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Chapter 1

Probability spaces

1.1 The big picture
FIRST QUESTION

What is probability?

Some history of probabiity

Pascal & Fermat (1654): correspondence regarding fair odds in games of chance

Bernoulli (1713), de Moivre (1718): basic laws of discrete probability

Boltzmann (1896), Gibbs (1902): statistical mechanics of gases expressed in terms
of the random motion of large numbers of particles

Kolmogorov (1933): formal, mathematical foundation of the subject

Black-Scholes (1973): application of probability to pricing of derivatives
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1.1. The big picture

General setup of probability

1. You intend to perform an experiment which has different possible outcomes.

2. Use mathematical language to predict frequencies of these outcomes under rep-
etitions of the experiment.

MOTIVATING EXAMPLES

1. Roll a die repeatedly, and record the number you roll (the number is the
outcome).

In this setting, you might be interested in knowing things like:

• What is the likelihood (a.k.a. probability) you will roll a 4 on the third
roll?

• What is the probability you will roll between nine and twelve 4s if you
roll the die 60 times?

• How many rolls on the average will it take you until you roll a 4 for the
eighth time?

• What is the probability you eventually roll nineteen 5s in a row?
• What is the probability that the sum of the first 200 numbers you roll is

less than 650?

2. A driver will be involved in a random number of accidents over the course
of a year, and each of these accidents will cause a random amount of damage
to his/her car.

• How long will it take (on the average) for the driver to be involved in
three accidents?

• What is the probability the driver can be accident-free for at least six
years?

• What is the probability the driver will cause more than $3000 worth of
damage over the course of two years?

• What is the smallest number A such that you can be 99% sure that the
driver will cause less than $A worth of damage over the next three
years?

• What amount of damage should the driver expect (on the average) to
cause over the course of a year?

Probability is the branch of mathematics which solves these types of questions. To
solve them, and questions like them, we will

1. learn about a bunch of common models for probabilistic problems, and

2. learn the general theory of arbitrary probabilistic models.

7



1.2. Probability spaces

Both the common models and the general theory involves mastery of three inter-
twining mathematical concepts: probability spaces, random variables and stochastic
processes. Loosely speaking:

1. a probability space is a structure on which one can formulate a mathematically
legal method of computing probability;

2. a random variable is a measured quantity arising randomly as the result of
some experiment (like the number you roll or the amount of damage done in
an accident);

3. a stochastic process is a collection of random variables indexed by time (like the
running total of the numbers you roll or the running amount of total damage
done by the driver or the price of a stock).

1.2 Probability spaces
RECALL

We seek mathematical language to describe probabilistic experiments.

Definition 1.1 (Outcomes, sample spaces and events)

1. Any single possible result of a probabilistic experiment is called an outcome.

2. The set of all possible outcomes is called the sample space. This set is usually
denoted Ω.

3. Any “observable” (more on what “observable” means later) subset of the sample
space is called an event. Events are usually denoted by capital letters like A, B,
E, F , etc.

Notice that definitions (2) and (3) above contain the words set and subset. So to
understand these definitions, we need to review some material about sets.

8



1.2. Probability spaces

Sets

Definition 1.2 (Basic language associated to sets)

1. A set is any definable collection of objects. Sets are usually denoted by capital
letters.

2. The members of a set are called elements of the set; if x is an element of set A
then we write x ∈ A. If x is not an element of A, we write x /∈ A.

3. If every element of set E is also an element of set F , we say E is a subset of F
and write E ⊆ F or F ⊇ E.

4. Two sets E and F are said to be equal if E ⊆ F and F ⊆ E, in which case we
write E = F .

5. The empty set, denoted ∅, is the set with no elements.

Remarks:

1. the key word in part (1) of the above definition is “definable”. This basically
means that the set can be described without creating any kind of logical con-
tradiction. For more on a collection which isn’t definable, Google “Russell’s
paradox”.

2. To say two sets are equal means that they contain exactly the same elements.

3. Note the difference between “∈” and “⊆”: the first symbol should be pre-
ceded by an element; the second symbol should be preceded by a subset.

4. There is only one empty set, so we say “the empty set”, not “an empty set”.

Venn diagrams

A useful way to think about sets is to draw pictures called Venn diagrams. To draw
a Venn diagram, traditionally you represent each set you’re thinking about by a
circle (or an oval, or a square, or a rectangle, or some other shape); think of an object
as being an element of the set if and only if it is inside the shape corresponding
to the set. For example, a Venn diagram for the set A = {3, 5, 7, 9, 11} might be
something like

1 3 5 7 9 11

2 4 6 8 10 12

A

9



1.2. Probability spaces

because the box describingA contains exactly the elements ofA (nothing more and
nothing less). Similarly, a Venn diagram representing three sets A, B and C might
be something like

1 3 5 7 9 11

2 4 6 8 10 12

AC
B

Here, this Venn diagram tells us that statements like these are all true:

3 ∈ A 10 /∈ B 2 ∈ B C ⊆ A B ̸⊆ A.

In probability, the sample space Ω is the “universal set” containing all possible
outcomes of the experiment, so in any of our Venn diagrams, we can draw a box
containing “everything” and label that box Ω.

Also, in probability our Venn diagrams tend to be more abstract (since we don’t
actually have a list of elements of our sets), so they look more like these:

To show
one event E:

E

Ω

E

Ω

To show
two events
E and F :

E F

Ω

E

F

Ω

To show
three events
E, F and G:

E F

G
Ω

E

F

G

Ω

The more useful pictures in probability tend to be the ones drawn on the right
above.
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1.2. Probability spaces

Set-builder notation

We often describe sets with “set-builder” notation. For instance, to say something
like

E = {x ∈ R : 2 < x ≤ 5}
means (in English) that E is the set of real numbers x such that 2 < x ≤ 5 (in other
words, E is the interval (2, 5]).
A picture of this E would look something like this:

Set operations

Next, we want to discuss some operations on sets which arise naturally when de-
scribing results of an experiment:

Definition 1.3 (Complements) Given an event E, the event “E does not occur” is
the complement of E and is denoted Ec, EC , E ′, Ω − E, Ẽ, E (and other ways as
well).

E

Ω

E

Ω

Definition 1.4 (Unions) Given two events E and F , the event “E or F or both
happen” is the union of E and F and is denoted E ∪ F .

E F

Ω

E EC

F

FC

Ω

Given a bunch of events Eα indexed by α, the union of these events, denoted
⋃
α
Eα, is

the event that at least one of the Eα occur.
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1.2. Probability spaces

Definition 1.5 (Intersections) Given two events E and F , the event “E and F both
happen” is the intersection of E and F and is denoted E ∩ F .

E F

Ω

E EC

F

FC

Ω

Given a bunch of events Eα indexed by α, the intersection of these events, denoted⋂
α
Eα, is the event that all of the Eα occur.

Definition 1.6 (Mutual exclusivity) Two events E and F are called mutually ex-
clusive or disjoint if they cannot both occur, i.e. if E ∩ F = ∅.

E F

Ω

E EC

F

FC

Ω

∅

Definition 1.7 (Differences) Given two events E and F , the event “E occurs, but
not F” is the difference of E and F . This difference is denoted E − F (also E\F ).

E F

Ω

E EC

F

FC

Ω

Notice that E − F = E ∩ FC .
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1.2. Probability spaces

EXAMPLE 1
Let E = [0, 3], let F = (−∞, 2), and let G = [1,∞). Describe each of these sets:

1. E ∪ F

2. EC ∩G

3. F −G

4. E − F

5. (F ∪G)C

More examples of this vocabulary can be found on the next page:
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1.2. Probability spaces

EX
PER

IM
EN

T
SA

M
PLE

SPA
C

E
O

U
TC

O
M

ES
EX

A
M

PLES
O

F
EV

EN
TS

DISCRETE PROBABILITY
(countably many outcomes)

FINITELY MANY OUTCOMES

Toss
a

coin

R
olla

die
Ω

=
{1,2

,3
,4

,5,6}
1,2

,3
,...,6

n
↔

rolling
n

face
up

∅
=

rolling
a

7
E

=
{1,3,5}

=
rolling

an
odd

num
ber

F
=
{2,3,5}

=
rolling

a
prim

e
num

ber

∞MANY OUTCOMES

Flip
a

coin
over

and
over

until
you

flip
a

heads;
record

the
#

offlips

CONTINUOUS
PROBABILITY

R
ecord

the
am

ountof
tim

e
(starting

now
)until

your
phone

rings

Ω
=

[0,∞
)

E
=

[0,5]=
your

phone
rings

w
ithin

5
m

inutes
F

=
Q

=
your

phone
rings

in
a

rational
am

ountoftim
e
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1.2. Probability spaces

Observability and the definition of a probability space

Start with a sample space Ω, which is just a mathematical set. We want to describe
“observable” subsets of Ω, that is, subsets which we can distinguish.

Some philosophy: I.

II.

Given these philosophical constraints, nothing mathematical “forces” an event to
be observable. We are allowed (in the most general sense) to choose a collection F
of subsets of Ω which obey I and II above and decree the subsets belonging to F to
be observable. The idea is that our choice of F should be a list of observable sets
which appropriately models the problem at hand.

(It turns out that there are only two reasonable choices of F in MATH 414, but
things get more interesting in MATH 416.)

Definition 1.8 Let Ω be a set. A nonempty collection F of subsets of Ω is called a
σ−algebra (a.k.a. σ−field) if

1. F is “closed under complements”, i.e. whenever E ∈ F , EC ∈ F .

2. F is “closed under finite and countable unions and intersections”, i.e. whenever
E1, E2, E3, ... ∈ F , both

⋃
j
Ej and

⋂
j
Ej belong to F as well.

A subset E of Ω is called F−measurable (or just measurable) if E ∈ F .

The phrases “event”, “measurable set” and “observable set” are synonyms.

Theorem 1.9 Let F be a σ−algebra of subsets of Ω. Then ∅ ∈ F and Ω ∈ F .

PROOF By definition, F is nonempty.
Therefore, there is some set E which belongs to F .
Since F is closed under complements, EC is also in F .
Now, since F is closed under finite intersections, E ∩ EC = ∅ ∈ F .
Also, since F is closed under finite unions, E ∪ EC = Ω ∈ F . □

15



1.2. Probability spaces

EXAMPLES OF σ-ALGEBRAS

Suppose you have a six-sided die where the sides are labeled with a red 1, a red 2,
a red 3, a green 1, a green 2, and a green 3. Roll the die once and let Ω be the set of
outcomes, i.e.

Ω = { , , , , , } = {R1, R2, R3, G1, G2, G3}.
Let’s look at some σ−algebras on Ω.

1. Suppose a blind man rolls the die. He can tell whether the die has been
rolled (by the sound), but has no idea what number is rolled. Thus the only
sets he can observe are ∅ (the die hasn’t been rolled) and Ω (the die has been
rolled. He cannot observe the set {R1, R2} or {R1, G3}, because to determine
whether or not the outcome lies in that set, he would have to see the die.

The σ−algebra representing the subsets a blind person can see is F = {∅,Ω} .

(Notice that this collection F of sets is a σ−algebra, meaning that it is closed
under complements, countable unions and countable intersections.)

2. Suppose a red-green colorblind person rolls the die. She can observe sets like
{R1, G1}, because to determine whether the outcome is in that set she only
needs to see that the top face of the die has one spot. But she can’t observe
sets like {R1}, because she can’t tell the background color of the face (so she
can’t distinguish between and ).

The σ−algebra F representing the subsets a colorblind person can see can’t
be easily listed, but can be described as follows:

F is the collection of sets E satisfying this property:
Rj ∈ E if and only if Gj ∈ E, for all j ∈ {1, 2, 3}.

(Notice that this F is also a σ−algebra, since it is closed under complements,
countable unions and countable intersections.)

3. Suppose a person with 20/20 vision rolls the die. She can distinguish any
outcome. Thus the σ−algebra F representing the subsets she can see is
the collection of all subsets of Ω . (F is clearly closed under complements,
countable unions and countable intersections).

Examples 1 and 3 above generalize:

Definition 1.10 Let Ω be any set.

• F = {∅,Ω} is a σ−algebra called the trivial σ−algebra on Ω.

• The collection of all subsets of Ω, called the power set of Ω and denoted 2Ω, is
a σ−algebra on Ω.
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1.2. Probability spaces

Fact If the sample space Ω is finite or countable (including all cases
where Ω ⊆ Z), then we can decree F to be the power set of Ω and
never have a problem. Thus every subset of a finite or countable
sample space can be thought of as measurable.

Next, we want to calculate the probability of measurable sets:

More philosophy: Given a set Ω and a σ−algebra F :

I.

II.

III.

Given these philosophical constraints, nothing else mathematical is forced on us.
We are free to choose any assignment of probabilities to events that satisfies these
rules. Our choice should appropriately model the context of the original problem.

Definition 1.11 Given a set Ω and a σ−algebra F of subsets of Ω, a probability
measure on (Ω,F) is a function P : F → R satisfying

1. P is normalized, meaning P (Ω) = 1;

2. P is positive, meaning P (E) ≥ 0 for all E ∈ F ;

3. P is countably additive on disjoint sets, meaning that if E1, E2, ... ∈ F are

all mutually disjoint, then P

⋃
j

Ej

 =
∑

j

P (Ej).

Note: Statement (3) above necessarily implies that if there are infinitely many j
with P (Ej) > 0, then the infinite series

∑
j
P (Ej) must converge.

17



1.2. Probability spaces

Definition 1.12 A probability space is a triple (Ω,F , P ) where Ω is a set (called
the sample space), F is a σ−algebra on Ω (members of F are called events) and P
is a probability measure on (Ω,F).

EXAMPLE 2
Describe a probability space which represents the result when a fair coin is tossed.

Important
Remark

If the sample space Ω is finite or countable (including all
situations where Ω ⊆ Z), then we can define P : F → R by
writing down P (ω) for each ω ∈ Ω.

This is because for any event E, we can set P (E) =
∑
ω∈E

P (ω).

EXAMPLE 3
Suppose you roll a weighted die where 3 and 4 are three times as likely to appear
as any of the other four numbers (3 and 4 are equally likely to occur). Describe a
probability space which represents this experiment.

18



1.2. Probability spaces

EXAMPLE 4
Flip a fair coin repeatedly until a tail lands for the first time. Describe a probability
space which records the number of flips, and verify that you have constructed a
probability space.

19



1.2. Probability spaces

Observability in uncountable sample spaces
EXAMPLE 5

Choose a real number from the interval [0, 1] with all numbers “relatively equally
likely”. What is a probability space that models this problem?

Even more philosophy:

Definition 1.13 Given any interval Ω of finite length (Ω does not have to be closed):

1. There is a σ−algebra L(Ω) of subsets of Ω called the Lebesgue σ−algebra
which includes all intervals, all single points, and all countable unions of inter-
vals, and

2. furthermore, there is a probability measure P on (Ω, L(Ω)) which assigns the
probability of any interval to be its normalized length:

E Ω

a bα β


P (E) = length(E)
length(Ω) = β − α

b− a
.

This (Ω, L(Ω), P ) is a probability space called the uniform distribution or normal-
ized Lebesgue measure on Ω.

Fact You cannot take F to be the power set of Ω and obtain a probability
measure on (Ω, 2Ω) which assigns the probability of any interval to
be its normalized length.
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1.2. Probability spaces

Thus if the sample space of some experiment is represented by an interval of real
numbers, and if we are going to compute probabilities in a reasonable way, we
must assume that there are some sets which are not observable. It is beyond the
scope of MATH 414 and 416 to actually characterize such a set; if you are inter-
ested, do a Google search for Vitali set. Fortunately, non-measurable sets do not
arise in any real world applications of probability, so we will ignore this issue for
the rest of the course.

EXAMPLE 6
Pick a number X from [−2, 6) with the uniform distribution (i.e. pick the number
“uniformly”).

1. What is the probability that X < 0?

2. What is the probability that X = 1?

3. What is the probability that X < 0 or X > 5?

The idea of a uniform distribution generalizes to higher dimensions. The big dif-
ference is that we have to use a different notion of the “size” of a set:

dimension d notion of “size” how the “size” is computed

1 (i.e. R) length by subtracting endpoints

2 (i.e. R2)

3 (i.e. R3)

> 3 (i.e. Rd)

21



1.2. Probability spaces

Definition 1.14 Given any set Ω ⊆ Rd whose size is finite, there is a σ−algebra L(Ω)
on Ω and a probability measure P on (Ω, L(Ω)) such that

1. L(Ω) contains all subsets of Ω whose volume is calculable using integrals;

2. (Ω, L(Ω), P ) is a probability space;

3. If E ∈ L(Ω), then P (E) = size(E)
size(Ω) .

This (Ω, L(Ω), P ) is called the uniform distribution or normalized Lebesgue
measure on Ω, and L(Ω) is called the Lebesgue σ−algebra on Ω .

EXAMPLE 6
Pick a point (X, Y ) from the square with vertices (0, 0), (2, 0), (0, 2) and (2, 2) uni-
formly.

1. What is the probability that Y ≥ X?

2. What is the probability that Y = 2X?

3. What is the probability that Y < X2?
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1.3. Elementary properties of probability spaces

Summary so far

• A probability space is a triple, consisting of

– a sample space Ω (the set of all outcomes);
– a σ−algebra F (the collection of measurable sets, closed under comple-

ments, countable unions and countable intersections);
– and a probability measure P on (Ω,F) (P is a function which measures

the probability of each measurable set; P must be normalized, positive,
and countably additive on disjoint sets).

• If the sample space Ω is finite or countable, we can always decree every subset
of Ω to be measurable (i.e. set F = 2Ω) and can define P as a function on
outcomes, rather than a function on events.

• If the sample space Ω is a subset of Rd, we generally set F = L(Ω), the
Lebesgue σ−algebra on Ω. This σ−algebra contains all reasonable subsets
of Ω, but not all subsets of Ω.

• To calculate probabilities associated to uniform choices of numbers or points,
we compute lengths/areas/volumes as appropriate.

1.3 Elementary properties of probability spaces
RECALL

A probability space is a triple (Ω,F , P ) where F is a σ−algebra of subsets of Ω and
P is a function from F to R so that P is

1.

2.

3.

We are now going to derive a long list of properties which hold in any probabil-
ity space. They are called elementary properties of probability spaces, because they
follow from the definition of a probability space without introducing other deep
mathematical ideas.
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1.3. Elementary properties of probability spaces

Theorem 1.15 (Complement Rule) Let (Ω,F , P ) be a probability space. Then, for
any event E, P (EC) = 1− P (E).

PROOF E and EC are disjoint and E ∪ EC = Ω, so by additivity of P , we have

1 = P (Ω) = P (E ∪ EC) = P (E) + P (EC).

Subtract P (E) from both sides of this equation to get the result. □

Theorem 1.16 (Maximum/minimum probability) Let (Ω,F , P ) be a probability
space. Then for any event E, P (E) ∈ [0, 1].

PROOF By definition, P (E) ≥ 0.
By the complement rule, P (E) = 1− P (EC).
Since P (EC) ≥ 0, that means P (E) ≤ 1. □

Theorem 1.17 Let (Ω,F , P ) be a probability space. Then P (∅) = 0.

PROOF Apply the Complement Rule to E = Ω. □

WARNING: P (E) = 0 does not imply E = ∅.

Theorem 1.18 (Monotonicity) Let (Ω,F , P ) be a probability space, and let E and
F be events. If E ⊆ F , then P (E) ≤ P (F ).

PROOF HW (as a hint, start by writing F as F = E ∪ (F ∩ EC).) □

Theorem 1.19 (De Morgan Law) Let (Ω,F , P ) be a probability space, and let Ej

be an event for all j. Then P

⋃
j

Ej

 = 1− P
⋂

j

EC
j

.

PROOF We will first show ⋃
j

Ej

C

=
⋂
j

EC
j

and then apply the Complement Rule.

24



1.3. Elementary properties of probability spaces

Recall from the previous page that we wanted to show

⋃
j

Ej

C

=
⋂
j

EC
j .

To do this, observe

ω ∈

⋃
j

Ej

C

⇐⇒ ω is not in
⋃
j

Ej

⇐⇒ ω is not in at least one of the Ej

⇐⇒ ω is in none of the Ej

⇐⇒ ω is in all of the EC
j

⇐⇒ ω ∈
⋂
j

(
EC

j

)
. □

Theorem 1.20 (Inclusion-Exclusion) Let (Ω,F , P ) be a probability space, and let
E and F be events. Then

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

PROOF Start with a Venn diagram, and label each compartment of that Venn dia-
gram with a lowercase letter representing the probability of that compartment:

E

F

Ω
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1.3. Elementary properties of probability spaces

Theorem 1.21 (Bonferonni Inequality) Let (Ω,F , P ) be a probability space, and
let E and F be events. Then P (E ∩ F ) ≥ P (E) + P (F )− 1.

PROOF HW (as a hint, use Theorems 1.16 and 1.20). □

Theorem 1.22 (General subadditivity) Let (Ω,F , P ) be a probability space, and
let E and F be events. Then P (E ∪ F ) ≤ P (E) + P (F ).

PROOF By Inclusion-Exclusion, P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).
Since P (E ∩F ) ≥ 0, P (E ∪F ) ≥ P (E)−P (F )− 0 = P (E) +P (F ) as wanted. □

Theorem 1.23 (General subadditivity) Let (Ω,F , P ) be a probability space, and

let E1, E2, E3, ... be events. Then P

⋃
j

Ej

 ≤∑
j

P (Ej).

PROOF Follows from Theorem 1.22 and induction on j. □

Theorem 1.24 (Continuity of probability measures I) Let (Ω,F , P ) be a proba-
bility space, and let E1, E2, E3, ... be events with E1 ⊆ E2 ⊆ .... Let E =

⋃
j

Ej . Then

P (E) = lim
j→∞

P (Ej).

PROOF The first step of this proof is to “disjointify” the Ej .
This means we will define a sequence of sets F1, F2, F3, ... with two properties:

• The sets Fj are disjoint.

•
⋃
j

Fj =
⋃
j

Ej .

E1
E2

E3

E4

E =
j
E j
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1.3. Elementary properties of probability spaces

Theorem 1.25 (Continuity of probability measures II) Let (Ω,F , P ) be a prob-
ability space, and let E1, E2, E3, ... be events with E1 ⊇ E2 ⊇ E3 ⊇ .... Let
E =

⋂
j

Ej . Then P (E) = lim
j→∞

P (Ej).

PROOF From the hypothesis, EC
1 ⊆ EC

2 ⊆ EC
3 ⊆ .... Therefore

P (E) = 1− P (EC)

= 1− P
(
⋂
j

Ej)C

 (by definition of E)

= 1− P
⋃

j

(EC
j )
 (by De Morgan)

= 1− lim
j→∞

P (EC
j ) (by Continuity I)

= 1− lim
j→∞

[1− P (Ej)] (by the Complement Rule)

= 1− 1+ lim
j→∞

P (Ej)

= lim
j→∞

P (Ej). □

Applications
EXAMPLE 7

Assume A ∪B = Ω, P (A ∩BC) = 1
4 and P (AC) = 1

3 . Find P (B).
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1.3. Elementary properties of probability spaces

EXAMPLE 8
Suppose events J , K and L in a probability space are such that

P (J) = .5, P (K) = .4, P (L) = .3 and P (J ∪K ∪ L) = .9.

If J and L are mutually exclusive and P (K ∩L) is twice P (KC ∩L), what is P (J −
K)?

J JC

K

KC L

Ω

EXAMPLE 9
The chance you lose your umbrella is at least 80%. The chance you lose your glasses
is at least 75%. The chance you lose your keys is at least 60%. What is the minimum
chance you lose all three items?
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1.3. Elementary properties of probability spaces

Generalized Inclusion-Exclusion
RECALL

Theorem 1.20 (Inclusion-Exclusion) above says:

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

QUESTION

Can you say something similar about P (E ∪ F ∪G)?

Theorem 1.26 (3-way Inclusion-Exclusion) Let (Ω,F , P ) be a probability space,
and let E,F and G be events. Then

P (E ∪ F ∪G) = P (E) + P (F ) + P (G)
− P (E ∩ F )− P (E ∩G)− P (F ∩G)
+ P (E ∩ F ∩G).

PROOF Start with a Venn diagram:

E

F

G

Ω
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1.3. Elementary properties of probability spaces

QUESTION

What about P (E1 ∪ E2 ∪ E3 ∪ ... ∪ En)?

Theorem 1.27 (General Inclusion-Exclusion) Let (Ω,F , P ) be a probability space,
and let E1, E2, E3, ..., En be events. Then

P

 n⋃
j=1

Ej

 = S1 − S2 + S3 − S4...± Sn =
n∑

r=1
(−1)r+1Sr

where
Sr =

∑
1≤i1<i2<...<ir≤n

P (Ei1 ∩ Ei2 ∩ ... ∩ Eir) .

30



1.3. Elementary properties of probability spaces

EXAMPLE 10
Suppose that there are three risk factors which affect the chance one will contract
a certain disease. Suppose that for any one risk factor, the probability that a ran-
domly chosen person has any one particular risk factor is .45. Suppose that for any
two risk factors, the probability that a randomly chosen person has those two risk
factors is .2, and suppose that the probability that a person has all three risk factors
is .07. What is the probability that a person has none of the three risk factors?
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1.4. Conditional probability and independence

1.4 Conditional probability and independence
MOTIVATING EXAMPLE

Suppose you roll two fair dice. What is the probability that you roll two numbers
that sum to 10?

1 2 3 4 5 6

↔ 1

2

3

4

↔ 5

6

A CHANGE TO THE MOTIVATING EXAMPLE

Again, roll two fair dice. What is the probability that you roll two numbers that
sum to 10, given that at least one die roll is a 6?

When you are asked to compute the probability of one event given that another
one occurs, the quantity you compute is called a conditional probability:
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1.4. Conditional probability and independence

Definition 1.28 Let (Ω,F , P ) be a probability space, and let E and F be events with
P (F ) > 0. The conditional probability ofE given F , denoted P (E |F ), is defined
as

P (E |F ) = P (E ∩ F )
P (F ) .

The definition of conditional probability can be rearranged by multiplying through
the equation in Definition 1.28 by P (F ) to obtain

Theorem 1.29 (Multiplication Principle) Let (Ω,F , P ) be a probability space, an
let E and F be events with P (F ) > 0. Then

P (E ∩ F ) = P (F ) · P (E |F )
= P (E) · P (F |E).

P (intersection) = P (first set) · P (second set | first set).

This law is useful for computing probabilities like these, which come from experi-
ments that have multiple stages or steps:

EXAMPLE 11
A jar contains 8 marbles, 3 of which are red. If you draw 2 marbles from the jar (one
at a time, without replacement), what is the probability that both of the marbles
you draw are red?
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1.4. Conditional probability and independence

Independence

Definition 1.30 Let (Ω,F , P ) be a probability space, and let E and F be events. E
and F are said to be independent if P (E ∩ F ) = P (E) · P (F ).

If E and F are independent, we write E ⊥ F . Otherwise we write E ̸⊥ F .

Consequences of this definition

Lemma 1.31 Let (Ω,F , P ) be a probability space, and let E and F be events. If
P (E) = 0 or P (E) = 1, then E ⊥ F .

(So in particular, ∅ ⊥ F and Ω ⊥ F for any event F .)
Furthermore, if E ⊥ E, then P (E) = 0 or P (E) = 1.

PROOF We’ll prove here that if P (E) = 0, then E ⊥ F .
Towards that end, suppose P (E) = 0.
Therefore, since E ∩ F ⊆ E, P (E ∩ F ) = 0.
Therefore P (E ∩ F ) = 0 = 0P (F ) = P (E)P (F ), so E ⊥ F by definition.
Proofs of the other statements in this lemma are HW. □

Lemma 1.32 Let (Ω,F , P ) be a probability space, and let E and F be events with
P (E) > 0 and P (F ) > 0. Then, the following three statements are equivalenta:

1. E ⊥ F

2. P (E |F ) = P (E)

3. P (F |E) = P (F )
aTo say statements are equivalent means that if any one of them are true, the others are

true, and if any one of them is false, the others are false. We use the symbol ⇐⇒ in between
statements that are equivalent.

PROOF This follows from basic algebra:

P (E |F ) = P (E) ⇐⇒ P (E ∩ F )
P (F ) = P (E)

⇐⇒ P (E ∩ F ) = P (E)P (F ) ⇐⇒ E ⊥ F

⇐⇒ P (E ∩ F )
P (E) = P (F )

⇐⇒ P (F |E) = P (F ) . □

Lemma 1.32 is interpreted like this: to say that two events are independent means
heuristically that the probability that either event occurs is not affected by know-
ing whether or not the other event occurs.
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1.4. Conditional probability and independence

Lemma 1.33 Let (Ω,F , P ) be a probability space, and let E and F be events. Then,
the following five statements are equivalent (HW):

1. E ⊥ F

2. F ⊥ E

3. E ⊥ FC

4. EC ⊥ F

5. EC ⊥ FC

PROOF HW

EXAMPLE 12
Roll two fair dice. Let E be the event that you roll at least one 6, and let F be the
event that you roll a total of at least 10. Are E and F independent? Give a heuristic
justification of your answer, and then justify your answer algebraically.

EXAMPLE 13
Flip a fair coin six times consecutively. Compute the probability that out of the
first, fourth and flips, at least one of those flips is heads.
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1.4. Conditional probability and independence

Pairwise and mutual independence

Definition 1.34 Let (Ω,F , P ) be a probability space, and let E1, ..., En be events.
The events E1, ..., En are called pairwise independent if Ei ⊥ Ej for any i ̸= j.

Heuristic interpretation: To say events are pairwise independent means that know-
ing whether or not any one of the events occurring does not, by itself, affect the
likelihood of any one other event.

Definition 1.35 Let (Ω,F , P ) be a probability space, and let E1, ..., En be events.
The events E1, ..., En are called mutually independent (or just independent) if
for any subset J ⊆ {1, ..., n},

P

⋂
j∈J

Ej

 =
∏
j∈J

P (Ej).

Heuristic interpretation: To say that a collection of events is independent means
that knowing whether or not any subcollection of events occur does not affect the
likelihood of any other collection of events (including any other single event) oc-
curring.

(Mutual) independence implies pairwise independence, but not the other way
around, as we see in this example:

EXAMPLE 14
Let Ω = {1, 2, 3, 4} have the uniform distribution. Let E = {1, 2}, F = {1, 3} and
G = {2, 3}. Are E,F,G pairwise independent? Are E,F,G independent?
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1.4. Conditional probability and independence

EXAMPLE 15

Let Ω = [0, 1] × [0, 1] have the uniform distribution. Let E =
[
0, 1

2

]
× [0, 1], F =

[0, 1]×
[
0, 1

2

]
and G =

(
[0, 1]×

[
0, 1

4

])
∪
(

[0, 1]×
[1
2 ,

3
4

])
.

1. Are E,F,G pairwise independent?

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

2. Are E,F,G independent?

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1
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1.4. Conditional probability and independence

EXAMPLE 16 (THE MONTY HALL PROBLEM)
There are three doors on a game show “Let’s Make a Deal”. One door has a car
behind it; two doors have piles of manure behind them. You pick a door. Then the
game show host shows you that behind a door you did not pick, there is a pile of
manure. Then he gives you the option of keeping your door, or switching to the
other door you haven’t seen yet. Should you switch?
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1.5. The Law of Total Probability and Bayes’ Law

1.5 The Law of Total Probability and Bayes’ Law
Definition 1.36 A partition of a probability space (Ω,F , P ) is a collection of events
E1, ..., En such that

1. P (Ei ∩ Ej) = 0 for all i ̸= j (i.e. the Ej are essentially disjoint); and

2. P (E1 ∪ E2 ∪ ... ∪ En) = 1 (i.e. the union of the Ejs is essentially Ω).

generic picture more useful diagram

E1 E2 E3 E4 Ω

E1 E2 E3 E4

Ω

EXAMPLE

E1 =
[
0, 1

2

]
and E2 =

[1
2 , 1

)
form a partition of [0, 1] (with Lebesgue measure).

Theorem 1.37 (Law of Total Probability (LTP)) Let (Ω,F , P ) be a probability space,
and let E1, E2, E3, ..., En be a partition. Then for any event A,

P (A) =
n∑

j=1
P (Ej)P (A |Ej).

PROOF Start by splitting A into its intersections with each of the Ej :

generic picture more useful diagram

E1 E2 E3 E4 Ω

A

E1 E2 E3 E4

Ω

A
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1.5. The Law of Total Probability and Bayes’ Law

As a special case of the Law of Total Probability, note that for any event E, E and
EC form a partition of Ω. Thus for any two events A and E, the Law of Total
Probability gives us

P (A) = P (E)P (A |E) + P (EC)P (A |EC).

EXAMPLE 17
A fair coin is flipped. If the coin lands heads, a fair die is rolled once. If the coin
lands tails, a die is rolled twice independently. Find the probability that the num-
ber(s) rolled sum to 5.

EXAMPLE 18
A survey shows 54% of people age 40 or older believe in aliens, and 33% of people
aged less than 40 believe in aliens. If 48% of people are age 40 or older, what
percent of people believe in aliens?
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1.5. The Law of Total Probability and Bayes’ Law

Tree diagrams

Implementing the Law of Total Probability in more complicated situations often
involves drawing a diagram called a tree diagram, rather than formally describing
the events with capital letters:

EXAMPLE 19
A vase contains 3 red and 5 blue marbles. One marble is drawn from the jar and
its color recorded, after which it is returned to the jar along with 2 marbles of the
opposite color. Then another marble is drawn and its color recorded, after which
it is returned to the jar with 2 marbles of the same color. Finally a third marble is
drawn. What is the probability that of the three marbles drawn, two of them are
blue?
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1.5. The Law of Total Probability and Bayes’ Law

EXAMPLE 20
(from Nate Silver’s book The Signal and the Noise) Studies show that the chance that
a woman in her forties will develop breast cancer is 1.4%. Studies also show that if
a woman in her forties does not have cancer, a mammogram will incorrectly claim
that she does 10% of the time, and if a woman in her forties does have breast can-
cer, a mammogram will detect it 75% of the time. Suppose a woman in her forties
has a mammogram which indicates she has breast cancer. Given this, what is the
probability she actually has breast cancer?

Without reading ahead, guess the answer to this question:

Theorem 1.38 (Bayes’ Law) Let (Ω,F , P ) be a probability space, and let E1, ..., En

be a partition. Then for any event A and any k ∈ {1, ..., n},

P (Ek |A) = P (Ek)P (A |Ek)
n∑

j=1
P (Ej)P (A |Ej)

.

PROOF By direct calculation:

P (Ek |A) = P (Ek ∩ A)
P (A) (by def’n of conditional probability)

= P (Ek)P (A |Ek)
P (A) (by Multiplication Principle)

= P (Ek)P (A |Ek)
n∑

j=1
P (Ej)P (A |Ej)

(by LTP) □

Importance: Bayes’ Law tells you how to get P (Ek |A) given all the P (A |Ej).

Application: Think of the Ej as hypotheses and think of the A as some bit of
evidence. Theoretically, you should have an idea as to the likelihood that each hy-
pothesis is true (i.e. you know the prior probabilities P (Ek)). Suppose you actually
witness evidenceA; what is the likelihood that hypothesisEk is the correct hypoth-
esis? This posterior probability P (Ek |A) can be computed from the prior probability
using Bayes’ Law.

Again, note that for any event E, E and EC form a partition of Ω. Thus for any two
events A and E, Bayes’ Law gives us

P (E |A) = P (E)P (A |E)
P (E)P (A |E) + P (EC)P (A |EC) .
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1.5. The Law of Total Probability and Bayes’ Law

EXAMPLE 20, REPEATED

Studies show that the chance that a woman in her forties will develop breast cancer
is 1.4%. Studies also show that if a woman in her forties does not have cancer, a
mammogram will incorrectly claim that she does 10% of the time, and if a woman
in her forties does have breast cancer, a mammogram will detect it 75% of the time.
Suppose a woman in her forties has a mammogram which indicates she has breast
cancer. Given this, what is the probability she actually has breast cancer?
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1.5. The Law of Total Probability and Bayes’ Law

EXAMPLE 21
An insurance company offers three levels of insurance: A,B and C. Assume that in
the next year:

• 35% of level A policyholders will file a claim;

• 12% of level B policyholders will file a claim;

• 16% of level C policyholders will file a claim.

If 80% of all policyholders are level A, and 15% are level B, what is the probability
that a claim within the next year came from a level A policyholder?

Solution: Let E be the event that a claim is filed, and let A, B and C be the events
that the policyholder has level A,B and C insurance, respectively. Here is the
given information:

P (A) = .8 P (E |A) = .35
P (B) = .15 P (E |B) = .12

P (E |C) = .16

Also, since {A,B,C} forms a partition of Ω, we can figure out that

P (C) = 1− P (A)− P (B) = 1− .8− .15 = .05.

So by Bayes’ Law, we have

P (A |E) = P (A)P (E |A)
P (A)P (E |A) + P (B)P (E |B) + P (C)P (E |C)

= .8(.35)
.8(.35) + .15(.12) + .05(.16)

= .915033 .
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1.6. Chapter 1 Homework

1.6 Chapter 1 Homework
Exercises from Section 1.2

1. a) Shade the region corresponding to the set E ∪ FC on the Venn diagram
shown below at left.

E

F

Ω

E F

Ω

b) Shade the region corresponding to the set (E ∪ F )C ∩ (E ∩ F )C on the
Venn diagram shown above at right.

c) Shade the region corresponding to the set E ∪ F ∪ GC on the Venn dia-
gram shown below at left.

E

F

G

Ω

E

F

G

Ω

d) Shade the region corresponding to the set F ∩ (E −G) on the Venn dia-
gram shown above at right.

e) Shade the region corresponding to the set (EC ∩ F ) ∪ GC on a Venn
diagram similar to the ones given in parts (c) and (d).

2. In this problem, assume E = {0, 2, 4, 6, 8, 10, 12}, F = {0, 1, 2, ..., 8}, G =
{4, 5, 6, ..., 12} andH = {0, 3, 6, 9, 12}. (The universal set is Ω = {0, 1, 2, ..., 12}.)
For each given set, list the elements in the set (using proper notation, i.e. sur-
rounding the list with braces):

a) E −H
b) FC

c) E ∩ F

d) GC ∪H
e) (H − E) ∪ (H − FC)
f) E ∩ ((F ∪G)− E)

3. Suppose you flip a fair coin three times, and record the outcomes with Hs
and T s. Describe the following events in words (your description should be
as efficient as possible):

a) E = {HHH,TTT}
b) E = {HHT,HTH, THH}
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c) E = {HHH,HHT,HTH,HTT}
d) E = {HHT,HTH,HTT, THH, THT, TTH, TTT}

4. A box contains 4 marbles: 2 red, 1 green, and 1 blue.

a) Consider an experiment that consists of taking 1 marble from the box,
putting it back and drawing a second marble from the box (recording
both choices in order). Describe the sample space for this experiment
(your sample space should be constructed so that all the outcomes are
equally likely).

b) Suppose you didn’t put the first marble back before you drew the second
marble. Describe the sample space in this context (again, your sample
space should be constructed so that all the outcomes are equally likely).

