for B, D and k.

f) Answer the original question: when did it start snowing? Round your
answer to the nearest minute.
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2. The Solar Collector Problem: Suppose you want to design a solar collector
which will concentrate the sun’s rays at a point. The collector will be in the
shape of a curve y = f(x), and the point we want to concentrate the rays
at will be (0, 0). Suppose that the sun is located at the extreme positive x-
axis, and that the light coming from the sun hits the collector, travelling in a
horizontal path (see the picture below).

collector y = f(x)

rays of sunlight

tangent line to collector

α β

γ

δ

(x,y)

x

y

a) From physics, the law of reflection for rays of light says that angles γ
and δ are equal. Use this, together with some facts from high-school
geometry, to explain why β = 2α.

b) From calculus, the slope of the tangent line at (x, y) is dy
dx

. Use this to
explain why dy

dx
= tanα. Using similar logic, find tan β in terms of x and

y.

c) Use the double-angle identity for tangent (look this up via Google if you
don’t know it) to show that

y

x
=

2 dy
dx

1−
(
dy
dx

)2 .

d) Solve for dy
dx

in the above equation to show that the curve must satisfy

dy

dx
= −x+

√
x2 + y2

y
.

e) Solve the equation obtained in part (e) of this problem.
Hint: To solve this equation, you need a trick. Start by letting u = x2 +y2

and differentiate implicitly to obtain a formula for du
dx

in terms of x, y and
dy
dx

. Use this formula, together with the equation from part (d), to write
a separable differential equation of the form du

dx
= something. Then solve

this equation for u = u(x), and use that to recover y in terms of x.

f) What shape are the solutions?
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Appendix B

Mathematica information

B.1 General Mathematica principles
Mathematica is an extremely useful and powerful software package / program-

ming language invented by a mathematician named Stephen Wolfram. Early ver-
sions of Mathematica came out in the late 1980s and early 1990s; the most recent
version (which is loaded onto machines at FSU as of 2016) is Mathematica 10.

Mathematica does symbolic manipulation of mathematical expressions; it solves
all kinds of equations; it has a library of important functions from mathematics
which it recognizes while doing computations; it does 2- and 3-dimensional graph-
ics; it has a built-in word processor tool; it works well with Java and C++; etc. One
thing it doesn’t do is prove theorems, so it is less useful for a theoretical mathemati-
cian than it is for an engineer or college student.

A bit about how Mathematica works: When you use the Mathematica program,
you are actually running two programs. The “front end” of Mathematica is the part
that you type on and the part you see. This part actually resides on the machine at
which you are seated. The “kernel” is the part of Mathematica that actually does the
calculations. If you type in 2 + 2 and hit [SHIFT]+[ENTER], the front end “sends”
that information to the kernel which actually does the computation. The kernel
then “sends” the result back to the front end, which displays the output 4 on the
screen. Essentially, the way one uses Mathematica is by typing some “stuff” in, hit-
ting [SHIFT]+[ENTER] to execute that stuff, and getting some output back from
the program.

About Mathematica notebooks and cells: The actual files that Mathematica
produces that you can edit and save are called notebooks and carry the file designa-
tion *.nb; they take up little space and can easily be saved to Google docs or on a
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flash drive, or emailed to yourself if you want them somewhere you can retrieve
them. Suggestion: when saving any file, include the date in the file name (so it is
easier to remember which file you are supposed to be open).

A Mathematica notebook is broken into cells. A cell can contain text, input, or
output. A cell is indicated by a dark blue, right bracket (a “]”) on the right-hand
side of the notebook. To select a cell, click that bracket. This highlights the “]”
in blue. Once selected, you can cut/copy/paste/delete cells as you would high-
lighted blocks of text in a Word document.

To change the formatting of a cell, select the cell, then click“Format / Style”
and select the style you want. You may want to play around with this to see what
the various styles look like. There are three particularly important styles:

• input: this is the default style for new cells you type
• output: this is the default style for cells the kernel produces from your com-

mands
• text: changing a cell to text style allows you to make comments in between

the calculations

Executing mathematical commands: To execute an input cell, put the cursor
anywhere in the cell and hit [ENTER]. Well, not any [ENTER]; you have to use
the [ENTER] on the numeric keypad at the far-right edge of the keyboard. The
[ENTER] next to the apostrophe key (a.k.a. [RETURN]) gives you only a carriage
return. You can also hold down the [SHIFT] key and hit either [ENTER] or [RE-
TURN] to execute a command.
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Important general concepts re: Mathematica syntax

1. Multiplication: use a star or a space: 2 * 3 or 2 3 will multiply numbers;
a x means a times x; ax means the variable ax (in Mathematica, variables do
not have to be named after one letter; they can be named by words or other
strings of characters as well).

2. Parentheses: used for grouping and multiplication only. Parentheses mean
“times” in Mathematica, and always mean that you intend to multiply what
is in front of the parenthesis by what is inside the parenthesis.

3. Brackets: must be used to surround the input of any function or built-in
Mathematica command. For example, to evaluate a function f(x), you would
type f[x], not f(x). Essentially, square brackets mean “of” in Mathematica.

4. Capitalization: All Mathematica commands and built-in functions begin with
capital letters. For example, to find the sine of π, typing sin(pi) or sin[pi]
does you no good (the first version would be the variable “sin” times the
variable “pi”, for instance). The correct syntax is Sin[Pi]. Similarly, e is E
and i is I in Mathematica.

5. Spaces: Mathematica commands do not have spaces in them; for example, the
inverse function of sine is ArcSin, not Arc Sin or Arcsin.