5. In each part of this problem, you are given a set Ω and a description of some
a collection F of subsets of Ω. Determine, with some justification, whether or
not the collection F forms a σ-algebra:

a) Ω = {1, 2, 3, 4}; F = {∅, {1, 2}, {3, 4},Ω}
b) Ω = {1, 2, 3, 4}; F = {∅, {1}, {2}, {1, 2},Ω}
c) Ω = R; F is the collection of sets E which have the property that either
E is finite or EC is finite.

6. Suppose you perform an experiment where there are eight possible outcomes.
Assuming that every subset of outcomes constitutes an event, how many dis-
tinct events are there?

Hint: You may want to try this problem in the situation where there are two,
three and/or four outcomes, and look for a pattern.

7. Suppose you roll a fair die repeatedly until a 4 turns up. You record the num-
ber of rolls it takes to roll a 4. Describe a probability space for this experiment.
Verify that you have constructed a probability space.

8. Suppose a point (x, y) is picked at random (with the uniform distribution)
from the triangle in the xy-plane with vertices at (0, 0), (4, 0), and (4, 4).

a) What is the probability that x ≥ 2?

b) What is the probability that x < y2?

9. Suppose a point (x, y) is chosen uniformly from the rectangle in the xy-plane
whose vertices are (0, 0), (4, 0), (0, 2) and (4, 2). Let E be the event that y > x,
and let F be the event that x < 1.

a) Compute P (E ∪ F ).
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b) Compute P (EC ∩ F ).

10. Suppose a point (x, y, z) is chosen from the unit cube (this means a cube with
opposite vertices at (0, 0, 0) and (1, 1, 1)).

a) Compute the probability that x <
1
2 and y >

1
3 .

b) Compute the probability that x+ y + z < 1.

11. Four players, Al, Bal, Cal and Dal, take turns flipping a fair coin (Al goes first
followed by Bal, then Cal, then Dal, then Al again, then Bal, etc.). The first
player to flip a head wins. What is the probability of each player winning?

Hint: Construct a probability space for this experiment where the outcomes
correspond to the number of flips it takes for someone to win. Then, to find
the probability that Al wins, add up the probabilities associated to the num-
bers of flips that would result in Al winning. Proceed from there.

12. (This is a famous problem in probability called The Triangle Problem.) Suppose
you take a stick of length 1 and break it into three pieces, choosing the break
points uniformly and independently. What is the probability that the three
pieces can be used to form a triangle?

Hint: In a triangle, the sum of the lengths of any two sides must be at least
the length of the third side.

Exercises from Section 1.3

13. Prove that there is no such thing as a uniform distribution on N = {1, 2, 3, ...}.
Hint: Prove this by contradiction: suppose that there is a uniform distribution
on N. This means that P (m) = P (n) for every m,n ∈ N. There are two
possibilities: either P (1) = 0 or P (1) > 0. Explain why both of these cases are
impossible by thinking about what the value of P (Ω) would end up being.

14. Let (Ω,A, P ) be a probability space. Prove (using the definition of probability
space) the Monotonicity law, which says that if E and F are events with
E ⊆ F , then P (E) ≤ P (F ).
Hint: Write F as the union of the two sets E ∩ F and E ′ ∩ F .

15. Prove the Bonferonni Inequality, which says that given any two events E
and F , P (E ⋂

F ) ≥ P (E) + P (F )− 1.

16. Suppose two fair dice are rolled and that the 36 possible outcomes are equally
likely. Compute the probability that the sum of the numbers on the two faces
is even.
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17. (AE) (The “(AE)” means this is, or closely resembles, an old actuarial exam
problem.) The probability that a small fire in a kitchen destroys a microwave
oven is 70%. The probability that a small fire in a kitchen destroys a refriger-
ator is 50%. If the probability that a small fire destroys both is 45%, find the
probability that the fire destroys neither the microwave nor the refrigerator.

18. A survey reveals that 20% of the population is afraid of ghosts, 35% of the
population is afraid of vampires, and 40% of the population is afraid of zom-
bies. 15% of the population fears ghosts and vampires; 12% of the popula-
tion fears ghosts and zombies, and 20% of the population fears vampires and
zombies. If 8% of the population fears ghosts, vampires and zombies, what
percent of the population isn’t afraid of any of the three mythical creatures
discussed in the survey?

19. (AE) Suppose events A and B are such that P (A) = 2
5 and P (B) = 2

5 . If you

also know P (A ∪B) = 1
2 , compute P (A ∩B).

Exercises from Section 1.4

20. Suppose a point is picked uniformly from the square whose vertices are (0, 0),
(1, 0), (0, 1) and (1, 1). Let E be the event that the selected point is in the
triangle bounded by the lines y = 0, x = 1 and x = y, and let F be the event
that it is in the rectangle with vertices (0, 0), (1, 0), (1, 1

2), and (0, 1
2).

a) Compute P (E|F ).
b) Compute P (F |E).
c) Are E and F independent? Why or why not? (You need an algebraic

proof.)

21. Suppose a number x is selected uniformly from the interval [0, 100]. Let J
be the event that the number selected is in [0, 50], let K be the event that the
number selected is in [30, 60], and let L be the event that the number selected
is in [20, 70].

a) Compute P (J ∪K |L).
b) Compute P (J ∩ LC |K ∪ LC).

Note: Part of the point of this problem is to teach you order of operations
with conditional probabilities. In particular, there are “invisible parentheses”
that surround everything in front of any | and everything after any | in any
conditional probability expression.

22. (AE) If P (A) = .7, P (A ⋂
BC) = .6 and A ⊥ B, what is P (B)?
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23. A coin is tossed three times. Consider the following events:

• A = flipping heads on the first toss
• B = flipping tails on the second toss
• C = flipping heads on the third toss
• D = flipping the same side of the coin all three times
• E = flipping heads exactly once in the three tosses

a) Which one or ones of the following pairs of these events are indepen-
dent? A and B, A and D, A and E, D and E (No proof is required here,
if you want to use the heuristic idea of independence.)

b) Which one or ones of the following triples of these events are indepen-
dent? A,B and C; A,B and D; C,D and E (No proof is required here, if
you want to use the heuristic idea of independence.)

24. a) Suppose E and F are independent. Prove that EC and FC are indepen-
dent.

b) Suppose E and F are independent. Prove that E and FC are indepen-
dent.

25. a) Suppose that an event E has probability 1. Prove that E is independent
of any other event F .

b) Prove that if an eventE is pairwise independent with itself, then P (E) =
0 or P (E) = 1.

26. A fair die is rolled repeatedly until the first time a 5 is rolled. Given that it
takes an even number of rolls to obtain that first 5, what is the probability
that a 5 is rolled within the first 10 rolls?

27. A point is chosen uniformly from the unit square [0, 1]× [0, 1]. Find a positive
number c so that the events E = {(x, y) : y + cx ≤ 1} and F = {(x, y) : y ≤
2x/3} are independent.

Hint: There are two values of c which solve this problem; you need to find
one or the other, not both.

Exercises from Section 1.5

28. There are three boxes, labeled I, II and III. Box I contains 2 white balls and 2
black balls; box II contains 2 white balls and 1 black ball; and box III contains
1 white ball and 3 black balls.

a) One ball is selected from each box (the draws are independent of one
another). Calculate the probability of drawing all white balls.
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b) Suppose you have five slips of paper, two labeled “I”, two labeled “II”
and one labeled “III”. One of these five slips is drawn uniformly and
then a ball is drawn from the box indicated by the slip of paper chosen.
Calculate the probability that the drawn ball is white.

29. An urn contains 3 red and 2 blue marbles. One marble is drawn from the
jar and its color noted. That marble, along with 2 extra marbles of the same
color, is then returned to the jar. A second marble is drawn from the jar.

a) What is the probability that the two marbles drawn are of the same
color?

b) What is the probability that the second marble drawn is red?

30. Suppose a student takes a multiple choice exam where each question has
5 possible answers, exactly one of which is correct. If the student knows the
answer to the question, she selects the correct answer. Otherwise, she guesses
uniformly from the 5 possible answers. Assume that the student knows the
answer to 70% of the questions.

a) What is the probability that on any single given question, the student
gets the correct answer?

b) What is the probability that the student knows the answer to a question,
given that she got the question correct?

31. (AE) Suppose a factory has two machines A and B which make 64% and 36%
of the total production, respectively. Of their output, machine A produces
2% defective items and machine B produces 5% defective items. Find the
probability that a given defective part was produced by machine B.

32. (AE) The probability that a randomly chosen male has a blood circulation
problem is .325. Males who have a circulation problem are twice as likely to
be smokers as those who do not have a blood circulation problem. What is
the conditional probability that a male has a blood circulation problem, given
that he is a smoker?

Calculus review

Later in the course, we’ll see that we need calculus to do lots of computations. To
make sure you are up to speed, the first few chapters of these notes have some
review problems incorporated into the homework. Here is the first batch:

33. a) Let F (x) = 2x+ 3− 4x2. Compute d
dx
F .

b) Let F (x) = (x2 − 2)5. Compute F ′(x).
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c) Let F (x) = 2√
x
− 1
x

+ 4
√
x. Compute dF

dx
.

34. a) Let F (x) = x2e4x. Compute F ′(x).
b) Let F (x) = 2e−x/4 − 6ex/3. Compute F ′(x).
c) Let M(t) = (.3 + .7et)8. Compute M ′′(t).

35. a) Let M(t) = 4
4− t . Compute M ′′′(0).

b) Let M(t) = e3(et−1). Compute M ′′(0)− [M ′(0)]2.

36. Compute each integral, and then use a calculator to get a decimal approxi-
mation of your answer:

a)
∫ 6

3

2
x3.5 dx

b)
∫ 1

1/2

4
x8 dx

c)
∫ 4

1
x2 3.25
x4.25 dx

37. a) Determine a value of b so that
∫ b

0

x2

12 dx = 1
2 .

b) Determine a value of c so that
∫ 4

2
c
√
x dx = 1.

c) Suppose
∫ b

0
ax3 dx = 1. Solve for b in terms of a.
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Chapter 2

Discrete random variables

2.1 Introducing random variables
Definition 2.1 A random variable (r.v.) X is a (measurable) function X : Ω →
Rd, where (Ω,F , P ) is a probability space. The range of X is the set of values taken
by X .

Definition 2.2 A r.v. is called real-valued if its range is a subset of R. It is called
vector-valued (or d−dimensional or a joint distribution) if its range is a subset
of Rd for d > 1.

Technical remark: In MATH 414, the adjective “measurable” can be ignored with-
out a problem. To be technically precise, a function X : Ω → Rd is measurable
if given any subset S of the codomain Rd whose volume you can compute with
calculus, the inverse image of S under X is an event. We’ll get into this more in
MATH 416, but you would never need to worry about this technicality too much
unless you go to graduate school in mathematics.

EXAMPLES OF RANDOM VARIABLES

Example A: Roll a fair die and let X be the number rolled.

Example B: Flip a fair coin 3 times and letX be the number of times you flip heads.
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2.1. Introducing random variables

Example C: Roll a die repeatedly; let X be the number of rolls it takes for the
running total of your rolls to be even.

Example D: Let X be the smallest amount of time between successive text mes-
sages you receive in the next 48 hours.

Example E: You and your friend plan to meet at The Rock between 6 and 7 PM.
Let X record both your arrival time and your friend’s arrival time, in terms
of the number of minutes after 6 that you each arrive.

Classifying random variables

On the face of things, it seems (based on the definition) that you need a lot of in-
formation to describe a random variable: the Ω, the F , the P and the rule for X . In
practice, you don’t actually use any of this to characterize a random variable.

First concept: Random variables can be partitioned into three types:

1.

2.

3.

The way you think about a r.v. (and the way you perform calculations related to
the r.v.) depends heavily on which type of r.v. you are dealing with. So the first
thing you must do when dealing with any r.v. is to determine which of these
three types it is.
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2.2 Density functions of discrete random variables
For now, we study discrete r.v.s; we’ll deal with the others in Chapter 3.

Definition 2.3 A subset S of Rd is called discrete if given any x ∈ S, you can draw
a circle (or sphere) of positive radius around x such that the only point inside that
circle belonging to S is x itself.

EXAMPLES

N, Z, and Zd are discrete; any finite set is discrete; any subset of a discrete set is
discrete.

NONEXAMPLES

Q, R, Qd are not discrete; any set containing an interval or a curve is not discrete.

Remark: Knowing the examples and nonexamples listed above is sufficient for
MATH 414 and MATH 416.

Some enrichment: Discreteness is not really a concept of probability theory. It
comes from a branch of mathematics called topology. In fact, a better definition of
discreteness comes from topology - a subset of a metric space is discrete if and only
if it has no cluster points (if and only if all its points are isolated).

Definition 2.4 A random variable X is called discrete if its range is a discrete set.

QUESTION

Which one or ones of Examples A,B,C,D,E given above are discrete r.v.s?

RETURN TO EXAMPLE B
(Flip a fair coin 3 times and record the number of heads)
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Definition 2.5 Let X : Ω→ Rd be a discrete random variable. A density function
(a.k.a. PDF a.k.a. pdf a.k.a. mass function a.k.a. pmf) for X is a function

fX : Range(X)→ R

which satisfies
fX(x) = P (X = x)

for all x ∈ Rd.

We express density functions either by giving a formula for them, or by giving a
chart:

EXAMPLE 1
Find density functions for the r.v.s described in Examples A and B above.
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EXAMPLE 2
There are two dice which are rolled; one which is normal and one whose sides are
numbered 1, 1, 2, 4, 4, 6. Let X represent the sum of the two numbers rolled. Find a
density function of X , and sketch its graph. Finally, explain how you can compute
P (X ≥ 10) from the density function.

N 1 2 3 4 5 6
W

1

1

2

4

4

6

x fX(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x

fX
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Key idea: If you want to do any probabilistic calculations related to a discrete
real-valued r.v., all you need to be given (or all you need to figure out) is the
density function of that r.v. This is because if you are given any set E ⊆ Rd,

P (X ∈ E) =
∑
x∈E

P (X = x) =
∑
x∈E

fX(x)

so long as X is discrete.

Properties of density functions of discrete r.v.s

Theorem 2.6 (Properties of density functions) A function f is the density func-
tion of a discrete r.v. if and only if:

1. f(x) ≥ 0 for all x;

2. {x : f(x) > 0} is a discrete set; and

3.
∑

x∈{x:f(x)>0}
f(x) = 1.

EXAMPLE 3
Suppose a r.v. X takes only the values 2, 3 and 4 and has a density function that is

proportional to
1
x2 . What is the probability that X = 2?
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2.3 Counting principles
The first situation we want to model using random variables is when we select a
number (or vector or some other kind of object) from a finite set, with all numbers
(vectors/objects) equally likely. The random variable that describes this is called a
discrete uniform r.v.:

Definition 2.7 Let Ω ⊆ Rd be a finite set. A (discrete) uniform random variable
on Ω is a r.v. X whose density function is

fX(x) =


1

#(Ω) if x ∈ Ω

0 else
.

If X is uniform on Ω, we write X ∼ Unif(Ω).

EXAMPLE 4
LetX be the number rolled if you roll one fair die. DescribeX , by giving its density
function and characterizing X with appropriate language using the ∼ symbol.

Theorem 2.8 Suppose X ∼ Unif(Ω). Then given, any subset E of Ω, we can com-
pute the probability that X ∈ E by counting:

P (E) = P (X ∈ E) = #(E)
#(Ω) .

EXAMPLE 5
Deal 2 cards from a 52 card deck. What is the probability that you get two aces?

To solve problems like this, it behooves us to learn how to count certain sets of
objects quickly. The study of counting complicated sets of objects is called combi-
natorics.

(In what follows, #(E) refers to the number of elements in set E; all sets in this
section should be assumed finite.)
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Basic counting principles

The first principle of counting is very simple: if you can divide the things you are
counting into two disjoint groups, you can count the groups separately and add
the answers. For example, if you have 5 red apples and 3 green apples, how many
apples do you have?

Theorem 2.9 (Addition Principle of Counting) Let E and F be finite sets. If E∩
F = ∅, then

#(E ∪ F ) = #(E) + #(F ).

If you divide the things you are counting into two groups which overlap, you
can use Inclusion-Exclusion to count them. The proof of this principle is virtually
identical to the probabilistic version given in the previous chapter:

Theorem 2.10 (Inclusion-Exclusion Principle (Counting Version)) Let E and
F be finite sets. Then:

#(E ∪ F ) = #(E) + #(F )−#(E ∩ F ).

EXAMPLE 6
Suppose that 17 students surveyed like pepperoni on their pizza, 13 students sur-
veyed like mushroom on their pizza and 20 students like pepperoni or mushroom
on their pizza. How many students like pepperoni and mushroom on their pizza?

Theorem 2.11 (Multiplication Principle of Counting) If E is a finite set of ob-
jects, each of which can be described as the result of a sequence of independent “choices”,
where:

• there are m1 options for the first choice;
• each of the first choices allows m2 options for the second choice;
• each of the first two choices allows m3 options for the third choice; etc.

then
#(E) = m1m2m3 · · ·mn.
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EXAMPLE 7
How many different license plates can a state make if each plate has 4 letters fol-
lowed by 3 nonzero digits?

Orderings and factorials
EXAMPLE 8

How many different orderings of the letters in the English alphabet are there?

The result of the previous example generalizes:

Definition 2.12 Let n ∈ N. Then n!, read n factorial, is

n! = n(n− 1)(n− 2)(n− 3) · · · 3 · 2 · 1.

As a special definition, we let 0! = 1.

Notice: For any n ∈ N, n · (n− 1)! = n! (this explains why 0! should be 1).

The significance of factorials is as follows:

Theorem 2.13 (Orderings) The number of distinct ways to order n different objects
is n!.

QUESTION

Is there such a thing as (3.5)! or π!? If so, what might that be?

Permutations
EXAMPLE 9

There are 10 people in a club. How many different sets of officers (president, VP,
secretary and treasurer) can be selected from this club?
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In Example 9, we are selecting an ordered subset of 4 from a set of 10. These
ordered subsets have names:

Definition 2.14 An ordered subset taken from a larger finite set is called a permuta-
tion.

Theorem 2.15 (Permutations) The number of ordered sets of size k, taken from a
set of size n is

n!
(n− k)! = n(n− 1)(n− 2) · · · (n− k + 1).

Combinations
EXAMPLE 10

If there are 10 people in a club, how many different 4−person committees can be
formed? (In other words, how many unordered groups of 4 from the group of 10
are there?)

Definition 2.16 An unordered subset (equivalently, just a subset) taken from a larger
finite set is called a combination.

Theorem 2.17 (Combinations) The number of unordered sets of size k taken from
a set of size n is denoted

(
n
k

)
(read “n choose k”) or C(n, k) or nCk and is given by the

formula (
n

k

)
= n!
k!(n− k)! .

EXAMPLE 11(
7
3

)
= 7!

3!(7− 3)! = 7 · 6 · 5 · 4 · 3 · 2 · 1
3 · 2 · 1 · 4 · 3 · 2 · 1 =
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The numbers
(
n
k

)
are called binomial coefficients:

Theorem 2.18 (Properties of binomial coefficients) Let n, k ∈ N. Then:

Binomial symmetry:
(
n

k

)
=
(

n

n− k

)
.

Anything choose zero (or itself) is 1:
(
n

0

)
=
(
n

n

)
= 1.

Anything choose 1 is itself:
(
n

1

)
=
(

n

n− 1

)
= n.

Binomial addition formula:
(

n

k − 1

)
+
(
n

k

)
=
(
n+ 1
k

)
.

PROOF The first three statements follow from Theorem 2.17 directly.
We will prove the binomial addition formula with some algebra:(

n

k − 1

)
+
(
n

k

)
= n!

(k − 1)!(n− k + 1)! + n!
k!(n− k)!

Now add these fractions by finding a common denominator:

n!
(k − 1)!(n− k + 1)! + n!

k!(n− k)! = n!k
k!(n− k + 1)! + n!(n− k + 1)

k!(n− k + 1)!

= n![k + (n− k + 1)]
k!(n− k + 1)!

= (n+ 1)!
k!(n+ 1− k)!

=
(
n+ 1
k

)
. □

Definition 2.19 Let n, k ∈ N. If n < k, we set
(
n

k

)
= 0.

This definition makes sense because if k > n, there are no subsets of size k that can
be taken from a set of size n.
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Pascal’s Triangle

0th ROW → 1

�� ��
1st ROW → 1

��
1+1=2
��

1

�� ��
2nd ROW → 1

��
1+2=3
��

2

��
2+1=3
��

1

�� ��
3rd ROW → 1

�� ��

3

��
3+3=6
��

3

�� ��

1

�� ��
4th ROW → 1

�� ��

4

�� ��

6

��

6+4=10
  

4
~~

��

1

�� ��10

From statements (2) and (4) of Theorem 2.18 above, the entries of Pascal’s Triangle
must be the binomial coefficients (because they have the same entries down the
sides and they satisfy the same addition law). So Pascal’s Triangle is really an
array of the binomial coefficients: (

0
0

)
= 1

(
1
0

)
= 1

(
1
1

)
= 1

(
2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1

(
3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1

(
4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1
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EXAMPLE 12
A restaurant has 12 appetizers, 20 entrees and 5 desserts. If your table splits 3 appe-
tizers, 5 entrees and 2 desserts, how many different meals are possible (assuming
no doubling up of the same appetizer, entree or dessert)?

EXAMPLE 13
Deal 5 cards from a standard deck. What is the probability of being dealt a full
house?

EXAMPLE 14
Deal 5 cards from a standard deck. What is the probability of being dealt two pair
(but not a full house and not 4-of-a-kind)?
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Binomial coefficients are often used to expand expressions, for example

(x+ y)4 = (x+ y)2(x+ y)2

= (x2 + 2xy + y2)(x2 + 2xy + y2)
= x4 + 2x3y + x2y2 + 2x3y + 2x2y2 + 2xy3 + x2y2 + 2xy3 + y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(now, write in reverse order)
= y4 + 4xy3 + 6x2y2 + 4x3y + x4

= 1x0y4−0 + 4x1y4−1 + 6x2y4−2 + 4x3y4−3 + 1x4y4−4

More generally, we have:

Theorem 2.20 (Binomial Theorem) Let x, y ∈ R and let n ∈ N. Then

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

PROOF Expand out (x+ y)n:

(x+ y)n = (x+ y)(x+ y)(x+ y)(x+ y) · · · (x+ y)(x+ y)

When you expand this, each term of your answer will be the product of
n numbers, all of which are x or y. So each term is of the form xkyn−k.
Next, fix k. The number of xkyn−k terms in the expansion is the number of
different ways to choose which k of the n (x+ y)s being multiplied together
contribute an x to the term.
There are

(
n
k

)
such ways to do this, so the coefficient on xkyn−k in the expansion

is
(

n
k

)
. The theorem follows by adding these terms over the k. □

In MATH 414 & 416, the Binomial Theorem is most often used to simplify sums of
series obtained in some probability computation:

EXAMPLE 15

14∑
x=0

(
14
x

)
2xy18−x =
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Corollary 2.21 Let n ∈ N . Then

n∑
k=0

(
n

k

)
= 2n.

PROOF
n∑

k=0

(
n

k

)
=

Distinguishable arrangements
EXAMPLE 16

How many different arrangements of the letters in the word MISSISSIPPI are there?

Theorem 2.22 (Distinguishable arrangements, a.k.a. MISSISSIPPI rule) .
Suppose you have n = n1 + n2 + ...+ nr objects of r different types:

• n1 objects of type 1;
• n2 objects of type 2;

...
• nr objects of type r.

Then the number of distinguishable ways to order these objects is(
n

n1, n2, n3, · · ·nr

)
= n!
n1!n2!n3! · · ·nr!

.
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2.3. Counting principles

Note: Distinguishable arrangements can be thought of extending the idea of a
combination. Suppose you have n objects of two types; where k objects are of
the first type and n − k objects are of the second type. The number of distin-
guishable arrangements of these objects is therefore

the same as the number of k combinations from a set of n. This is because
arranging the objects is the same as choosing an unordered set of k “slots” in
which to place the objects of the first type.

Sampling without replacement
EXAMPLE 17

A box contains 30 red marbles and 20 blue marbles. If you draw 9 marbles from
the box all at once, what is the probability that of those 9 marbles, 7 are red?

Theorem 2.23 (Sampling without replacement) Suppose
you have n = n1 + n2 + ...+ nr total objects of r different types:

• n1 objects of type 1;
• n2 objects of type 2;

...
• nr objects of type r.

Suppose you draw k = k1 + k2 + ...+ kr objects simultaneously. Then, the probability
that you draw kj objects of type j (for each j) is(

n1

k1

)(
n2

k2

)
· · ·

(
nr

kr

)
(
n

k

) .
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Note: in this setting, drawing objects simultaneously is the same (mathematically)
as drawing the objects one at a time without replacement (i.e. without putting back
each object you draw before drawing the next object).

QUESTION

What if you draw the objects with replacement (i.e. put each draw back before
drawing the next one)? We’ll discuss that later.

Hypergeometric random variables

Suppose that there were only two types of objects: r of type 1 and n − r of type 2.
Then, if you draw k objects all at once, you can let X be the number of objects of
type 1 you draw.

We summarize this in the following definition:

Definition 2.24 Let n > 0, k ≤ n and r ≤ n be whole numbers. A hypergeo-
metric random variable with parameters n, r and k is a discrete r.v. X with range
{0, 1, 2, ...,min(r, k)} whose density function is

fX(x) =

(
r

x

)(
n− r
k − x

)
(
n

k

) .

If X is hypergeometric with parameters n, r and k, we write X ∼ Hyp(n, r, k).

AHyp(n, r, k) r.v. counts the number of special objects drawn when k objects
are drawn at once from a set of n objects, r of which are special.

Just to make sure the notation is clear, to say

“X is Hyp(8, 5, 4)” or “X ∼ Hyp(8, 5, 4)”
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means X is a hypergeometric r.v. whose density function is

fX(x) =

(
5
x

)(
3

4−x

)
(

8
4

) .

Theorem 2.25 (Vandermonde’s Identity) Let r, n, k ∈ N. Then

k∑
x=0

(
r

x

)(
n− r
k − x

)
=
(
n

k

)
.

PROOF By the Binomial Theorem,

(1 + t)n =
n∑

k=0

(
n

k

)
tk. (2.1)

At the same time, (also by the Binomial Theorem),

(1 + t)n = (1 + t)r(1 + t)n−r =
[

r∑
x=0

(
r

x

)
tx
]
·

n−r∑
y=0

(
n− r
y

)
ty


=

r∑
x=0

n−r∑
y=0

(
r

x

)(
n− r
y

)
tx+y

Next, we do an index change in the second sum: let k = x+ y, i.e. y = k − x.
That makes the new index k = x+ y go from x+ 0 = x to r + (n− r) = n.
So the double sum above becomes (after the index change)

(1 + t)n =
r∑

x=0

n∑
k=x

(
r

x

)(
n− r
k − x

)
tk =

n∑
k=0

[
k∑

x=0

(
r

x

)(
n− r
k − x

)]
tk.

To match equation (2.1) above, the term inside the bracket must equal
(
n

k

)
.

This is Vandermonde’s identity. □

Corollary 2.26 The density function of a hypergeometric r.v. is in fact a density func-
tion (its values sum to 1).

PROOF Take Vandermonde’s identity and divide through by
(
n

k

)
. □
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More examples with combinatorics
EXAMPLE 18

Pick a random number with 5 digits (ex: 00312, 15923, etc.) Assuming every 5 digit
string is equally likely,

1. What is the probability that any two digits are the same?

2. What is the probability that exactly two digits are the same?

EXAMPLE 19
Roll seven fair dice. What is the probability you roll 4 sixes, 2 threes and a one?
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EXAMPLE 20 (THE COAT CHECK PROBLEM)
SupposeN people leave their coat at a coat check. The coats get jumbled randomly,
so when the people leave, they each get a coat at random (that said, no two people
get the same coat–each coat goes to one person).

1. What is the probability a specified person gets their coat back?
2. What is the probability n specified people get their coat back?
3. What is the probability at least one person gets their coat back?
4. Suppose there are an infinite number of people (i.e. let N →∞). What is the

probability that no one gets their coat back?

Solution:

1. x

2. x

3. We apply Generalized Inclusion-Exclusion: let Sn be the event that some
group of n people get their coat back.

P (Sn) =

Therefore, by Generalized Inclusion-Exclusion,

P (≥ 1 person gets their coat back) = P (S1)− P (S2) + P (S3)− P (S4) + ...

= 1
1! −

1
2! + 1

3! −
1
4! + ...

=
N∑

n=1

(−1)n+1

n! .

4. Take the limit on the answer to # 3 as N → ∞ to get P (≥ 1 person gets their
coat back), which is
∞∑

n=1

(−1)n+1

n! = −
∞∑

n=1

(−1)n

n! = −
[ ∞∑

n=0

(−1)n

n! − 1
]

=

Finally, by the complement rule, P (no one gets their coat back) is
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2.4 Bernoulli processes
Definition 2.27 A stochastic process {Xt : t ∈ I} is a collection of random vari-
ables indexed by t. The set I of values of t is called the index set of the stochastic
process.

Almost always, the index set is {0, 1, 2, 3, ...} or Z (in which case we call the stochas-
tic process a discrete-time process and often use n instead of t for the index), or the
index set is [0,∞) or R (in which case we call the stochastic process a continuous-
time process).

In MATH 414, we will focus on three stochastic processes which are of fundamen-
tal importance (we will learn a lot more about stochastic processes in MATH 416).
The first one, called the Bernoulli process, is discussed in this section.

Definition 2.28 Let p ∈ [0, 1]. A Bernoulli experiment is a probabilistic experi-
ment consisting of a “subexperiment” called a trial which is repeated over and over
again, where the trials have the following properties:

1. Each trial has two outcomes, success and failure.

2. On any one trial, the probability of success is p (so the probability of failure is
1− p).

3. The result of any one trial is independent of the results of any other trials.

If we let, for n ∈ {0, 1, 2, 3, ...}, Xn be the number of successes in the first n trials,
{Xn : n ∈ {0, 1, 2, ...}} is a stochastic process called a Bernoulli process and p is
called the success probability.

To picture a Bernoulli process in your mind, think of flipping a coin repeatedly
(which flips heads with probability p) and writing down the sequence of heads
and tails you get. Xn is the number of heads you flip in the first n flips.
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2.4. Bernoulli processes

Suppose you flip this coin repeatedly and get the following results:

T H T H T T T H H T T H T T H ...

You can represent the result of this process by the following picture:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1

2

3

4

5

6

7

8

Xn

Each sequence of dots we get from a sequence of coin flips is called a sample func-
tion for the process.

Observations about any Bernoulli process {Xt}

1. X0 = 0 (you can’t flip a positive number of heads in zero flips);

2. every time you flip heads, the value of Xn goes up by 1;

3. every time you flip tails, the value of Xn stays the same;

4. Xn never decreases nor jumps by more than 1 unit at a time.

The definition of a Bernoulli process alone is enough to figure out some basic con-
ditional probability questions:

EXAMPLE 21
Let {Xn} be a Bernoulli process with success probability p.

1. Compute the probability that X8 = 5, given that X6 = 3.

2. Compute the probability that X7 = 3, given that X3 = 3.
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2.4. Bernoulli processes

3. Let Xn be a Bernoulli process with success probability p. Find the probability
that X8 = 2, given that X5 = 1.

4. In Question 3 of this example, what is really relevant? For example, if I asked
you to find the probability that Xt = b given that Xs = a, what matters about
s, t, a and b?

Binomial random variables

At this point, we want to define a random variable which counts the number of
successes in n trials coming from a Bernoulli experiment:

Definition 2.29 A binomial random variable with parameters n ∈ N and p ∈ [0, 1]
is a discrete r.v. taking values in {0, 1, 2, ...n} whose density function is

fX(x) =
(
n

x

)
px(1− p)n−x.

If X is binomial with parameters n and p, we write X ∼ b(n, p) or X ∼ bin(n, p).

A binomial r.v. with parameters n and p counts the number of successes in n
trials of a Bernoulli process with success probability p.

The numbers which occur as values of the density function of binomial r.v.s are
commonly encountered in probability. We denote by b(n, p, k) the number

b(n, p, k) =
(
n

k

)
pk(1− p)n−k.
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2.4. Bernoulli processes

Theorem 2.30 The density function of a binomial(n, p) r.v. is a density function (i.e.
its values sum to 1).

PROOF Use the binomial theorem:
n∑

x=0
fX(x) =

n∑
x=0

(
n

x

)
px(1− p)n−x =

How binomial r.v.s relate to Bernoulli processes

Let {Xn} be a Bernoulli process with success probability p. Then:

1. For any fixed m and n with m < n, Xn −Xm ∼ b(n−m, p);

2. For any fixed n, Xn ∼ b(n, p);
NOTE: Xn is a r.v.; {Xn} is a process.

3. If m < n, P (Xn = y |Xm = x) equals the number b(n−m, p, y − x).

Back to sampling with/without replacement
QUESTION

Suppose you have a bag containing 40 marbles, of which 8 are orange. If you draw
20 marbles from the bag, what is the probability that you draw exactly 5 orange
marbles?

Solution: It depends on whether you draw the marbles without replacement (in-
cluding if they are all drawn at once) or with replacement (i.e. you put each marble
back before you draw again).

If the sampling is without replacement:

If the sampling is with replacement:
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EXAMPLE 22
Suppose you guess at every question on a 10-question multiple choice test (four
choices per question). What is the probability you get exactly 7 questions correct?

EXAMPLE 23 (CHALLENGE)
Suppose you know 75% of the questions that might be asked on a 10-question
exam. If you guess at the other 25% of the questions, what is the probability you
get all ten questions correct?

Remark: From Mathematica, this sum is
137858491849
1099511627776 ≈ .1253.

EXAMPLE 24
A fair coin is tossed 11 times (equivalently, 11 fair coins are tossed at once).

1. What is the probability of flipping exactly 7 heads?

2. What is the probability of at least 8 heads?

3. What is the probability of at least one head?
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2.4. Bernoulli processes

EXAMPLE 25
A machine produces parts which are defective 1% of the time. Out of 2000 parts
produced, what is the probability that exactly 30 parts are defective?

Geometric and negative binomial random variables

We earlier discussed binomial random variables, which describe the height of the
graph coming from a Bernoulli process at time n. Now we introduce random vari-
ables which describe horizontal measurements on the graph. For example, sup-
pose {Xn} is a Bernoulli process with success probability p. Let X be a r.v. which
measures the amount of time that passes before the first time the graph of {Xn}
hits height 1. X is called a geometric random variable.

X
n

1

2

3

4

Xn

QUESTION

What is the density function of X?
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Definition 2.31 A geometric random variable with parameter p ∈ (0, 1] is a discrete
r.v. taking values in {0, 1, 2, 3, ...} whose density function is

fX(x) = p(1− p)x.

If X is geometric with parameter p, we write X ∼ Geom(p).

A Geom(p) r.v. counts the number of failures before the first success in a
Bernoulli process with success probability p.

Theorem 2.32 The density function of a Geom(p) r.v. is a density function (i.e. its
values sum to 1).

PROOF

∞∑
x=0

fX(x) =
∞∑

x=0
p(1− p)x = □

Theorem 2.33 (Hazard law for geometric r.v.s) Let X ∼ Geom(p). Then for any
n ∈ N,

P (X ≥ n) =

PROOF

P (X ≥ n) =
∞∑

x=n

fX(x) =
∞∑

x=n

p(1−p)x = □

Geometric random variables are exactly the discrete random variables which have
an important property called memorylessness:

Definition 2.34 A random variable X is called memoryless if for all m,n ≥ 0,

P (X ≥ m+ n |X ≥ m) = P (X ≥ n).

To say that a r.v. is memoryless means that if you think of the r.v. as the time it
takes for something to happen, if you know you have been waiting for m units,
the probability you will wait at least another n units is the same as the probability
you would wait at least n units from the get go (in other words, you “forget” that
you have already waited m units).
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Theorem 2.35 A random variable X taking values in {0, 1, 2, ...} is memoryless if
and only if X is geometric.

PROOF (⇐) Assume X ∼ Geom(p).
We will show X is memorylessness by verifying that

P (X ≥ m+ n |X ≥ m) = P (X ≥ n).

We do this by direct computation:

P (X ≥ m + n |X ≥ m) = P (X ≥ m + n
⋂

X ≥ n)
P (X ≥ m) (by def’n of cond’l probability)

= P (X ≥ m + n)
P (X ≥ m)

= (1− p)m+n

(1− p)m
(by the hazard law)

= (1− p)n

= P (X ≥ n) (by the hazard law in reverse).

(⇒) Assume X is memoryless and let p = P (X = 0).
By the definition of memorylessness, for all m,

P (X ≥ m+ 1 |X ≥ m) = P (X ≥ 1) = 1− P (X = 0) = 1− p.

Therefore for all m ≥ 0, we have

P (X ≥ m+ 1) = (1− p)P (X ≥ m). (2.2)

Since p = P (X = 0), we know

P (X ≥ 1) = 1− P (X = 0) = 1− p

and therefore, by repeatedly applying (2.2), we see

P (X ≥ 2) =

P (X ≥ 3) =
...

P (X ≥ m) = (1− p)m.
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Last,

fX(x) = P (X = x) = P (X ≥ x)− P (X ≥ x+ 1)
= (1− p)x − (1− p)x+1

= [1− (1− p)](1− p)x

= p(1− p)x

meaning X ∼ Geom(p) as wanted. □

Let’s now generalize the idea of a geometric random variable. Suppose we wanted
to count the number of failures before the rth success in a Bernoulli process, where
r ∈ N. Let X be such a r.v.; what is the density function of X?

Definition 2.36 A negative binomial random variable with parameters r ∈ N and
p ∈ [0, 1] is a discrete r.v. taking values in {0, 1, 2, 3, ...} whose density function is

fX(x) =
(
x+ r − 1
r − 1

)
pr(1− p)x =

If X is negative binomial with parameters r and p, we write X ∼ NB(r, p).