6. Pallettes: Lots of useful commands are available on the Basic Math Assistant
Pallette, which can be brought up by clicking “Pallettes / Basic Math Assis-
tant” on the toolbar. If you click on a button in the pallette, what you see
appears in the cell. The tab halfway down this palette marked d

∫
Σ has cal-

culus commands, and the tab to the right of the d
∫

Σ has matrix commands.

7. Logarithms: Mathematica does not know what Ln is. For natural logarithms
(base e), type "Log[ ]". For common logarithms (base 10), type "Log10[ ]".

8. % refers to the last output (like “Ans” on a TI-calculator).

9. Help: To get help on a command, type “?” followed by the command you
don’t understand. If necessary, click the � you get at the end of the help
blurb to open a help browser. You can also find out how to do lots of stuff in
Mathematica by using Google: search for what you want help on.

10. Mathematica gives exact answers (i.e. not decimals) for everything if possible.
If you need a decimal approximation, use the command N[ ]. For example,
N[Pi] spits out 3.14159...

11. If Mathematica freezes up in the middle of a calculation, click “Evaluation /
Abort Evaluation” on the toolbar.
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B.2 Mathematica quick reference guides
Basic operations

Expression Mathematica syntax

SP
EC

IA
L

SY
M

BO
LS e E

π Pi
i (i.e.

√
−1) I

∞ Infinity (or use Basic Math Assistant palette)

A
R

IT
H

M
ET

IC

3 + 4x 3 + 4x
5− 7 5 - 7

8z 8z or 8 z or 8 * z
xy x y (don’t forget the space)
7
3 7/3

x−7+2y
a−7b To get the fraction bar, type [CONTROL]+/

then use [TAB] to move between the top and bottom√
32 Sqrt[32]

(or type [CONTROL]+2 to get a√ sign)
(or use Basic Math Assistant palette)

4
√

40 40^(1/4) (or use Basic Math Assistant palette)
|x− 3| Abs[x-3]

30! (factorial) 30!

EX
PS

A
N

D
LO

G
S ln 3 Log[3]

log6 63 Log[6,63]
log 18 Log10[18] or Log[10,18]

27y 2^(7y)
(or type 2, then [CONTROL]+6, then 7y)
(or use Basic Math Assistant palette)

ex−5+x2 E^(x-5+x^2) or Exp[x-5+x^2]
(or use Basic Math Assistant palette)

TR
IG

sin π Sin[Pi]
cos(x(y + 1)) Cos[x(y+1)]
cot

(
2π
3 + 3π

4

)
Cot[2 Pi/3 + 3 Pi/4]

arctan 1 ArcTan[1]

Objective Mathematica syntax
To call the preceding output %

To get a decimal approximation to the N[%] (or click numerical value)
preceding output
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Defining functions

Objective Mathematica syntax
Define a function f(x) = formula f[x_] = formula

(one equals sign, underscore after x)

Define parametric function f[t_] = {f(t),g(t)}
x = f(t), y = g(t)

Define function of multiple variables f[x_,y_] = formula
z = f(x, y)

Tables and graphs (see also Section B.3)

Objective Mathematica syntax
Generate table of values for f Table[{x,f[x]}, {x,xmin,xmax,step}]

(put //TableForm at end of command
to arrange output in a table)

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax}]

Plot multiple graphs at once Plot[{formula,formula, ..., formula},
{x,xmin,xmax}]

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with range of y−values specified PlotRange -> {ymin,ymax}]

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with x- and y-axes on same scale PlotRange -> {ymin,ymax},

AspectRatio -> Automatic]

Plot graph of a set of parametric ParametricPlot[f[t], {t, -20,20},
equations (after defining them PlotRange -> {{xmin,xmax},
as f(t)) {ymin,ymax}}]
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Function operations and calculus

Expression Mathematica syntax

f(x+ 3) (if f is a function) f[x+3]
xf(2x)− x2f(x) x f[2x] - x^2 f[x]

(spaces important)
(f ◦ g)(x) f[g[x]]

lim
x→4

f(x) Limit[f[x], x -> 4]

f ′(3) f’[3]
g′′′(x) g’’’[x] or D[g[x],{x,3}]

partial derivative fx D[f[x,y], x]
partial derivative fyy D[f[x,y], {y,2}]
partial derivative fyxy D[f[x,y], {y,2}, {x,1}]

∫
x2 dx Integrate[x^2,x]

(or use
∫

sign on Basic Math Assistant palette)∫ 5
2 cosx dx Integrate[Cos[x], {x, 2, 5}]

(or use
∫ �
� sign on Basic Math Assistant palette)

(for a decimal approximation, use NIntegrate)

12∑
k=1

f(k) Sum[f[k], {k, 1, 12}]

(or use Basic Math Assistant palette)

∞∑
k=1

blah Sum[blah, {k, 1, Infinity}]

(or use Basic Math Assistant palette)

To find the Taylor polynomial of orderN for function f , centered at point a, execute

Normal[Series[f, {variable, a, N}]]

For example, to find the eighth Taylor polynomial of f(x) = cos 2x centered at 0,
execute

Normal[Series[Cos[2x], {x, 0, 8}]]
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Solving equations (see also section B.4)

Objective Mathematica syntax
Find exact solution(s) to equation Solve[lhs == rhs, x]
of form lhs = rhs (two equals signs)

(works only with polynomials
or other relatively “easy”

Find decimal approximation(s) NSolve[lhs == rhs, x]
to solution(s) of equation lhs = rhs (two equals signs)

(works only with “easy” equations)
equations)