That this function is in fact a density function will not be proven here. It uses the
Taylor series expansion of the function (1−p)−x. (The “−” sign here is why we call
this the “negative” binomial r.v.)

A NB(r, p) r.v. counts the number of failures before the rth success in a
Bernoulli process with success probability p.

Note that a negative binomial r.v. with parameters 1 and p is the same thing as a
geometric r.v. with parameter p. (We shorthand this fact by writing “NB(1, p) ∼
Geom(p)”.)
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Examples with geometric and negative binomial r.v.s
EXAMPLE 26

Let X be a geometric r.v. so that P (X ≥ 5) = .3. What is P (X = 1)?

EXAMPLE 27
The number of hurricanes that hit Florida in a given year is assumed to be geomet-
ric with parameter .85. What is the probability that either 3 or 4 hurricanes will hit
Florida this year?

EXAMPLE 28
An urn contains 30 red, 20 green and 50 blue marbles. Marbles are drawn from the
urn, one at a time with replacement. What is the probability that the fifth time a
green marble is drawn is on the 18th draw?
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2.5 Summary of Chapter 2
• A discrete random variable is a function X : Ω → Rd taking values in a

discrete set (like N or Z or Zd).

• We can completely describe a discrete r.v. X by giving its density function
fX : Range(X)→ [0, 1], which is defined by

fX(x) = P (X = x).

Such a function must take only values between 0 and 1, and its values must
sum to 1. The density function of a discrete r.v. is used to compute probabili-
ties by adding its values: if E is any subset of the range of X ,

P (X ∈ E) =
∑
x∈E

fX(x).

• Classes of commonly encountered discrete random variables include the fol-
lowing:

1. uniform r.v.s, which assign equal likelihood to all values in the range of
X ;

2. hypergeometric r.v.s, which count the number of special objects drawn
when a sample is drawn without replacement;

3. binomial r.v.s, which count the number of successes in n trials of a
Bernoulli process (and also describe sampling with replacement);

4. geometric r.v.s, which count the number of failures before the first suc-
cess in a Bernoulli process (and are the only memoryless discrete r.v.s);

5. negative binomial r.v.s, which count the number of failures before the
rth success in a Bernoulli process.

You must know (or be able to refer to on your cheat sheet) the range, density
function and other relevant facts about each of these common r.v.s.

• We solve probability questions associated to uniform r.v.s by counting. Tech-
niques used to count sets include inclusion-exclusion, the multiplication prin-
ciple, permutations, combinations, distinguishable arrangements, and parti-
tion formulas.
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2.6 Chapter 2 Homework
Exercises from Section 2.2

1. Suppose X is a discrete r.v. with density function f given by

x −3 −1 0 1 2 3 5 8
fX(x) .1 .2 .15 .2 .1 .15 .05 .05

a) Compute the probability that X is negative.
b) Compute the probability that X is not positive.
c) Compute the probability that X is even.
d) Compute P (X ∈ [1, 8]).
e) Compute P (X = −3 |X ≤ 0).
f) Compute P (X ≥ 3 |X > 0).

2. Choose two of (a), (b), (c):

a) Suppose a box has 12 balls numbered 1 to 12. Two balls are selected from
the box independently, with replacement. Let X denote the larger of the
two numbers on the selected balls. Compute the density of X .

b) Suppose you choose a zip code (i.e. a five-digit sequence of numbers)
uniformly from all possible zip codes and letX be the number of nonzero
digits in the zip code. Calculate the density function of X .

c) Suppose you uniformly and independently choose three whole num-
bers from 0 to 9. Let X be the first digit of the number you get when you
add these whole numbers together. Calculate the density function of X .

Exercises from Section 2.3

3. (AE) Among a group of 20000 people, 7200 are below age 40, 8200 are child-
less and 12300 are male. In the same group, there are 5400 males below age
40, 4700 childless persons below age 40 and 6000 childless males. Finally,
there are 3100 childless males below age 40. How many people are females
above 40 who have children?

4. A 7-person committee, consisting of 3 Democrats, 3 Republicans and 1 Inde-
pendent, is to be chosen from a group of 20 Democrats, 15 Republicans and
10 Independents. How many different committees are possible?

5. A bus starts with 6 people and stops at 10 different stops. Assuming that each
passenger is equally likely to depart at any stop, calculate the probability that
the 6 people get off at 6 different stops.
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6. My niece’s iPhone has 100 songs on it, of which 10 are performed by Taylor
Swift. If she sets her iPod to shuffle mode, which will play all 100 songs in a
random order (without repeating any songs until they are all played once),
what is the probability that the first Taylor Swift song my niece hears is the
eighth song played?

7. A domino is a rectangular block divided into two equal subrectangles as
below, where each subrectangle has a number on it:

x y

(The numbers x and y might be the same or different.) Since dominos are
symmetric, the domino (x, y) is the same as (y, x). How many different
domino blocks can be made if the x and y are to be chosen from n different
numbers?

Hint: Count the dominos where x = y separately from the dominos where
x ̸= y. Then add these two separate counts.

8. How many distinct arrangements of the letters in each of the following words
are possible?

a) COFFEE b) ASSESS c) BOOKKEEPER

9. a) Consider the grid of points shown below. Suppose that starting at the
point A you move from point to point, moving only one unit to the right
or one unit up at a time, ending at the point B. How many different
paths from A to B are possible?

• • • • • •B

• • • • • •
• • • • • •

A• • • • • •

b) The above picture gives a 6× 4 grid of dots. Answer the same question
that was posed in part (a), if the grid is m × n (i.e. it has n horizontal
rows, each containing m dots).

10. How many distinct, non-negative integer-valued vectors (x1, x2, ..., x5) sat-
isfy x1 + x2 + x3 + x4 + x5 = 12?

Hint: This has something to do with distinguishable arrangements, and might
have something to do with Problem 9, depending on how you think about it.

In Problems 11-15, you are to give both a formula for the answer in terms of stan-
dard combinatorial notation, and a decimal approximation of your answer.
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11. Suppose you deal a five-card hand from a standard deck of cards. Compute
the probability of being dealt each of the following hands:

a) A royal flush (the A,K,Q,J and 10 of the same suit)
b) A flush (any five cards of the same suit)
c) Three-of-a-kind, but not a full house or four-of-a-kind
d) A straight (five cards in a sequence, regardless of suit)

Note: An ace may be the highest card (10-J-Q-K-A) or lowest card (A-2-3-
4-5) in a straight, but a sequence like K-A-2-3-4 is not a straight because
the ace is in the middle.

e) A hand which contains no pair (nor three- nor four-of-a-kind)

12. In Texas Hold’Em, each player is dealt 2 cards from a standard deck.

a) What is the probability that a Texas Hold’Em player is dealt a pair?
b) What is the probability that a Texas Hold’Em player’s hand is a “Broad-

way” hand (i.e. both cards are 10 or higher)?
c) What is the probability that a Texas Hold’Em player is dealt “suited con-

nectors”, meaning that the cards are of the same suit and adjoining rank
(like (A-2) or (8-9) or (10-J) or (K-A))?

13. In the card game Bridge, each player is dealt 13 cards from a standard deck.

a) A Yarborough is a (terrible) Bridge hand that contains no card higher
than a 10 (i.e. no jacks through aces). Compute the probability that a
Bridge hand is a Yarborough.

b) A Bridge hand is said to have a void if there is at least one suit for which
the hand has no cards in that suit. Compute the probability that a Bridge
hand has exactly one void.

14. In the card game Shanghai Rummy, two 54-card decks (each including the
standard 52 cards and 2 jokers) are shuffled together. Then, each player is
dealt a 12-card hand. What is the probability that a Shanghai Rummy hand
contains at least one joker?

15. Set is a card game played with a deck of 81 different cards. Unlike normal
playing cards, which have two attributes (a suit and a rank), each card in a
Set deck has four attributes: a color (one of red, green, or purple), a shape
(one of diamonds, ovals or waves), a number (1, 2 or 3), and a pattern (solid,
striped, or open).

a) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color flush (meaning all five cards are of the same
color)?
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b) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color and shape flush (meaning all five cards are
of the same color and shape)?

c) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color and shape and pattern flush (meaning all
five cards are of the same color, shape and pattern)?

d) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a flush with respect to any two attributes?

e) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a flush with respect to at least one attribute?
Hint: Use Inclusion-Exclusion, together with previous parts of this prob-
lem.

Exercises from Section 2.4

16. A fair die is rolled 12 times (independently). Compute the probability of
rolling exactly 2 sixes, and the probability of rolling at most 2 sixes.

17. (AE) Experience shows that 20% of the people reserving tables at a certain
restaurant never show up. If the restaurant has 50 tables and takes 52 reser-
vations, what is the probability that it will be able to accommodate everyone
who shows up?

18. A circular target of radius 1 is divided into four annular zones (an “annular”
shape is like a ring) of outer radii 1

4 , 1
2 , 3

4 and 1, respectively. Suppose 10 shots
are fired at the target independently, and that each shot hits a random point
in the target chosen uniformly.

a) Compute the probability that exactly four shots land in the region of
radius 1/4.

b) What is the probability that at most three shots land in the zone bounded
on the inside by the circle of radius 1/2 and on the outside by the circle
of radius 3/4?

c) If exactly 5 shots land inside the circle of radius 1/2, determine the prob-
ability that at least one shot lands inside the circle of radius 1/4.

19. (AE) You own a business that gets bolts from two bolt manufacturers: A and
B (you get 70% of your bolts from A and 30% from B). Suppose that 5% of
all bolts from manufacturer A are defective, and that 20% of all bolts from
manufacturer B are defective. You get a shipment of 12 bolts from one of
the two manufacturers. If exactly 3 of the 12 bolts are defective, what is the
probability that the shipment came from manufacturer B?
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2.6. Chapter 2 Homework

20. There are 40 gumballs in a bag, of which 20 are red, 10 are orange, 8 are green,
and 2 are purple.

a) If you draw 10 gumballs from the bag without replacement, what is the
probability that you draw 5 red, 3 orange, and 2 purple gumballs?

b) If you draw 7 gumballs from the bag without replacement, what is the
probability that you draw exactly 4 green gumballs?

c) If you draw 7 gumballs from the bag with replacement, what is the prob-
ability that you draw exactly 4 green gumballs?

d) If you draw 6 gumballs from the bag without replacement, what is the
probability you draw at least 5 orange gumballs?

e) If you draw 10 gumballs from the bag with replacement, what is the
probability that you draw 3 orange gumballs?

21. Continuing with the same bag of gumballs as in the previous problem:

a) If you draw 15 gumballs from the bag without replacement and take a
bite out of them, then put them back in the bag, and if you subsequently
draw 5 gumballs from the bag with replacement, what is the probability
that you drew 3 gumballs that you bit?

b) Suppose you draw gumballs from the bag repeatedly, with replacement.
What is the probability that the first time you draw a purple gumball is
on the 9th draw?

c) Suppose you draw gumballs from the bag repeatedly, with replacement.
What is the probability that the fifth time you draw a red gumball is on
the 14th draw?

d) Suppose you draw gumballs from the bag two at a time, putting each
group back after you draw it. What is the probability that the first time
you draw 2 red gumballs (on a single draw) is the 4th time you draw 2
gumballs from the bag?

e) Divide the 40 gumballs randomly into four disjoint groups of 10. What
is the probability that the first and second groups have the same number
of green gumballs?

22. Suppose X ∼ Geom(.8). Compute the following:

a) P (X > 3)
b) P (4 ≤ X ≤ 7 or X > 9)

c) P (X ≤ 2 |X ≤ 3)
d) P (X ≥ 85 |X ≥ 80)
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2.6. Chapter 2 Homework

Calculus review

23. Evaluate each integral:

a)
∫
ex dx

b)
∫
e−x dx

c)
∫
e2x dx

d)
∫
ex/5 dx

e)
∫
e−(3/8)x dx

f)
∫
e(5x−3)/4 dx

24. Based on your answers to Exercise 23, what is
∫
erx dx? (There are two cases,

depending on whether or not r = 0.)

25. Based on your answer to Exercise 24, evaluate the following integrals, simpli-
fying your answer as much as possible. Try to do them quickly, i.e. without
writing a u-substitution.

a)
∫

3e−4x dx

b)
∫ 1

0

1
2e

−(2/3)x dx

c)
∫ 5

2
2e4x dx

d)
∫ 12

4

e−x/4

8 dx

e)
∫ 7

5
ae−bx dx

(in (e), assume b ̸= 0)

26. Evaluate each improper integral:

a)
∫ ∞

1
3e−x dx.

b)
∫ ∞

5
2e−x/4 dx

c)
∫ ∞

a
re−sx dx (assume in this problem that s ̸= 0)

27. Determine the value of c so that
∫ ∞

0
4e−cx dx = 1.
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Chapter 3

Continuous random variables

3.1 Density functions of continuous random variables
RECALL

A r.v. X is a function X : Ω→ Rd, where (Ω,A, P ) is a probability space.

In Chapter 2, we studied discrete r.v.s, meaning those whose range is finite or
countable. Now, we will study non-discrete r.v.s. First, a definition:

Definition 3.1 A r.v. X : Ω → Rd is called continuous (cts) if, for every x ∈ Rd,
we have

P (X = x) = 0.

Definition 3.2 A r.v. X : Ω → Rd is called mixed if if it neither discrete nor
continuous.

EXAMPLE 1
Pick a number uniformly from [0, 3] and let X be the result.
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3.1. Density functions of continuous random variables

RECALL

To describe a discrete real-valued r.v., we write down a
for that r.v. This object tells us two things:

1.

2.

QUESTION

What is the analogue of this for a cts r.v.?

Bad news: Unfortunately, we can’t accomplish both (1) and (2) above when X is
cts:

Definition 3.3 Let X : Ω → R be a cts r.v. We say X has a density function fX

(equivalently, fX is a density function for X) if fX : R → [0,∞) satisfies, for any
real numbers a ≤ b,

P (X ∈ [a, b]) =
∫ b

a
fX(x) dx.

EXAMPLE 1, CONTINUED

What is a density function for the uniform r.v. on [0, 3]?
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3.1. Density functions of continuous random variables

Theorem 3.4 A function f : R → R is the density function of a cts r.v. X : Ω → R
if and only if all of the following hold:

1. f is measurable (meaning you can compute
∫ b

a
f(x) dx for every a and b);

2. f(x) ≥ 0 for all x;

3.
∫ ∞

−∞
f(x) dx = 1.

EXAMPLE 2
Suppose X is a continuous r.v. whose density function is

fX(x) =
{
cx if 0 ≤ x ≤ 3
0 else

for some constant c.

1. What is the range of X?

2. What is the value of c?

3. Find P (X ≤ 1).
4. Find P (X ≥ 2).
5. Find P (X > 2).
6. Which is more likely, that X = 1 or X = 2?

7. Which is more likely, that X is close to 1 or X is close to 2?
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3.1. Density functions of continuous random variables

Key idea: If you want to do any probabilistic calculations related to a contin-
uous r.v., all you need to be given (or all you need to figure out) is the density
function of that r.v. This is because if you are given any set E ⊆ Rd,

P (X ∈ E) =
∫

E
fX(x) dx,

so long as X is continuous.

Contrast this with how you compute probabilities for discrete r.v.s:

DISCRETE R.V.S CONTINUOUS R.V.S

How the density
function is

defined

How probabilities
are computed

using the density

Bad news: There are continuous r.v.s that do not have a density function.
Good news: You would not encounter these r.v.s in any normal situation.

Uniform continuous r.v.s

The most common type of continuous r.v. is where you choose from a set where
all subsets of the same size have equal probability This is called a uniform r.v.:

Definition 3.5 Let Ω ⊆ R be a union of intervals whose total length is finite.
A (continuous) uniform random variable on Ω is the cts r.v. X with density function

fX(x) =


1

total length(Ω) if x ∈ Ω

0 else

If X is uniform on a single interval [a, b] ⊆ R, we write X ∼ Unif([a, b]).

Example 1 describes a uniform r.v. on [0, 3], for instance.
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3.1. Density functions of continuous random variables

EXAMPLE 3
Describe a density function for the uniform r.v. on [0, 4] ∪ [10, 11) ∪ {13}.

Remark: The density function of a cts r.v. is never unique – it can be altered on
any finite or countable set without affecting any probability computations.

EXAMPLE 4

Find a density function for X , if X ∼ Unif(
[
0, 1

2

]
).

Remark: Unlike density functions for discrete r.v.s, density functions for cts
r.v.s can take values greater than 1.
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3.2. Distribution functions

3.2 Distribution functions
In this section, we address two questions:

1. How do we represent a r.v. which is mixed (neither discrete nor cts)?

2. Is there an object which describes r.v.s, which unifies the theory of discrete,
cts and mixed r.v.s?

The answer to these questions is given in the following definition. For now, we’ll
stick to real-valued r.v.s (and discuss vector-valued r.v.s later).

Definition 3.6 Let X : Ω → R be a r.v. The cumulative distribution function
(a.k.a. distribution function a.k.a. cdf) of X is the function FX : R → R defined
by

FX(x) = P (X ≤ x).

EXAMPLE 5
What is the cdf for the uniform r.v. on [0, 4]?
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3.2. Distribution functions

EXAMPLE 6
Shown below are graphs of the cdfs for three r.v.s X , Y and Z. What can you tell
about X , Y and Z from these graphs? What are the commonalities across these
three graphs?

FX

-9 -6 -3 0 3 6 9

0.2

0.4

0.6

0.8

1.
FY

-3 -1 1 3 5 7 9

0.2

0.4

0.6

0.8

1.
FZ

-3 -1 1 3 5 7 9

0.2

0.4

0.6

0.8

1.
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3.2. Distribution functions

Theorem 3.7 (Properties of distribution functions) Let X : Ω → R be a r.v.
whose cdf is FX . Then:

1. FX is the only cdf of X ;

2. FX is nondecreasing;

3. lim
x→−∞

FX(x) = 0;

4. lim
x→∞

FX(x) = 1;

5. If Range(X) ⊆ (a, b), then FX(x) = 0 for all x ≤ a;

6. If Range(X) ⊆ (a, b), then FX(x) = 1 for all x ≥ b;

7. FX is right-continuous everywhere

(meaning lim
x→c+

FX(x) = FX(c) for all c).

Theorem 3.8 (Calculating probabilities from distribution functions) Let X :
Ω→ R be a r.v. whose cdf is FX . Then:

1. P (X ∈ (a, b]) = FX(b)− FX(a) for all a < b.

a b

2. P (X = c) = FX(c)− lim
x→c−

FX(x)

(this is the size of the jump in FX at c).

x⟶c-

FX

c

lim FX (x)

FX (c)

3. P (X = c) = 0 if and only if FX is continuous at c.

The next theorem generalizes what we observed in Example 6:

Theorem 3.9 Let X : Ω→ R be a r.v. whose cdf is FX . Then:

1. X is cts if and only if FX is a continuous function;

2. X is discrete if and only if FX is piecewise constant.
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3.2. Distribution functions

EXAMPLE 7
Suppose X is a real-valued r.v. that has distribution function

FX(x) =


0 if x ≤ 0

1
4
√
x if x ∈ (0, 1)

1
2x if x ∈ [1, 2)
1 if x ≥ 2

Compute each probability:

1. P (X = x) (do this for every real number x)

2. P (X ≤ 1)
3. P (X < 1)
4. P (X ≥ 1)
5. P (X > 1)
6. P (1

2 ≤ X < 3
2)

Theorem 3.10 (Relationship between density and dist. functions) Suppose that
X : Ω→ R is a cts r.v. with density function fX . Then:

1.
d

dx
(FX(x)) = fX(x); and

2.
∫ x

−∞
fX(t) dt = FX(x).

PROOF Statement (2) follows from definitions of density and distribution func-
tions: ∫ x

−∞
fX(t) dt = P (X ∈ (−∞, x]) = FX(x).
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3.2. Distribution functions

Statement (1) follows from (2) and the Fundamental Theorem of Calculus:

d

dx
FX(x) = d

dx

[∫ x

−∞
fX(t) dt

]
= fX(x). □

EXAMPLE 8
Suppose X is a cts. r.v. whose distribution function is

FX(x) =


0 x ≤ 0

sin x 0 < x ≤ π

2
1 x >

π

2

.

1. Find a density function of X .

2. Compute P
(
X <

π

6

)
using the cdf of X .

3. Compute P
(
X <

π

6

)
using a density function of X .

Survival functions

Definition 3.11 Let X be a real-valued r.v. The survival function of X is the func-
tion SX(x) = P (X > x) = 1− FX(x).

Note: if X is cts, then SX(x) = P (X ≥ x) as well.

EXAMPLE 9
Compute the survival function of X , if X ∼ Unif([0, 8]).
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3.3. Transformations of random variables

3.3 Transformations of random variables
Let φ : R→ R be a function and let X be a real-valued r.v. (By the way, φ is “phi”.)
Then Y = φ(X) is a r.v. which is called a transformation of X . The object of this
section is to compute the density function of a transformation when you are given
a density function of the original r.v.

When X is discrete

In this situation, Y = φ(X) must also be discrete. To compute the density function
of Y , first determine the range of Y . Then, for y belonging to the range of Y , start
with the definitions as follows:

fY (y) = P (Y = y) = P (φ(X) = y)

and then solve the equation inside the parentheses for X . Then use a density func-
tion of X to compute probabilities.

EXAMPLE 10
Suppose X ∼ Unif({−2,−1, 0, 1, 2}). Let Y = X4. Find a density function of Y .

Remark: Once you have a density function of Y , you can compute any proba-
bility associated to Y by adding values of fY (or integrating fY , if Y is contin-
uous).
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3.3. Transformations of random variables

When X is continuous

In this situation, Y = φ(X) could be discrete, continuous or neither. Since you
don’t even know that Y has a density function, the best way to proceed is to find
the distribution function of Y first. First, determine the range of Y . If this range
is [a, b] or (a, b), you know that

and

Next, let y be in the range of Y . By the definition of cdf, we get

FY (y) = P (Y ≤ y) = P (φ(X) ≤ y).

Solve the inequality φ(X) ≤ y for X (this may involve multiple cases) and use
either the density or distribution function of X to obtain the cdf of Y . Finally, dif-
ferentiate FY to obtain fY .

EXAMPLE 11
Let X be uniform on [0, 2] and let Y = X3. Compute a density function of Y .
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3.3. Transformations of random variables

EXAMPLE 12
Suppose that an insurance company has to make two kinds of annual payments,
“direct” and “indirect”. If X is the size of the direct payment and Y is the size
of the indirect payment the company has to make, assume that (X, Y ) is mod-
eled by a uniform r.v. on the unit square (this is the square whose vertices are
(0, 0), (1, 0), (0, 1) and (1, 1)). Determine a density function of the total annual pay-
ment the insurance company has to make.
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3.3. Transformations of random variables

EXAMPLE 13
Choose a point (X, Y ) uniformly from the rectangle whose vertices are the four
points (1, 0), (1, 1), (4, 0) and (4, 1). Let Z = Y/X ; compute fZ .
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3.3. Transformations of random variables

EXAMPLE 14
You and your friend decide to meet at the library to study math. Each of you
choose a random time (uniformly and independently) to arrive at the library be-
tween 6 and 7 PM. What is the density function of the length of time the first person
to arrive has to wait for the second person to arrive?
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3.3. Transformations of random variables

Definition 3.12 A continuous, real-valued r.v. Y is called Cauchy if Y = tanX ,

for X uniform on
[−π

2 ,
π

2

]
.

The Cauchy r.v. measures the slope of an angle which is uniformly chosen,
because tan θ is the slope of a line at angle θ to the horizontal.

EXAMPLE 15
Compute a density function of the Cauchy r.v.

Solution: First, notice that since X ∼ Unif([−π
2 ,

π
2 ]),

fX(x) = 1
π
2 −

−π
2

= 1
π

for x ∈ [−π
2 ,

π
2 ] (and fX(x) = 0 otherwise).

Now, let Y = tanX ; the range of Y is R. For any y ∈ R,

FY (y) = P (Y ≤ y)
= P (tanX ≤ y)
= P (X ≤ arctan y)

=
∫ arctan y

−π/2
fX(x) dx

=
∫ arctan y

−π/2

1
π
dx

= 1
π

(
arctan y −

(
π

2

))
= 1
π

arctan y + 1
2 .

Therefore a density function for Y is

fY (y) = d

dy
FY (y) = d

dy

[ 1
π

arctan y + 1
2

]
=

-5 -4 -3 -2 -1 1 2 3 4 5
y

1
π

1

fY (y)
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3.4. Poisson processes

3.4 Poisson processes
In the last chapter, we discussed Bernoulli processes, which count the number of
successes occurring when time is kept track of discretely (i.e. in terms of the number
of trials that have been performed). In this section we describe a second important
type of process, which can be thought of as keeping track of the number of “suc-
cesses” called births occurring when time is kept track of continuously (i.e. in terms
of elapsed physical time). Such a process is called a Poisson process:

Definition 3.13 Suppose “births” are occurring at random times in [0,∞) according
to the following three rules:

No simultaneous births: the probability of two births happening at the same time
is zero;

Time homogeneity: the number of births happening in any interval of time depends
only on the length of that interval (and not on the starting point or endpoint of
that interval); and

Independent increments: the number of births occurring on any collection of dis-
joint intervals are mutually independent of one another.

In this setting, if we define Xt to be the number of births in time interval [0, t], we
obtain a continuous-time stochastic process {Xt : t ∈ [0,∞)} called a Poisson pro-
cess.

Things from the real world modeled by Poisson processes include:

• births of new individuals in a population;

• arrivals of customers to a service center;

• times of radioactive emissions;

• times when a cell phone receives a text message;

• times when an earthquake hits the San Andreas Fault;

• times at which insurance companies acquire new customers;

• times at which insurance companies’ customers file claims;

• times when an error occurs during a transmission.

In all these situations, each time when one of these things occurs is the time of a
“birth”.
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3.4. Poisson processes

To get a picture of what a Poisson process “looks like”, suppose births happen at
times 2, π,

√
30, 7.3, 9, .... If we graph Xt against t, we get this sample function:

2 π 30 7.3 9
t

1

2

3

4

5

6

7

Xt

More generally, suppose the times of births are (in increasing order) T1, T2, T3, ....
This produces the following picture of a sample function, from which we can de-
fine random variables associated to the Poisson process:

T1 T2 T3 T4
t

1

2

3

4

5

6

7

Xt
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3.4. Poisson processes

Definition 3.14 Let {Xt} be a Poisson process. For j = 1, 2, 3, ..., define the follow-
ing r.v.s:

Tj = min{t : Xt = j}
= the jth smallest time at which a birth occurs (set T0 = 0)

Wj = Tj − Tj−1 = the jth waiting time

(the time between the (j − 1)st and jth births)

Note the parallels between these r.v.s and the r.v.s arising from a Bernoulli process:

Bernoulli process Poisson process

time measurement discrete
(t ∈ N)

continuous
(t ∈ [0,∞))

parameter
success

probability
p

distribution of Xt binomial(t, p)

W ∼ time to first success/birth Geom(p)
(memoryless)

Tr ∼ time to rth success/birth NB(r, p)

Exponential random variables

Our goal is to determine the density function for each of the r.v.s associated to a
Poisson process. We start with the distribution of the waiting times Wj :

Quick observations about waiting times:

1. Tj = W1 +W2 +W3 + ...+Wj .

2. If i ̸= j, the values of Wi ⊥ Wj (follows from independent increments).

3. For any j, the density function of Wj is the same as the density function of
any other Wi, hence the same as the density function of W1 (follows from
time homogeneity). So we can call each of the waiting times W .

4. W is continuous (follows from time homogeneity).

5. W is memoryless (see next page).
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3.4. Poisson processes

Lemma 3.15 If W is the waiting time between births in a Poisson process, then W is
memoryless, meaning that for all m,n ≥ 0,

P (W ≥ m+ n |W ≥ m) = P (W ≥ n).

PROOF The important observation to prove this is that in a Poisson process, W ≥
w means there are no births in a time interval of length w. The rest of this proof is
a calculation based on this observation:

P (W ≥ n) = P (no births take place in the time interval [0, n))
(since waiting time to first birth is at least n)

= P (no births take place in the time interval [m,m+ n))
(by time homogeneity)

= P

 no births take place no births take place
in the time interval in the time interval

[m,m+ n) [0,m)


(by the independent increment property)

= P (no births in [0,m) ⋂ no births in [m,m+ n))
P (no births in [0,m))

(by definition of conditional probability)

= P (no births in [0,m+ n))
P (no births in [0,m))

= P (W ≥ m+ n)
P (W ≥ m)

= P (W ≥ m+ n
⋂
W ≥ m)

P (W ≥ m)
= P (W ≥ m+ n |W ≥ m). □

RECALL

IfX is discrete, we showed that any memoryless r.v. X must be .
The waiting timeW in a Poisson process is memoryless, but is continuous. To clas-
sify it, we use the following theorem:
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3.4. Poisson processes

Theorem 3.16 Let X be a continuous r.v. taking values in [0,∞) which is memory-
less. Then X has density function

fX(x) =

PROOF First, let FX be the cdf of X and consider the survival function

SX(x) = 1− FX(x) = P (X > x) = P (X ≥ x).

Note SX(x) ∈ (0, 1) so − lnSX(1) > 0.
We can then let λ = − lnSX(1), which means SX(1) = e−λ.

Since X is memoryless,

P (X ≥ m+ n)
P (X ≥ m) = P (X ≥ n) ⇒ P (X ≥ m+ n) = P (X ≥ m)P (X ≥ n)

⇒

So for any positive integer m,

SX(m) = SX(1 + 1 + ...+ 1) = SX(1)SX(1) · · ·SX(1) = [SX(1)]m = e−λm.

Now for any positive rational number m
n

,

SX(m) = SX

(
m

n
+ ...+ m

n

)
= SX

(
m

n

)
SX

(
m

n

)
· · ·SX

(
m

n

)
=
[
SX

(
m

n

)]n

so by taking nth roots of both sides of the above equation we get

SX

(
m

n

)
= n

√
SX(m) = n

√
SX(1)m = [SX(1)]m/n = e−λ(m/n).

Since SX(m
n

) = e−λ(m/n) for all rational numbers m/n, and since SX is
continuous (because X is cts by hypothesis), it must be that for all real
numbers x, SX(x) = e−λx. Thus

FX(x) = 1− SX(x) = 1− e−λx

and
fX(x) =
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3.4. Poisson processes

Definition 3.17 An exponential r.v. X with parameter λ ∈ (0,∞) is a continuous
r.v. whose density function is

fX(x) =
{
λe−λx x ≥ 0

0 else .

If X is exponential with parameter λ, we write X ∼ Exp(λ).

Here are some plots of density functions of Exp(λ) r.v.s for various λ:

λ = 1
5 λ = 1 λ = 3 λ = 10

1/5

1

3

Thus ifX is exponential, we are more likely to get smaller values forX if λ is large,
and more likely to get larger values for X if λ is small.

Theorem 3.18 (Properties of exponential r.v.s) Let X be a real-valued r.v. The
following statements are equivalent:

1. X ∼ Exp(λ).

2. X is memoryless and continuous.

3. The cdf of X is FX(x) =
{

0 if x < 0
1− e−λx if x ≥ 0 .

4. The survival function of X is SX(x) = e−λx.

5. X models the time between births in a Poisson process.

Corollary 3.19 (Waiting times are exponential) Let {Xt} be a Poisson process.
Then there is a number λ > 0, called the rate or birth rate of the process, such
that the waiting times between each births are Exp(λ).

An exponential r.v. with parameter λ gives the waiting time between births
in a Poisson process with rate λ.
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3.4. Poisson processes

Poisson random variables

Now, we turn our attention to figuring out the density of Xt (for a fixed t). No-
tice first that each Xt is discrete because it counts the number of births in [0, t].
Furthermore,

P (Xt = x) = P (exactly x births in the time interval [0, t]).

Take the time interval [0, t] and divide it into n equal-length subintervals:

The length of each subinterval is

and therefore the probability of no birth in each subinterval is

so the probability of at least one birth in each subinterval is

Now, if n is large enough, then these subintervals will be very, very small, so by
the property of no simultaneous births, we will not have more than one birth any
any of these subintervals. So for large enough n, each subinterval will have

one birth (with probability 1− e−λt/n)
or

zero births (with probability e−λt/n).

That means we can think of each subinterval as being a trial of a Bernoulli experi-
ment (where a “success” means that the subinterval contains a birth), and therefore

P (Xt = x) = P (exactly x births in the time interval [0, t])
= P (x successes in n trials)
= b(n, 1− e−λt/n, x)

Of course, this only works if n is large enough. How large is large enough? Well,
∞ is definitely large enough, so we conclude

P (Xt = x) = lim
n→∞

b(n, 1− e−λt/n, x).

and we work out this limit on the next page.
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From the previous page,

P (Xt = x) = lim
n→∞

b
(
n, 1− e−λt/n, x

)
= lim

n→∞

(
n

x

)(
1− e−λt/n

)x (
e−λt/n

)n−x

= lim
n→∞

n!
x!(n− x)!

(
1− e−λt/n

)x
e−λt(n−x)/n

= 1
x! lim

n→∞

n!
(n− x)!

(
1− e−λt/n

)x
exp

[
−λt

(
n− x
n

)]
= 1
x! lim

n→∞

n!
(n− x)! ·

nx

nx

(
1− e−λt/n

)x
exp

[
−λt

(
1− x

n

)]

= 1
x! exp [−λt(1)] lim

n→∞

n(n− 1)(n− 2) · · · (n− x+ 1)
nx

· nx
(
1− e−λt/n

)x

= 1
x! exp [−λt(1)] lim

n→∞

nx + smaller powers of n
nx

· nx
(
1− e−λt/n

)x

= e−λt

x! lim
n→∞

(
1 + nnegative powers

) [
n
(
1− e−λt/n

)]
x

= e−λt

x! (1 + 0) lim
n→∞

[
n
(
1− e−λt/n

)]
x

= e−λt

x! lim
n→∞

[
n
(
1− e−λt/n

)]
x

= e−λt

x!

 lim
n→∞

1− e−λt/n

1
n


x

L= e−λt

x!

 lim
n→∞

e−λt/n

(
λt

n2

)
−1
n2


x

= e−λt

x!

[
lim

n→∞
λt e−λt/n

]x

= e−λt

x!
[
λt (e0)

]x
= (λt)xe−λt

x! .
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Definition 3.20 Let λ ∈ (0,∞). A Poisson r.v., denoted Pois(λ), is a discrete r.v.
taking values {0, 1, 2, 3, ...} whose density function is

fX(x) = λxe−λ

x! .

λ is called the parameter of the Poisson r.v.

Theorem 3.21 The density function of a Poisson r.v. is in fact a density function (its
values sum to 1).

PROOF Apply the formula for the Taylor series of eλ:

∞∑
x=0

fX(x) =
∞∑

x=0

λxe−λ

x! = e−λ
∞∑

x=0

λx

x! = e−λeλ = 1. □

Theorem 3.22 Let {Xt : t ∈ [0,∞)} be a Poisson process with rate λ. Then for each
t, Xt ∼ Pois(λt).

A Poisson r.v. with parameter λ counts the number of births taking place in
a Poisson process with rate λ over any one unit of time.
A Poisson r.v. with parameter λt counts the number of births taking place in
a Poisson process with rate λ over any time period of length t.

There is a relationship between binomial and Poisson r.v.s:

Theorem 3.23 (Law of Small Numbers (LSN)) lim
n→∞

b(n, λ
n
) = Pois(λ). Re-

stated, this means that for any x ∈ {0, 1, 2, 3, ...},

lim
n→∞

b

(
n,
λ

n
, x

)
= e−λλx

x! .

PROOF HW

The LSN says that if you perform more and more trials in a Bernoulli experiment,
but simultaneously lower the probability of success on each trial so that the ex-
pected number of successes is kept equal to the constant λ, you achieve a Poisson
r.v. in the limit. So a Poisson r.v. is kind of like a binomial r.v. with infinitely many
trials and an infinitely small success probability.
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Gamma random variables

The last r.v. associated to a Poisson process whose density we need to find is the
time Tr to the rth birth in a Poisson process. We start by noting that the range of
T = Tr is [0,∞); next we compute its distribution function. Let t ∈ [0,∞). Then

FT (t) = P (Tr ≤ t) = P (Xt ≥ r)
(both these inequalities describe the

event of at least r births in [0, t])
= 1− P (Xt < r)
= 1− P (Pois(λt) < r)

= 1−
r−1∑
x=0

e−λt(λt)x

x! .

⇒ fT (t) = d

dt
FT (t) = d

dt

[
1−

r−1∑
x=0

e−λt(λt)x

x!

]

= −
r−1∑
x=0

λx

x!
d

dt

[
e−λttx

]

= −
r−1∑
x=0

λx

x!
d

dt

[
e−λtex ln t

]

= −
r−1∑
x=0

λx

x!
d

dt

[
ex ln t−λt

]

= −
r−1∑
x=0

λx

x!
[
ex ln t−λt

] (x
t
− λ

)

=
r−1∑
x=0

λx

x!
[
txe−λt

] (
λ− x

t

)

=
r−1∑
x=0

λx+1

x! txe−λt −
r−1∑
x=0

xλx

x! tx−1e−λt

=
r−1∑
x=0

λx+1

x! txe−λt −
r−1∑
x=1

xλx

x! tx−1e−λt

=
r∑

x=1

λx

(x− 1)! t
x−1e−λt −

r−1∑
x=1

λx

(x− 1)! t
x−1e−λt

= λr

(r − 1)!t
r−1e−λt .
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Definition 3.24 Let λ ∈ (0,∞) and let r ∈ {1, 2, 3, ...}. A gamma r.v., denoted
Γ(r, λ), is a cts r.v. X taking values in [0,∞) whose density function is

fX(x) =


λr

(r − 1)!x
r−1e−λx if x ≥ 0

0 else
.

r and λ are called the parameters of the gamma r.v.

We will prove that fX is actually a density function later.

Theorem 3.25 Let {Xt : t ∈ [0,∞)} be a Poisson process with rate λ. Then for each
r ∈ {1, 2, 3, ...}, Tr (the time to the rth birth) is Γ(r, λ).

In particular, a Γ(1, λ) r.v. is the same thing as anExp(λ) r.v. (i.e. Γ(1, λ) ∼ Exp(λ) ).

PROOF The first part of this was derived on the previous page.

For the second part, let X ∼ Γ(1, λ):

fX(x) =

This is the same density as an Exp(λ) r.v., so X ∼ Exp(λ). □

A Γ(r, λ) r.v. measures the time until the rth birth in a Poisson process with
rate λ.