Find decimal approximation(s) to FindRoot[lhs == rhs, {x,guess}]
to solution(s) of equation lhs = rhs (two equals signs)

Other
Objective Mathematica syntax
Find partial fraction decomposition Apart[ ]

Combine rational terms Together[ ]
(i.e. “undo” partial fractions)

Factor a polynomial Factor[ ]

Multiply an expression out Expand[ ]
(i.e. “FOIL” an expression)
(i.e. “undo” factoring)

Simplify an expression Simplify[ ]
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B.3 Graphing functions with Mathematica
Defining a function in Mathematica

To graph a function y = f(x) on Mathematica, you usually start by defining the
function. For example, to define a function like f(x) = 3 cos 4x− x, execute

f[x_] = 3 Cos[4x] - x

You could just as well use a different letter for the independent variable. For ex-
ample, typing

f[t_] = 3 Cos[4t] - t

would accomplish the same thing as above. However, don’t mix and match! Typ-
ing

f[x_] = 3 Cos[4t] - t

doesn’t accomplish anything, because there is a x on the left-hand side, and a t on
the right-hand side.

The general syntax for defining a function is

function name[variable_] = formula

it is important to include the underscore after the variable to tell Mathematica you
are defining a function.

The basic Plot command

Immediately after defining a function as above, you will get (underneath your out-
put) a list of suggested follow-up commands. One of these is plot. If you click the
word plot, you will get a graph of the function you just defined. Here, Mathemat-
ica picks a range of x- and y-values it thinks will work well for the function you
defined. It is useful to remember the syntax of this Plot command:

Plot[formula, {variable, xmin, xmax}]

In this command:

• formula is the function you want the graph of. It could be an expression like
f[x] or f[t], or a typed-out formula like 3 Cos[4x] - x.

• variable is the name of the independent variable (usually x or t); this must
match the variable in the formula.
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• xmin and xmax are numbers which represent, respectively, the left-most and
right-most values of the independent variable shown on the graph. For ex-
ample, if your Plot command has {x,-3,5} in it, then the graph will go from
x = −3 to x = 5.

Here is an example, which plots f(x) = 3 cos 4x− x from x = −10 to x = 10:

Plot[3 Cos[4x] - x, {x, -10,10}]

-10 -5 5 10

-10

-5

5

10

Plotting multiple functions at once

Suppose you want to plot more than one function on the same set of axes. To do
this, you tweak the earlier Plot command by replacing the formula with a list of
formulas inside squiggly braces, separated by commas. Thus the command you
execute looks something like this:

Plot[{formula1, formula2, ...}, {variable, xmin, xmax}]

For example, the following command plots sin 2x, 2 sin x and sin x+ 2 on the same
set of axes:

Plot[{Sin[2x], 2 Sin[x], Sin[x] + 2}, {x, -2 Pi, 2 Pi}]

-6 -4 -2 2 4 6

-2

-1

1

2

3

In Mathematica 10, the first graph you type will be blue; the second graph you type
will be orange; the third graph you type is green; other graphs are in other colors.
To change the way the graphs look, consult the end of this section.
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Specifying a range of y-values

By default, Mathematica just chooses a range of y-values it thinks will make the
graph look good. If you want to force Mathematica to use a particular range of y-
values, then you have to insert a phrase in the Plot command called PlotRange.
This goes after the {x,xmin,xmax} and after another comma, but before the clos-
ing square bracket. The general command is

Plot[{formulas}, {var,xmin,xmax}, PlotRange -> {ymin,ymax}]

and an example of the code, which plots sin x on the viewing window [−π, π] ×
[−2, 3] is

Plot[Sin[x], {x, -Pi, Pi}, PlotRange -> {-2,3}]

-3 -2 -1 1 2 3

-2

-1

1

2

3

Making the x- and y-axes have the same scale on the screen

Here is the graph of f(x) = 3 cos 4x − x that Mathematica produces with the com-
mand

Plot[3 Cos[4x] - x, {x, -10,10}]

-10 -5 5 10

-10

-5

5

10

If you look at this graph, the distance from the origin to (5, 0) looks a lot longer
than the distance from the origin to (0, 5). But in actuality, both these distances
are 5 units. The graph is distorted so that it fits nicely on your screen. To fix
the distortion (you might want to do this if you needed to estimate the slope of
a graph accurately), insert the command AspectRatio -> Automatic into the Plot
command (similar to how you would insert a PlotRange command). This forces
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the number of pixels on your screen representing one unit in the x direction to
be equal to the number of pixels on your screen representing one unit in the y
direction. Here is the general syntax:

Plot[{formulas}, {var,xmin,xmax}, AspectRatio -> Automatic]

This command can also be used with the PlotRange command:

Plot[{formulas}, {var,xmin,xmax}, PlotRange -> {ymin,ymax},
AspectRatio -> Automatic]

Here is an example command:

Plot[3 Cos[4x] - x, {x, -10,10}, AspectRatio -> Automatic]

-10 -5 5 10

-10

-5

5

10

Changing the appearance of the curves

As mentioned earlier, by default Mathematica graphs all the functions with solid
lines, using different colors for different formulas on the same picture. To change
this, insert various directives into the Plot command using PlotStyle. Here are
some examples:

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Thick]
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-10 -5 5 10

-10

-5

5

10

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dashed]

-10 -5 5 10

-10

-5

5

10

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dotted]

-10 -5 5 10

-10

-5

5

10

If you are plotting more than one function at once, then after the PlotStyle ->,
you can type a list of graphics directives, separated by commas, enclosed by a set
of squiggly braces. The directives will be applied to each function you are graph-
ing, in the same order as they are typed after the PlotStyle ->. For example, this
command plots x, 2x and 3x, where x is thick and black, 2x is red and dotted, and
3x is blue and dashed:

Plot[{x,2x,3x}, {x, -3,3},
PlotStyle -> {{Thick, Black}, {Dotted, Red}, {Blue, Dashed}}]
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Parametric equations

To define a set of parametric equations like x = t cos t, y = sin 2t in Mathematica,
type the following and execute:

f[t_] = {t Cos[t], Sin[2t]}

In general, the syntax is

name of function[t_] = {formula for x,formula for y}

(You don’t have to call the function f , of course.) You don’t need to have only two
coordinates x and y here; you could type more formulas, separated by commas, if
necessary.

After defining the parametric equations as above, one follow-up command you
get in the suggestions bar is parametric plot. Click that, and you will get a graph of
the parametric equations in the xy-plane. The syntax looks like this:

ParametricPlot[f[t], {t, -40, 40}]

-40 -20 20 40

(The −40 and 40 are the range of t values considered; they don’t matter except
that they should be far apart for the purposes of getting a good graph.) Often
the viewing window for such a picture is not very useful. To fix this, tweak the
command by using PlotRange:

ParametricPlot[f[t], {t, -40, 40}, PlotRange -> {{-8,8},{-4,6}}]

-5 5

-4

-2

2

4

6

The PlotRange part of the command specifies the range of x− and y−values
seen on the graph. For example, in this picture, x will go from −8 to 8 and y will
run from −4 to 6.

You can also use the PlotStyle directives described in earlier labs if you want
to change the appearance of the graph.
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B.4 Solving equations with Mathematica
There are three methods to solve an equation using Mathematica. They have

something in common: to solve an equation, the equation must be typed with two
equals signs where the = is. (A single equal sign is used in Mathematica to assign
values to variables, which doesn’t apply in the context of solving equations.)

The Solve command

To solve an equation of the form lhs = rhs, execute

Solve[lhs == rhs, variable]

where variable is the name of the variable you want to solve for. For example, to
solve x2 − 2x− 7 = 0 for x, execute Solve[x^2 - 2x - 7 == 0, x].

You can solve an equation for one variable in terms of others: for example,
Solve[a x + b == c, x] solves for x in terms of a, b and c.

WARNING: The advantage of the Solve command is that it gives exact an-
swers (no decimals); this can be a pro or con (as sometimes the exact answers are
horrible to write down). The disadvantage is that it only works on polynomial, ra-
tional and other “easy” equations. It won’t work on equations that mix-and-match
trigonometry and powers of x like x2 = cosx.

The NSolve command

NSolve works exactly like Solve, except that it gives decimal approximations to the
solutions. It has the same drawback as Solve in that it only works on reasonably
“easy” equations. The syntax is

NSolve[lhs == rhs, variable]

The FindRoot command

To find decimal approximations to equations that are too hard for the Solve and
NSolve commands, use FindRoot. This executes a numerical algorithm to estimate
a solution to an equation. The good news is that this command always works; the
bad news is that it requires an initial “guess” as to what the solution is (usually
you determine the initial guess by graphing both sides of the equation and seeing
roughly where the graphs cross). For example, to find a solution to x2 = cosx near
x = 1, execute

FindRoot[x^2 == Cos[x], {x, 1}]
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and to find a solution to the same equation near x = −1, execute

FindRoot[x^2 == Cos[x], {x, -1}]

(these probably won’t give the same solution). The general syntax for this com-
mand is

FindRoot[lhs==rhs, {variable,guess}]

B.5 Matrix operations on Mathematica
To define a matrix, there are two methods:

1. Use squiggly braces and commas to separate the entries. Each row should be
surrounded by a squiggly brace, and the entire matrix should be surrounded
by a set of squiggly braces, and everything should be separated by commas.
For example, to define A as (

1 2
3 4

)
one could execute

A = {{1, 2}, {3, 4}}

Note that if you have a column matrix like

 1
2
3

, this matrix can be de-

fined by just typing something like B = {1, 2, 3} (instead of having to type
B = {{1}, {2}, {3}}).

2. On the Basic Math Assistant Pallette, under Basic Commands, click the ma-
trix. Then type A = , then click the matrix in the palette. To add rows and
columns, click AddRow or AddColumn until the matrix is the appropriate size.
Then go into the matrix and type in each entry, moving between the locations
using the [TAB] key or clicking on the location you want.

If the entries of the matrix are functions, then define the matrix as a function by
executing A[t_] = ... instead of A = ...

Once you have defined all necessary matrices, Mathematica commands for op-
erations on those matrices are given on the next page:
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In this chart, if A is a matrix of functions, replace the A with A[t].

Note: To make Mathematica display an answer as a matrix:

1. follow your command with // MatrixForm, or

2. once you’ve executed the command, choose Display as... matrix from the sug-
gestions bar.