Problems with r.v.s related to Poisson processes
EXAMPLE 17

The number of people in a community who live to 100 years of age is a Poisson r.v.
with parameter 6.

1. Compute the probability that exactly 4 people live to 100.

2. Compute the probability that at least 2 people live to 100.
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EXAMPLE 18
The time (in hours) it takes to repair a machine is an exponential r.v. with parame-

ter
1
2 . Find the probability that the repair time is at least 2 hours.

EXAMPLE 19
Suppose X is exponential with parameter 4. Let Y = X2; find a density function
of Y .
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3.4. Poisson processes

EXAMPLE 20
Suppose that hits to a certain website follows a Poisson process with rate 200.

1. What is the probability there are (exactly) 630 hits in the first 3 units of time?

2. Suppose there is a hit at time 10. What is the probability that there are no hits
between times 10 and 11?

3. Write a density function of the r.v. measuring the time to the fifth hit.
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3.5 More on gamma random variables
The gamma function

We begin this question by trying to determine the value of n! when n is not a whole
number. For example, what is 1

2 !? What is π!?

More precisely, we seek a function f : R → R (or at least f : [0,∞) → R) with the
following properties:

1. f(n) = n! for all n ∈ {0, 1, 2, ...};

2. f is continuous;

3. xf(x− 1) = f(x) for all x.

Such an f would be a “continuous version of factorial”:

1 2 3 4
n

1
2! = 2

3! = 6

n!

0 1 2 3 4 5
n3! = 6

4! = 24

5! = 125

n!

1 2 3 4 5 6 7 8
n

6!

7!

n!

To do this, we will start by trying to incorporate property (3) above through some
creative integration by parts. Our attempt will be slightly off, but “close enough”.

Definition 3.26 The gamma function is the function Γ : (0,∞)→ R defined by

Γ(r) =
∫ ∞

0
xr−1e−x dx.

It turns out that Γ(r) = 1
r

∞∏
n=1

(
1 + 1

n

)r

1 + r
n

(this isn’t relevant to MATH 414 or 416).

Γ(n)

1 2 3 4
n

4!

n!

Γ(n+1)

1 2 3
n

n!

Γ(n+1)

1 2 3 4 5 6 7 8
n

6!

7!

n!
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Theorem 3.27 (Properties of the gamma function) Let Γ be the gamma function.
Then:

1. Γ : (0,∞)→ R is continuous.

2. Γ(1) = 1.

3. For every r > 0, Γ(r + 1) = rΓ(r).

4. For every r > 1, Γ(r) = (r − 1)Γ(r − 1).

5. For n ∈ {1, 2, 3, ...}, Γ(n) = (n− 1)!.

6. For every n ∈ N, n! = Γ(n+ 1).

PROOF (1) All functions defined as integrals are cts by the Fund. Thm. of Calculus.

(2) Γ(1) =
∫ ∞

0
e−x dx = −e−x|∞0 = 0− (−1) = 1.

(4) follows from (3) by replacing all the rs with r − 1.

(5) follows from (2) and repeated application of (4).

(6) follows from (5) by replacing each n with n+ 1. That leaves (3).

To establish (3), use integration by parts with u = xr and dv = e−x dx:

We can now extend the definition of gamma random variables to the situation
where r is not necessarily a whole number:

Definition 3.28 Let λ ∈ (0,∞) and let r ∈ (0,∞). A gamma r.v., denoted Γ(r, λ),
is a cts r.v. X taking values in [0,∞) whose density function is

fX(x) =


λr

Γ(r)x
r−1e−λx if x ≥ 0

0 else
.

r and λ are called the parameters of the gamma r.v.
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Here are some graphs of density functions of Γ(r, λ) r.v.s:

r=1/2, λ=3/4

r=1.1, λ=3/4
r=2, λ=3/4 r=4, λ=3/4

0 1 2 3 4
x

0.5

1.0

1.5

2.0

2.5

3.0
fX(x)

r=1/2, λ=3

r=1.1, λ=3

r=2, λ=3
r=4, λ=3

0 1 2 3 4
x

0.5

1.0

1.5

2.0

2.5

3.0
fX(x)

r=1/2, λ=6

r=2, λ=6

r=4, λ=6

r=6, λ=6

0 1 2 3 4
x

0.5

1.0

1.5

2.0

2.5

3.0
fX(x)

Theorem 3.29 The density function of a Γ(r, λ) r.v. is in fact a density function.

PROOF Perform the u-substitution u = λx; du = λ dx inside the integral:

∫ ∞

0
fX(x) dx =

∫ ∞

0

λr

Γ(r)x
r−1e−λx dx =

Corollary 3.30 (Gamma Integral Formula) Let r, λ > 0. Then:

∫ ∞

0
xr−1e−λx dx = Γ(r)

λr

Application:
∫ ∞

0
4z6e−2z dz =
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3.6 Summary of Chapter 3
• A continuous random variable is a function X : Ω→ Rd such that the proba-

bility of any individual value of X is zero.

• We usually describe continuous r.v.s by specifying a density function fX :
Rd → [0,∞), which satisfies

P (X ∈ E) =
∫

E
fX(x) dx

for any set E. Such a function must be everywhere nonnegative and must
integrate to 1. We compute probabilities associated to a cts r.v. by integrating
the density function as above.

• All real-valued r.v.s can be described by giving a distribution function FX :
R→ [0, 1] defined by

FX(x) = P (X ≤ x).
Distribution functions have many properties; notably X is cts if and only if
FX is cts; and if X is cts with density fX ,

fX(x) = d

dx
FX(x) and FX(x) =

∫ x

−∞
fX(t) dt.

• To find the density function of a continuous transformation Y of a continuous
r.v X ., first find the range of Y , then compute FY by back-substitution. Last,
differentiate FY to get fY .

• Classes of commonly encountered continuous random variables include the
following:

1. uniform r.v.s, which assign relatively equal likelihood to all values in
the range of X ;

2. exponential r.v.s, which measure the amount of time until a birth hap-
pens in a Poisson process (and are the only memoryless cts r.v.s);

3. gamma r.v.s, which measure the amount of time until the rth birth in a
Poisson process;

4. the Cauchy r.v., which gives the tangent of a uniformly chosen angle.

You should know the range, distribution and density function of each of
these common r.v.s, and additional facts relevant to each class.

• One additional class of discrete r.v.s not previously encountered are Poisson
r.v.s, which count the number of births over a fixed length of time in a Poisson
process.
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• The gamma function Γ, defined by

Γ(r) =
∫ ∞

0
xr−1e−x dx,

extends the idea of factorial to positive real numbers (for n ∈ N, n! = Γ(n+1)).

3.7 Chapter 3 Homework
Exercises from Section 3.1

1. Suppose you choose a real number X from the interval [2, 10] with a density
function of the form fX(x) = Cx, where C is some constant.

a) What is the value of C?
b) Compute P (X > 5).
c) Compute P (X ≤ 7).

2. a) (AE) The loss due to a fire in a commercial building is modeled by a
continuous r.v. X with density function f(x) = k(20 − x) for 0 < x <
20 (f(x) = 0 otherwise). Given that a fire loss exceeds 8, what is the
probability that it exceeds 16?
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b) In part (a) of this problem, did you have to determine the value of k to
find the answer? Why or why not?

c) In general, for what types of probability computations would one not
need to find the value of an unknown multiplicative constant (like the k
in part (a)) in a density function?

Exercises from Section 3.2

3. Let X be a r.v. whose distribution function is

FX(x) =



0 if x < 0
x

4 if 0 ≤ x < 1
x

2 if 1 ≤ x < 2

1 if x ≥ 2

Compute each quantity:

a) P
(

1
4 ≤ X ≤ 5

4

)
b) P

(
1
4 ≤ X ≤ 1

)
c) P

(
1
4 ≤ X < 1

)
d) P

(
1 ≤ X ≤ 7

4

)
e) P (1 < X < 2).

f) P (X is an integer)

4. Suppose X is a r.v. whose cdf is

FX(x) =



0 if x < 1
1
10 if 1 ≤ x < 3
x

10 if 3 ≤ x < 4

K − 2
x

if x ≥ 4

where K is a constant. Compute each quantity:

a) K
b) P (X = 3)
c) P (2 < X < 3)
d) P (3 < X < 4)

e) P (X > 1)
f) P (X > 4 |X ≥ 4)
g) P (X < 3.5 |X ≤ 4)
h) P (X > 2 |X > 3)
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5. Suppose X is a continuous r.v. with survival function

S(x) =
{
x−3/2 if x ≥ 0

1 if x < 0.

a) Compute P (X ≥ 7).
b) Compute P (X < 5).
c) Compute P (3 < X < 10).
d) Compute the cdf of X .

e) Compute a density function of X .

Exercises from Section 3.3

6. Let X be a discrete r.v. with density function fX defined as follows:

fX(−1) = 1
5 , fX(0) = 1

5 , fX(1) = 2
5 , fX(2) = 1

5 .

a) Compute a density function of Y = 2X + 1.

b) Compute a density function of Z = X2.

7. Suppose X ∼ Unif([1, 10]). Compute a density of Y = lnX .

8. Suppose X has the density

fX(x) =


3
8x−

3
32x

2 if 0 ≤ x ≤ 4

0 else

Compute a density function of Y =
√
X .

9. Let X be a continuous, real-valued r.v. with some unknown distribution
function FX and density function fX .

a) Compute (in terms of FX) the distribution function of Y = eX .

b) Compute (in terms of fX) a density function of Y = eX .

10. Suppose a point (X, Y ) is chosen uniformly from the triangle whose vertices
are (0, 0), (4, 0), and (4, 4). Compute a density function of W = Y −X .

11. Suppose a point (X, Y ) is chosen uniformly from the rectangle whose vertices
are (1, 0), (5, 0), (1, 2) and (5, 2). Compute a density function of V = X + Y .

12. Compute the density function of Z = XY , where X and Y are chosen as in
the previous problem.
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13. A point is chosen uniformly from the interval (−10, 10). Let X be the r.v.
defined so that X denotes the coordinate of the chosen point if the point is in
[−5, 5], X = −5 if the point is in the interval (−10,−5), and X = 5 if the point
is in the interval (5, 10).

a) Compute the distribution function FX of the r.v. X .

b) Sketch the graph of FX .

c) Classify X as discrete, continuous or mixed, with appropriate justifica-
tion.

d) Does X have a density function? Why or why not?

Exercises from Section 3.4

14. a) The number of bad checks that a bank receives during a 5-hour business
day is a Poisson r.v. with λ = 2. What is the probability that the bank
will receive no more than 2 bad checks in its business day?

b) The mileage (in thousands of miles) that car owners get with a certain
kind of radial tire is a r.v. whose distribution is exponential with param-

eter
1
40 . Compute the probability that one of these tires will last at least

20,000 miles.

15. (AE) You are given the following information about N , the annual number of
claims for a randomly selected insured person:

P (N = 0) = 1
2; P (N = 1) = 3

8; P (N = 2) = 1
8 .

Let S denote the total annual claim amount for an insured. When N = 1, S is

exponentially distributed with parameter
1
6 . When N > 1, S is exponentially

distributed with parameter
1
10 . Compute P (4 < S < 8).

Hint: Use the Law of Total Probability.

16. Suppose that births occur according to a Poisson process with hourly rate
λ = 3, where t = 0 corresponds to midnight. Let p be the probability that no
births occur between 8 AM and 10 AM.

a) Compute p, using the density function of an appropriate discrete r.v.

b) Compute p, using the density function of an appropriate continuous r.v.

17. Suppose that births occur according to a Poisson process with hourly rate
λ = 3, where t = 0 corresponds to midnight.
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a) What is the probability that exactly 5 births occur by 2 AM?

b) What is the probability that at least 3 births have occurred by 7 AM?

c) What is the probability that exactly one birth occurs between 8 and 9
AM and exactly two births occur between 2 and 4 PM?

d) What is the conditional probability that at least one birth takes place
between 8 AM and noon, given that no births take place between 8 AM
and 10 AM?

e) What is the probability that exactly one birth occurs between 8 and 10
AM and exactly one birth occurs between 9 and 11 AM?
Hint: Split this situation into two disjoint events; compute the probabil-
ity of each event, and add.

18. Suppose that births occur according to a Poisson process with rate λ.

a) Suppose you are given that v births occur between times 0 and t. Let s <
t; compute the probability that exactly x of the v births occur between
times 0 and s.

b) Suppose you are given that v births occur between times 0 and t. Let
s < t. If X records the number of births occurring between times 0 and
s, what kind of r.v. is X? Include its parameters.
Hint: You computed the density function of X in part (a). Simplify this
density function and identify it as the density of a common r.v.

c) Suppose nine births occur between times 15 and 27. What is the proba-
bility that (exactly) three of those births occurred after time 22?

NOTE: You should remember the result you derived in part (b) of the preced-
ing problem.

19. Suppose X is exponential with parameter λ, where λ is such that P (X ≥
.02) = .35. Determine the number t such that P (X ≥ t) = .85.

20. (AE) Suppose the number of claims filed by an insurance policyholder is a
Poisson r.v. If the filing of (exactly) one claim is four times as likely as the fil-
ing of (exactly) two claims, find the probability the policyholder files exactly
five claims.

21. Choose (a) or (b):

a) Let X have an exponential density with parameter λ. Compute the den-
sity of Y = cX , where c > 0 is a positive constant.
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b) Let X have the Cauchy density. Compute the density of Y = a + bX ,
where a and b are constants such that b > 0.

22. Prove the Law of Small Numbers, which says that for any constant λ > 0,

lim
n→∞

b

(
n,
λ

n
, x

)
= e−λλx

x! .

Hint: As a model, follow the (long) computation done on the page before
Definition 3.20.

23. (AE) The damage done to a house by a natural disaster is an exponential
r.v. with P (X ≥ 30) = .03. If a natural disaster strikes 15 houses, and the
damages to each house are independent, what is the probability that of the
15 houses, at least 2 of them suffer damage at least 20?

Exercises from Section 3.5

24. a) Evaluate Γ(7).

b) Simplify
Γ(3.2)
Γ(5.2) .

c) Suppose x is some number so that Γ(x) = 100000. Compute Γ(x− 2), in
terms of x.

A useful and amazing fact to know about the gamma function is the follow-
ing:

Γ(r)Γ(1− r) = π

sin(πr) .

Use this fact to evaluate each given expression:

d) Γ
(

1
3

)
Γ
(

2
3

)
e) Γ

(
7
6

)
Γ
(

5
6

)
25. Evaluate each integral:

a)
∫ ∞

0
x7e−x/3 dx

b)
∫ ∞

0
4x2e−4x dx

c)
∫ ∞

0
8x3e3−2x dx

d)
∫ ∞

0
(3x)te−yx dx

Calculus review

26. For each given function f , compute
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2 ,
∂2f

∂y2 and
∂2f

∂x∂y
.
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a) f(x, y) = x2 + 2xy + 3y2 b) f(x, y) = e2x−3y

27. For each given function f , compute
∂f

∂x
and

∂f

∂y
.

a) f(x, y) = e4x + exy − e3y b) f(x, y) = e−x2+4xy−2y2

28. In each part of this exercise, you are given an iterated integral. Some of them
represent valid mathematics, and some of them are nonsense. Determine
whether each expression is valid, or nonsense:

a)
∫ 1

0

∫ 1

0
f(x, y) dx dy

b)
∫ 1

0

∫ x

0
f(x, y) dy dx

c)
∫ x

0

∫ 1

0
f(x, y) dy dx

d)
∫ 1

0

∫ y

0
f(x, y) dy dx

e)
∫ w

0

∫ y

0
f(x, y) dx dy

f)
∫ w

0

∫ x

0
f(x, y) dx dy

g)
∫ y

0

∫ x

0
f(x, y) dy dx

h)
∫ y

0

∫ y

0
f(x, y) dx dy

i)
∫ x

0

∫ x

0
f(x, y) dy dx

j)
∫ 1

0

∫ w

0
f(x, y) dx dy

29. Compute each iterated integral:

a)
∫ 1

0

∫ y

0
6x2y3 dx dy

b)
∫ ∞

0

∫ ∞

y
e−x−y dx dy

c)
∫ 1

0

∫ 4

x
xy dy dx

d)
∫ 1

0

∫ 2−y

y
dx dy .

Note:
I didn’t forget anything in (d).
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Chapter 4

Joint distributions

4.1 Introducing joint distributions
Suppose that in a probabilistic experiment you are taking more than one measure-
ment, say d distinct (real-valued) random variables. Often, the right way to think
of these d quantities is as a single random variable which takes values in Rd.

EXAMPLE 1
Pick a sample of 6 marbles (simultaneously) from an urn with 10 red, 12 blue, 18
black and 20 green marbles in it. Let

X1 = # of red marbles drawn
X2 = # of blue marbles drawn
X3 = # of black marbles drawn
X4 = # of green marbles drawn

Obtain X = −→X = X = (X1, X2, X3, X4) : Ω→ R4 (discrete, 4−diml r.v.)

EXAMPLE 2
Pick a point uniformly from the unit square. Let

X = x− coordinate of the chosen point
Y = y − coordinate of the chosen point

Obtain X = −→X = (X, Y ) : Ω→ R2 (cts, 2−diml r.v.)
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4.1. Introducing joint distributions

EXAMPLE 3
Pick a point uniformly (or not) from the triangle whose vertices are (0, 0), (0, 2) and
(4, 0). Let

X = x− coordinate of the chosen point
Y = y − coordinate of the chosen point

Obtain X = −→X = (X, Y ) : Ω→ R2 (cts, 2−diml r.v.)

Notice: In Example 2, you obtain no information about either X or Y when
you are told the value of the other coordinate. This is not the case in Examples
1 and 3; as you learn information about one or more coordinates, your belief
about the values of the remaining coordinates changes.

Definition 4.1 A d−dimensional random variable (a.k.a. d−dimensional ran-
dom vector is a random variable whose range is a subset of Rd. We denote such a r.v.
by X or X or

−→
X .

Definition 4.2 Let X : Ω → Rd be a discrete d−dim’l r.v. with joint density func-
tion fX. The coordinates X1, X2, ..., Xd of X are called its marginals, and any such
X is called a joint distribution of its marginals. fX is called the joint density
(function) of X.

Note: Given a bunch of marginals X1, ..., Xd, one can construct lots of different
joint distributions X of those marginals (see Examples 4 and 5 coming up).
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4.2. Discrete joint distributions

4.2 Discrete joint distributions
Similar to real-valued discrete r.v.s, a discrete d−dim’l r.v. is determined by a den-
sity function

fX = fX = f−→
X

: Rd → [0,∞)

satisfying
fX(x) = P (X = x) for all x ∈ Rd

and
P (X ∈ E) =

∑
x∈E

fX(x)

for any event E.

Theorem 4.3 (Density function of marginals, discrete case) Let X : Ω → Rd

be a discrete d−dim’l r.v. with density function fX. Then the density function of the
jth marginal Xj is

fXj
(x) = P (Xj = x) =

∑
{x∈Rd:xj=x}

fX(x).

In other words, this theorem says that to find the density function of a marginal,
you add up the values of the joint density over all the coordinates other than the
marginal you want. As a special case, given a two-dimensional joint density fX,Y ,

fX(x) =
∑

y

fX,Y (x, y) and fY (y) =
∑

x

fX,Y (x, y).

EXAMPLE 4
Independently roll a fair die and flip a fair coin. Let X record the number on the
die and let Y record 0 for tails and 1 for heads. Describe the joint density of X and
Y , and the marginals.
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4.2. Discrete joint distributions

EXAMPLE 5
Roll a fair die and flip a coin, with the assumption that the coin “knows” what
number is rolled, i.e. if you roll an even number then the coin flips heads with
probability 2/3 and if you roll an odd number then the coin flips heads with prob-
ability 1/3. Let X record the number on the die and let Y record 0 for tails and 1
for heads. Describe the joint density of X and Y , and the marginals.

Y
X 1 2 3 4 5 6

0

1
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4.2. Discrete joint distributions

EXAMPLE 6
Draw 4 balls without replacement from an urn with 15 green and 5 black balls in it.
Let X and Y be the number of green and black balls drawn, respectively. Describe
the joint density of X and Y , and the marginals.

Y
X 0 1 2 3 4

0

1

2

3

4

EXAMPLE 7
1000 people are surveyed, and the results are summarized in the following table:

SMOKERS NON-SMOKERS
UNDER AGE 30 10% 38%

AGE 30+ 18% 34%

For each question, give the correct notation for what the question is asking, and
answer the question.

1. What % of those surveyed are under age 30?

2. What is the probability that a surveyed person aged 30+ smokes?

3. What is the probability that a given non-smoker is under 30?
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4.2. Discrete joint distributions

EXAMPLE 8
Suppose X and Y are integer-valued r.v.s with joint density

fX,Y (x, y) =


c

4x
if 0 ≤ y ≤ x

0 else

where c is a constant.

1. Determine the value of c.

2. Compute P (X = 8, Y = 5).

3. Compute the density function of the marginal X .

4. Compute P (X − Y = 3).

5. Write an expression involving sums and/or integrals that could be evaluated
to give P (X + Y ≤ 12). (You do not need to evaluate this expression.)
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4.2. Discrete joint distributions

4. First, sketch a picture of the points (X, Y ) so that X − Y = 3:

Ω

1 2 3 4 5 6 7 8 9 10 11 X
1

2

3

4

5

6

7

Y

Now compute the probability by adding up values of the density function
over all the (x, y) marked in the picture:

P (X − Y = 3) = P (Y = X − 3) =
∞∑

x=3
fX,Y (x, x− 3) =

∞∑
x=3

9
16 · 4x

= 9
16

∞∑
x=3

(1
4

)x

= 9
16

(
(1

4)3

1− 1
4

)
= 3

256 .

5. First, sketch a picture of the set E of (X, Y ) ∈ Ω so that X + Y ≤ 12:

Ω

E

1 2 3 4 5 6 7 8 9 10 11 12 13 X
1

2

3

4

5

6

7

8

Y

Now compute the probability by adding up values of the density function
over all (x, y) ∈ E:
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4.2. Discrete joint distributions

EXAMPLE 9
Suppose X and Y are discrete r.v.s with joint distribution

fX,Y (x, y) =
{
pq(1− p)x(1− q)y for x ≥ 0, y ≥ 0

0 else

where p and q are constants.

1. Compute the density of the marginal Y .

2. Compute the density of Z = min(X, Y ).
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4.3. Multinomial and hypergeometric distributions

4.3 Multinomial and hypergeometric distributions
MOTIVATING PROBLEM: SAMPLING

A jar contains 100 marbles of various colors: 20 red, 25 white, 15 green, and 40
black. You draw a sample of 8 marbles from the jar. Let

X = (R,W,G,B)

record the number of marbles of each color you draw. This is a 4-dimensional r.v.

Question: What is the joint density function of X?

Answer:

Sampling without replacement

In this setting, the joint density comes from the partition problem formula we de-
scribed in Chapter 2:

Definition 4.4 Let n ∈ N and let n1, ..., nd ∈ N be such that
∑

j nj = n. Let k ≤ n.
A discrete joint distribution X : Ω → Rd is called hypergeometric (or d−dim’l
hypergeometric if it has density function

fX(x1, ..., xd) =



(
n1

x1

)(
n2

x2

)
· · ·

(
nd

xd

)
(
n

k

) for (x1, ..., xd) ∈ Nd satisfying
d∑

j=1
xj = k

0 else

In this case, we write X ∼ Hyp(n, (n1, n2, ..., nd), k) or X ∼ Hyp(n, k) where n =
(n1, ..., nd).

d-dimensional hypergeometric r.v.s model the situation where you have nj ob-
jects of type j in a jar (for a total of n objects) and you draw k objects without
replacement. If you let Xj be the number of objects of type j you draw, then
X = (X1, ..., Xd) ∼ Hyp(n, (n1, ..., nd), k).
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4.3. Multinomial and hypergeometric distributions

In our motivating example above, if the sampling is without replacement the joint
density of X would be

and the probability of drawing 3 red, 1 white, 2 green and 2 black marbles is

Theorem 4.5 Suppose X ∼ Hyp(n, (n1, n2, ..., nd), k). Then Xj ∼ Hyp(n, nj, k),
where Xj is the jth marginal of X.

Sampling with replacement

In this setting, we can think of each draw from the jar as an independent repetition
of a “Bernoulli-like” trial, except that the trial has d different outcomes (d = 4 in
our example; this is the number of different colors). Now, the probability of getting
the jth outcome xj times in n trials is

138



4.3. Multinomial and hypergeometric distributions

Definition 4.6 Let n ∈ N and let p1, ..., pd ≥ 0 be such that
∑

j pj = 1. A discrete
joint distribution X : Ω → Rd is said to be multinomial with parameters n and
p = (p1, ..., pd) if it has joint density

fX(x1, ..., xd) =
(

n
x1, x2, ..., xd

)
xd∏

j=1
pxj = n!

x1!x2! · · ·xd!p
x1
1 p

x2
2 · · · p

xd
d

(for nonnegative integers x1, ..., xd satisfying
d∑

j=1
xj = n; the joint density is 0 oth-

erwise). In this setting, we write X ∼ multi(n, (p1, p2, ..., pd)) or X ∼ multi(n,p).

Multinomial r.v.s describe sampling with replacement.

In our motivating example above, if the sampling is with replacement then the
joint density of X would be

and the probability of drawing 3 red, 1 white, 2 green and 2 black marbles is

Theorem 4.7 Suppose X ∼ multi(n,p). Then Xj ∼ b(n, pj), where Xj is the jth

marginal of X.
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4.4. Continuous joint distributions

4.4 Continuous joint distributions
In this section, we take the usual language associated to non-discrete, real-valued
r.v.s and extend it to joint distributions.

As usual, given 2 real-valued r.v.s X and Y , we think of X = (X, Y ) : Ω→ R2.

(Similarly, write X = (X1, ..., Xd) : Ω→ Rd.)

Joint distribution functions
DEFINITION OF APPLICATION TO

DIMENSION DIST. FUNCTION PROBABILITIES

d = 1 FX : R→ [0, 1] P (a < X ≤ b) =
(X : Ω→ R) FX(x) = P (X ≤ x) FX(b)− FX(a)

d = 2
(X : Ω→ R2)
(X = (X, Y ))

general d
X : Ω→ Rd

Moral Distribution functions are not as useful for joint distributions as
they are for real-valued r.v.s.
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4.4. Continuous joint distributions

Theorem 4.8 (Properties of joint distribution functions) Let X : Ω → Rd be a
joint distribution with joint cdf FX : Rd → [0, 1]. Then:

1. lim
xj→∞ ∀j

FX(x) = 1.

2. lim
xj→−∞ ∀j

FX(x) = 0.

3. If all but one coordinate is fixed, FX is increasing with respect to that coordinate.

Marginal distribution functions

As with the discrete case, the coordinates of a joint non-discrete r.v. are called its
marginals. We can compute the cdf of a marginal from a joint cdf by taking limits:

Theorem 4.9 (Distribution functions of marginals) Let X : Ω → Rd be a joint
distribution with joint cdf FX : Rd → [0, 1]. Then the cdf FXj

of the jth marginal Xj

is
FXj

(xj) = P (Xj ≤ xj) = lim
xi→∞ ∀i ̸=j

FX(x1, ..., xd).

PROOF

FXj
(xj) = P (Xj ≤ xj)

= P (X1 <∞, X2 <∞, ..., Xj−1 <∞, Xj ≤ xj, Xj+1 <∞, ..., Xd <∞)
= “FX(∞,∞, ...,∞, xj,∞, ...,∞)”
= lim

xi→∞∀i ̸=j
FX(x1, x2, ..., xd). □

As a special case, given joint distribution (X, Y ) with joint cdf FX,Y , we have

FX(x) = lim
y→∞

FX,Y (x, y) and FY (y) = lim
x→∞

FX,Y (x, y).
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4.4. Continuous joint distributions

Density functions for continuous joint distributions
RECALL

A r.v. X : Ω→ Rd is called continuous if P (X = x) = 0 for every x ∈ Rd.

When d = 1, most cts r.v.s have a density function which is used to compute prob-
abilities: if X : Ω→ R is continuous with density function fX , then

Definition 4.10 Let X : Ω → Rd be a r.v. We say that a function fX : Rd →
[0,∞) is a (joint) density function for X if for every subset E ⊆ Rd whose size (i.e.
length/area/volume/etc.) can be computed using calculus,

P (X ∈ E) =
∫

E
fX(x) dx.

Note: The integral in the above definition is really a multiple integral:

d = 1 :
∫

E
fX(x) dx means

∫ b

a
fX(x) dx

d = 2 :
∫

E
fX(x) dx means

∫∫
E
fX,Y (x, y) dA

d = 3 :
∫

E
fX(x) dx means

∫∫∫
E
fX,Y,Z(x, y, z) dV

etc.

Note: Density functions for a specific cts joint distribution X are not unique
(they can be changed at single points, etc. without affecting probability com-
putations).
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4.4. Continuous joint distributions

Theorem 4.11 (Properties of joint density functions) Let X : Ω → Rd be a d-
dimensional r.v.

1. If X is mixed, then it has no density function.

2. A (measurable) function f : Rd → R is the density function of a cts joint
distribution X if and only if

(i) f(x) ≥ 0 for all x ∈ Rd, and
(ii)

∫
Rd
f(x) dx = 1.

3. Suppose continuous X : Ω → Rd has joint distribution function FX and joint
density function fX. Then for all x ∈ Rd,

fX(x) = ∂d

∂x1∂x2 · · · ∂xd

FX(x).

Remark: There are continuous joint distributions that do not have a density
function, but we don’t have to worry about those in MATH 414 or 416.

As a special case of (3), we see that if (X, Y ) is a cts joint distribution with joint cdf
FX,Y (x, y) and joint density fX,Y (x, y), then

fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y) .

PROOF (WHEN d = 2) Let x, y ∈ R. Then∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds = P (X ≤ x, Y ≤ y) = FX,Y (x, y)

Differentiate both sides of this equation with respect to x:

∂

∂x

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds = ∂

∂x
FX,Y (x, y)

Now differentiate both sides with respect to y:

∂

∂y

∫ y

−∞
fX,Y (x, t) dt = ∂

∂y

[
∂

∂x
FX,Y (x, y)

]
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4.4. Continuous joint distributions

EXAMPLE 10
Suppose X and Y are cts r.v.s with joint density

fX,Y (x, y) =
{

6xy2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 else .

Compute P
(
X + Y ≤ 1

2

)
.
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4.4. Continuous joint distributions

Density functions of marginals (continuous case)

Theorem 4.12 (Density functions of marginals, continuous case) Let X : Ω→
Rd be a cts joint distribution with joint density function fX : Rd → [0,∞). Then:

1. Each marginal Xj is continuous and has a density function;

2. For each j,

fXj
(xj) =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x) dx1dx2 · · · dxj−1dxj+1 · · · dxd.

This theorem tells us that to find the density function of the marginal of a continu-
ous joint distribution, you integrate the joint density with respect to all the other
coordinates.

As a special case, if X and Y are cts r.v.s with joint density function fX,Y (x, y), then

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx .

PROOF (WHEN d = 2) Let x ∈ R. Then:

P (X ≤ x) = P (X ∈ (−∞, x]) =
∫ x

−∞
fX(s) ds.

At the same time,

P (X ≤ x) = P (X ∈ (−∞, x]) = P (X ∈ (−∞, x], Y ∈ (−∞,∞))

=
∫∫

(−∞,x]×(−∞,∞)
fX,Y (s, y) dA

=
∫ x

−∞

∫ ∞

−∞
fX,Y (s, y) dy ds.

By equating the two expressions above we found for P (X ≤ x), we get∫ x

−∞
fX(s) ds =

∫ x

−∞

∫ ∞

−∞
fX,Y (s, y) dy ds.

Differentiate both sides of this with respect to x; by the FTC we get

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy. □
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4.5. Independence of random variables

4.5 Independence of random variables
RECALL

Earlier in the course we talked about what it means for two events to be independent:

Now, we want to extend the notion of independence to random variables.

Definition 4.13 Let X1, ..., Xd be real-valued r.v.s with joint distribution X. The
r.v.s (just as well, the distribution) are (is) called (mutually) independent if

FX(x) =
d∏

j=1
FXj

(xj)

for all x = (x1, ..., xd) ∈ Rd, where FX is the joint cdf and the FXj
are the cdfs of the

marginals.

Notation: If two r.v.s X and Y are independent, we write X ⊥ Y ; otherwise we
write X ̸⊥ Y .

Idea: To say two r.v.s are independent means that given any information about one
of them does not affect your assessment of any probability associated to the other
one.

IMPORTANT: Whether r.v.s are independent depends on the joint distribu-
tion, and not just on the marginals. Look back at Examples 4 and 5 from earlier
in this chapter, which have the same marginals X and Y .

• In Example 4, X ⊥ Y .

• In Example 5, X ̸⊥ Y .
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4.5. Independence of random variables

Theorem 4.14 Let X1, ..., Xd be continuous real-valued r.v.s with joint density fX :
Rd → [0,∞). Then the Xj are independent if and only if

fX(x1, ..., xd) =
d∏

j=1
fXj

(xj) for all (x1, ..., xd) ∈ Rd.

As a special case, we see that X ⊥ Y iff fX,Y (x, y) = fX(x)fY (y) for all x, y.

PROOF (WHEN d = 2)
(⇒) Suppose X ⊥ Y .

Then FX,Y (x, y) = FX(x)FY (y) by definition of ⊥.
Take mixed second-order partials of both sides of this to get

∂2

∂x∂y
FX,Y (x, y) = ∂

∂x

∂

∂y
FX(x)FY (y)

fX,Y (x, y) = ∂

∂x
FX(x) ∂

∂y
FY (y)

fX,Y (x, y) = fX(x)fY (y).

(⇐) Suppose fX,Y (x, y) = fX(x)fY (y). Then

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds

=
∫ x

−∞

∫ y

−∞
fX(s)fY (t) dt ds

=
∫ x

−∞
fX(s) ds ·

∫ y

−∞
fY (t) dt

= FX(x)FY (y).

so X ⊥ Y by definition. □

A similar result holds for density functions of discrete r.v.s:

Theorem 4.15 Let X1, ..., Xd be discrete, real-valued r.v.s with joint distribution X.
The r.v.s are independent if and only if

fX(x) =
d∏

j=1
fXj

(xj)

for all x = (x1, ..., xd) ∈ Rd.
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4.6. Example computations with joint distributions

4.6 Example computations with joint distributions
EXAMPLE 11

Pick a point (X, Y ) uniformly from the region
{

(x, y) : 0 ≤ x ≤ 6, y ≤ 1
2x
}

.

1. Determine the joint density of X and Y .

2. Determine the density functions of the marginals.

3. Determine whether X and Y are independent.
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4.6. Example computations with joint distributions

EXAMPLE 12
Suppose X ∼ Geom(p). Find the density of X +X .
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4.6. Example computations with joint distributions

EXAMPLE 13
Suppose X and Y are continuous r.v.s whose joint density

fX,Y (x, y) =


C

(x+ y)4 if x ≥ 1, y ≥ 1

0 else

1. Determine the value of C.

2. Compute P (Y ≤ 2X).

3. Compute the densities of the marginals.

4. Determine if X ⊥ Y .
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4.6. Example computations with joint distributions

3. We compute the density of X first, by integrating with respect to :

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

1

24
(x+ y)4 dy

= −8(x+ y)−3
∣∣∣∞
1

= 0− (−8(x+ 1)−3)
= 8(x+ 1)−3.

This holds when x ≥ 1; otherwise fX(x) = 0. So formally, the density is

fX(x) =
{

8(x+ 1)−3 if x ≥ 1
0 else

Next, we compute the density of Y by integrating with respect to x:

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ ∞

1

24
(x+ y)4 dx

= −8(x+ y)−3
∣∣∣∞
1

= 0− (−8(1 + y)−3)
= 8(1 + y)−3.

Formally, the answer is

fY (y) =
{

8(1 + y)−3 if y ≥ 1
0 else

4. To determine whether or not X ⊥ Y , we test as follows:
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4.7. Conditional density

4.7 Conditional density
RECALL

Given a probability space (Ω,A, P ) and an event E with P (E) > 0, we defined the
conditional probability of F given E by

P (F |E) = P (E ∩ F )
P (E) .

Our goal is to create something similar on the level of random variables:

QUESTION

Let X, Y be real-valued r.v.s. (either cts or discrete). What is the “probability” of X
given a particular value of Y ? e.g.

“P (X = x |Y = y)′′ =

Definition 4.16 Let X and Y be real-valued r.v.s with joint density function fX,Y .
The conditional density of X given Y is the function fX|Y : R2 → [0,∞) defined
by

fX|Y (x|y) = fX,Y (x, y)
fY (y) ,

where fY is the density of the marginal Y (if fY (y) = 0, we say fX|Y (x|y) = 0).
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4.7. Conditional density

Theorem 4.17 (Properties of conditional densities) Let X and Y be real-valued
r.v.s. Then:

Conditional densities are densities: For every y such that fY (y) > 0, fX|Y (x|y)
is a density function for a random variable X|Y (whose value is x), i.e.∫ ∞

−∞
fX|Y (x|y) dx = 1.

Multiplicative property: We can compute the joint density of X and Y by multi-
plying the density of one marginal times the conditional density of the other one,
given the first:

fX|Y (x|y) · fY (y) = fX,Y (x, y).

Conditional probability calculations: We compute conditional probabilities asso-
ciated to one r.v. given the value of the other as follows:

P (X ∈ E |Y = y) =


∫

E
fX|Y (x|y) dx if X is cts∑

x

fX|Y (x|y) if X is discrete

EXAMPLE 14
Suppose X and Y have joint density

fX,Y (x, y) =
{
cy(2− x− y) if (x, y) ∈ [0, 1]2

0 else .

1. Find the conditional density of Y given X .

2. Find the conditional density of Y given X = 1
3 .

3. Find the probability that Y ∈
[1
4 ,

3
4

]
given that X = 1

3 .

Solution: 1.
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4.7. Conditional density

2. Having computed fY |X in # 1, we compute this simply by plugging in x = 1
3 :

fY |X

(
y|13

)
=

6y(2− 1
3 − y)

4− 3(1
3) = 2y

(5
3 − y

)
for y ∈ [0, 1] .

3. Integrate the conditional density found in # 2:

P
(
Y ∈

[1
4 ,

3
4

]
|X = 1

3

)
=
∫ 3/4

1/4
fY |X(y|13) dy

=
∫ 3/4

1/4
2y
(5

3 − y
)
dy

=
∫ 3/4

1/4

(10
3 y − 2y2

)
dy

=
[5
3y

2 − 2
3y

3
]3/4

1/4
= 9

16 .

REMARK: If X is cts, there is a big difference between

P
(
Y ∈

[1
4 ,

3
4

] ∣∣∣∣ X = 1
3

)
and P

(
Y ∈

[1
4 ,

3
4

] ∣∣∣∣ X ≤ 1
3

)
:
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4.7. Conditional density

EXAMPLE 15
Suppose that X ∼ Exp(λ), and that Y |X ∼ Exp(x).

1. Determine the joint density of X and Y .

2. Compute a density function of Y .
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4.8 Transformations of continuous joint distributions
We want to consider two types of transformation problems:

Class 1: Compute the density of a real-valued r.v. U obtained as a function of
several r.v.s X1, ..., Xd which have some given joint distribution.

Example: Given a joint density of X and Y , find a density of Z = X + 2Y .

Class 2: Compute the joint density of some r.v.s U1, ..., Ud obtained as functions
of several r.v.s X1, ..., Xd which have some given joint distribution.

Example: Given a joint density of X and Y , find a joint density of U and V ,

where U = X + Y and V = X

X + Y
.

We handle problems in each of these two classes separately.

Class 1 Examples

Setup: φ : Rd → R is some function; U = φ(X1, ..., Xd) = φ(−→X ) is real-valued.

Method of solution:

1. Classify U as discrete or continuous.

2. Find the range of U .

3. If U is discrete, compute the density by back-substitution:

fU(u) = P (U = u) = P (φ(X) = u) = P (X ∈ φ−1(u))

=


∫

φ−1(u)
fX(x) dx if X is cts∑

x∈φ−1(u)
fX(x) if X is discrete

.

4. If U is continuous, first compute the cdf of Y by back-substitution:

FU(u) = P (U ≤ u) = P (φ(X) ≤ u) = P (X ∈ φ−1(−∞, u])

=


∫

φ−1(−∞,u]
fX(x) dx if X is cts∑

x∈φ−1(−∞,u]
fX(x) if X is discrete

.

Then differentiate FU with respect to u to obtain fU .

156



4.8. Transformations of continuous joint distributions

EXAMPLE 16
Let (X, Y ) be independent, exponential r.v.s, both with parameter λ. Determine a
density of X + Y .
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EXAMPLE 17
Suppose that the amount X an insurance company pays in claims and the amount
Y it collects in premiums are modeled by a joint density

fX,Y (x, y) =


3

500x if 0 ≤ x ≤ y ≤ 10

0 else

Let R be the ratio of premiums to claims; find the distribution function of R.
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Class 2 Examples

Setup: φ : Rd → Rd is some function (we will assume that φ is invertible, otherwise
the problem is much harder); U = (U1, .., Ud) = φ(X1, ..., Xd) = φ(X) is a joint
distribution. fU(u) = ?

Let’s write φ(x1, ..., xd) = (u1, ..., ud) for convenience.

This problem has a theoretical solution: suppose for now that d = 2. Then, the
joint density of U should satisfy, for every (measurable) set E ⊆ R2,

Motivation from Calculus 1: u-substitutions∫ b

a
f(φ(x))φ′(x) dx =(

u = φ(x),
du = φ′(x) dx

) ∫ φ(b)

φ(a)
f(u) du

Since this holds for every E ⊆ R2, we have

fU(u1, u2) · |J(φ)| = fX(x1, x2) ⇒ fU(u1, u2) = 1
|J(φ)|fX(x1, x2)

where J(φ) is the Jacobian of φ:

J(φ) = det


∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

 = det

 (u1)x1 (u1)x2

(u2)x1 (u2)x2

 = detDφ.

This generalizes:
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4.8. Transformations of continuous joint distributions

Theorem 4.18 (Transformation theorem, higher-dimensions) .
Suppose X = (X1, ..., Xd) has joint density fX : Rd → [0,∞).
Suppose that U = (U1, ..., Ud) = φ(X1, ..., Xd) = φ(X), where φ : Rd → Rd is a C1

functiona.
If the Jacobian determinant

J(φ) = det


∂u1

∂x1

∂u1

∂x2
· · · ∂u1

∂xd...
... . . . ...

∂ud

∂x1

∂ud

∂x2
· · · ∂ud

∂xd


d×d

is everywhere nonzero, then the Uj are all continuous and have joint density given by

fU(u1, ..., ud) = 1
|J(φ)|fX(x1, ..., xd),

i.e.
fU(u) = 1

|J(φ)|fX(φ−1(u)).

aA function is called C1 if all its partial derivatives exist everywhere and are continuous.

EXAMPLE 18
Let (X1, X2) be uniform on [0, 1]2. Compute a joint density of Y1 = X1 + X2 and
Y2 = X1 −X2.
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x
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4.8. Transformations of continuous joint distributions

EXAMPLE 19
Suppose X1 ∼ Γ(α, λ), X2 ∼ Γ(β, λ) and X1 ⊥ X2. Find the joint density of Y1 =
X1 +X2 and Y2 = X1

X1 +X2
.
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4.9 Chapter 4 Homework
Exercises from Section 4.2

1. SupposeX and Y are discrete, integer-valued r.v.s with joint density function

fX,Y (x, y) =


2
9 ·

2x

3x+y
if x ≥ 0, y ≥ 0

0 if x < 0 or y < 0
.

a) Verify that this fX,Y is in fact a density function (by showing that its
values sum to 1).

b) Compute the probability that X = 3 and Y = 4.
Note: This is one question, asking for the probability that (X = 3 and
Y = 4).

c) Compute the probability that X = 2.
d) Calculate a density function of the marginal Y .
e) Based on the computation you did in part (d), how would you describe

Y as a common r.v.? (Include any appropriate parameters.)

2. Suppose you have two dice numbered 1 to 6 that you can load however you
want (i.e. you can assign whatever probabilities you want to each number on
each die). Is it possible to load the dice in such a manner that makes every
sum from 2 to 12 equally likely when the dice are rolled independently? If
so, explain how. If not, explain why not.

Hint: Call the two dice X and Y . Let p1 = fX(1) = P (X = 1), p6 = fX(6) =
P (X = 6), q1 = fY (1) = P (Y = 1) and q6 = fY (6) = P (Y = 6). Now, consider
the probability that the sum of the numbers rolled is 2 and the probability that
the sum of the numbers rolled is 11. What must each of these probabilities
be, in terms of p1, p6, q1 and q6? What must these equal, since every sum
is supposed to be equally likely? This gives you two equations involving
p1, p6, q1 and q6. Finally, consider the probability that the sum of the numbers
rolled is 7. This will lead you to an inequality involving p1, p6, q1 and q6 from
which you can derive something useful.

3. Let X and Y be r.v.s having joint density function given by the following
table:

Y
X −1 0 2 6
−2 1

27
1
9

1
27

1
9

1 1
9 0 1

9
2
9

3 0 2
27

1
9

2
27
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a) Compute the probability that X is even.

b) Compute the probability that XY is odd.

4. Let X and Y have the joint density given in Exercise 3.

a) Compute the probability that X > 0 and Y ≥ 0.

b) Compute the probability that X > 0 or Y ≥ 0.

5. Let X and Y have the joint density given in Exercise 3.

a) Compute the density function of X .

b) Compute the density function of Y .

6. Let X ∼ Unif({0, 1}) and Y ∼ Unif({0, 1}). Characterize all possible joint
distributions of X and Y . For each of these joint distributions, compute the
density of X + Y .

Hint: The idea here is to think about the most general way in which you
could make a chart similar to the ones we made for Examples 4, 5 and 6. For
instance, if you put a number a in one of the boxes in that chart, what would
have to go in the other boxes?

7. Suppose X and Y are discrete r.v.s, each taking values on the nonnegative
integers, with joint density function fX,Y . For each given probability, write
an expression, involving one or more sums, which gives the probability.

As an example, if asked to compute P (0 ≤ X ≤ 5, 2 ≤ Y ≤ 4), one possible
correct answer is

P (0 ≤ X ≤ 5, 2 ≤ Y ≤ 4) =
5∑

x=0

4∑
y=2

fX,Y (x, y).

a) P (5 ≤ X < 10, 0 < Y < 4)
Note: in this type of statement, the comma always means “and”.

b) P (X = 6, 9 ≤ Y )
c) P (X = 5 or Y ≥ 4)
d) P (X = 1)

8. Same directions as Exercise 7:

a) P (3 ≤ X, 12 ≤ Y ≤ 20)
b) P (X + Y = 11)
c) P (X − Y = 9)
d) P (0 ≤ X ≤ Y )
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9. Same directions as Exercise 7:

a) P (0 ≤ X ≤ Y ≤ 10)
b) P (X + Y ≤ 15)
c) P (X + Y = z), where z is a constant

d) P (Y −X = z), where z is a nonnegative constant

10. Suppose X and Y are as described in Exercise 1.

a) Compute the probability that X + Y = 8.
Hint: I want an answer with no “Σ”s in it. To evaluate your sum, you
will need the formula for a finite geometric sum given on the pink sheet.

b) Compute the probability thatX+Y ≥ 12 (again, no “Σ”s in your answer
are allowed).

Exercises from Section 4.3

11. There are 40 gumballs in a bag, of which 20 are red, 10 are orange, 8 are green,
and 2 are purple.

a) Suppose you randomly draw 15 gumballs from the bag, one at a time,
with replacement. What is the probability you draw 5 red, 5 orange, and
5 green gumballs?

b) Suppose you randomly draw 15 gumballs from the bag simultaneously.
What is the probability you draw 5 red, 5 orange, and 5 green gumballs?

Exercises from Sections 4.4 to 4.6

12. Suppose X and Y are continuous r.v.s such that X ≥ 0 and Y ≥ 0, with
joint density function fX,Y . For each given probability, write an expression
involving integrals which gives the probability. As an example, if asked to
compute P (0 ≤ X ≤ 5, 2 ≤ Y ≤ 4), one possible correct answer is

P (0 ≤ X ≤ 5, 2 ≤ Y ≤ 4) =
∫ 5

0

∫ 4

2
fX,Y (x, y) dy dx.

a) P (3 ≤ X < 8, 0 < Y < 5)
b) P (X ≥ 4)

c) P (X + Y ≤ 8)
d) P (min(X, Y ) ≤ 6)

13. Same directions as Exercise 12:
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a) P (max(X, Y ) ≤ 6)
b) P (X ≤ Y )

c) P (Y/X < 5)
d) P (X − 2Y > 5)

14. Repeat Exercise 12, but under the extra assumptions thatX and Y take values
only in the square whose vertices are (0, 0), (7, 0), (0, 7) and (7, 7).

15. Suppose X and Y are continuous r.v.s such that 0 < Y < X , with joint den-
sity function fX,Y . For each given probability, write an expression involving
integrals which gives the probability.

a) P (X ≥ 14)
b) P (Y ≤ 2)

c) P (X + Y ≤ 8)
d) P (3 ≤ X ≤ 10, 5 ≤ Y ≤ 8)

16. Suppose X and Y are two continuous real-valued r.v.s with joint density
function

fX,Y (x, y) =


C
(
x2 + xy

2

)
if 0 < x < 1, 0 < y < 2

0 else

where C is some constant. Compute each quantity:

a) C

b) fX(x)

c) P (X > Y )

d) P
(
Y >

1
2

∣∣∣∣ X <
1
2

)

17. Let Ω be the triangle in the xy−plane whose vertices are (0, 0), (2, 0) and (0, 2).
Suppose X and Y are r.v.s with joint density

fX,Y (x, y) =
{
c x2y if (x, y) ∈ Ω

0 else

where c is some constant.

a) Compute c.

b) Calculate the probability that X ≥ 1.

c) Calculate the probability that both X and Y are greater than
1
2 .

d) Determine a density function of the marginal Y .

e) Are X and Y independent? Why or why not?
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18. (AE) A device runs until either of two components fails, at which point the
device stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

f(x, y) =


1
8(x+ y) 0 ≤ x, y ≤ 2

0 else

What is the probability that the device fails during its first hour of operation?

19. (AE) An insurance company insures a large number of drivers. Let X be the
r.v. representing the company’s losses under collision insurance, and let Y
represent the company’s losses under liability insurance. X and Y have joint
density function

f(x, y) =


1
4(2x+ 2− y) x ∈ (0, 1), y ∈ (0, 2)

0 else

What is the probability that the total loss is at least 1?

20. Suppose X and Y are real-valued r.v.s with joint density

fX,Y (x, y) =
{
λ2e−λy 0 ≤ x ≤ y

0 else
.

a) Compute the marginal densities of X and Y .

b) Compute the probability that Y ≤ 4.

21. Let X and Y denote the coordinates of a point chosen uniformly from the
unit square. Let Z1 = X2, let Z2 = Y 2 and let Z3 = X + Y .

a) Are Z1 and Z2 independent? Why or why not? (Give a heuristic argu-
ment only.)

b) Are Z1 and Z3 independent? Why or why not? (Give a heuristic argu-
ment only.)

22. LetX and Y be independent r.v.s, whereX ∼ Geom(p) and Y ∼ Geom(q) (do
not assume any relationship between p and q in this problem).

a) Compute P (X = Y ). b) Compute P (X ≥ Y ).
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Exercises from Section 4.7

23. Suppose X and Y are continuous r.v.s with joint density

fX,Y (x, y) =
{
xe−x(y+1) if x > 0, y > 0

0 else
.

Compute the conditional density of X given Y .

24. Suppose X and Y are discrete r.v.s, taking values in the integers, whose joint
density is

fX,Y (x, y) =


1

x! y!λ
xe−λ−x−1(x+ 1)y if 0 ≤ x, 0 ≤ y

0 else
.

Compute the conditional density of Y given X = 3.

25. (AE) An insurance company supposes that each person has an accident pa-
rameter a and that the yearly number of accidents of someone who has ac-
cident parameter a is a Poisson r.v. X with parameter a. The company also
supposes that the parameter of a newly insured person is itself a Γ(r, λ) r.v. If
a newly insured person has n accidents in his first year,

a) Compute the conditional density of his accident parameter.
b) Identify the conditional density you found in part (a) as the density of a

common r.v. (including appropriate parameters).

26. Let Y ∼ Exp(λ), where λ is itself a r.v. Λ ∼ Γ(r, β).

a) Compute a density of Y .
b) Compute the conditional density of Λ given Y = y.

27. The distribution of Y , given X , is uniform on [0, X]. The marginal density of
X is fX(x) = 2x for 0 < x < 1 (fX(x) = 0 otherwise). Find the conditional
density of X given Y = y (where this conditional density is positive).

28. Compute the conditional density fY |X , for the joint density given in Exercise
20.

29. (AE) An auto insurance policy will pay for damage to both the policyholder’s
car and the other driver’s car in the event that the policyholder is responsible
for an accident. Assume that the size X of the payment for damage to the
policyholder’s car is uniform on (0, 1), and that givenX = x, the size Y of the
payment to the other driver’s car is uniform on (x, x+ 1). If the policyholder
is responsible for an accident, what is the probability that the payment for

damage to the other driver’s car is greater than
1
2?
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30. Suppose X and Y are discrete r.v.s whose joint density is given in the chart
in Exercise 3.

a) Calculate P (X < 4 |Y = 1).
b) Calculate P (Y < 3 |X = 6).

Exercises from Section 4.8

31. Let X and Y be independent r.v.s, where X ∼ Pois(λ1) and Y ∼ Pois(λ2).
Prove that X + Y is Poisson; what is its parameter? (The way you do this for
now is to explicitly compute the density function of X + Y .)

NOTE: The fact you just proved in Exercise 31 should be memorized
(and will be generalized later).

32. Suppose (X, Y ) have joint density

fX,Y (x, y) =
{

4xy if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 else

Compute the density of W = X + Y .

Hint: The computation requires separate cases, depending on whetherW ≥ 1
or W < 1.

33. (AE) A company offers earthquake insurance. Annual premiums are mod-
eled by an exponential random variable with parameter 1. Annual claims
are modeled by an exponential random variable with parameter 2. Assume
that the annual premiums and claims are independent; let X denote the ratio
of claims to premiums. What is the density function of X?

34. If X ∼ Γ(r, λ), what is the density of Y =
√
X?

35. (AE) The time T that a computer is not working is a random variable whose

cumulative distribution function is F (t) = 1 − 1
4t

−2 for t > 2. The resulting

cost X to the business as a result of the computer malfunctioning is X = T 2.
Find the density function of X (when X > 4).

36. Let X and Y be independent exponential r.v.s, with respective parameters λ
and µ. Compute the joint density of X and Z = X + Y .

37. Let X and Y be continuous r.v.s with joint density function

fX,Y (x, y) =
{
e−y if 0 ≤ x ≤ y
0 else. .

Compute the joint density of W and Z, where W = Y/X and Z = X + Y .
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38. Let X and Y be continuous r.v.s with 0 ≤ X and 0 ≤ Y that have some
unknown density function f . Compute, in terms of f , the joint density of
T = X2Y and U = XY .

39. Let X and Y be independent Poisson r.v.s, with respective parameters λ and
µ. Let Z = X + Y .

a) Compute the joint density of X and Z.
Hint: In terms of X and Z, the joint density of X and Z is fX,Z(x, z) =
P (X = x, Z = z). Back-substitute to see what this is in terms of X and
Y .

b) Compute the conditional density of X given Z.
Hint: You should know what the density of Z is without computing its
marginal again (since you studied this situation in Exercise 31).

40. Suppose X1, ..., Xd are independent, continuous r.v.s.

a) Let MAX = max(X1, ..., Xd) be the maximum of the Xjs. Derive a for-
mula for FMAX in terms of the FXj

.

b) (AE) A company decides to accept the highest of five sealed bids on a
property. The sealed bids are regarded as five independent r.v.s, each
with common cumulative distribution function

F (x) = (x− 3)2

4 for 3 ≤ x ≤ 5.

Find the density function of the accepted bid.

41. Suppose X1, ..., Xd are independent, continuous r.v.s.

a) Let MIN = min(X1, ..., Xd). Derive a formula for the survival SMIN of
the minimum, in terms of the survival functions SXj

of the marginals.

b) Prove that if X1, ..., Xd are independent exponential r.v.s with respective
parameters λ1, ..., λd, then min(X1, ..., Xd) is exponential with parameter
λ1 + ...+ λd.

NOTE: The facts you prove in Exercises 40 (a) and 41 (a) and (b) are good
to memorize for the actuarial exam, and for MATH 416. The maximum and
minimum of the r.v.s X1, ..., Xd are part of what are called the order statistics
of the Xj .
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Chapter 5

Expected value

5.1 Definition of expected value
MOTIVATING QUESTION

What is the “average” value of a random variable?

EXAMPLE 1
You and your friend play a game with a spinner. You spin the spinner and then
exchange money depending on where the spinner lands:

+10
+3

-6

-1
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Flawed definition: The expected value of a discrete, real-valued r.v. X , denoted
EX , is

EX =
∑

x∈Range(X)
x fX(x).

Technical point: The range of X might be an infinite set (i.e. it might be Z). Then
there are potential issues with the convergence of the infinite series∑

x∈Range(X)
x fX(x)

if we try to rearrange terms. To get around any problems, we require that this se-
ries converge absolutely.

RECALL FROM CALCULUS 2
A series

∑
an is said to converge absolutely if

∑ |an| converges. Absolutely con-
vergent sequences can be rearranged and/or regrouped without changing the sum
of the series.

In our setting, to say
∑

x∈Range(X)
xfX(x) converges absolutely means

With this in mind, we make the following definition:

Definition 5.1 Let X : Ω → R be a discrete r.v., with density fX . We say X has
finite expectation (and write EX <∞) if∑

x∈Range(X)
|x| fX(x) <∞;

in which case we say the expected value (a.k.a. mean a.k.a. expectation) of X is
the real number

EX =
∑

x∈Range(X)
x fX(x).

If
∑

x∈Range(X)
|x| fX(x) = ∞, we say X does not have finite expectation and we

write EX =∞.

A similar definition works for continuous, real-valued r.v.s:
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Definition 5.2 Let X : Ω→ R be a continuous r.v., with density fX . We say X has
finite expectation (and write EX <∞) if∫ ∞

−∞
|x|fX(x) dx <∞

in which case we say the expected value (a.k.a. mean a.k.a. expectation) of X is
the real number

EX =
∫ ∞

−∞
x fX(x) dx.

If
∫ ∞

−∞
|x|fX(x) diverges, we say X does not have finite expectation and we write

EX =∞.

Notation: EX is also denoted µ, µX , E[X], E(X) and E(X).

Note: If X : Ω → R is neither discrete nor cts, then it makes no sense to talk
about EX .

Also, if X isn’t real-valued (such as when X : Ω→ Rd is a joint distribution), it
makes no sense to talk about EX .

EXAMPLE 2

Suppose X has density function fX(x) = 3
28x

2 for −1 ≤ x ≤ 3 (and fX(x) = 0
otherwise). Compute the expected value of X .
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Note: If the range ofX is bounded above and bounded below (like in Example
2), then EX <∞ is automatic.

If the range of X is either bounded above or bounded below, then you can
simultaneously check that X has finite expectation and compute EX by com-
puting

∑
x

xfX(x) (if X is discrete) or
∫ ∞

−∞
xfX(x) dx (if X is continuous).

So in practice, you never actually have to mess with computing
∑

x

|x|fX(x) dx

or
∫ ∞

−∞
|x|fX(x) dx.

LOTUS (Expected values of transformations)
QUESTION

Suppose you know the density of r.v. X . To get the expected value of X , you
compute

EX =
∑

x

xfx(x) or EX =
∫
xfX(x) dx.

How would you compute the expected value of a transformation of X , i.e. what is
EY if Y = φ(X)?

Long way:

Seemingly dumb way:

Actually, this seemingly dumb way works! It’s called “LOTUS”, which is an acronym
for the Law of the Unconscious Statistician:
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Theorem 5.3 (LOTUS) Suppose X : Ω → Rd is a r.v. with density fX. Let U =
φ(X) where φ : Rd → R is a real-valued function of d variables. Then:

(a) U has finite expectation if and only if

∑
x
|φ(x)|fX(x) <∞ if X is discrete∫ ∞

−∞
|φ(x)|fX(x) dx <∞ if X = X is cts and real-valued∫

Rd
|φ(x)|fX(x) dx <∞ if X is cts and vector-valued

(b) if EU <∞, then

EU =



∑
x
φ(x)fX(x) if X is discrete∫ ∞

−∞
φ(x)fX(x) dx if X = X cts and real-valued∫

Rd
φ(x)fX(x) dx if X is cts and vector-valued

Remark 1: In practice, we’ll never have to worry about part (a) of this theorem,
because we will deal with r.v.s that have finite expectation.

Remark 2: If X is a joint distribution, then the integrals here are actually mul-
tiple integrals. For instance, if U = φ(X, Y ), then

EU =
∫ ∞

−∞

∫ ∞

−∞
φ(x, y)fX,Y (x, y) dA.

PROOF (WHEN X IS DISCRETE) In this case, U is also discrete, so we can denote
the values in the range of U u1, u2, ....
For each j, let Aj = φ−1(uj) = {x ∈ Range(X) : φ(x) = uj}.
The Aj form a partition of the range of X .
Now, since X ∈ Aj if and only if U = uj , we see that

fU(uj) = P (U = uj) = P (X ∈ Aj) =
∑

x∈Aj

fX(x).
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5.1. Definition of expected value

Therefore

E|U | =
∑

j

|uj|fU(uj) =
∑

j

|uj|
∑

x∈Aj

fX(x) (from the previous page)

=
∑

j

∑
x∈Aj

|uj|fX(x)

=
∑

x∈Range(X)
|φ(x)|fX(x).

Therefore EU <∞ if and only if
∑
x
|φ(x)|fX(x) <∞, proving statement (a).

For statement (b), repeat the argument that proved part (a), but with no
absolute values around the uj .

The proof of LOTUS when X is continuous is beyond the scope of this course,
as it uses a branch of mathematics called measure theory. □

EXAMPLE 3

Suppose X has density function fX(x) = x + 1
2 for 0 < x < 1 (and fX(x) = 0

otherwise). Let Y = 3X2 + 6X + 7. Find EY .
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5.1. Definition of expected value

EXAMPLE 4
Let X ∼ Pois(λ). Find E[eX ].

Expected values and survival functions

A useful, alternate method to compute expected values is by means of the survival
function. Recall that for a real-valued r.v. X , SX(x) = P (X > x) = 1− FX(x).

Theorem 5.4 (Expected value from survival function) Suppose X is a random
variable taking values in [0,∞). Then:

1. if X is discrete, then EX =
∞∑

x=0
SX(x).

2. if X is continuous, then EX =
∫ ∞

0
SX(x) dx.

PROOF If X is discrete, then

EX =
∞∑

x=0
xfX(x)

= 1fX(1) + 2fX(2) + 3fX(3) + 4fX(4) + ...

= [fX(1) + fX(2) + fX(3) + ...] + [fX(2) + fX(3) + ...] + [fX(3) + ...]

= P (X > 0) + P (X > 1) + P (X > 2) + ...

=
∞∑

x=0
P (X > x) =

∞∑
x=0

SX(x).
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If X is continuous, then

EX = lim
b→∞

∫ b

0
xfX(x) dx = lim

b→∞

[
xFX(x)|b0 −

∫ b

0
FX(x) dx

]

= lim
b→∞

[
bFX(b)−

∫ b

0
FX(x) dx

]

= lim
b→∞

[(∫ b

0
1 dx

)
FX(b)− 1

∫ b

0
FX(x) dx

]

= lim
b→∞

[
FX(b)

∫ b

0
1 dx

]
−
[

lim
b→∞

FX(b)
] ∫ b

0
FX(x) dx

= lim
b→∞

[
FX(b)

∫ b

0
1 dx

]
− lim

b→∞

[
FX(b)

∫ b

0
FX(x) dx

]

= lim
b→∞

[
FX(b)

∫ b

0
[1− FX(x)] dx

]

= 1 · lim
b→∞

∫ b

0
[1− FX(x)] dx

=
∫ ∞

0
SX(x) dx. □

EXAMPLE 5

Suppose X is a continuous, real-valued r.v. with cdf FX(x) = 1 − x2

(x3 + 1)2 for

x ≥ 0 (FX(x) = 0 for x < 0.) Compute the expected value of X .
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5.1. Definition of expected value

EXAMPLE 6
A dishwasher manufacturer offers a warranty program, under which they agree to
cover the full cost of repair of a broken dishwasher within the first five years after
purchase and agree to cover one-fourth of the cost of a repair after five years have
elapsed from the purchase. If the cost of a repair is $160, and the time until the

dishwasher breaks has density fT (t) = 3
8t

−4 for t >
1
2 (and fT (t) = 0 otherwise),

compute the expected amount the manufacturer pays to cover repairs.
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5.2 Properties of expected value
RECALL (FROM LINEAR ALGEBRA)

Let V and W be vector spaces. A transformation T : V → W is called linear if

The first thing to know about expected value is that it is a linear transformation
from the vector space of random variables to the vector space R:

Theorem 5.5 (Linearity of Expected Value) SupposeX and Y are real-valued r.v.s
with EX <∞ and EY <∞. Then:

1. X + Y has finite expectation and E[X + Y ] = EX + EY .

2. For any constant c, cX has finite expectation and E[cX] = cEX .

PROOF Suppose X and Y have finite expectation.

For the first statement, let Z = X + Y = φ(X, Y ). Then if X and Y are discrete,∑
x,y

|x+ y|fX,Y (x, y) ≤
∑
x,y

(|x|+ |y|)fX,Y (x, y)

=
∑
x,y

|x|fX,Y (x, y) +
∑
x,y

|y|fX,Y (x, y).

and if X and Y are continuous,∫
R2
|x+ y|fX,Y (x, y) dA ≤

∫
R2

(|x|+ |y|)fX,Y (x, y) dA

=
∫
R2
|x|fX,Y (x, y) dA+

∫
R2
|y|fX,Y (x, y) dA.

Since EX <∞, the red sum/integral is finite, and since EY <∞, the blue
sum/integral is finite.
So the entire (red + blue) expression is finite, so by LOTUS, E[X + Y ] <∞.
Now, again using LOTUS,

E[X + Y ] =
∑
x,y

(x+ y)fX,Y (x, y) =
∑
x,y

xfX(x, y) +
∑
x,y

yfX,Y (x, y) = EX + EY.
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5.2. Properties of expected value

Now for the second statement: if X is discrete, then so is cX and∑
x

|cx|fX(x) = |c|
∑

x

|x|fX(x) <∞

so by LOTUS cX has finite expectation. Then, again using LOTUS,

E[cX] =
∑

x

cxfX(x) = c
∑

x

xfX(x) = cEX.

If X is continuous, the same proof works using integrals instead of sums. □

Theorem 5.6 (Expectation preserves constants) Let X be a real-valued r.v. If
P (X = c) = 1, then EX = c.

PROOF If P (X = c) = 1, then X is discrete and fX(c) = 1. So

EX =
∑

x

xfX(x) = c · 1 = c. □

EXAMPLE 7
Suppose EX = 8 and EY = −3. Compute the expected value of 2X + 5Y + 3.

Inequality properties

Theorem 5.7 (Inequality Properties of Expected Value) Suppose X and Y are
real-valued r.v.s with EX <∞ and EY <∞. Then:

Positivity: If P (X ≥ 0) = 1, then EX ≥ 0.

Monotonicity: If P (X ≥ Y ) = 1, then EX ≥ EY .

Triangle inequality: |EX| ≤ E|X|.

Preservation of bounds: If P (|X| ≤M) = 1, then |EX| ≤M .

Definiteness: If P (X ≥ Y ) = 1 and EX = EY then P (X = Y ) = 1.

PROOF We begin by proving positivity. If P (X ≥ 0) = 1 and X is discrete, then

EX =
∑

x

xfX(x) ≥ 0
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5.2. Properties of expected value

since all the numbers in the sum are nonnegative.
If P (X ≥ 0) = 1 and X is continuous, then Range(X) ⊆ [0,∞) so

EX =
∫ ∞

−∞
xfX(x) dx =

∫ ∞

0
xfX(x) dx ≥ 0

since the integrand is positive. This proves positivity.

Next, we prove monotonicity: let Z = X − Y ; by linearity, EZ = EX − EY .
If P (X ≥ Y ) = 1, then P (Z ≥ 0) = 1.
So by positivity, EZ ≥ 0.
Thus EX − EY ≥ 0 so EX ≥ EY , proving monotonicity.

To establish the triangle inequality, suppose −|X| ≤ X ≤ |X|.
This implies −E|X| ≤ EX ≤ E|X| by monotonicity. Thus |EX| ≤ E|X|.

Preservation of bounds follows from the triangle inequality and monotonicity.

For definiteness, again let Z = X − Y , since EX = EY we have EZ = 0.
Assuming Z is discrete, repeating the argument we made for positivity, we
have (since P (Z ≥ 0) = 1)

EZ =
∞∑

z=0
zfZ(z) = 0

and since all the zs in the sum are ≥ 0 and all the fZ(z)s are ≥ 0, the only
way this can be consistent with

∑
z

fZ(z) = 1 is if fZ(0) = 1 (otherwise there

would be a positive term without any negative term that could cancel it).
Thus P (Z = 0) = 1 so P (X − Y = 0) = 1 so P (X = Y ) = 1.
If Z is continuous, the proof of definiteness is harder (take MATH 430). □

Theorem 5.8 (Independence Properties of Expected Value) Suppose X and Y
are real-valued r.v.s with EX < ∞ and EY < ∞. If X ⊥ Y , then for any functions
φ, ψ : R→ R, if φ(X) and ψ(Y ) both have finite expectation, then so does φ(X)ψ(Y ),
and

E[φ(X)ψ(Y )] = E[φ(X)] · E[ψ(Y )].

In particular, E[XY ] = EX · EY .
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5.2. Properties of expected value

WARNING: The converse of this is false, i.e. E[XY ] = EX · EY does not
imply X ⊥ Y .

PROOF Note that X ⊥ Y implies fX,Y (x, y) = fX(x)fY (y).
Then, if X and Y are discrete,∑

x,y

|φ(x)ψ(y)|fX,Y (x, y) =
∑

x

∑
y

|φ(x)||ψ(y)|fX(x)fY (y)

=
(∑

x

|φ(x)|fX(x)
)(∑

y

|ψ(y)|fY (y)
)
,

and if X and Y are continuous,∫
R2
|φ(x)ψ(y)|fX,Y (x, y) dA =

∫ ∞

−∞

∫ ∞

−∞
|φ(x)||ψ(y)|fX(x)fY (y) dx dy

=
(∫ ∞

−∞
|φ(x)|fX(x) dx

)(∫ ∞

−∞
|ψ(y)|fY (y) dy

)
.

Since E[φ(X)] <∞, the red sum/integral is finite.
Since E[ψ(Y )] <∞, the blue sum/integral is finite.
Thus the entire expression is finite so by LOTUS, E[φ(X)ψ(Y )] <∞.
So if φ(X)ψ(Y ) is discrete,

E[φ(X)ψ(Y )] =
∑
x,y

φ(x)ψ(y)fX,Y (x, y) =
∑

x

∑
y

φ(x)ψ(y)fX(x)fY (y)

=
(∑

x

φ(x)fX(x)
)(∑

y

ψ(y)fY (y)
)

= E[φ(X)] · E[ψ(Y )].

(and if φ(X)ψ(Y ) is cts, the same type of computation works with integrals). □
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5.3 Variance
MOTIVATION

Here are some random variables, all of which have mean 10:

X = 10 X ∼ Unif({9, 11}) X ∼ Unif([0, 20])
To distinguish these r.v.s, we can think of how much the values of the r.v. are
spread out. To do this, we use a quantity called variance:

Definition 5.9 Let X : Ω → R be a r.v. such that EX < ∞ and E[(X − EX)2] <
∞. The variance of X , denoted V ar(X) (or V (X) or σ2 or σ2

X), is

V ar(X) = E[(X − EX)2].

The standard deviation of X , denoted σ or σX , is σ =
√
V ar(X).

Observations:

1. V ar(X) ≥ 0.

2. The more spread out X is, the further from zero X − EX is, so the greater
V ar(X) is. Thus variance is a measure of spread of a random variable.

Theorem 5.10 (Variance of a constant) Let X be a real-valued r.v. V ar(X) = 0 if
and only if X is constant (i.e. ∃ c s.t. P (X = c) = 1).

PROOF (⇒) Suppose V ar(X) = 0. Then E[(X − EX)2] = 0.
Since (X − EX)2 ≥ 0, by definiteness, that means P ((X − EX)2 = 0) = 1.
This is equivalent to P (X = EX) = 1, i.e. X is constant with probability 1.

(⇐) Suppose X is constant, say X = c.
Then EX = c so (X−EX)2 = (c− c)2 = 0, and therefore V ar(X) = E[0] = 0. □

Theorem 5.11 (Variance Formula) Let X be a real-valued r.v. so that V ar(X) ex-
ists. Then

V ar(X) = EX2 − (EX)2

= “second moment”− “mean squared”.

PROOF This is just algebra, together with properties of expected value:

V ar(X) = E[(X − EX)2]
= E[(X − EX)(X − EX)]
= E[X2 − 2(EX)X + (EX)2]
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.

EXAMPLE 8

Suppose X is a continuous r.v. with density fX(x) = 1
4x

3 for 0 ≤ x ≤ 2. Compute
the variance of X .

Theorem 5.12 (Properties of Variance) Let X be a r.v. with finite variance. Then:

1. For any constant b, V ar(X + b) = V ar(X);

2. For any constant a, V ar(aX) = a2V ar(X).

PROOF HW (as a hint, these follow from either the definition of variance or the
variance formula)

EXAMPLE 9
Suppose X is a r.v. with variance 12. Compute the variance of 5X + 8.
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5.4 Expected values and variances of common random variables
Theorem 5.13 Expected values and variances of common r.v.s are as follows:

X EX V ar(X)

Unif({1, 2, ..., n}) n+ 1
2

n2 − 1
12

Geom(p) 1− p
p

1− p
p2

NB(r, p) r

(
1− p
p

)
r

(
1− p
p2

)

binomial(n, p) np np(1− p)

Pois(λ) λ λ

Hyp(n, r, k) kr

n

kr

n

(
n− r
n

)
n− k
n− 1

Unif([a, b]) a+ b

2
(b− a)2

12

Exp(λ) 1
λ

1
λ2

Γ(r, λ) r

λ

r

λ2

Cauchy ∞ DNE

std. normal n(0, 1) 0 1

normal n(µ, σ2) µ σ2

Remark: “Standard normal” and “normal” random variables will be introduced
in Chapter 6.

PROOF (OF SOME OF THESE) In the homework, you will prove the expected value
formulas when X is hypergeometric, exponential, and gamma, and the variance
formulas when X is continuous uniform, exponential and gamma.
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X ∼ Unif({1, 2, ..., n}):

EX =
∑

x

xfX(x) =
n∑

x=1
x

1
n

=

EX2 =
∑

x

x2fX(x) =
n∑

x=1
x2 1

n
= 1

n

n∑
x=1

x2 = 1
n

[
n(n + 1)(2n + 1)

6

]
= (n + 1)(2n + 1)

6 ;

V ar(X) = EX2 − (EX)2 = (n + 1)(2n + 1)
6 −

(
n + 1

2

)2
= · · · = n2 − 1

12 .

X ∼ Pois(λ):

EX =
∑

x

xfX(x) =
∞∑

x=0
xe−λ λx

x! =

EX2 =
∑

x

x2fX(x) =
∞∑

x=0
x2e−λ λx

x! =

V ar(X) = EX2 − (EX)2 = [λ2 + λ]− λ2 = λ .

X ∼ b(n, p):

EX =
∑

x

xfX(x) =
n∑

x=0
x

(
n

x

)
px(1− p)n−x =

n∑
x=1

x
n!

x!(n− x)!p
x(1− p)n−x

=
n∑

x=1

n!
(x− 1)!(n− x)!p

x(1− p)n−x

= np

n∑
x=1

(n− 1)!
(x− 1)!(n− x)!p

x−1(1− p)n−x

= np

n−1∑
x=0

(n− 1)!
x!(n− x− 1)!p

x(1− p)n−x−1

= np

n−1∑
x=0

(
n− 1

x

)
px(1− p)n−1−x

= np[p + (1− p)]n−1

= np(1) = np .
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X ∼ Unif([a, b]):

X ∼ Cauchy:
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5.5 Covariance and correlation
MOTIVATING QUESTION

We have seen variance is not linear, because V ar(aX) = a2V ar(X), not a V ar(X).
But we haven’t looked at whether or not variance respects addition. In particular,
does V ar(X + Y ) = V ar(X) + V ar(Y )? If not, what is a formula for V ar(X + Y )
in terms of V ar(X) and V ar(Y )?