EXPRESSION MATHEMATICA SYNTAX

B
A

SI
C

M
A

T
R

IX
O

P
E

R
A

T
IO

N
S

Matrix addition / subtraction
A+B A + B
A−B A - B

Scalar multiplication
3A 3A
nA n A (space important)
−5A+ 1

2B -5A + (1/2)B
Matrix product AB A.B (the period is important)

A2 A.A or MatrixPower[A,2] (not A^2)
A7 MatrixPower[A,7] (not A^7)

Trace tr(A) Tr[A]
Determinant detA Det[A]
Transpose AT Transpose[A]
To get the entry of matrix A in the A[[i,j]]

ith row and jth column
To call the n× n identity matrix I IdentityMatrix[n]
Find derivative of a matrix of functions A’[t]

term-by-term

L
IN

E
A

R
SY

ST
E

M
S Matrix inverse A−1 Inverse[A] (not A^-1)

Find the rank of A MatrixRank[A]
(i.e. # of lin. indep. columns)

Reduced row-echelon form of A RowReduce[A]
Find particular solution of Ax = b LinearSolve[A,b]
Find basis of null space N(A) NullSpace[A]
Find least-squares solution x̂ of Ax = b LeastSquares[A,b]
Matrix exponential eA = exp(A) MatrixExp[A]

E
IG

E
N

T
H

E
O

R
Y Eigenvalues and eigenvectors of A Eigensystem[A]

Just the eigenvalues of A Eigenvalues[A]
Just the eigenvectors of A Eigenvectors[A]
Find det(A− xI) CharacteristicPolynomial[A,x]

Determine if A is diagonalizable DiagonalizableMatrixQ[A]
Determine if A is positive definite PositiveDefiniteMatrixQ[A]
Determine if A is negative definite NegativeDefiniteMatrixQ[A]
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B.6 Complex numbers in Mathematica
To type in a complex number in Mathematica, type I (capital I) for the imaginary

number i. When Mathematica gets an answer with an i in it, it displays i for the i.

Basically, commands with complex numbers are the same as they are with real
numbers. To multiply (7−5i)(3 + 2i), for example, just execute (7 - 5I)(3 + 2I);
to find ei, execute E^I. There are some commands that are unique to complex num-
bers; those are given below:

Objective Mathematica syntax
Find real part of complex number Re[ ]

Find imaginary part of complex number Im[ ]

Find norm of complex number Abs[ ]

Find argument of complex number Arg[ ]

Find conjugate of complex number Conjugate[ ]
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B.7 Slope fields for first-order equations
All this code is available in the file slopefields.nb, available on my web page.

Code to sketch the slope field of y′ = φ(t, y):

Execute all this in a single Mathematica cell:

phi[t_,y_] := formula;"
VectorPlot[{1,phi[t,y]}, {t, -10,10}, {y, -8, 8},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

Some of the things you can change as necessary:

• formula should be whatever φ(t, y) is equal to; for example, given the ODE
y′ = 2t+ y2, the first line of the code would be phi[t_,y_] = 2t + y^2;

• the numbers in the second line set the viewing windows; for example, in the
above code the viewing window is [−10, 10]× [−8, 8];

• the 20 is the number of arrows drawn in each direction.

Code to sketch the slope field and several solution curves

Execute all this in a single Mathematica cell:

phi[t_,y_] := formula;
VectorPlot[{1,phi[t,y]}, {t, -10, 10}, {y, -8, 8},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> 35,
StreamScale -> Full,
StreamStyle -> {Black, Thick}]

The first five lines are the same as the command described earlier; the sixth line
directs Mathematica to sketch 35 solution curves at random locations on the picture.
The last line tells Mathematica what color to draw the solution curves.
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Code to sketch the slope field and a solution curve passing
through a specific point

The following code (executed in a single cell) will sketch a slope field and sketch
a single solution curve passing through a given point (t0, y0), which is specified in
the sixth line of the code. In this case the initial value is (−1, 2):

phi[t_,y_] := formula;
VectorPlot[{1,phi[t,y]}, {t, -10, 10}, {y, -8, 8},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> {{-1,2}},
StreamScale -> Full,
StreamStyle -> {Black, Thick}]

B.8 Euler’s method for first-order equations
All this code is available in the file eulermethod.nb, available on my web page.

Code to generate the program “euler”

Run this block of code once each time you start Mathematica to define a program
called euler:

euler[f_, {t_, t0_, tn_}, {y_, y0_}, steps_] :=
Block[{told = t0, yold = y0, thelist = {{t0, y0}}, t, y, h},
h = N[(tn - t0)/steps];
Do[tnew = told + h;
ynew = yold + h *(f /.{t -> told, y -> yold});
thelist = Append[thelist, {tnew, ynew}];
told = tnew;
yold = ynew, {steps}];

Return[thelist];]
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Implementing Euler’s method

Once the above command is executed, you can then implement Euler’s method
with:

euler[formula, {t,t0, tn}, {y,y0}, n]

Here,
• (t0, y0) is the initial value;
• tn is the value of t where you want to estimate y (i.e. the ending value of t);
• n is the number of steps.

To get only the last point in the list (which is usually what you are most interested
in), tweak this command as follows:

euler[3y, {t,1,3}, {y,-1}, 400][[401]]

The number in the double brackets should always be one more than the num-
ber of steps.

Plotting the points coming from Euler’s method

Surround the euler command with ListPlot[ ]:

ListPlot[euler[3y, {t, 1,3}, {y, -1}, 400]]
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B.9 Picard’s method for first-order equations
You can also implement Picard’s method using Mathematica (although this was

not discussed in Chapter 1). To do this, run the following code in one cell:

f0[t_] = 0;
phi[t_,y_] = 2(1+y);
n = 12;
Do[f0[t_] = Integrate[phi[s,f0[s]], {s,0,t}], n];
f0[t]

In the command above:
• the first line contains the initial guess (which is in this case f0(t) = 0);
• the second line contains the formula for φ(t, y) (which is in this case φ(t, y) =

2(1 + y);
• the third line is the number of steps (i.e. this command will compute f12);
• the last two lines should not be changed.

B.10 Euler’s method for first-order 2× 2 and 3× 3 systems
All this code can be found in the file eulermethodsystems.nb, available on my

website.

Code to generate the program “euler2D”

This creates a program called euler2D which can be executed to implement Euler’s
method for a 2× 2 system:

euler2D[{f_, g_}, {t_, t0_, tn_}, {x_, x0_}, {y_, y0_}, steps_] :=
Block[{told = t0, xold = x0, yold = y0, thelist = {{t0, {x0, y0}}},

t, x, y, h}, h = N[(tn - t0)/steps];
Do[tnew = told + h;
xnew = xold + h*(f /. {t -> told, x -> xold, y -> yold});
ynew = yold + h*(g /. {t -> told, x -> xold, y -> yold});
thelist = Append[thelist, {tnew, {xnew, ynew}}];
told = tnew;
xold = xnew;
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yold = ynew, {steps}];
Return[thelist];]

Implementing Euler’s method for 2× 2 systems

Once the above command is executed, you can then implement Euler’s method
with:

euler2D[{formula for x′, formula for y′}, {t,t0, tn}, {x,x0}, {y,y0}, n]

To get only the last point in the list, add [[number]] to the end of the command,
where number is one more than n, the number of steps used.

To plot the points obtained, use a command like this:

ListPlot[Transpose[
euler2D[{y - x, x + y}, {t, 0, 3}, {x, 2}, {y, 0}, 3]][[2]],

PlotRange -> {{-5, 7}, {-2, 12}},
AspectRatio -> Automatic]

Code to generate the program “euler3D”

This creates a program called euler3D which can be executed to implement Euler’s
method for a 3× 3 system:

euler3D[{f_, g_, k_}, {t_, t0_, tn_}, {x_, x0_}, {y_, y0_}, {z_, z0_},
steps_] :=

Block[{told = t0, xold = x0, yold = y0, zold = z0,
thelist = {{t0, {x0, y0, z0}}}, t, x, y, z, h},

h = N[(tn - t0)/steps];
Do[tnew = told + h;
xnew = xold + h*(f /. {t -> told, x -> xold, y -> yold, z -> zold});
ynew = yold + h*(g /. {t -> told, x -> xold, y -> yold, z -> zold});
znew = zold + h*(k /. {t -> told, x -> xold, y -> yold, z -> zold});
thelist = Append[thelist, {tnew, {xnew, ynew, znew}}];
told = tnew;
xold = xnew;
zold = znew;
yold = ynew, {steps}];

Return[thelist];]
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Implementing Euler’s method for 3× 3 systems

Once the above command is executed, you can then implement Euler’s method
with:

euler3D[{formula for x′, formula for y′, formula for z′},
{t,t0, tn}, {x,x0}, {y,y0}, {z,z0}, n ]

To get only the last point in the list, add [[number]] to the end of the command,
where number is one more than n, the number of steps used.

To plot the points obtained, use a command like this:

ListPointPlot3D[Transpose[
euler3D[{x - z, y + x, y - x}, {t, 0, 3},

{x, 2}, {y, -2}, {z, 1},40]][[2]],
PlotRange -> {{-6, 6}, {-16, 2}, {-10, 4}},

AspectRatio -> Automatic]
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B.11 Slope fields for first-order 2× 2 systems
All this code can be found in the file phaseplanes.nb, available on my website.

Throughout this section, the assumption is that we are dealing with an au-
tonomous 2× 2 system of the form{

x′(t) = φ1(x, y)
y′(t) = φ2(x, y)

Otherwise, these commands are edited in a manner similar to how you would edit
the commands from Section A.7.

Code to sketch the slope field

Execute in a single Mathematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

Code to sketch the slope field and several solution curves

Execute in a single Mathematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> 35,
StreamScale -> Full,
StreamStyle -> Black]
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Code to sketch the slope field and a solution curve passing
through a specific point

Execute in a single Mathematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
VectorPlot[{phi1[x,y], phi2[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange,
StreamPoints -> {{-1,2}},
StreamScale -> Full,
StreamStyle -> Black]

Code to sketch phase planes (solution curves only; no
mini-tangent lines)

Execute in a single Mathematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
StreamPlot[{phi1[x,y], phi2[x,y]}, {x, -4, 4}, {y, -4, 4},
StreamPoints -> 100,
StreamStyle -> Black,
StreamScale -> Full]

Code to sketch a single solution curve (no mini-tangent lines)

Execute in a single Mathematica cell:

phi1[x_,y_] := x - y;
phi2[x_,y_] := x + 2y;
StreamPlot[{phi1[x,y], phi2[x,y]}, {x, -4, 4}, {y, -4, 4},
StreamPoints -> {{-1,2}},
StreamStyle -> Black,
StreamScale -> Full]
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C∞(R,R), 12
I , 119
Mn(R), 118
Mmn(C∞), 118
Mmn(R), 118
Mmn(C), 174
=(z), 174
<(z), 174
z, 174
exp(A), 153
C, 174
d× d linear system of ODEs, 131
et, Taylor series of, 153
i, 174
nth-order system of ODEs, 131
Mathematica cells, 311
Mathematica code for Euler’s method,

35, 328
Mathematica code for Euler’s method

(systems), 115, 330
Mathematica code for Picard’s method,

330
Mathematica code for eigenvalues and

eigenvectors, 169, 324
Mathematica code for matrix exponen-

tials, 169, 324
Mathematica code for matrix operations,

129, 324
Mathematica code for phase planes, 149,

333

Mathematica code for slope fields, 26,
28, 149, 327, 333

Mathematica notebook, 311
Mathematica, calculus commands, 315
Mathematica, commands for complex

numbers, 326
Mathematica, defining functions in, 314,

317
Mathematica, finding Taylor polynomi-

als, 315
Mathematica, graphing with, 314, 317
Mathematica, solving equations with,