Answer:

Definition 5.14 Given two r.v.s X and Y , each having finite variance, the covari-
ance between X and Y , denoted Cov(X, Y ) (or C(X, Y ) or σX,Y or σXY ) is

Cov(X, Y ) = E [(X − EX)(Y − EY )] .

The covariance between two random variables measures the “tendency of the r.v.s
to change together”. In other words:

• If Cov(X, Y ) > 0, then as X increases, we expect Y to increase and as X
decreases, we expect Y to decrease.

• If Cov(X, Y ) < 0, then as X increases, we expect Y to decrease and as X
decreases, we expect Y to increase.

• If Cov(X, Y ) = 0, then changes in X should not lead to any expected change
in Y .
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Properties of covariance

Theorem 5.15 (Bilinearity of covariance) Suppose that all the r.v.s mentioned in
these equations are real-valued, and have finite mean and variance. Then:

1. Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y );

2. Cov(X, Y1 + Y2) = Cov(X, Y1) + Cov(X, Y2);

3. For any constant a, Cov(aX, Y ) = aCov(X, Y ) = Cov(X, aY ).

PROOF HW

Theorem 5.16 (Properties of covariance) Let X and Y be real-valued r.v.s having
finite variance. Then:

Covariance formula: Cov(X, Y ) = E[XY ]− EX · EY .

Symmetry: Cov(X, Y ) = Cov(Y,X).

Self-covariance is variance: Cov(X,X) = V ar(X).

Variance sum formula: V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

PROOF The variance sum formula was established earlier.

For the covariance formula, notice

Cov(X, Y ) = E[(X − EX)(Y − EY )]
= E[XY − EX · Y − EY ·X + EX · EY ]
= E[XY ]− E[EX · Y ]− E[EY ·X] + E[EX · EY ]
= E[XY ]− EX · EY − EY · EX + EX · EY
= E[XY ]− EX · EY.

Symmetry of covariance is obvious from the definition.

To prove that self-covariance is variance, observe

Cov(X,X) = E[XX]− EX · EX = EX2 − (EX)2 = V ar(X). □

190



5.5. Covariance and correlation

Theorem 5.17 (Independent r.v.s have zero covariance) Suppose that X and Y
are real-valued r.v.s with finite mean and variance. If X ⊥ Y , then Cov(X, Y ) = 0
and V ar(X + Y ) = V ar(X) + V ar(Y ).

WARNING: The converse of this is false. There are r.v.s X and Y with covari-
ance 0 that are not independent.

PROOF If X ⊥ Y , then E[XY ] = EX · EY by a previous theorem.
Therefore Cov(X, Y ) = E[XY ]− EX · EY = 0. □

A PROBLEM WITH COVARIANCE

Suppose X and Y , both measured in hours, have covariance 2. Then if we let XM

and YM be the same quantities asX and Y , but measured in minutes rather than hours,
we have

Cov(XM , YM) =

Thus the covariance between two quantities depends greatly on the units the quantities
are measured in. We don’t really want this, because the covariance is “supposed”
to measure how correlated the random variables are. To fix this, we invent a new
quantity called “correlation”:

Definition 5.18 Given two r.v.s X and Y , each having finite variance, the correla-
tion between X and Y , denoted ρ(X, Y ) (or ρXY or ρX,Y ) is

ρ(X, Y ) = Cov(X, Y )√
V ar(X) · V ar(Y )

.

X and Y are uncorrelated if ρ(X, Y ) = 0 (equivalently, if Cov(X, Y ) = 0).

From Theorem 5.17, independent r.v.s are uncorrelated, but heed the warning af-
ter Theorem 5.17: uncorrelated r.v.s may not be independent (we’ll see a specific
example in the HW).
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Theorem 5.19 (Schwarz Inequality) Let X and Y be real-valued r.v.s with finite
variances. Then

(E[XY ])2 ≤ EX2 · EY 2.

PROOF The proof of the Schwarz inequality has two cases:

Case 1: If P (Y = 0) = 1, then

E([XY ])2 = 0 ≤ 0 = EX2 · 0 = EX2 · EY 2

as desired.

Case 2: Suppose P (Y = 0) < 1.
This implies P (Y 2 = 0) < 1 so E[Y 2] > 0; this will allow us to divide through

by EY 2 later on (which we couldn’t do in Case 1).
Now, define a function f : R→ R by

f(t) = E[(X − tY )2].

Note that f(t) ≥ 0 for all t since f is the expected value of a nonnegative r.v.
Expanding f , we get

f(t) = E[(X − tY )(X − tY )] = E[X2 − 2tXY + t2Y 2]
= EX2 − 2tE[XY ] + t2EY 2.

Thus f is a quadratic function of t whose graph is a parabola that opens
upward. Since f(t) ≥ 0 for all t, the vertex (α, β) of this parabola must lie
above the t-axis:

f

α
t

β

Now, let’s find the coordinates of this vertex using some calculus:

f ′(t) = 2tEY 2 − 2E[XY ]

Set f ′(t) = 0 and solve for t (a.k.a. α) to get α = E[XY ]
EY 2 .
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The y-coordinate of the vertex is therefore

β = f(α) = f

(
E[XY ]
EY 2

)
= EX2 − 2

(
E[XY ]
EY 2

)
E[XY ] +

(
E[XY ]
EY 2

)2

EY 2

= EX2 − 2(E[XY ])2

EY 2 + (E[XY ])2

EY 2

= EX2 − (E[XY ])2

EY 2 .

Putting this all together, we have

0 ≤ β

⇒ 0 ≤ EX2 − (E[XY ])2

EY 2

⇒ (E[XY ])2

EY 2 ≤ EX2

⇒ (E[XY ])2 ≤ EX2 · EY 2

which is the Schwarz inequality. □

SOME CONTEXT

You may recall from linear algebra another inequality called the Cauchy-Schwarz
Inequality (important in the context of computing projections of one vector onto
another, angles between vectors, etc.). That inequality is basically the same as this
one; it says that for two vectors x,y ∈ Rd, we have

|x · y| ≤ ||x|| ||y||

where || || denotes the norm or length of a vector (recall that ||x|| =
√

x · x). Denot-
ing the “dot product” of two random variables as “X · Y ” = E[XY ], the Schwarz
inequality here is exactly the same thing as the C-S inequality from linear algebra...
if you square both sides of the C-S inequality you get

(x · y)2 ≤ ||x||2 ||y||2

(x · y)2 ≤ (x · x) (y · y).
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Properties of correlation

Theorem 5.20 (Properties of Correlation) Let X and Y be r.v.s with finite vari-
ance. Then:

Correlation is symmetric: ρ(X, Y ) = ρ(Y,X).

Self-correlation is 1: ρ(X,X) = 1.

Correlation is between −1 and 1: |ρ(X, Y )| ≤ 1.

⊥ r.v.s are uncorrelated: If X ⊥ Y , then ρ(X, Y ) = 0 (the converse of this is false).

Correlation is unchanged under linear transformations: For any positive con-
stants a and b, and any constants c and d,

ρ(aX + c, bY + d) = ρ(X, Y ).

Correlation of ±1 implies linear relationship: ρ(X, Y ) = ±1 if and only if there
are constants a and b (with a ̸= 0) such that Y = aX + b.

PROOF The first statement is clear, since Cov(X, Y ) = Cov(Y,X).
The second is a direct calculation:

ρ(X,X) = Cov(X,X)√
V ar(X) · V ar(X)

= V ar(X)√
(V ar(X))2

= V ar(X)
V ar(X) = 1.

For the bounds on ρ, apply the Schwarz Inequality to X − EX and Y − EY :

E[(X − EX)(Y − EY )]2 ≤ E[(X − EX)2] · E[(Y − EY )2]

i.e. Cov(X, Y )2 ≤ V ar(X) · V ar(Y ).
Take the square root of both sides to get

|Cov(X, Y )| ≤
√
V ar(X) · V ar(Y )

i.e.
|ρ(X, Y )| = |Cov(X, Y )|√

V ar(X) · V ar(Y )
≤ 1.

The fact that independent r.v.s are uncorrelated follows from the fact that
X ⊥ Y implies Cov(X, Y ) = 0.

The last two statements are HW problems. □
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5.5. Covariance and correlation

EXAMPLE 10
SupposeX and Y are chosen from [0, 1]2 with joint density fX,Y (x, y) = x+y. Com-
pute the correlation between X and Y .

Solution: Compute a lot of expected values using LOTUS:

EX =
∫ 1

0

∫ 1

0
x(x+ y) dy dx = · · · = 7

12
EY =

∫ 1

0

∫ 1

0
y(x+ y) dy dx = · · · = 7

12
EX2 =

∫ 1

0

∫ 1

0
x2(x+ y) dy dx = · · · = 5

12
EY 2 =

∫ 1

0

∫ 1

0
y2(x+ y) dy dx = · · · = 5

12
EXY =

∫ 1

0

∫ 1

0
xy(x+ y) dy dx = · · · = 1

3

Then

V ar(X) = EX2 − (EX)2 = 5
12 −

( 7
12

)2
= 11

144

V ar(Y ) = EY 2 − (EY )2 = 5
12 −

( 7
12

)2
= 11

144
Cov(X, Y ) = EXY − EX · EY = −1

144

and finally,

ρ(X, Y ) = Cov(X, Y )√
V ar(X)V ar(Y )

=
−1
144√(

11
144

) (
11
144

) =
−1
144
11
144

= − 1
11 .
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5.6 Conditional expectation and conditional variance
Definition 5.21 Let X and Y be real-valued r.v.s. The conditional expectation of
Y given X , also called the regression of Y on X , is the function

E(Y |X) =


∑

y

yfY |X(y|x) if Y |X is discrete∫ ∞

−∞
yfY |X(y|x) dy if Y |X is cts

.

In this setting, there is also a conditional expectation of X given Y , defined by

E(X|Y ) =


∑

x

xfX|Y (x|y) if X|Y is discrete∫ ∞

−∞
xfX|Y (x|y) dx if X|Y is cts

.

Important: E(Y |X) is a function of x, not a number.
(Similarly, E(X|Y ) is a function of y.)

That said, we can think of E(Y |X) as a r.v. by thinking of it as a function of X :
as an example, if E(Y |X)(x) = x2 − 3x, we can also write E(Y |X) = X2 − 3X .

What does conditional expectation mean? As an example, suppose X and Y are
chosen from this set Ω with some joint density function:

Ω

x
X

Y
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5.6. Conditional expectation and conditional variance

Theorem 5.22 (Properties of conditional expectation) Suppose that any r.v.s men-
tioned in this theorem have finite expectation, and let c be an arbitrary constant. Then:

Law of Total Expectation: E[E(Y |X)] = EY . This means:∫ ∞

−∞
E(Y |X)(x)fX(x) dx = EY if X is cts

or
∑

x

E(Y |X)(x)fX(x) = EY if X is disrete

Linearity: E(Y1 + Y2 |X) = E(Y1|X) + E(Y2|X) and E(cY |X) = cE(Y |X)

Independence: The following are equivalent:

• X ⊥ Y
• E(Y |X) is a constant function.
• E(Y |X) = EY for all x.

Preservation of constants: E[c|X] = c for any constant c.

Stability/“pulling out what’s given”: For any function φ,

E[φ(X)Y |X] = φ(X)E[Y |X].

In particular, E(X|X) = X .

Useful integral formulas when computing conditional expectations

Gamma integral formula:
∫ ∞

0
xr−1e−λx dx = Γ(r)

λr

Beta integral formula:
∫ 1

0
xα−1(1− x)β−1 dx = Γ(α)Γ(β)

Γ(α + β)
Gaussian integral formula:

(coming later)

∫ ∞

−∞
e

−(x−µ)2

2σ2 dx = σ
√

2π

Note: If you recognize the conditional density fY |X as a common density,
then you can immediately conclude the value of E(Y |X) from the
facts known about expected values of common r.v.s.

EXAMPLE 11
Suppose the conditional density of Y given X is (for x, y > 0)

fY |X(y|x) = xe−xy.

Then we know
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5.6. Conditional expectation and conditional variance

EXAMPLE 12
Let X and Y have joint density

fX,Y (x, y) =


12
5 y(2− x− y) if (x, y) ∈ [0, 1]2

0 else
.

Find the conditional expectation of Y given X and the conditional expectation of

Y given X = 1
3 .
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5.6. Conditional expectation and conditional variance

EXAMPLE 13
Three contestants on a game show are given the same question, and each person
answers the question correctly with probability 1 − x (their answers are indepen-
dent). The difficulty x of the question is itself a r.v. chosen from (0, 1) with density
function 6x(1− x). Find the expected difficulty level of the question, given that all
three contestants answer incorrectly.
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Conditional variance

Definition 5.23 Let X and Y be real-valued r.v.s. The conditional variance of Y
given X , is the function

V ar(Y |X) = E[(Y − E[Y |X])2 |X]
= E(Y 2 |X)− E(Y |X)2.

That the two formulas given in the box above are the same is a HW problem.

As with conditional expectation, the conditional variance is a function of x (and
can be thought of as a random variable).

Theorem 5.24 (Law of Total Variance) Let X and Y be real-valued r.v.s. Then

V ar(Y ) = E[V ar(Y |X)] + V ar[E(Y |X)].

PROOF HW (use the definitions and crunch the symbols appropriately)

This theorem is extremely useful for computing the variance of Y , when X and
Y |X are given as common random variables:

EXAMPLE 14
The number of accidents on a stretch of highway is uniform on {1, 2, 3, ..., 9}. Given
N accidents on the stretch of highway, the total amount of damage caused by the
accidents is exponential with mean 2N . Find the variance of the total amount of
damage caused by accidents on this stretch of highway.
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5.7. Probability generating functions

5.7 Probability generating functions
What is a generating function?

Take a sequence of numbers a0, a1, a2, a3, .... To record this sequence, you can write
down the entire sequence, or take the numbers and put them in as terms in a power
series

f(t) =
∞∑

n=0
ant

n = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + ...

This gives you a function of t, called the generating function of the sequence {an}.
There are a couple of reasons why we would want to do this:

• the formula for f(t) may be easier/shorter to write than the formula for an;

• properties of the generating function may give you useful information about
the sequence.

In our setting, we start with a discrete r.v. X taking values in {0, 1, 2, 3, ...}. This
naturally gives you a sequence coming from the probabilities of each value of X :

fX(0), fX(1), fX(2), fX(3), fX(4), ...

The generating function associated to this sequence is therefore

This is called the probability generating function of X , and it turns out that this func-
tion has many useful properties.

Definition 5.25 LetX : Ω→ N be a discrete r.v., taking values only in {0, 1, 2, 3, ...}.
The probability generating function of X (a.k.a. pgf or generating function),
denoted GX or ΦX , is the function GX : [−1, 1]→ R defined by

GX(t) = E[tX ] =
∞∑

x=0
fX(x)tx.

Note: The t in this definition is just a dummy variable. It doesn’t really have any
meaning.
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5.7. Probability generating functions

Properties of probability generating functions

Theorem 5.26 (Properties of PGFs) Let X be a discrete r.v. taking values in N.
Then:

1. GX is a continuous and differentiable function of t on [−1, 1].

2. GX(1) = 1.

3. GX(0) = fX(0) = P (X = 0) (the constant term on GX).

4. |GX(t)| ≤ 1 for all t.

PROOF Statement (1) follows from the fact that GX is a power series (in Calculus
2, we learn that all power series are cts and diffble).
For statement (2), observe GX(1) = E[1X ] = E[1] = 1.
For (3), notice GX(0) = fX(0) = P (X = 0), the constant term on GX .
For the last statement, note |GX(t)| = |E[tX ]| ≤ E|tX | ≤ E[1] = 1. □

Theorem 5.27 (PGFs and expectations) Let X be a discrete r.v. taking values in
N. Then:

1. G′
X(1) = EX .

2. G′′
X(1) = E[X(X − 1)] = EX2 − EX .

3. G(r)
X (1) = E[X(X − 1)(X − 2)(X − 3) · · · (X − r + 1)].

(This quantity is called the rth factorial moment of X .)

4. V ar(X) = G′′
X(1) +G′

X(1)− [G′
X(1)]2.

5. The equation GX(t) = t has a solution in (0, 1) if and only if EX > 1.

PROOF For statement (1), notice GX(t) =
∞∑

x=0
txfX(x) so G′

X(t) =
∞∑

x=1
xtx−1fX(x).

Therefore G′
X(1) =

∞∑
x=1

x1x−1fX(x) =
∞∑

x=1
xfX(x) =

∞∑
x=0

xfX(x) = EX .

To prove statement (2), differentiate G′
X(t) to get G′′

X(t) =
∞∑

x=2
x(x− 1)tx−2fX(x).

This means

G′′
X(1) =

∞∑
x=2

x(x− 1)1x−2fX(x) =
∞∑

x=2
x(x− 1)fX(x)

=
∞∑

x=0
x(x− 1)fX(x) = E[X(X − 1)].
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5.7. Probability generating functions

Statement (3) has a similar proof as (2), but uses induction.

Statement (4) follows from (1), (2) and the variance formula.

For the last statement, notice that the graph of GX :
• is continuous (part (1) of Theorem 5.26),
• passes through (1, 1) (part (2) of Theorem 5.26) with slope EX (statement (1)

of this theorem),
• and passes through (0, fX(0)) (part (1) of this theorem).
So the graph of GX looks like

0 1

1

fX (0)
or

0 1

1

fX (0)

Theorem 5.28 (Independence property of PGFs) Let X : Ω → N and Y : Ω →
N be independent r.v.s with respective PGFs GX and GY . Then

GX+Y (t) = GX(t)GY (t).

PROOF This is a direct calculation:

GX+Y (t) = E[tX+Y ] = E[tXtY ] = E[tX ]E[tY ] (since X ⊥ Y )
= GX(t)GY (t). □

Theorem 5.29 (Uniqueness of PGFs) Let X and Y be discrete r.v.s taking values
in N. Then:

Inversion formula for PGFs: fX(n) = G
(n)
X (0)
n! for all n ∈ {0, 1, 2, 3, ...}

Uniqueness of PGFs: If GX(t) = GY (t), then X ∼ Y .

PROOF The first part of this is the uniqueness of power series from Calculus 2.
That means we can determine a r.v.’s density from its PGF. Thus if GX = GY ,
fX = fY , i.e. X ∼ Y . □
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5.7. Probability generating functions

Theorem 5.30 (PGFs of common r.v.s) For the discrete r.v.s encountered in Chap-
ter 2, their probability generating functions are as follows:

X GX(t)

Unif({1, 2, ..., n}) t(tn − 1)
n(t− 1)

Geom(p) p

1− t(1− p)

NB(r, p)
[

p

1− t(1− p)

]r

binomial(n, p) (pt+ 1− p)n

Pois(λ) eλ(t−1)

PROOFS (OF SOME OF THESE) The uniform discrete r.v. is left as HW.
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5.7. Probability generating functions

A main application of probability generating functions is to derive facts about
the sums of independent random variables. These arguments combine the PGFs
of common r.v.s with the independence property of PGFs and the uniqueness of
PGFs:

Theorem 5.31 Suppose X1, ..., Xd are independent r.v.s, and let S = X1 + ... + Xd.
Then:

1. If each Xj ∼ Pois(λj), then S ∼ Pois(λ1 + ...+ λd).

2. If each Xj ∼ b(nj, p) (same p), then S ∼ b(n1 + ...+ nd, p).

3. If each Xj ∼ Geom(p) (same p), then S ∼ NB(d, p).

4. If each Xj ∼ NB(rj, p) (same p), then S ∼ NB(r1 + ...+ rd, p).

PROOF First, we prove statement (1).

For statement (2), suppose Xj ∼ b(nj, p). Then GXj
(t) = (pt+ 1− p)nj for each

j, so

GS(t) =
d∏

j=1
GXj

(t) =
d∏

j=1
(pt+ 1− p)nj = (pt+ 1− p)

∑
j

nj = G
b

(∑
j

nj ,p

)(t).

By uniqueness of PGFs, S ∼ b
(∑

j nj, p
)
.

Statement (3) is HW; the proof of statement (4) is similar and omitted. □
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5.8 Moments and moment generating functions
A DRAWBACK OF PGFS

Definition 5.32 Let X : Ω → R and let r ∈ {0, 1, 2, 3, ...}. If Xr has finite expec-
tation, then we define the rth moment of X , denoted µr, to be E[Xr]. Otherwise, we
say X does not have a moment of order r.

Heuristic analogy:

r interpretation of f (r)(0) interpretation of EXr

0 f(0) = height of f at x = 0 EX0 = 1

1 f ′(0) = slope of f at x = 0 EX1 = EX = mean

2 f ′′(0) = concavity of f at x = 0 EX2 = variance (sort of)

3 f ′′′(0) = jerk EX3 = skewness (sort of)

Let’s take the moments of r.v. X and put them in a sequence:

1, EX,EX2, EX3, EX4, ...

We could directly construct a generating function from this sequence, but since
these moments are supposed to be like derivatives, we’ll take some inspiration
from Calculus 2 and divide the rth moment by r! (kind of like how you divide
f (r)(0) by r! to get the coefficient on xr in the Taylor series of f(x)). This gives us a
sequence

1, EX, 1
2EX

2,
1
3!EX

3,
1
4!EX

4, , ...
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5.8. Moments and moment generating functions

which has generating function

1 + EXt+ 1
2EX

2t2 + 1
3!EX

3t3 + 1
4!EX

4t4 + ...

= E[1] + E[tX] + E

[
(tX)2

2

]
+ E

[
(tX)3

3!

]
+ E

[
(tX)4

4!

]
+ ...

= E

[
1 + tX + (tX)2

2 + (tX)3

3! + (tX)4

4! + ...

]

This leads to the following definition:

Definition 5.33 Given real-valued r.v. X (X can be cts or discrete), the moment
generating function (MGF) of X , denoted MX or gX , is defined by

MX(t) = E[etX ].

The domain of MX is the set of all t ∈ R such that etX has finite expectation.

EXAMPLE 15

Suppose X is a continuous r.v. taking values in [0, 1] with density fX(x) = 1
e− 1e

x.

Compute the moment generating function of X .
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Properties of moment generating functions

Many properties of MGFs are similar to those of PGFs:

Theorem 5.34 (Properties of MGFs) Let X : Ω → R be a r.v. with mgf MX(t).
Then:

1. MX(0) = 1.

2. Expected value from MGF: M ′
X(0) = EX = µ1.

3. M ′′
X(0) = EX2 = µ2.

4. Moment formula: For all r ∈ {1, 2, 3, ...}, M (r)
X (0) = µr = E[Xr].

5. Variance from MGF: V ar(X) = M ′′
X(0)− [M ′

X(0)]2.

6. Linear translation formula: For any a and b, MaX+b(t) = ebtMX(at).

PROOF The first five statements come from equating coefficients on two different
ways of writing MX as a power series:

MX(t) = 1 + EXt+ 1
2EX

2t2 + 1
3!EX

3t3 + 1
4!EX

4t4 + ...

= MX(0) +M ′
X(0)t+ 1

2M
′′
X(0)t2 + 1

3!M
′′′
X (0)t3 + 1

4!M
(4)
X (0)t4 + ...

The last statement is a direct computation:

MaX+b(t) = E
[
e(aX+b)t

]
= E

[
ebteX(at)

]
= ebtE

[
eX(at)

]
= ebtMX(at). □

Theorem 5.35 (Independence property of MGFs) Let X : Ω→ R and Y : Ω→
R be independent r.v.s with respective mgfs MX and MY . Then

MX+Y (t) = MX(t)MY (t).

Similarly, if X1, ..., Xd are independent r.v.s with respective mgfs MX1 ,MX2 , ...,MXd
,

then:

M d∑
j=1

Xj

(t) =
d∏

j=1
MXj

(t).

PROOF HW (similar to proof for PGFs)

208



5.8. Moments and moment generating functions

Moment generating functions of common random variables

Theorem 5.36 (MGFs of common r.v.s) For the common classes of random vari-
ables encountered in Chapters 2 and 3, their moment generating functions are as fol-
lows:

X MX(t)

Unif({1, 2, ..., n}) et(ent − 1)
n(et − 1)

Geom(p) p

1− (1− p)et

NB(r, p)
[

p

1− (1− p)et

]r

binomial(n, p)
(
1− p+ pet

)n

Pois(λ) eλ(et−1)

Unif([a, b]) etb − eta

t(b− a)

Exp(λ) λ

λ− t
for t < λ

Γ(r, λ)
(

λ

λ− t

)r

for t < λ

std. normal n(0, 1) et2/2

normal n(µ, σ2) exp
(
µt+ σ2t2

2

)

PROOFS (OF SOME OF THESE) First, whenever X is discrete, then

MX(t) = E[etX ] = E[(et)X ] = GX(et)

so the MGFs of all the discrete r.v.s come from replacing any ts in the PGF with et.

Exponential and gamma r.v.s are left as HW; let’s do the uniform cts r.v. here:
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5.9 Uniqueness of MGFs
It turns out that you can explicitly recover the density function of a real-valued r.v.
from its moment generating function:

Theorem 5.37 (Inversion formula) Let X : Ω→ R have mgf MX . Then:

1. If X is discrete and integer-valued, then for every x ∈ Z,

fX(x) = 1
2π

∫ π

−π
e−ixtMX(it) dt.

2. If X is continuous, then X has density

fX(x) = 1
2π

∫ ∞

−∞
e−ixtMX(it) dt.

WARNING: If you are ever using these formulas to do a MATH 414 or 416
problem, you are doing the problem wrong.

We’ll use formula (2) once, to discover one important fact later in the course.

Gaussian integral formula

To prove the inversion formulas, we first need the following important integral
formulas (which will also be used for other purposes later):

Lemma 5.38 (Basic Gaussian Integral Formula)∫ ∞

−∞
e−x2/2 dx =

√
2π.

PROOF Let A =
∫ ∞

−∞
e−x2/2 dx. (A > 0 since the integrand is positive.) Then

A2 = (A)(A) =
(∫ ∞

−∞
e−x2/2 dx

)(∫ ∞

−∞
e−x2/2 dx

)
=
(∫ ∞

−∞
e−x2/2 dx

)(∫ ∞

−∞
e−y2/2 dy

)
=
∫ ∞

−∞

∫ ∞

−∞
e−x2/2e−y2/2 dx dy

=
∫∫

R2
e−(x2+y2)/2 dA

210
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Continuing from the previous page, we next perform the u-sub

u = r2

2 , du = r dr

on the inside integral to get

A2 =
∫ 2π

0

∫ ∞

0
e−r2/2r dr dθ =

∫ 2π

0

∫ ∞

0
e−u du dθ

=
∫ 2π

0

[
−e−u

]∞
0
dθ

=
∫ 2π

0
dθ

= 2π.

Since A2 = π and A > 0, A =
√

2π as wanted. □

Theorem 5.39 (Gaussian Integral Formula) Let µ, σ be constants with σ > 0.
Then ∫ ∞

−∞
exp

[
−(x− µ)2

2σ2

]
dx = σ

√
2π.

PROOF Perform the u-sub u = x− µ
σ

, du = 1
σ
dx in the integral to obtain

∫ ∞

−∞
exp

[
−(x− µ)2

2σ2

]
dx =

∫ ∞

−∞
exp

[
−1

2

(
x− µ
σ

)2
]
dx

=
∫ ∞

−∞
exp

[
−u

2

2

]
σ du

= σ
∫ ∞

−∞
e−u2/2 du

= σ
√

2π. □

Observe: The value of this integral does not depend on µ (only on σ).

The Gaussian Integral Formula can be combined with an algebraic technique called
completing the square to compute lots of integrals:
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5.9. Uniqueness of MGFs

EXAMPLE 16
Compute this integral: ∫ ∞

−∞
e−2x2+20x−39 dx

Solution: The goal is to rewrite the integral so that it matches the Gaussian
Integral Formula given on the previous page:

∫ ∞

−∞
exp

[
−(x− µ)2

2σ2

]
dx = σ

√
2π

∫ ∞

−∞
exp

[
−2x2 + 20x− 39

]
dx

At this point, our integral becomes∫ ∞

−∞
exp

[
−2(x− 5)2

]
e11 dx = e11

∫ ∞

−∞
exp

[
−1

2(4)(x− 5)2
]
dx

= e11
∫ ∞

−∞
exp

−(x− 5)2

2
(

1
4

)
 dx

= e11
∫ ∞

−∞
exp

−(x− 5)2

2
(

1
2

)2

 dx
This matches the Gaussian Integral Formula with µ = 5, σ = 1

2 so the

integral evaluates to e11 1
2
√

2π .
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Proof of the inversion formula

Here is a proof of the inversion formula when X is continuous (the proof when X
is discrete is similar, but omitted from these notes). Recall that our goal is to show

fX(x) = 1
2π

∫ ∞

−∞
e−ixtMX(it) dt.

The proof is just a long calculation. The first step is to start with the right-hand
side and insert an additional term in the inversion formula needed to make it look
more like a Gaussian integral:

1
2π

∫ ∞

−∞
e−ixtMX(it) dt = 1

2π

∫ ∞

−∞
e−ixt(1)MX(it) dt

= 1
2π

∫ ∞

−∞
e−ixt

(
lim

ϵ→0+
e−ϵt2

)
MX(it) dt

= lim
ϵ→0+

1
2π

∫ ∞

−∞
MX(it)e−ϵt2

e−ixt dt

The second step is to expand the MX(it) term using the definition of MGF and
LOTUS. This gives

lim
ϵ→0+

1
2π

∫ ∞

−∞
MX(it)e−ϵt2

e−ixt dt = lim
ϵ→0+

1
2π

∫ ∞

−∞
E
[
eitX

]
e−ϵt2

e−ixt dt

= lim
ϵ→0+

1
2π

∫ ∞

−∞

[∫ ∞

−∞
fX(y)eity dy

]
e−ϵt2

e−ixt dt

= lim
ϵ→0+

1
2π

∫ ∞

−∞

∫ ∞

−∞
fX(y)eit(y−x)e−ϵt2

dy dt

= lim
ϵ→0+

1
2π

∫ ∞

−∞

∫ ∞

−∞
fX(y)eit(y−x)e−ϵt2

dt dy

Now, pull the fX(y) out of the dt integral, and evaluate the inside integral by com-
pleting the square and using the Gaussian Integral Formula:

lim
ϵ→0+

1
2π

∫ ∞

−∞

∫ ∞

−∞
fX(y)eit(y−x)e−ϵt2

dt dy

= lim
ϵ→0+

1
2π

∫ ∞

−∞
fX(y)

∫ ∞

−∞
exp

[
−ϵ

(
t2 − i(y − x)

ϵ
t

)]
dt dy

= lim
ϵ→0+

1
2π

∫ ∞

−∞
fX(y)

∫ ∞

−∞
exp

[
−ϵ

(
t2 − i(y − x)

ϵ
t+ −(y − x)2

4ϵ2 + (y − x)2

4ϵ2

)]
dt dy

= lim
ϵ→0+

1
2π

∫ ∞

−∞
fX(y)

∫ ∞

−∞
exp

−
(
t− i(y−x)

2ϵ

)2

2 ·
(

1√
2ϵ

)2

 exp
[
−(y − x)2

4ϵ

]
dt dy
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5.9. Uniqueness of MGFs

= lim
ϵ→0+

1
2π

∫ ∞

−∞
fX(y)

√
1
2ϵ
√

2π exp
[
−(y − x)2

4ϵ

]
dy

(Gaussian Integral Formula with µ = i(y − x)
2ϵ , σ = 1√

2ϵ
)

= lim
ϵ→0+

1
2
√
πϵ

∫ ∞

−∞
fX(y) exp

[
−(y − x)2

4ϵ

]
dy.

Next, use the u-sub u = y − x
2
√
ϵ

, du = 1
2
√
ϵ
dy to write the integral as

lim
ϵ→0+

1
2
√
πϵ

∫ ∞

−∞
fX(y) exp

[
−(y − x)2

4ϵ

]
dy

= lim
ϵ→0+

1
2
√
πϵ

∫ ∞

−∞
fX(x+ 2

√
ϵ u) exp

[
−u2

]
2
√
ϵ du

= lim
ϵ→0+

1√
π

∫ ∞

−∞
fX(x+ 2

√
ϵ u) e−u2

du.

Finally, move the limit back inside the integral and use the Gaussian Integral For-
mula one more time:

1√
π

∫ ∞

−∞

[
lim

ϵ→0+
fX(x+ 2

√
ϵ u)

]
e−u2

du

= 1√
π

∫ ∞

−∞
fX(x)e−u2

du

= 1√
π
fX(x)

∫ ∞

−∞
exp

 −u2

2 ·
(

1√
2

)2

 du
= 1√

π
fX(x) 1√

2
√

2π

(Gaussian Integral Formula with µ = 0, σ = 1√
2

)

= fX(x).

This proves the inversion formula (when X is continuous). □

The significance of the inversion formulas is that they explain the following prin-
ciple:

Corollary 5.40 (Uniqueness of MGFs) Let X : Ω → R and Y : Ω → R be any
two real-valued r.v.s so that MX(t) = MY (t). Then X ∼ Y .
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5.9. Uniqueness of MGFs

Sums of independent common r.v.s

As with PGFs, an important application of MGFs is to establish results about the
sum of independent random variables:

Theorem 5.41 (Sums of ⊥ r.v.s) Suppose X1, ..., Xd are independent r.v.s, and let
S = X1 + ...+Xd. Then:

1. If each Xj ∼ Pois(λj), then S ∼ Pois(λ1 + ...+ λd).

2. If each Xj ∼ b(nj, p) (same p), then S ∼ b(n1 + ...+ nd, p).

3. If each Xj ∼ Geom(p) (same p), then S ∼ NB(d, p).

4. If each Xj ∼ NB(rj, p) (same p), then S ∼ NB(r1 + ...+ rd, p).

5. If each Xj ∼ Exp(λ) (same λ), then S ∼ Γ(d, λ).

6. If each Xj ∼ Γ(rj, λ) (same λ), then S ∼ Γ(r1 + ...+ rd, λ).

PROOF (OF SOME OF THESE) Statement (6) is left as HW.
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5.10. Joint moment generating functions

5.10 Joint moment generating functions
Definition 5.42 Let X1, ..., Xd be real-valued r.v.s with some joint distribution X.
The joint moment generating function of X, denoted MX or gX, is the function
MX : Rd → R defined by

MX(t) = E[et·X].

The domain of MX is the set of all t ∈ Rd such that et·X has finite expectation.

Many of the same properties of MGFs carry over to the joint case:

Theorem 5.43 (Properties of joint MGFs) Let X1, ..., Xd be real-valued r.v.s with
joint MGF M = MX. Then:

M(0) = 1.

MGF of marginals: For each j ∈ {1, ..., d},

MXj
(t) = MX(0, 0, ..., 0, t, 0, ..., 0) (the t is in the jth position).

MGF of linear combination of marginals: x

For any constants a1, ..., ad, Ma1X1+...+adXd
(t) = MX(a1t, ..., adt).

In vector language, this says that for any a = (a1, ..., ad), Ma·X(t) = MX(ta).

Moment formulas: For each j ∈ {1, ..., d},

E[Xj] = ∂MX

∂tj

∣∣∣∣∣
t=0

and E[Xr
j ] = ∂rMX

∂trj

∣∣∣∣∣
t=0

.

Product moment formulas: For any nonnegative integers r1, ..., rd,

E[Xr1
1 X

r2
2 · · ·X

rd
d ] = ∂r1+...+rdMX

∂tr1
1 ∂t

r2
2 · · · ∂trd

d

∣∣∣∣∣
t=0

.

Linear translation formula: For any a ∈ R and b ∈ Rd,

MaX+b(t) = eb·tMX(a t).
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5.10. Joint moment generating functions

Theorem 5.44 Let X and Y be two joint distributions of the same dimension.

Inversion formula for joint MGFs: If X is continuous, then

fX(x) = 1
(2π)d

∫
Rd
e−ix·tMX(t) dt.

Uniqueness of joint MGFs: If MX = MY, then X ∼ Y.

Theorem 5.45 (Independence test using joint MGF) LetX1, ..., Xd be real-valued
r.v.s. Then X1, ..., Xd are independent if and only if

MX(t) =
d∏

j=1
MXj

(tj)

for all t = (t1, ..., td) ∈ Rd.

PROOF (⇒) Suppose the Xj are independent. Then

MX(t) = E
[
et·X

]
=

(⇐) Suppose MX(t) =
d∏

j=1
MXj

(tj).

By uniqueness of joint MGFs, it must be that the r.v.s are independent (for if
they weren’t, their joint MGF would have to be something other than what we
computed in the (⇒) direction). □
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5.10. Joint moment generating functions

EXAMPLE 17
Suppose X and Y are real-valued r.v.s with joint MGF

MX,Y (s, t) = exp
(
−s2 − 3s− 6st− 2t2

)
.

1. Compute the moment generating function of X .

2. Compute the expected value of 3X − 2Y .

3. Compute Cov(X, Y ).
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5.11 Markov and Chebyshev inequalities
In this section we discuss inequalities which give us quick bounds on certain prob-
abilities related to the mean and variance of a random variable.

Theorem 5.46 (Markov inequality) Let X : Ω → [0,∞) be a nonnegative r.v.
with finite expected value. Then for all a > 0,

P (X ≥ a) ≤ EX

a
.

PROOF Let I : Ω→ {0, a} be defined by

I(ω) =
{
a if X ≥ a
0 else

Notice that X ≥ I , so

EX ≥ EI = a · P (I = a) + 0 · P (I = 0)
= aP (X ≥ a).

Divide both sides by a to get the result. □

EXAMPLE 18
Suppose the time it takes for a radioactive element to decay is a random variable
whose mean is 23. Use the Markov inequality to find an upper bound on the prob-
ability that it will take at least 230 units of time for the element to decay.
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Theorem 5.47 (Chebyshev inequality) Let X : Ω → R be a r.v. with finite ex-
pected value µ and finite variance σ2. Then for all t > 0,

tt

µ-t µ+tµ
P (|X − µ| ≥ t) ≤ σ2

t2
= V ar(X)

t2
.

PROOF Apply the Markov inequality to the r.v. (X − µ)2 with a = t2 to get

P ((X − µ)2 ≥ t2) ≤ E[(X − µ)2]
t2

= V ar(X)
t2

.