316

absolute value (of a complex number),
176

addition (in a vector space), 11
addition (of matrices), 120
addition in C, 175
affine subspace, 71
amplitude, 238
argument (of a complex number), 177
arithmetic in C, 175
asymptotically stable (equilibrium), 45,

199
asymptotically unstable (equilibrium),

45, 199
attracting, 199
attracting (equilibrium), 45
autonomous (system), 144
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autonomous ODE, 41

basis, 137
bifurcation diagram, 53
bifurcation, pitchfork, 54
bifurcation, saddle-node, 53
bifurcation, transcritical, 55
bifurcations, 52
Bombelli, 173
Brahmagupta, 173

calculus with Mathematica, 315
capacitor, 96
Cardano, 173
carrying capacity, 50
cell (Mathematica), 311
center, 203
Chain Rule, 83
chaos theory, 247
characteristic equation, 227
classification of equilibria, 46
classification of equilibria (systems), 198,

200
coil, 96
compartmental models, 87, 207
complex conjugate, 174
complex eigenvalues, 180
complex number, 174
complex numbers in Mathematica, 326
complex numbers, arithmetic, 175
complex numbers, division, 177
complex numbers, geometry of, 176
complex numbers, history of, 173
complex numbers, multiplication of,

179
complex numbers, reciprocals of, 177
complex plane, 176
complex roots (of characteristic equa-

tion), 228
Complex Roots Theorem, 182
computing eigenvalues, 158
computing matrix exponentials, 155,

161

conjugate (of complex number), 174
constant-coefficient (system of ODEs),

131
constant-coefficient ODE, 18
cooling and heating models, 91, 92
corresponding homogeneous equation,

70
corresponding homogeneous system,

133
cosine (of a complex number), 178
coupled mass-spring systems, 242
cubic formula, 173
current (electrical circuit), 96
current law (electrical circuits), 95

damped (oscillator), 237
damped oscillator, example, 239
damping coefficient, 237
derivative of a matrix, 121
derivative, partial, 82
derivative, total, 198
determinant, 127
determinant of 1× 1 matrix, 128
determinant of 2× 2 matrix, 128
determinant of 3times3 matrix, 128
diagonal entries (of a matrix), 118
diagonal matrix, 118
diagonal matrix, exponential of, 156
diagonal matrix, powers of, 123
diagonalizable (matrix), 157
diagonalizing a matrix, 157
diagram, bifurcation, 53
differential operator, 17
differentiation of matrices, 121
dimension (of vector space), 137
disease spread, model, 211
division (in C), 177
division in C, 175
double pendulum, 246
driven (oscillator), 237
driven oscillator, example, 240

eigenvalue, 158
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eigenvalues and eigenvectors, Mathe-
matica code for, 169, 324

eigenvalues, complex, 180
eigenvalues, repeated, 187
eigenvector, 158
eigenvector, generalized, 190
electrical circuits, 95, 248
epidemiology, 211
equality (of matrices), 118
equation, characteristic, 227
equilibria (systems), classification of,

200
equilibria, classification of, 46
equilibria, classification of (systems),

198
equilibrium (of ODE), 42
equilibrium (systems), 144
Euler, 173
Euler’s formula, 179
Euler’s method (equations), 31, 32
Euler’s method (systems), 112
Euler’s method, Mathematica code for,

35, 115, 328, 330
Euler’s method, potential pitfall, 37
exact equation, 83
exact equation, solution of, 84
examples of ODEs, 5
Existence/Uniqueness Theorem for nth-

order linear equations, 224
Existence/Uniqueness Theorem for nth-

order linear systems, 225
Existence/Uniqueness Theorem for first-

order ODEs, 38
Existence/Uniqueness Theorem for first-

order systems, 117
exponential (of a complex number), 178
exponential (of a matrix), 153
exponential decay, 20, 21
exponential growth, 20, 21

Faraday’s Law, 96, 248
first-order linear equation, solution of,

71

first-order linear system, solution of,
67

functions in Mathematica, 314, 317
Fundamental Theorem of Algebra, 173

general solution (of an ODE), 8
general solution (of ODE), 8
generalized eigenvector, 190
graph of parametric equations, 110
graphing with Mathematica, 314, 317

heating and cooling models, 91, 92
history of complex numbers, 173
homogeneous (system of ODEs), 131
homogeneous ODE, 18
homogeneous, first-order linear equa-

tion, solution of, 62
Hooke’s Law, 236

identity matrix, 119
imaginary axis, 176
imaginary numbers, 173
imaginary part (of a complex number),

174
inductor, 96
infectives (SIR model), 211
infinitely differentiable (function), 12
initial value, 8
initial value (nth-order), 224
initial value problem, 8
initial value problem (nth-order), 224
integral equation, 39
integral equation (systems), 116
integrating factor, 66
inverse (of a matrix), 126
inverse of 1× 1 matrix, 126
inverse of 2× 2 matrix, 127
inverses, properties of, 126
invertible (matrix), 126
IVP, 8
IVP (nth-order), 224

Kirchoff’s Laws, 248
Kirchoff’s laws, 95
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limiting capacity, 50
linear differential operator, 17
linear numerical systems, characteri-

zation of, 125
linear ODE, 18
linear operator, 13
linear operators on Rd, characteriza-

tion of, 125
linear system of numerical equations,

117
linear system of ODEs, 131
linear systems, structure of solution set,

143
linear transformation, 13
linearization, 245
linearly dependent, 137
linearly independent, 137
logistic equation, 50
logistic equation, solution of, 80
logistic population model, 87
Lotka-Volterra equations, 209
lower triangular, 119

Malthusian population model, 87
mass-spring systems, 236
mass-spring systems, coupled, 242
matrix, 118
matrix addition, 120
matrix derivative, 121
matrix exponential, 153
matrix exponential of diagonal matrix,

156
matrix exponentials, Mathematica code

for, 169, 324
matrix exponentials, computing, 155,

161
matrix multiplication, 121
matrix operations on Mathematica, 129,

324
matrix operations, properties of, 123
matrix scalar multiplication, 120
matrix, diagonal, 118

method of successive approximations
(equations), 39, 116

mini-tangent line, 24
mixing problems (one tank), 89
mixing problems (two tanks), 207
modulus (of a complex number), 176
multiplication (in C), 179
multiplication in C, 175
multiplication of matrices, 121

nth order (ODE), 8
nth order differential operator, 17
neutral, 199
neutral (equilibrium), 46
Newton’s Law of Cooling and Heat-

ing, 91
Newton’s Second Law (of motion), 90
Newtonian mechanics, 90
node, stable, 202
node, unstable, 202
nonlinear ODE, 18
norm (of a complex number), 176
notation for systems of ODEs, 110
notebook (Mathematica), 311
numerical analysis, 30
numerical method, 30

ODE, definition of, 5
ODEs, examples of, 5
Ohm’s Law, 96, 248
operator, 13
operator, differential, 17
operator, linear, 13
order (of an ODE), 8
ordinary differential equation, defini-

tion of, 5
oscillator, 237
overdamped (oscillator), 239, 240

parameter, 52
parametric equations, 109
parametric equations, graph of, 110
partial derivative, 82
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partial differential equation, 9
particular solution (of an ODE), 8
particular solution (of ODE), 8
PDE, 9
pendulum equation, undamped, 245
pendulum, double, 246
pendulum, single, 244
phase line, 43
phase plane, 147
phase planes, Mathematica code for, 149,

333
phase shift, 238
Picard’s method (equations), 39, 116
Picard’s method, Mathematica code for,

330
pitchfork bifurcation, 54
plane, trace-determinant, 205
polar coordinates (of a complex num-

ber), 177
population model, logistic, 87
population model, Malthusian, 87
powers of a diagonal matrix, 123
predator-prey model, 108
predator-prey systems, 209
product (of matrices), 121
properties of matrix exponentials, 153
properties of matrix inverses, 126
properties of matrix operations, 123
proportionality constant, 21
pure imaginary number, 174

quadratic formula, 173

rate (of exponential growth/decay), 21
rate of reproduction (logistic equation),

50
RC circuit, 96
real axis, 176
real part (of a complex number), 174
real vector space, 11
reciprocals (in C), 177
recovered (SIR model), 211
reduction of order, 221

repeated eigenvalues, 187
repeated roots (of characteristic equa-

tion), 229
repelling (equilibrium), 45
resistor, 96
RL circuit, 97
RLC circuit, 248

saddle, 203
saddle-node bifurcation, 53
scalar, 11
scalar multiplication, 11
scalar multiplication (of matrices), 120
semistable (equilibrium), 46, 199
separable (ODE), 76
separation of variables, 76
simple harmonic motion, 246
simple oscillator, 237
simple oscillator, solution of, 238
sine (of a complex number), 178
single pendulum, 244
sink, 45, 199
SIR model, 211
slope field, 24
slope fields (2× 2 systems), 145
slope fields, Mathematica code for, 26,

28, 149, 327, 333
slope fields, reading pictures of, 27
solution (of a system), 109
solution of first-order linear system,

67
solution of general first-order linear equa-

tion, 71
solution of homogeneous, first-order

linear equation, 62
solving equations with Mathematica, 316
solving exact equations, 86
solving first-order linear ODEs, 67
solving separable ODEs, 77
source, 45
span (of a collection of vectors), 135
span (of a single vector), 63
span (of a vector), 135
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spiral, stable, 202
spiral, unstable, 203
square (matrix), 118
stable (equilibrium), 45, 199
stable node, 202
stable spiral, 202
step size, 112
step size (in Euler’s method), 32
structure of solution set of a linear sys-

tem, 143
subspace, 63, 134
successive approximations (equations),

39, 116
susceptibles (SIR model), 211
system of numerical equations, matrix

language, 124
system of ODEs, linear, 131
systems, notation for, 110

Taylor polynomials, computing with
Mathematica, 315

Taylor series of et, 153
total derivative, 198
trace, 119
trace-determinant plane, 205
transcritical bifurcation, 55
transformation, linear, 13
triangular, 119

undamped (oscillator), 237
undamped pendulum equation, 245
underdamped (oscillator), 239
undetermined coefficients, 72, 75
undetermined coefficients (nth-order equa-

tions), 230
undetermined coefficients (systems), 196
unstable (equilibrium), 45, 199
unstable node, 202
unstable spiral, 203
upper triangular, 119

variation of parameters, 232, 234
vector, 11

vector field, 24
vector field with solution curve through

specified initial value, Mathe-
matica code, 28, 328

vector field with solution curves, Math-
ematica code, 28, 327

vector field, Mathematica code, 26, 327
vector field, interpretation of, 27
vector space, 11
voltage, 96
voltage law (electrical circuits), 95

Wronskian, 138
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