But P (|X − µ| ≥ t) = P ((X − µ)2 ≥ t2). This proves the result. □

EXAMPLE 19
Suppose the number of items produced in a factory is a random variable with
mean 100 and variance 40. Use the Chebyshev inequality to find a lower bound on
the probability that between 90 and 110 items will be produced by the factory.
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5.12 Chapter 5 Homework
Exercises from Section 5.1

1. Compute the expected value of each given r.v. X :

a) X is cts and has density function f(x) defined by f(x) = 3
4(1 − x2) for

x ∈ (−1, 1) and f(x) = 0 otherwise.

b) X has cdf FX(x) defined by FX(x) = 1 − 5
x

if x ≥ 5 and FX(x) = 0
otherwise.

c) X is the marginal of the joint distribution obtained when one selects a
point (X, Y ) uniformly from the triangle with vertices (0, 0), (4, 0) and
(0, 4).

d) X takes values in {0, 1, 2, ...} and has survival function SX(x) = 1
x! .

NOTE: in all HW exercises from this point forward, you may assume without
proof that all r.v.s under consideration have finite expectation.

2. a) Suppose W ∼ binomial(4, 1
3). Compute E

[
sin

(
πW

2

)]
, evaluating all the

trig expressions and simplifying your answer.

b) Suppose X ∼ Pois(5). Calculate the mean of (1 +X)−1.

c) Let Y be the sine of an angle chosen uniformly from (−π/2, π/3). Com-
pute the expected value of Y .

3. Suppose you play a carnival game that works like this: there are two bags,
each with discs numbered 1 to 5 in them. You draw one disc uniformly
from each bag. Whatever disc is the smaller number you draw, you win
that amount of money (for example, if you draw a 2 and a 4, you would win
2).

a) How much would you expect to win if you played this game 100 times?

b) How much should the person running the game charge you if she ex-
pects to make a profit of .30 per game?

c) Suppose that there were n discs in each bag, numbered 1 to n. How
much would you now expect to win if you played the same game 100
times?
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Hint: The summation formulas
n∑

i=1
i = n(n+ 1)

2 and/or
n∑

i=1
i2 = n(n+ 1)(2n+ 1)

6

may be useful.

4. (AE) A new plasma TV costs $650. The lifetime of the TV is exponentially

distributed with parameter λ = 1
4 . Best Buy sells a warranty where they give

a full refund to a buyer if the TV fails within the first two years, they give
a half refund to a buyer if the TV fails during the third or fourth year, and
they give no refund otherwise. How much should Best Buy expect to pay in
refunds, if they sell 1000 plasma TVs?

5. (AE) Let T1 be the time between a car accident and the reporting of a claim to
an insurance company; let T2 be the time between the reporting of this claim
and the payment of this claim. Assume that (T1, T2) is uniform on the region
of points (t1, t2) satisfying 0 < t1 < 16; 0 < t2 < 16; 0 < t1 + t2 < 20. Find the
expected amount of time between the accident and the payment of the claim.

6. Suppose that the density function fX of X is:

fX(x) =
{
a+ bx2 if 0 ≤ x ≤ 1

0 else .

If EX = 3
5 , determine the values of a and b.

Exercises from Section 5.2

7. Suppose X has expected value 3 and Y has expected value −1.

a) What is the expected value of 3X − 5Y ?

b) What is the expected value of 2X + 4?

c) What is the range of possible values of E|Y |?
d) If P (Z ≤ X) = 1, what is the range of possible values of EZ?

e) If X ⊥ Y , what is E[3XY ]?

Exercises from Section 5.3

8. Suppose X is a cts r.v. with density f given by f(x) = cx3 for 0 < x < 4 and
f(x) = 0 otherwise. Calculate the variance of X .

9. Let X be a r.v. with finite expectation and finite variance. Prove:
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a) For any constant a, V ar(aX) = a2 V ar(X).
b) For any constant b, V ar(X + b) = V ar(X).

10. a) Suppose X and Y are two independent r.v.s such that EX4 = 2, EY 2 =
1, EX2 = 1 and EY = 0. Compute the variance of X2Y .

b) Let S and T be two independent r.v.s withES = 5,ET = −3, V ar(S) = 8
and V ar(T ) = 7. Let W = 2S + 3T − 4; compute the mean and variance
of W .

Exercises from Section 5.4

11. a) Prove that the expected value of an Exp(λ) r.v. is
1
λ

.

b) Prove that the expected value of an Γ(r, λ) r.v. is
r

λ
.

c) Verify that the expected value of a Hyp(n, r, k) r.v. is
kr

n
.

Hint: You will have to do an index change in your summation, and then
apply Vandermonde’s identity.

12. a) Let X ∼ Exp(λ). Compute E(X2) directly (using the change of vari-
ables formula together with the Gamma integral formula) and use your

answer to verify that the variance of X is
1
λ2 .

b) Prove that the variance of the uniform distribution on the interval (a, b)

is
(b− a)2

12 .

c) Prove that the variance of a Γ(r, λ) r.v. is
r

λ2 .

13. A pond contains equal numbers of four different types of fish. You go fishing,
and each time you cast, you catch one of the four types of fish (each type is
equally likely). What is the expected number of casts it will take you to have
caught at least one of all four types of fish?

14. Choose two of (a),(b),(c):

a) (AE) An actuary has discovered that policyholders are six times as likely
to file three claims as they are to file four claims. If the number of claims
filed has a Poisson distribution, what is the variance of the number of
claims filed?

b) (AE) A company has two electric generators. The time until failure for
each generator is exponential with mean 13. The company will begin
using the second generator immediately after the first one fails. What is
the variance of the total time the generators produce electricity?
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c) (AE) The profit for a new product is given by Z = 5X − 4Y + 8, where
X ⊥ Y , V ar(X) = 3 and V ar(Y ) = 2. What is the variance of the profit
for the new product?

15. (AE) Let X represent the number of customers arriving during the morning
hours, and let Y be the number of customers arriving during the evening
hours to a restaurant. Assuming that X and Y are both Poisson, and that the
first moment of X is 8 less than the first moment of Y , and that the second
moment of X is 60% of the second moment of Y , what is the variance of Y ?

16. Suppose that the departure of a tour is delayed by an amount of time that is
modeled by an exponential r.v. with variance 9 hours. If the departure of the
tour is delayed by less than 2 hours, the tour company pays no refund, but if
the tour is delayed 2 to 4 hours, then the tour company pays a refund of 20t,
where t is the number of hours the tour is delayed. If the tour is delayed by
more than 4 hours, the tour company pays a flat refund of 80. Compute the
variance of the refund paid by the tour company.

Exercises from Section 5.5

17. Compute the covariance of X and Y , if they have joint density

fX,Y (x, y) =
{

2 if x > 0, y > 0, and x+ y < 1
0 else

.

18. Suppose a box contains three balls numbered 1 to 3. Two balls are selected
without replacement from the box. Let U be the number on the first ball
selected, and let V be the number on the second ball selected. Compute
Cov(U, V ) and ρ(U, V ).
Hint: Start by making a chart which describes the joint density of U and V .

19. (AE) Let X and Y denote the price of two stocks at the end of a five-year
period. Suppose X is uniform on [0, 6] and that given X = x, Y is uniform
on [0, x]. Determine Cov(X, Y ).

20. Let (X, Y ) be a point chosen uniformly from the finite set of four points

{(0, 1), (1, 0), (0,−1), (−1, 0)}.

Prove that X and Y are uncorrelated, but not independent.

21. (AE) Let X denote the size of a surgical claim, and let Y denote the size of
the associated hospital claim. An actuary is using a model in which EX = 6,
EX2 = 47.4, EY = 3, EY 2 = 21.4 and V ar(X +Y ) = 13.5. Let C1 = X +Y be
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the size of the combined claims before the application of a 20% surcharge on
the hospital portion of the claim, and let C2 denote the size of the combined
claims after the surcharge. Calculate Cov(C1, C2).

22. Prove any two of the following three statements:

a) Cov(X, Y ) = Cov(Y,X)
b) Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y )
c) Cov(aX, Y ) = aCov(X, Y )

Note: These three statements generalize to the following important property
of covariance called bilinearity:

Cov

 m∑
i=1

aiXi,
n∑

j=1
bjYj

 =
m∑

i=1

n∑
j=1

aibjCov(Xi, Yj)

23. Prove that correlation is unchanged under linear transformations, meaning
that ρ(aX + c, bY + d) = ρ(X, Y ) for any constants a, b, c, d with a > 0 and
b > 0.

24. a) Prove that if Y = aX + b for constants a and b (with a ̸= 0), then
ρ(X, Y ) = ±1.

b) In this setting, under what conditions is ρ(X, Y ) = 1 (as opposed to−1)?

In the next two exercises, we will prove that a correlation of ±1 implies a linear
relationship between the r.v.s, i.e. that if ρ(X, Y ) = ±1, then Y = aX + b where a
and b are constants.

25. Define

X̂ = 1√
V ar(X)

(X − EX) and Ŷ = 1√
V ar(Y )

(Y − EY ).

a) Compute E
[
X̂
]

and E
[
Ŷ
]
.

b) Compute E
[
X̂2
]

and E
[
Ŷ 2
]
.

c) Prove that ρ(X, Y ) = E
[
X̂Ŷ

]
.

d) Prove that Cov
(
X̂, Ŷ

)
= E

[
X̂Ŷ

]
.

26. a) Use the results of Exercise 25 to prove that

E
[(
Ŷ − ρ(X, Y )X̂

)2
]

= 1− ρ(X, Y )2. (⋆)
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b) Use part (a) to prove that if ρ(X, Y ) = ±1, then Ŷ = ρ(X, Y )X̂ .
Hint: If ρ(X, Y ) = ±1, what must the right-hand side of (⋆) be? What
does that imply about

(
Ŷ − ρ(X, Y )X̂

)2
?

c) Use part (b) to deduce that Y = aX + b for suitable constants a and b.
Hint: Start with what you proved in (b), and back-substitute for X and
Y . Rearrange what you get to show Y =(constant)X+constant, as wanted.

Exercises from Section 5.6

27. Let X and Y be r.v.s having joint density function given by the following
table:

Y
X −1 0 2 6
−2 1

27
1
9

1
27

1
9

1 1
9 0 1

9
2
9

3 0 2
27

1
9

2
27

a) Calculate E(Y |X).
b) Calculate E(X3 |Y = 1).
c) Calculate V ar(X |Y = 3).

28. Let (X, Y ) be chosen uniformly from the triangle whose vertices are (0, 0),
(2, 0) and (1, 2). Compute the conditional expectation of Y given X .

29. (AE) A fair die is rolled repeatedly. Let X be the number of rolls needed to
obtain a 5 and let Y be the number of rolls needed to obtain a 6. Calculate
E[X |Y = 2].

30. Let X and Y be independent, where X is Γ(r, λ) and Y is Γ(s, λ). Compute
E[X |X + Y ].
Hint: First calculate the joint density of X and X + Y .

31. Suppose E[Y |X] = 2x+ 1 and E[Z|X] = 3x.

a) Compute E[3Y − 4Z + 7|X].
b) Compute E[2X2Y |X = 2].

32. (AE) Let N1 and N2 represent the numbers of claims submitted to a life in-
surance company in January and February, respectively. The joint density
function of N1 and N2 is

fN1,N2(n1, n2) =


2
3

(1
3

)n1

e−n1−1
(
1− e−n1−1

)n2
for n1, n2 ∈ {0, 1, 2, 3, ...}

0 else
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Calculate the expected number of claims that will be submitted to the com-
pany in February, if exactly 2 claims were submitted in January.

33. (AE) A driver and a passenger are in a car accident. Each of them indepen-
dently has a probability .3 of being hospitalized. If they are hospitalized, the
loss is uniform on [0, 1]. When two hospitalizations occur, the losses are in-
dependent. Calculate the expected number of people who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.

34. The time it takes an insurance company to process a claim of size S is uniform

on [S, S + 1]. If S is itself exponentially distributed with parameter
1
2 , what

is the expected time to process a claim?

35. a) Prove that the two formulas given in the notes as definitions of condi-
tional variance are the same.

b) Prove the Law of Total Variance, which says:

E[V ar(X|Y )] + V ar[E(X|Y )] = V ar(X).

36. a) (AE) The number of workplace injuries, N , occuring in a factory on any
given day is Poisson with mean λ. The parameter λ is itself a r.v. de-
pending on the level of activity in the factory, and is assumed to be uni-
formly distributed on the interval [0, 6]. Compute V ar(N).

b) (AE) The stock prices of two companies at the end of any given year are
modeled with r.v.s X and Y whose joint density function is

f(x, y) =
{

2x for 0 < x < 1, x < y < x+ 1
0 otherwise

.

What is the conditional variance of Y given X = x?

Exercises from Section 5.7

37. SupposeX ∼ Unif({1, 2, 3, ..., n}). Compute the probability generating func-
tion of X .

38. Let X ∼ binomial(n, p). Use the probability generating function of X to com-
pute the expected value and variance of X .

39. Let X be a discrete r.v. taking values in {0, 1, 2, 3, ...} with pgf GX(t) =
exp(2t− 3t−1 + 5). Compute the variance of X .

40. Suppose X is geometric with mean 2. Compute E[X(X − 1)(X − 2)(X − 3)].
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41. Let X be a discrete r.v. taking values in {0, 1, 2, 3, ...}with pgf GX(t) = et−1.

a) What is P (X = 0)?
b) What is P (X = 4)?

Hint: Since GX(t) =
∞∑

x=0
fX(x)tx, fX(4) = P (X = 4) is the coefficient on

t4 in the Taylor series expansion of GX(t). So start by writing the Taylor
series of GX(t).

42. Prove that if X1, ..., Xd are independent geometric r.v.s, each with parameter
p, then their sum S = X1 + ... + Xd is negative binomial with parameters d
and p.

43. (AE) The number N of babies born in a hospital during any one week is a r.v.
satisfying P (N = n) = 1

2n+1 , for n ∈ {0, 1, 2, ...}. Suppose that the number of
babies born in any one week is independent of the number of babies born in
any other week. Determine the probability that exactly seventeen babies are
born in a given four-week period.

Exercises from Section 5.8

44. a) Prove that the moment generating function of an Exp(λ) r.v. is
λ

λ− t
.

b) Prove that the moment generating function of a Γ(r, λ) r.v. is
(

λ

λ− t

)r

.

45. a) Compute the first and second moments of X , if its moment generating

function is MX(t) = 1√
1− 4t

for t <
1
4 .

b) Suppose X and Y are exponential r.v.s with respective means 3 and 7. If
X ⊥ Y , what is the moment generating function of 4X + Y ?

c) (AE) Assume that the number of claims related to traffic accidents on a
certain road is a r.v. X whose moment generating function is MX(t) =
(1− 2500t)−4. Find the standard deviation of the claim size for this class
of accidents.

46. (AE) Let X, Y and Z be i.i.d. r.v.s, each taking the value 0 with probability p
and the value 1 with probability (1 − p). Compute the moment generating
function of W = XY Z.

47. Let X be a continuous r.v. having the density fX(x) = 1
2e

−|x| for all x. Com-
pute the moment generating function of X .

48. Explain why each of the following functions cannot be the moment generat-
ing function of a real-valued r.v. X :
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a) h(t) = e−t

2− t for t < 2;

b) j(t) = 1 + t

1− t for t < 1;

c) k(t) = exp
(
−t2

2

)
for −∞ < t <∞.

49. Prove the independence property of MGFs, which says that if X ⊥ Y then
MX+Y (t) = MX(t)MY (t).

50. In this problem we will derive the Beta integral formula (which can be useful
to solve certain expected value and conditional expectation problems):∫ 1

0
uα−1(1− u)β−1 du = Γ(α) Γ(β)

Γ(α + β) .

a) Let X be Γ(α, λ) and let Y be Γ(β, λ). Suppose that X ⊥ Y . Determine
the density function of Z = X + Y using moment generating functions.

b) Given X and Y as above, compute the joint density function of X and
Z = X + Y by the transformation method of Chapter 4.

c) Use your answer to part (b) to compute the marginal density of Z (write
your answer as an integral with respect to x).

d) Derive the Beta integral formula by equating the answers to part (a)
and (c) of this problem, and solving the resulting equation for the Beta
integral above.
Hint: in the integral you obtain from part (c), use the u−substitution
u = x

z
.

51. A Beta random variable with parameters r1 > 0 and r2 > 0 (denotedB(r1, r2)
is a continuous r.v. whose density is

f(x) =


Γ(r1 + r2)
Γ(r1)Γ(r2)

xr1−1(1− x)r2−1 if 0 < x < 1

0 else
.

a) Prove that the function above is in fact a density function.

b) Determine the expected value of a Beta B(r1, r2) r.v.

Exercises from Section 5.9

52. Suppose Y is a discrete r.v. taking the values 0, 1, 4 and 10 with respective

probabilities
3
8 ,

1
8 ,

1
3 and

1
6 . Compute MY (t).

229



5.12. Chapter 5 Homework

53. Suppose X is a r.v. with EX = 1
2 whose moment generating function is

MX(t) = 1
7 + 2

7e
t + Ce−t +De2t,

where C and D are constants.

a) Find C and D.

b) Find a density function of X .
Hint: Look at the moment generating function you computed in Exer-
cise 52, and use that to make an educated guess as to the density of X .
(Uniqueness of MGFs can be used to show that your guess is correct.)

c) Find P (X ≥ 0).
d) Find the variance of X .

54. (AE) Let X and Y be i.i.d. r.v.s such that the moment generating function of
X + Y is

MX+Y (t) = .09e−2t + .24e−t + .34 + .24et + .09e2t

for all t. Calculate P (X ≤ 0).

55. Evaluate each integral:

a)
∫ ∞

−∞
exp

[
−(x+ 3)2

18

]
dx b)

∫ ∞

−∞

√
πe−t2+12t dt

56. Prove that if X1, ..., Xd are independent r.v.s with Xj ∼ Γ(rj, λ), then S =
X1 + ...+Xj ∼ Γ(r1 + ...+ rd, λ).

Exercises from Section 5.10

57. (AE) Suppose X and Y are independent r.v.s which have the same moment
generating function: MX(t) = MY (t) = et2 . Determine the joint moment
generating function of W = X + Y and Z = Y −X .

58. Suppose X and Y are real-valued r.v.s whose joint moment generating func-
tion is

MX,Y (s, t) = 64
(s− 4)2(s+ t− 2)2 .

a) Compute EY .

b) Compute Cov(X, Y ).
c) Compute the moment generating function of Y −X .

d) Based on your answer to part (c), what common r.v. is Y −X?
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Exercises from Section 5.11

59. Suppose X is a gamma r.v. with mean 2 and variance 4. Use the Markov
inequality to find the largest possible value of P (X ≥ 6).

60. Use the Markov inequality to prove that for every t ≥ 0, e−t ≤ 1
t
.

Hint: Consider an exponential r.v. X with a particular value of λ, and use the
Markov inequality with a particular value of a. At least one of the λ and/or
a should have a t in it.

61. Let X be a discrete r.v. whose density is

x 1 2 3

fX(x) 1
18

16
18

1
18

Show that when δ = 1, P (|X − µ| ≥ δ) = V ar(X)
δ2 (the point of this problem

is to show that in general, the ≤ sign in Chebyshev’s inequality cannot be
replaced by a <).

62. A bolt manufacturer knows that 5% of his production is defective. He gives
a guarantee on his shipment of 10000 parts by promising that no more than a
bolts are defective. Use Chebyshev’s inequality to find the smallest number a
can be, so that the manufacturer is assured of not paying a refund more than
1% of the time.

63. Let X be Poisson with mean λ.

a) Use Chebyshev’s inequality to verify that P
(
X ≤ λ

2

)
≤ 4
λ

.

b) Use Chebyshev’s inequality to verify that P (X ≥ 2λ) ≤ 1
λ

.

64. Suppose X is a r.v. with mean and variance both equal to 20. From Cheby-
shev’s inequality, what can be said about P (0 < X < 40)? (In particular, what
is the maximum or minimum value of this expression?)

65. Suppose X and Y are two real-valued r.v.s with

EX = 75, EY = 75, V ar(X) = 10, V ar(Y ) = 12, Cov(X, Y ) = −3.

Based on Chebyshev’s inequality, what can be said about P (|X − Y | ≥ 15)?
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Chapter 6

I.i.d. processes and normal
random variables

6.1 I.i.d. processes
We are interested in studying the results of an experiment which is repeated over
and over. Examples include:

• attributes of items that are produced by a manufacturing process;

• measurement errors in experiments;

• claim sizes filed by a series of insurance policyholders;

• heights, weights, lifespans, etc. taken from a sample of organisms;

• daily medical readings of a patient (blood pressure, heart rate, blood sugar,
etc.); etc.

Definition 6.1 A discrete-time stochastic process {Xt : t ∈ N} is called an i.i.d.
process if the process is “independent and identically distributed”, i.e.

• Xj ⊥ Xk for all j ̸= k, and

• the Xj have the same distribution for all j.

In this setting, we denote the mean of each Xj by µ and the variance of each Xj by σ2.

The prototype example of an i.i.d. process is coin flipping: if you flip the same coin
over and over again and let

Xj =
{

1 if jth flip is heads
0 if jth flip is tails
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6.1. I.i.d. processes

What we are most interested in is either the sum or the average behavior of such a
process.

Definition 6.2 Given an i.i.d. process {Xt}, define the following processes:

1. {Sn}n∈N, the sequence of sums, is Sn = X1 +X2 + ...+Xn;

2. {An}n∈N the sequence of averages, is

An = 1
n
Sn = X1 + ...+Xn

n
;

3. {A∗
n}n∈N, the sequence of normalized averages, is

A∗
n = An − E[An]√

V ar(An)
= An − µ

σ√
n

= Sn − µn
σ
√
n

.

Notice that if each Xt has mean µ and variance σ2, then

E[An] =

V ar(An) =

E[A∗
n] =

V ar(A∗
n) =

EXAMPLE 1
Suppose {Xt} is an i.i.d. process where eachXt ∼ Unif([0, 1]). Compute the values
of the r.v.s Sn, An and A∗

n for n ∈ {1, 2, 3}, if the values of the Xt are

X1 = 2
3 X2 = 1

4 X3 = 0 X4 = 2
5
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6.2. Laws of Large Numbers

EXAMPLE 2
Suppose we have an i.i.d. process {Xt}where eachXt is uniform on {1, 2, 3, 4, 5, 6}.
(This process models repeated rolling of a fair die.) If the sequence of die rolls is

3, 5, 1, 3, 2, 6, 4, 1, 1, ...

compute the first six values of the corresponding sequence of averages.

6.2 Laws of Large Numbers
In this section, we investigate some results which give us information about the
averages coming from an i.i.d. process. Recall that if {Xt} is i.i.d., we denote each
EXj by µ and each V ar(Xj) by σ2.

Quantitative Weak Law of Large Numbers

Theorem 6.3 (Quantitative Weak Law of Large Numbers (QWLLN)) Let {Xt}
be an i.i.d. process, and for each n ∈ N, set An = 1

n
(X1 + ...+Xn). Then for all δ > 0,

P (|An − µ| ≥ δ) ≤ σ2

nδ2 .

PROOF From the previous section, E[An] = µ and V ar(An) = σ2

n
. Apply Cheby-

shev’s inequality to An to get the QWLLN. □
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6.2. Laws of Large Numbers

Idea: The QWLLN says that if you fix an “error tolerance” δ, if you take enough
measurements (say n measurements), then the probability that the average of your
measurements An is within δ of the theoretical average µ is high.

EXAMPLE 3
Marbles are drawn from a jar containing 3 red and 5 blue marbles, one at a time
with replacement. What is the smallest number n such that you can be 99% assured
that between 37% and 38% of the first n marbles drawn are red?

Weak Law of Large Numbers

Theorem 6.4 (Weak Law of Large Numbers (WLLN)) Let {Xt} be an i.i.d. pro-
cess, where each Xj is a r.v. with finite expected value µ and finite variance σ2. For

each n ∈ N, set An = X1 + ...+Xn

n
. Then for all δ > 0,

lim
n→∞

P (|An − µ| ≥ δ) = 0.

PROOF Take the limit of each side of the inequality in the QWLLN as n→∞. □

REMARK

One can derive the WLLN without the assumption that theXj have finite variance.
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6.2. Laws of Large Numbers

INTERPRETING THE WLLN
Loosely speaking, the WLLN says that if you take a large sample, the probability
that the average of your sample is within δ of the “theoretical average” of each
measurement (i.e. the expected value µ) is large, and that as the size of the sample
increases, this probability goes to 1. Let’s think about what this means in terms of
flipping a fair coin repeatedly:

Let {Xt} be an i.i.d sequence of r.v.s, each uniform on {0, 1} (think of Xj = 1
as corresponding to the jth flip being heads and Xj = 0 meaning the jth flip
being tails). In this setting, µ = EXj = 1

2 .

Under these assumptions, what is An?

Let δ = 1
10 . Let’s say that a sequence of flips is “n-good” (or “n, δ-good”) if

|An−µ| < δ, i.e. the proportion of heads in the first n flips is between
4
10 and

6
10 .

Example: H,H,H,H,T,T,T,T,... is not 4, 1
10 -good, but is 8, 1

10 -good.

The WLLN says: if you fix δ, and then choose a large enough n, most sequences
are n, δ-good.

HOWEVER: what the WLLN doesn’t tell you (and why it is called the “Weak”
LLN) is any relationship between sequences that are good at different values of n.
For example, the WLLN does not guarantee that most sequences are “eventually
good”, i.e. are n-good for all sufficiently large n.
In particular, it might be the case that typical sequences of heads and tails are n-
bad for infinitely many, very sparsely spaced n).

This weakness is fixed with the following stronger result, which says (among other
things) that with probability 1, a randomly chosen sequence of heads and tails from
a fair coin is eventually good (i.e. the proportion of heads in the sequence becomes
close to 1

2 and stays close to 1
2 forever:
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6.2. Laws of Large Numbers

Strong Law of Large Numbers

Theorem 6.5 (Strong Law of Large Numbers (SLLN)) Let {Xt} be an i.i.d. pro-
cess, where each Xj is a r.v. with finite expected value µ. Then

P
(

lim
n→∞

An = µ
)

= 1

PROOF (with the extra assumption that EX4 <∞) Suppose first that EXj = 0.
That means V ar(Xj) = EX2

j − 02 = EX2
j . Now,

E[S4
n] = E[(X1 + ...+Xn)4]

= E[(X1 + ...+Xn)(X1 + ...+Xn)(X1 + ...+Xn)(X1 + ...+Xn)]

⇒ E[S4
n] = nEX4

j +
(
n

2

)(
4
2

)
[V ar(Xj)]2

= nEX4
j + 3n(n− 1)[V ar(Xj)]2

≤ nEX4
j + 3n(n− 1)EX4

j .

Therefore

E

[
S4

n

n4

]
≤
nEX4

j + 3n(n− 1)EX4
j

n4 ≤ 1
n3EX

4
j + 3

n2EX
4
j

so

lim
n→∞

E[A4
n] = lim

n→∞
E

[(
Sn

n

)4]
= lim

n→∞
E

[
S4

n

n4

]
= 0.

By definiteness, lim
n→∞

A4
n = 0 with probability 1, so P ( lim

n→∞
An = 0) = 1 as

wanted.

If EXj = µ ̸= 0, then apply the above to Xj − µ to see that lim
n→∞

(An − µ) = 0
with probability 1, i.e. P ( lim

n→∞
An = µ) = 1 as wanted. □
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6.3. Limits of normalized averages

6.3 Limits of normalized averages
QUESTION

Let {Xt} be an i.i.d. process with normalized averages A∗
n. What happens to the

distribution of A∗
n as n→∞?

Reminder: An = X1 + ...+Xn

n
= Sn

n
and A∗

n = An − µ
σ√
n

= Sn − nµ
σ
√
n

.

To study this question, we use MGFs. Suppose that each Xj has MGF MX(t). Then

MSn(t) = MX1+...+Xn(t) =
n∏

j=1
MXj

(t) = [MX(t)]n

and therefore

MA∗
n
(t) = E[etA∗

n ] = E

[
exp

(
t
Sn − nµ
σ
√
n

)]

= E

[
exp

(
t

σ
√
n
Sn −

nµt

σ
√
n

)]

= E

[
exp

(
t

σ
√
n
Sn

)]
· exp

(
−µtn
σ
√
n

)

= MSn

(
t

σ
√
n

)
· exp

(
−µtn
σ
√
n

)

=
[
MX

(
t

σ
√
n

)]n

· exp
(
−µtn
σ
√
n

)

= exp
[
n

(
lnMX

(
t

σ
√
n

)
− µt

σ
√
n

)]
= exp [△] .

Thus
lim

n→∞
MA∗

n
(t) = lim

n→∞
exp[△] = exp

[
lim

n→∞
△
]
.

We are going to work out lim
n→∞

△. First, a special situation: if t = 0,

lim
n→∞

△ = lim
n→∞

n(lnMX(0)− 0) = lim
n→∞

n(ln 1− 0) = n · 0 = 0 = 02

2
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6.3. Limits of normalized averages

The more general situation is when t ̸= 0:

lim
n→∞

△ = lim
n→∞

n

(
lnMX

(
t

σ
√
n

)
− µt

σ
√
n

)

= lim
n→∞

t2

σ2 ·
(

lnMX

(
t

σ
√
n

)
− µt

σ
√
n

)
t2

σ2 ·
1
n

= t2

σ2 lim
n→∞

lnMX

(
t

σ
√
n

)
− µ

(
t

σ
√
n

)
(

t

σ
√
n

)2 .

Now, let s = t

σ
√
n

so that as n→∞, s→ 0. This makes

lim
n→∞

△ = t2

σ2 lim
s→0

lnMX(s)− µs
s2 = ln 1− 0

0 = 0
0

L= t2

σ2 lim
s→0

M ′
X(s)

MX(s) − µ

2s =
µ

1 − µ
0 = 0

0

L= t2

σ2 lim
s→0

M ′′
X(s)MX(s)− (M ′

X(s))2

[MX(s)]2
2

= t2

σ2 ·

[EX2 · 1− (EX)2]
12

2

= t2

σ2 ·
V ar(X)

2 = 1
2t

2.

We have proven that for any t,

lim
n→∞

MA∗
n
(t) = exp

(
t2

2

)
.

THIS IS AMAZING! We have proven, that no matter what the original density
of X was, the MGF of A∗

n must approach this “magic” MGF et2/2.

That means, by uniqueness of MGFs, that A∗
n must approach some “magic” r.v.

whose MGF is et2/2. But what r.v. X has MX(t) = et2/2?

239



6.3. Limits of normalized averages

To get from MX(t) = et2/2 back to the density fX(x), we use the

:

fX(x) = 1
2π

∫ ∞

−∞
e−ixtMX(it) dt

= 1
2π

∫ ∞

−∞
e−ixte(it)2/2 dt

= 1
2π

∫ ∞

−∞
e−ixte−t2/2 dt

= 1
2π

∫ ∞

−∞
exp

[
−1

2
(
t2 + 2ixt

)]
dt

= 1
2π

∫ ∞

−∞
exp

[
−−(t2 − 2ixt− x2 + x2)

2

]
dt

= 1
2π

∫ ∞

−∞
exp

[
−(t− ix)2

2

]
e−x2/2 dt

= 1
2πe

−x2/2
∫ ∞

−∞
exp

[
−(t− ix)2

2

]
dt

= 1
2πe

−x2/2√2π

(Gaussian Integral Formula with µ = ix, σ = 1)

= 1√
2π
e−x2/2 .

Big picture: These computations lead us to our last class of common random
variables, called normal r.v.s.

Based on what we have just done, these normal r.v.s will approximate the nor-
malized average of any i.i.d. sequence of r.v.s.

We will see that this class of normal r.v.s also approximate the averages and sums
of any i.i.d. sequence of r.v.s.
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6.4 Normal random variables
The standard normal random variable

Definition 6.6 The standard normal r.v., abbreviated n(0, 1) orN (0, 1) or Z, is the
continuous r.v. whose density function is

ϕ(x) = 1√
2π

exp
(
−x2

2

)
.

The cumulative distribution function of the standard normal r.v. is denoted Φ:

Φ(x) = P (n(0, 1) ≤ x) =
∫ x

−∞
ϕ(t) dt.

There is no better formula for Φ; values of Φ are estimated using a calculator or
tables (one such table can be found in Appendix A.3 of these notes). On exams in
MATH 414 and 416, we often will leave answers to questions in terms of Φ.

The standard normal r.v. approximates the normalized average A∗
n of an i.i.d.

sequence {Xt} of r.v.s, no matter what distribution the individual Xt have.

Theorem 6.7 (Properties of the standard normal density) Let ϕ be the density
of the standard normal r.v.. Then

1. ϕ(−x) = ϕ(x).

2. ϕ(0) = 1√
2π

.

3.
∫ ∞

−∞
ϕ(x) dx = 1.

4. ϕ is increasing on (−∞, 0) and decreasing on (0,∞).

5. ϕ is concave down on (−1, 1) and concave up on (−∞,−1) ∪ (1,∞).

6. lim
x→∞

ϕ(x) = lim
x→−∞

ϕ(x) = 0.

PROOF (1) and (2) are obvious; (3) follows from the Gaussian Integral Formula
with µ = 0, σ = 1; (4) comes from differentiating ϕ and analyzing the sign of ϕ′;
(5) comes from analyzing the sign of ϕ′′; (6) is a basic Calculus 1 limit. □

241



6.4. Normal random variables

Theorem 6.8 (Properties of Φ) Let Φ be the cdf of the standard normal. Then:

1. Φ is a cdf (so it has properties common to all cdfs);

2. Φ is continuous;

3. Φ is differentiable and Φ′ = ϕ;

4. Φ(0) = 1
2 ;

5. For all x, Φ(−x) = 1− Φ(x).

6. For all x, P (|n(0, 1)| ≤ x) = Φ(x)− Φ(−x) = 2Φ(x)− 1.

These properties imply that the graph of ϕ looks like a "bell curve" (shown below
at left), and that the graph of Φ looks like the picture at right:

ϕ

-2 -1 1 2

1

2π

1
Φ

-2 -1 1 2

1
2

1

Theorem 6.9 (Mean, variance and MGF of std. normal) LetX ∼ n(0, 1). Then:

EX = 0 V ar(X) = 1 MX(t) = et2/2.

PROOF We already know MX(t) = et2/2, because that was the MGF we plugged
into the inversion formula to come up with the density of the standard normal
r.v. in the first place. Therefore:

EX = M ′
X(0) = d

dt

[
et2/2

]
t=0

=

EX2 = M ′′
X(0) = d

dt

[
tet2/2

]
t=0

=
[
et2/2 + t2et2/2

]
t=0

= 1

V ar(X) = EX2 − (EX)2 = 1− 02 = 1. □
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Linear transformations of the standard normal
MOTIVATION

Suppose {Xt} is an i.i.d. process with mean µ and variance σ2. So far, we’ve
learned that the normalized averages A∗

n must be approximately standard normal
when n is large, i.e.

A∗
n ≈ n(0, 1) for n large.

As before, the sequences of sums Sn =
n∑

j=1
Xj and averages An = 1

n

n∑
j=1

Xj are

related to the normalized averages A∗
n by

A∗
n = An − µ

σ√
n

⇒ (6.1)

A∗
n = Sn − nµ

σ
√
n
⇒ (6.2)

We see that both An and Sn are a linear transformation of A∗
n, i.e.

An = (constant)A∗
n + constant Sn = (constant)A∗

n + constant

That means
An ≈ (constant) + constant (6.3)

Sn ≈ (constant) + constant (6.4)

so An and Sn are both approximately linear transformations of the standard nor-
mal r.v. This motivates the following definition:

Definition 6.10 Let µ ∈ R and σ ∈ (0,∞). A random variable X is called normal
with parameters µ ∈ R and σ2 > 0 if

X = µ+ σZ

where Z ∼ n(0, 1). In this case, we write X ∼ n(µ, σ2) or X ∼ N (µ, σ2).
In this context, µ is called the mean parameter of X and σ2 is called the variance
parameter of X .

Normal r.v.s approximate averages and sums of a bunch of i.i.d. r.v.s, no
matter what distribution the individual r.v.s have.

More precisely, the content of equations (6.1)-(6.4) can be rephrased into what is
commonly called the Central Limit Theorem:
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6.4. Normal random variables

Theorem 6.11 (Central Limit Theorem (CLT)) Let {Xn} be an i.i.d. process such
that each of the Xj have finite mean µ and finite variance σ2. Then:

1. if An is the (non-normalized) average of the first n Xj , An is approximated by a

normal r.v. with parameters µ and
σ2

n
.

2. if Sn is the sum of the first n Xj , Sn is approximated by a normal r.v. with
parameters µn and nσ2.

The CLT is usually shorthanded as follows:

“If {Xt} is i.i.d., then An ≈ n

(
µ,
σ2

n

)
and Sn ≈ n

(
nµ, nσ2

)
.”

We’ll return to applications of the CLT later.

Properties of normal r.v.s

Theorem 6.12 (Properties of normal r.v.s) Let X ∼ n(µ, σ2). Then:

Every normal r.v. is linear transformation of std. normal: X = µ + σZ where
Z ∼ n(0, 1).

Linear transformations of normal r.v.s are normal: If X ∼ n(µ, σ2), then aX +
b ∼ n(aµ+ b, a2σ2).

CDF: FX(x) = Φ
(
x− µ
σ

)
.

Density function: fX(x) = 1
σ
√

2π
exp

[
−(x− µ)2

2σ2

]
.

Mean: EX = µ.

Variance: V ar(X) = σ2.

MGF: MX(t) = exp
(
µt+ 1

2σ
2t2
)
.

Sums of ⊥ normal r.v.s are normal: If Xj ∼ n(µj, σ
2
j ) are independent normal

r.v.s for j ∈ {1, ..., d}, then X1 + ...+Xd ∼ n(∑µj,
∑
σ2

j ).

PROOF Throughout this proof, Z ∼ n(0, 1).
The first statement is the definition of a normal r.v.
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6.4. Normal random variables

For the second statement, suppose X ∼ n(µ, σ2). Then X = µ+ σZ.
Therefore Y = aX + b = a(µ+ σZ) + b = (aµ+ b) + (aσ)Z.
So by the definition of a normal r.v., Y ∼ n(aµ+ b, a2σ2).

The CDF and PDF are direct calculations using transformation methods:

FX(x) = P (X ≤ x) = P (µ+ σZ ≤ x) = P
(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.

fX(x) = d

dx
FX(x) = d

dx

[
Φ
(
x− µ
σ

)]
= ϕ

(
x− µ
σ

) 1
σ

= 1
σ
√

2π
exp

[
−(x− µ)2

2σ2

]
.

The mean, variance and MGF are HW problems (as a hint, use the fact
X = µ+ σZ; you already know the mean, variance and MGF of Z).

The last statement is also a HW problem, which is similar to some arguments
we made in Chapter 4 about sums of other common r.v.s. □

EXAMPLE 20
Suppose X is normal with mean 20 and variance 36. Find, in terms of Φ, the prob-
ability that 12 < X ≤ 20.
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6.4. Normal random variables

Here are some plots of density functions for various values of µ and σ:

µ = 0, σ = 1 µ = 2, σ = 1 µ = 1, σ = 1
4 µ = 1, σ = 2

-5 -4 -3 -2 -1 1 2 3 4 5

1

2

-5 -4 -3 -2 -1 1 2 3 4 5

1

2

-5 -4 -3 -2 -1 1 2 3 4 5

1

2

-5 -4 -3 -2 -1 1 2 3 4 5

1

2

In general, the graph of the density function of any normal r.v. is a “bell curve”
which has its peak at µ and inflection points at µ± σ (HW). This means that if σ is
small, then the function has a tall, skinny peak (meaning that X takes values close
to µ with very high probability) and if σ is large, the function has a short, wide
peak (meaning that the values of X are more spread out).

Normal random variables arise naturally as averages of i.i.d. processes; examples
of data which can be assumed to be normally distributed include:

1. Heights of people;

2. Exam grades;

3. Velocities of gas particles (Maxwell’s Law);

4. Measurement errors in lab experiments;

5. The change in the price of a stock over a fixed period of time.

A connection between normal and gamma r.v.s

Theorem 6.13 Let X ∼ n(0, σ2) and let Y = X2. Then Y ∼ Γ
(

1
2 ,

1
2σ2

)
.

PROOF Y has range [0,∞); let y ≥ 0. Then

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √y)
= FX(√y)− FX(−√y)

= Φ
(√

y

σ

)
− Φ

(
−√y
σ

)

= Φ
(√

y

σ

)
−
[
1− Φ

(√
y

σ

)]

= 2Φ
(√

y

σ

)
− 1.
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6.4. Normal random variables

Therefore

fY (y) = d

dy
FY (y) = d

dy

[
2Φ

(√
y

σ

)
− 1

]
= 2ϕ

(√
y

σ

)
· 1
σ 2√y

= 1
σ
√
y
· 1√

2π
exp

[−y
2σ2

]

=

( 1
2σ2

)1/2

√
π

y
1
2 −1e−(1/2σ2)y

At the same time, the density of a Γ
(1

2 ,
1

2σ2

)
r.v. is

fΓ( 1
2 , 1

2σ2 )(y) =

( 1
2σ2

)1/2

Γ
(1

2

) y
1
2 −1e−(1/2σ2)y

Corollary 6.14 Γ
(1

2

)
=
√
π.
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6.5 Applications of the Central Limit Theorem
RECALL

The effective content of the CLT is as follows:

“If {Xt} is i.i.d., then An ≈ n

(
µ,
σ2

n

)
and Sn ≈ n

(
µn, nσ2

)
.”

These ideas can be used to approach many applied problems:

EXAMPLE 4
The weight of an adult male follows a probability distribution with mean 165 lb
and standard deviation 30 lb. Compute the probability that 25 adult males collec-
tively weigh at most 4400 lbs.
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The continuity correction

If the quantity being studied in the CLT is continuous (like a length of time, or
a physical measurement like temperature, mass, force, velocity, etc.), then most
problems estimating the sum of i.i.d. copies of that quantity work like Example
4 above. However, if the quantity being studied in the CLT is discrete (like coin
flips, poll results, dice rolls, etc.), then we have to tweak our procedure by apply-
ing what is called the continuity correction:

EXAMPLE 5
A basketball player expects to make 80% of his free throws (assume the result of
each free throw is independent of any of the others). Use the Central Limit Theo-
rem to estimate the probability that he makes at least 252 of 300 attempts.
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EXAMPLE 6
The amount of gasoline purchased each week at a gas station follows a normal dis-
tribution with mean 60000 gal and standard deviation 10000 gal. If the gas station
currently has a supply of 85000 gal and takes a weekly delivery of 57000 gal:

1. Compute the probability that, after 11 weeks, the gas station has a supply of
at least 20000 gal.

2. What would the weekly delivery have to be, to ensure that after 11 weeks the
gas station is 99.5% likely to have a supply of at least 20000 gal?
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6.6 Stirling’s formula
Theorem 6.15 (Stirling’s Formula)

lim
n→∞

n!
nne−n

√
2πn

= 1 (more generally, lim
n→∞

Γ(n+ 1)
nne−n

√
2πn

= 1).

CONSEQUENCE

For large n, n! = Γ(n+ 1) is approximately equal to nne−n
√

2πn.

So in many instances (i.e. proofs), n! can be replaced with nne−n
√

2πn without a
problem.

PROOF (OF STIRLING’S FORMULA) Define ψ : R→ R by

ψ(x) =


2
x2 (ex − 1− x) if x ̸= 0

1 if x = 0

By L’Hôpital’s Rule, lim
x→0

ψ(x) = 1. Therefore ψ is everywhere continuous.

Next, define f : [0, 1]→ R by f(t) = 1√
π

∫ ∞

−∞
exp

[
−x2ψ(xt)

]
dx.

This improper integral does indeed converge.
Furthermore, f is continuous of t by the FTC, since it is defined as an integral
of a continuous integrand.

We will prove Stirling’s formula by computing f(0) in two different ways.

First, we compute f(0) directly:

f(0) = 1√
π

∫ ∞

−∞
exp

[
−x2ψ(0)

]
dx

= 1√
π

∫ ∞

−∞
exp

[
−x2(1)

]
dx

= 1√
π

∫ ∞

−∞
exp

 −x2

2
(√

1
2

)2

 dx
= 1√

π

√
1
2
√

2π (Gaussian Integral Formula with µ = 0, σ =
√

1
2 )

= 1.
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6.6. Stirling’s formula

Now, we compute f(0) a different way, with a lot of symbol-crunching:

f(t) = 1√
π

∫ ∞

−∞
exp

[
−x2ψ(xt)

]
dx

= 1√
π

∫ ∞

−∞
exp

[
−x2

( 2
x2t2

) (
ext − 1− xt

)]
dx

= 1√
π

∫ ∞

−∞
exp

(−2
t2
ext
)

exp
( 2
t2

)
exp

(2x
t

)
dx

Next, perform the u-sub u = 2
t2
ext; du = 2

t2
extt dx = ut dx.

When doing this substitution,

ext = t2u

2 ⇒ exp
(2x
t

)
= exp

(
xt · 2

t2

)
= [exp(xt)]2/t2

=
(
t2u

2

)2/t2

.

So after the substitution, we get

f(t) = 1√
π

exp
( 2
t2

) ∫ ∞

0
e−u

(
t2u

2

)2/t2
1
tu
du

= 1
t
√
π

exp
( 2
t2

)(
t2

2

)2/t2 ∫ ∞

0
e−uu( 2

t2 −1) du

= 1
t
√
π

exp
( 2
t2

)(
t2

2

)2/t2

Γ
( 2
t2

)
.

(Gamma Integral Formula with r = 2
t2

, λ = 1)

Now let n = 2
t2

so that t =
√

2
n

. This makes

f(t) = f

√ 2
n

 = 1√
2π
n

en
( 1
n

)n

Γ(n) = 1√
2π
n

enn−n Γ(n+ 1)
n

= Γ(n+ 1)
nne−n

√
2πn

.
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6.7. Bivariate normal densities

6.7 Bivariate normal densities
In the next two sections, we generalize the idea of a normal random variable to
higher dimensions. These distributions arise in statistics, econometrics, signal pro-
cessing and other fields. We will start by studying the situation in dimension 2.

To get started, we need some notation associated to any joint distribution:

Definition 6.16 Let X = (X, Y ) be a joint distribution of two real-valued r.v.s X
and Y . The mean vector of X is the 2× 1 vector

µ =
(
EX
EY

)
2×1

=
(
µX

µY

)
2×1

.

The covariance matrix of X is the 2× 2 matrix

Σ =
(
Cov(X,X) Cov(X, Y )
Cov(Y,X) Cov(Y, Y )

)
2×2

=
(

σ2
X σXY

σXY σ2
Y

)
2×2

.

Keep in mind that we think of vectors in R2 as 2 × 1 matrices, so their transposes
are row matrices. For example,

µT =
(
µ1 µ2

)
1×2

bT =
(
b1 b2

)
1×2

etc.

Theorem 6.17 (Properties of mean vectors and covariance matrices) Let X =
(X, Y ) have mean vector µ and covariance matrix Σ. Then:

1. Σ is a symmetric matrix (meaning ΣT = Σ).

2. The diagonal entries of Σ are the variances of X and Y .

3. For any vector b = (b1, b2) =
(
b1
b2

)
2×1
∈ R2, b · X = b1X + b2Y is a

real-valued r.v. with

E[b ·X] = b · µ and V ar(b ·X) = bT Σb.

4. Σ is nonnegative definite (meaning that for any vector b ∈ R2, bT Σb ≥ 0).

5. det Σ = σ2
Xσ

2
Y − σ2

XY ≥ 0.

PROOF Statements (1) and (2) are obvious.
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6.7. Bivariate normal densities

For statement (3), we have

E[b ·X] = E[b1X + b2Y ] = b1EX + b2EY = (b1, b2) · (EX,EY ) = b · µ

and

V ar(b ·X) = V ar[b1X + b2Y ] = V ar[b1X] + V ar[b2Y ] + 2Cov[b1X, b2Y ]
= b2

1V ar(X) + b2
2V ar(Y ) + 2b1b2Cov(X, Y ).

At the same time,

bT Σb =
(
b1 b2

)( V ar(X) Cov(X, Y )
Cov(X, Y ) V ar(Y )

)(
b1
b2

)

=
(
b1 b2

)( b1V ar(X) + b2Cov(X, Y )
b1Cov(X, Y ) + b2V ar(Y )

)
= b2

1V ar(X) + b2
2V ar(Y ) + 2b1b2Cov(X, Y ),

the same as what we computed for V ar(b ·X).

For statement (4), notice bT Σb = V ar(b ·X) ≥ 0 (since all variances are
nonnegative).

For the last statement, any nonnegative definite matrix has nonnegative
determinant. □

Now for a definition of the class of joint distributions we want to study:

Definition 6.18 Let X = (X, Y ) be a joint distribution of two real-valued r.v.sX and
Y . X is called bivariate normal (a.k.a. joint(ly) normal a.k.a. Gaussian if every
finite linear combination of X and Y is normal, meaning that for any b = (b1, b2) ∈
R2, b ·X = b1X + b2Y is a normal r.v.

Lemma 6.19 If X = (X, Y ) is bivariate normal, then X and Y are normal.

PROOF

NOTE: The converse of this lemma is false: just because the Xj are normal
does not mean they have a joint normal distribution (example in HW).
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Lemma 6.20 Suppose X = (X, Y ) has a joint normal density with mean vector µ
and covariance matrix Σ. Let V = b1X + b2Y = b ·X. Then

V ∼ n
(
b · µ,bT Σb

)
.

PROOF The definition of bivariate normal tells us V is normal; the mean and vari-
ance of V follow from (3) of Theorem 6.17. □

Main concept of this section

Everything you need to know about a bivariate normal distribution X can be
determined from its mean vector µ and its covariance matrix Σ.

The joint MGF of a bivariate normal distribution

Theorem 6.21 Suppose X = (X, Y ) is bivariate normal with mean vector µ and
covariance matrix Σ. Then the joint MGF of X is

MX(t) = exp
(

t · µ+ 1
2tT Σt

)
.

PROOF Let V = t ·X = t1X + t2Y .
By Lemma 6.20, V ∼ n(t · µ, tT Σt) so

MX(t) = E[et·X] = E[eV ] = E[e1V ] = MV (1) = exp
(

t · µ+ 1
2tT Σt

)
as wanted. □

What this theorem tells us: If X is bivariate normal, we can compute the MGF
MX(t) from µ and Σ.

Since we have inversion formulas allowing us to compute the density of X
from its MGF, the density of X will also depend only on µ and Σ.

What this theorem also will tell us: In the next corollary, we will see that for
bivariate normal densities, uncorrelated marginals must be independent. (Re-
call that this isn’t true in general.)
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Corollary 6.22 If X = (X, Y ) is bivariate normal and Cov(X, Y ) = 0, thenX ⊥ Y .

PROOF We have X ∼ n(µX , σ
2
X) and Y ∼ n(µY , σ

2
Y ). If Cov(X, Y ) = 0, then

MX(t) = exp
[
t · µ+ 1

2tT Σt
]

= exp
[
(t1, t2) · (µX , µY ) + 1

2
(
t1 t2

)( σ2
X 0
0 σ2

Y

)(
t1
t2

)]

= exp
[
t1µX + t2µY + 1

2σ
2
Xt

2
1 + 1

2σ
2
Y t

2
2

]
= exp

[
µXt1 + 1

2σ
2
Xt

2
1

]
exp

[
µY t2 + 1

2σ
2
Y t

2
2

]
= MX(t1)MY (t2).

Since MX(t) = MX(t1)MY (t2), X ⊥ Y by Theorem 5.45. □

Theorem 6.23 (Decomposition of bivariate normal) Suppose X = (X, Y ) is bi-
variate normal. Then there exist two normal r.v.s Ŷ and Y so that

• Y = Ŷ + Y ;

• Ŷ is a multiple of X ;

• Y ⊥ X .

PROOF Let Ŷ = σXY

σ2
X

X and Y = Y − Ŷ . The first two bullet points of the theorem

are satisfied, so it remains to verify the third.

Observe next that for any b = (b1, b2),

b1X + b2Y = b1X + b2
(
Y − Ŷ

)
= b1X + b2

(
Y − σXY

σ2
X

X

)

=
[
b1 − b2

σXY

σ2
X

]
X + b2Y.

Since (X, Y ) is normal, this linear combination is normal.
This verifies that any linear combination of X and Y is normal, meaning (X, Y )

is bivariate normal by definition.
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Next,

Cov(X, Y ) = Cov

(
X, Y − σXY

σ2
X

X

)

= Cov(X, Y )− σXY

σ2
X

Cov(X,X)

= σXY −
σXY

σ2
X

σ2
X = 0

so by Corollary 6.22, X ⊥ Y . □

Remarks: This may remind you of something you learn in linear algebra: projec-
tions. To project a vector y onto another nonzero vector x, we think of a picture
like this:

The formula to compute this projection ŷ is ŷ = x · y
x · x

x. (Compare this with the

formula for Ŷ above; it’s the same except that the dot products are replaced with
covariances.)

Definition 6.24 Let X = (X, Y ) be bivariate normal. The normal r.v. Ŷ = σXY

σ2
X

X

is called the projection of Y onto X .

The joint density of a bivariate normal

Lemma 6.25 Suppose X = (X, Y ) is bivariate normal with mean vector µ and co-
variance matrix Σ. Then there are independent, standard normal r.v.s W and Z so
that

X = σXW + µX

Y = σXY

σX

W +
√

det Σ
σX

Z + µY

.

PROOF First, set W = X − µX

σX

; W is the z−score of X so W ∼ n(0, 1). We have

σXW + µX = σXW + µX = σX

(
X − µX

σX

)
+ µX = X.
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That leaves figuring out what Z is. Toward that end, let Ŷ be the projection of
Y onto X and let Y = Y − Ŷ .
Note E[Y ] = EY − EŶ = µY −

σXY

σ2
X

µX and

V ar(Y ) = V ar(Y − Ŷ )

= V ar

(
Y − σXY

σ2
X

X

)

= V ar(Y ) + σ2
XY

σ4
X

V ar(X)− 2σXY

σ2
X

Cov(X, Y )

= σ2
Y + σ2

XY

σ2
X

− 2σ
2
XY

σ2
X

= σ2
Y −

σ2
XY

σ2
X

= σ2
Xσ

2
Y − σ2

XY

σ2
X

= det Σ
σ2

X

.

Next, let

Z = Y − E[Y ]√
V ar(Y )

=
Y − µY + σXY

σ2
X
µX

√
det Σ
σX

.

Z is the z−score of Y , so Z ∼ n(0, 1).
Also, since X ⊥ Y , W depends only on X , and Z depends only on Y , W ⊥ Z.
Last, we have

σXY

σX

W +
√

det Σ
σX

Z + µY

= σXY

σX

· 1
σX

(X − µX) +
√

det Σ
σX

Y − µY + σXY

σ2
X
µX

√
det Σ
σX

+ µY

= σXY

σ2
X

(X − µX) + (Y − Ŷ )− µY + σXY

σ2
X

µX + µY

= σXY

σ2
X

(X − µX) + Y − σXY

σ2
X

X + σXY

σ2
X

µX

=
[
σXY

σ2
X

− σXY

σ2
X

]
X + Y − µXσXY

σ2
X

+ µXσXY

σ2
X

= Y

as wanted. □
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Theorem 6.26 Suppose X = (X, Y ) is bivariate normal with mean vector µ and
covariance matrix Σ. Then

fX(x) = 1
2π
√

det Σ
exp

[−1
2 (x− µ)T Σ−1(x− µ)

]
.

PROOF From the preceding lemma, we can write

X = σXW + µX

Y = σXY

σX

W +
√

det Σ
σX

Z + µY

where (W,Z) are ⊥ n(0, 1) r.v.s.

We compute the joint density of X and Y with Jacobians. Let

φ(w, z) =
(
σXw + µX ,

σXY

σX

w +
√

det Σ
σX

z + µY

)

so that φ(W,Z) = (X, Y ). Notice J(φ) = det
(

σX 0
σXY

σX

√
det Σ
σX

)
=
√

det Σ.

This means

fX,Y (x, y) = 1
|J(φ)| fW,Z(w, z)

= 1√
det Σ

fW (w) fZ(z) (since W ⊥ Z)

= 1√
det Σ

(
1√
2π
e−w2/2

)(
1√
2π
e−z2/2

)
(since W,Z ∼ n(0, 1))

= 1
2π
√

det Σ
exp

[
−1

2(w2 + z2)
]

= 1
2π
√

det Σ
exp

[
−1

2(x− µ)T Σ−1(x− µ)
]

as wanted (the red parts above are equal because of a horrible algebra
calculation shown below).

Why are the red parts equal?
First, by back-solving for w and z in terms of x and y, we get

w = x− µX

σX

and z = σX√
det Σ

(
y − µY −

σXY (x− µX)
σ2

X

)
.
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Then the red parts are

w2 + z2

= (x− µX)2

σ2
X

+ σ2
X

det Σ

(
y − µY −

σXY (x− µX)
σ2

X

)2

= (x− µX)2 det Σ
σ2

X det Σ + σ2
X

det Σ

[
(y − µY )2 − 2σXY (x− µX)(y − µY )

σ2
X

+ σ2
XY (x− µX)2

σ4
X

]
= 1

det Σ
det Σ
σ2

X

(x− µX)2 + 1
det Σ

[
σ2

X(y − µY )2 − 2σXY (x− µX)(y − µY ) + σ2
XY

σ2
X

(x− µX)2
]

= 1
det Σ

[(
det Σ
σ2

X

+ σ2
XY

σ4
X

)
(x− µX)2 − 2σXY (x− µX)(y − µY ) + σ2

X(y − µY )2
]

= 1
det Σ

[(
det Σ
σ2

X

+ σ2
XY

σ4
X

)
(x− µX)2 − 2σXY (x− µX)(y − µY ) + σ2

X(y − µY )2
]

= 1
det Σ

[(
σ2

Xσ2
Y − σ2

XY

σ2
X

+ σ2
XY

σ2
X

)
(x− µX)2 − 2σXY (x− µX)(y − µY ) + σ2

X(y − µY )2
]

= 1
det Σ

[
σ2

Y (x− µX)2 − 2σXY (x− µX)(y − µY ) + σ2
X(y − µY )2]

= 1
det Σ

[
(x− µX)(σ2

Y (x− µX)− σXY (y − µY )) + (y − µY )(−σXY (x− µX) + σ2
X(y − µY ))

]
= 1

det Σ
(

x− µX y − µY

)( σ2
Y (x− µX)− σXY (y − µY )
−σXY (x− µX) + σ2

X(y − µY )

)
=
(

x− µX y − µY

) 1
det Σ

(
σ2

Y −σXY

−σXY σ2
X

)(
x− µX

y − µY

)
=
(

x− µX y − µY

)( σ2
X σXY

σXY σ2
Y

)−1(
x− µX

y − µY

)
= (x− µ)T Σ−1(x− µ).

This completes the proof. □

Practical computational stuff

Let X and Y have a bivariate normal distribution. Write

Σ−1 =
(
a b
b d

)
.

Now

fX,Y (x, y) = 1
2π
√

det Σ
exp

[−1
2 (x− µ)T Σ−1 (x− µ)

]
= 1

2π
√

det Σ
exp [♡]
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where

♡ = −1
2
(
x− µX y − µY

)( a b
b d

)(
x− µX

y − µY

)

= −1
2
(
x− µX y − µY

)( ax− aµX by − bµY

bx− bµX dy − dµY

)

= −1
2
[
ax2 − aµXx+ bxy − bµY x− aµXx+ aµ2

X − bµXy + bµXµY

+bxy − bµXy + dy2dµY y − bµY x+ bµXµY − dµXµY + dµ2
Y

]

♡ = −1
2
[
ax2 + 2bxy + dy2 + (−2aµX − 2bµY )x+ (−2bµX − 2dµY )y

+(aµ2
X + 2bµXµY + dµ2

Y )
]

= −1
2 ax2 − bxy − 1

2dy
2 + (aµX + bµY )x+ (bµX + dµY )y + (constant).

Punchline: Given fX,Y for a bivariate normal distribution (X, Y ):

1. You can find a, b and d by looking at the coefficients on the x2, xy and y2

terms inside the exponential part of fX,Y , respectively:

a = −2(coefficient on x2 in ♡)
b = −(coefficient on xy in ♡)
d = −2(coefficient on y2 in ♡)

This tells you Σ−1 =
(
a b
b d

)
.

2. You can then find Σ by inverting Σ−1. This will tell you the variances of
X and Y , and the covariance between them.

3. You can recover the expected values of X and Y by solving a system of
equations coming from the coefficients on the x and y terms inside the
exponential part of fX,Y .
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EXAMPLE 15
Suppose X and Y have bivariate normal density

fX,Y (x, y) = K exp
[−1

2 (5x2 − 6xy + 2y2 − 40x+ 24y + 80)
]
.

1. Write down the covariance matrix Σ.

2. Compute K.

3. Compute the covariance between X and Y .

4. Compute the variances of X and Y .

5. Compute the expected values of X and Y .

6. Determine the density functions of the marginals.

7. Let V = 7X − 3Y .

a) Compute the mean and variance of V .
b) Write down a density function of V .
c) Compute the probability that V ≤ 30.
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.

6. Both X and Y are normal, so

X ∼ n(4, 2)⇒ fX(x) = 1√
2
√

2π
exp

[
−(x− 4)2

2 · 2

]

Y ∼ n(0, 5)⇒ fY (y) = 1√
5
√

2π
exp

[
−y2

2 · 5

]

7. V = 7X − 3Y = (7,−3) · (X, Y ) = b ·X where b = (7,−3).
Therefore V ∼ n(b · µ,bT Σb).
We have EV = b · µ = (7,−3) · (4, 0) = 28

and V arV = bT Σb =
(

7 −3
)( 2 3

3 5

)(
7
−3

)
=
(

7 −3
)( 5

6

)
= 17 .

Therefore V ∼ n(28, 17), so fV (v) = 1√
17
√

2π
exp

[
−(v − 28)2

2 · 17

]
.

Last, V ∼ n(28, 17) means V = 28 +
√

17Z where Z ∼ n(0, 1).
Finally,

P (V ≤ 30) = P (28 +
√

17Z ≤ 30) = P

(
Z ≤ 2√

17

)
= Φ

(
2√
17

)

= Φ(.485) = .686162 .
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Conditional density, expectation and variance

Theorem 6.27 Suppose X = (X, Y ) is bivariate normal. Then Y |X is normal with
parameters

E[Y |X] = µY + σXY

σ2
X

(x− µX); V ar[Y |X] = σ2
Y (1− ρ2).

(Here ρ is the correlation between X and Y .)

PROOF To compute E[Y |X] and V ar[Y |X], let Ŷ = σXY

σ2
X
X be the projection of Y

onto X , and let Y = Y − Ŷ . Recall from Lemma 6.25:

X ⊥ Y ; EY = µY −
σXY

σ2
X

µX ; V ar(Y ) = det Σ
σ2

X

= σ2
Xσ

2
Y − σ2

XY

σ2
X

.

Therefore

E[Y |X] = E[Ŷ + Y |X] = E[Ŷ |X] + E[Y |X]

= E

[
σXY

σ2
X

X|X
]

+ E[Y ] (since Y ⊥ X)

= σXY

σ2
X

E [X|X] + µY −
σXY

σ2
X

µX

= σXY

σ2
X

x + µY −
σXY

σ2
X

µX (since E[X|X = x] = x)

= µY + σXY

σ2
X

(x− µX)

and

V ar[Y |X] = V ar[Ŷ + Y |X]
= V ar[Ŷ |X] + V ar[Y |X] + 2Cov[Ŷ , Y |X]

= V ar

[
σXY

σ2
X

X|X
]

+ V ar[Y |X] + 2(0) (since Y ⊥ Ŷ )

= σ2
XY

σ4
X

V ar [X|X] + V ar(Y ) (since Y ⊥ X)

= σXY

σ2
X

0 + σ2
Xσ2

Y − σ2
XY

σ2
X

(since V ar[X|X = x] = 0)

= σ2
Y

(
σ2

Xσ2
Y − σ2

XY

σ2
Xσ2

Y

)

= σ2
Y

(
1−

[
σXY

σXσY

]2
)

= σ2
Y (1− ρ2).

264



6.7. Bivariate normal densities

Last, to see why Y |X is normal, observe X is normal, so

fY |X(y|x) = fX,Y (x, y)
fX(x)

= (∗) exp [(∗)x2 + (∗)xy + (∗)y2 + (∗)x+ (∗)y + (∗)]
(∗) exp [(∗)x2 + (∗)x+ (∗)]

= (∗) exp
[
(∗)x2 + (∗)xy + (∗)y2 + (∗)x+ (∗)y + (∗)

]
which is the density of a normal r.v. □

EXAMPLE 16
Suppose (X, Y ) have a bivariate normal density where

E[X|Y ] = 3.7− .15y; E[Y |X] = .4− .6x; V ar(Y |X) = 3.64.

1. Compute ρ(X, Y ).

2. Compute V ar(X).

3. Compute V ar(Y )

4. Compute Cov(X, Y ).

5. Compute EX .

6. Compute EY .
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.
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6.8 Joint normal densities in higher dimensions
In this section, we briefly discuss how the machinery of the previous section can
be adapted in dimension greater than 2.

Definition 6.28 Let X be the joint distribution of real-valued r.v.s X1, ..., Xd. The
mean vector µ of X is

µ =


EX1
EX2

...
EXd


d×1

=


µ1
µ2
...
µd


d×1

.

The covariance matrix Σ of X is

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xd)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xd)

...
... . . . ...

Cov(Xd, X1) Cov(Xd, X3) · · · Cov(Xd, Xd)


d×d

.

Theorem 6.29 (Properties of mean vectors and covariance matrices) Let µ and
Σ be the mean vector and covariance matrix of any joint distribution X = (X1, ..., Xd).
Then:

1. Σ is d× d.

2. Σ is symmetric (i.e. ΣT = Σ).

3. The diagonal entries of Σ are the variances of the Xj .

4. For any vector b =


b1
...
bd

,

E[b ·X] = b · µ and V ar(b ·X) = V ar

 d∑
j=1

bjXj

 = bT Σb.

5. Σ is nonnegative definite (for any vector b ∈ Rd, bT Σb ≥ 0).

6. det Σ ≥ 0.
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Definition 6.30 A collection X = (X1, ..., Xd) of real-valued r.v.s with joint density
fX : Rd → R is called joint(ly) normal or joint(ly) Gaussian if every finite linear
combination of the marginals

b ·X =
d∑

j=1
bjXj

(where b1, ..., bd ∈ R) is normal.

Corollary 6.31 If X is joint normal, then for any b ∈ Rd,

b · x ∼ n
(
b · µ,bT Σb

)
.

Theorem 6.32 (Characterization of bivariate normal densities) Let X be a joint
distribution with mean vector µ and covariance matrix Σ. Then, the following are
equivalent:

1. X is joint normal.

2. MX(t) = exp
(

t · µ+ 1
2tT Σt

)
.

3. fX(x) = 1
(2π)d/2

√
det Σ

exp
[−1

2 (x− µ)T Σ−1(x− µ)
]
.

Corollary 6.33 (Uniqueness of joint normal densities) If two jointly normal dis-
tributions have the same means and same covariances between the marginals, then they
are the same distribution.

Corollary 6.34 If X is a joint normal density such that Cov(Xi, Xj) = 0 for all
i ̸= j, then Xi ⊥ Xj for all i ̸= j.
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6.9 Chapter 6 Homework
Exercises from Section 6.1

1. Suppose {Xt} is an i.i.d. sequence of exponential r.v.s, each having mean 3.
If X1 = 2, X2 = 4, X3 = 1 and X4 = 5, compute the values of Sn, An and A∗

n

for n ∈ {1, 2, 3, 4}.

Exercises from Section 6.2

2. Suppose that i.i.d. blood samples taken from a patient will show a hemoglobin
level that averages 15 g/dl with a standard deviation of 3 g/dl. According to
the QWLLN, what is the smallest number of samples that would need to be
taken from this patient, so that the average hemoglobin level of the samples
taken is 98% likely to lie between 14.9 g/dl and 15.1 g/dl?

3. Suppose X1, X2, ... are i.i.d. r.v.s (taking only positive real values), each hav-
ing finite mean µ. Show that with probability 1, the geometric averages of
the Xj converge, where the geometric average of X1, ..., Xn is

Gn = n

√√√√ n∏
j=1

Xj.

Determine lim
n→∞

Gn.

Hint: Apply the SLLN to logGn (here log means natural logarithm).

Exercises from Section 6.3

4. For each λ > 0, let Xλ be Poisson with parameter λ and let Yλ = Xλ − λ√
λ

.

Show that for all t, lim
λ→∞

MYλ
(t) = exp

(
t2

2

)
.

5. Fix λ > 0 and for each r > 0 letXr be Γ(r, λ) and define Yr =
Xλ −

(
r
λ

)
(√

r
λ

) . Show

that for all t, lim
r→∞

MYr(t) = exp
(
t2

2

)
.

Exercises from Section 6.4

6. Suppose Z has the standard normal distribution. Compute decimal approx-
imations to the following probabilities (trust me, there are no typos in these
inequalities):
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a) P (Z < 1.33)
b) P (Z < −.425)
c) P (Z ≥ .79)
d) P (.55 < Z < 1.22)

e) P (−1.90 ≥ Z ≥ .44)
f) P (Z > −.2)
g) P (−.63 ≤ Z < .3)
h) P (Z < −1.3 or Z > .58)

7. a) Prove that the mean of a n(µ, σ2) r.v. is µ.

b) Prove that the variance of a n(µ, σ2) r.v. is σ2.

c) Verify that the MGF of a n(µ, σ2) r.v. is exp
(
µt+ 1

2σ
2t2
)
.

8. Prove that if Xj ∼ n(µj, σ
2
j ) are independent normal r.v.s, then X1 + ...+Xj ∼

n
(∑

j µj,
∑

j σ
2
j

)
.

9. Let f be the density function of the normal r.v. with parameters µ and σ2.

a) Show that f has its maximum when x = µ.

b) Show that the x−coordinates of the inflection points of f are x = µ± σ.

10. Suppose X is normal with parameters µ = 20 and σ2 = 100. Compute deci-
mal approximations to the following probabilities:

a) P (X ≥ 17)
b) P (X < 24.5)
c) P (X = 18)
d) P (X < 17 |X ≤ 23)
e) P (X ≥ 21 |X < 24)
f) P (X < 15 or X ≥ 24)
g) P (W ≤ 18), assuming W = 1

2X − 4
h) P (Y ≥ 54), assuming Y = 3X + 9

11. Let X and Y be independent standard normal r.v.s.

a) Compute the joint density of X and Y/X .
Hint: This is a transformation problem involving Jacobians.

b) Compute the density of Y/X .
Hint: Integrate the joint density you found in part (a) with respect to x.

c) Simplify your answer to part (b), and identify Y/X as a common r.v.

12. Suppose that during periods of transcendental meditation the reduction of a
person’s oxygen consumption is a normal n(37.6 cc/min, 4.62 cc/min).
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a) Calculate (a decimal approximation to) the probability that during a pe-
riod of transcendental meditation a person’s oxygen consumption will
be reduced by at least 42.5 cc/min.

b) Calculate (a decimal approximation to) the probability that during a pe-
riod of transcendental meditation a person’s oxygen consumption will
be reduced by anywhere from 30 to 40 cc/min.

13. A study shows that an experimental drug causes patient’s blood pressure to
lower by an amount that is normally distributed with parameters µ = 32
mmHg and σ2 = 60 mmHg. What is the probability that by taking this drug,
a patient’s blood pressure will be lowered by at least 25 mmHg but by no
more than 35 mmHg? (Give both an answer in terms of Φ, and a decimal
approximation.)

14. a) Let Xλ ∼ Pois(λ) and fix c > 0. Use the result of Exercise 4 to estimate,
for large λ, the value of P (Xλ ≤ cλ). Your answer should be in terms of
Φ, the cumulative distribution function of the standard normal r.v.
Hint: Define Yλ as in Exercise 4. Since, for large λ, MYλ

(t) = exp
(

t2

2

)
=

Mn(0,1)(t), that means by uniqueness of MGFs that Yλ ≈ n(0, 1). That
means Xλ is approximately some other r.v.

b) Let Q be a Poisson r.v. with mean 5000. Use your answer to the previous
parts of this problem to estimate the following, in terms of Φ:

i. P (Q ≤ 5100)
ii. P (Q < 4920)

iii. P (Q ≥ 5050)

15. a) Let Xr ∼ Γ(r, λ). Use the result of Exercise 5 to estimate, for large r, the
value of lim

r→∞
P (Xr ≤ r/λ). (Your answer should be in terms of Φ.)

b) Suppose Q is a gamma r.v. with parameters r = 2000 and λ = 2. Esti-
mate the following probabilities in terms of Φ:

i. P (Q ≤ 1800)
ii. P (Q > 1850)

iii. P (Q < 2150)

Exercises from Section 6.5

16. The amount of liquid a student puts in their drink at the Rock is a r.v. with
mean 350 mL and variance 1500 mL. Use the Central Limit Theorem to es-
timate the probability that a randomly selected group of 12 students put an
average of 320 mL or more in their drinks. Give both the exact answer in
terms of Φ and a decimal approximation to the answer.
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17. 1000 fair dice are rolled independently. Use the Central Limit Theorem to
estimate the probability that the sum of these 1000 rolls is at least 3450 and
no greater than 3650. Give both the exact answer in terms of Φ and a decimal
approximation to the answer.

18. You play a game where you lose $1 with probability .7, you lose $2 with
probability .2, and win $10 with probability .1. If you play this game 10000
times, what is the probability that you will be ahead (that is, you have won
more money than you have lost)? (You are to approximate this answer using
the Central Limit Theorem; give both the exact answer in terms of Φ and a
decimal approximation to the answer.)

19. Let X ∼ Pois(40). Let p = P (X ≥ 48). Approximate p using the Central
Limit Theorem, by approximating X as the sum of 40 i.i.d. r.v.s. Give both
the exact answer in terms of Φ and a decimal approximation to the answer.

20. A tobacco company claims that the amount of nicotine in one of its cigarettes
is a r.v. with mean 2.2 mg and standard deviation .8 mg. Use the Cen-
tral Limit Theorem to estimate the probability that 100 randomly chosen
cigarettes would have an average nicotine content of at most 2.09 mg. Give
both the exact answer in terms of Φ and a decimal approximation to the an-
swer.

21. (AE) In an analysis of healthcare data, ages are rounded to the nearest mul-
tiple of 5 years. The difference between the true age and the rounded age is
assumed to be uniformly distributed on the interval from −2.5 years to 2.5
years. The healthcare data is based on a random sample of 80 people. What
is the approximate probability (as estimated using the CLT) that the mean of
the rounded ages is within 0.125 years of the mean of the true ages?

22. (AE) A charity receives 3100 contributions, each of which are assumed to be
independent and identically distributed with mean 150 and standard devia-
tion 40. Use the CLT to approximate the number b so that it is 90% likely that
the total contributions to the charity are less than or equal to b.

23. (AE) The total claim amount for a property insurance policy follows a distri-
bution that has density function

f(x) = 1
2000e

−x/2000 for x > 0.

The premium for the policy is set at 250 over the expected total claim amount.
If the insurance company sells 300 policies, what is the approximate probabil-
ity (as estimated using the CLT) that the insurance company will have claims
exceeding the premiums collected?
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Exercises from Section 6.6

24. Use Stirling’s formula to show that for large n,
(

2n
n

)
≈ 4n

√
πn

.

Remark: We will use this fact in MATH 416.

Exercises from Section 6.7

25. In this problem we show that just because X and Y are normal does not
mean that they have a joint normal distribution. Let X ∼ n(0, 1) and let R be
uniform on the two numbers {−1, 1}; suppose R ⊥ X . Let Y = RX .

a) Prove (using transformation methods) that Y ∼ n(0, 1).
b) Prove that (X, Y ) are not bivariate normal, by showing that the linear

combination X + Y is not normally distributed.

26. Suppose X and Y have the following bivariate normal density:

fX,Y (x, y) = C exp
[−1

54
(
x2 + 4y2 + 2xy + 2x+ 8y + 4

)]
Compute each quantity:

a) EX

b) EY

c) V ar(X)
d) V ar(Y )

e) Cov(X, Y )
f) ρ(X, Y )
g) C

h) The covariance matrix Σ

27. Let X and Y have the density given in Exercise 26.

a) Compute the conditional density of Y given X = x.

b) Compute the conditional density of X given Y = −1.

28. Let X and Y have the density given in Exercise 26.

a) Compute the conditional variance of Y given X = x.

b) Compute the density of W = 8X + 5Y .
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Chapter 7

Applications to insurance

7.1 Deductibles
A common application of LOTUS occurs in the context of insurance. Most of the
time, when you buy an insurance policy, the policy includes a deductible of some
fixed amount d. That means that when you incur a loss covered by the insurance
policy, you must pay the first d of the loss; the insurance company only covers
anything that is left after that.

Why do insurance companies like deductibles?

1. Companies can pay out less in claims to policyholders

2. Reduces overhead costs (no processing of small claims)

3. Creates some risk for policyholder, which provides an incentive for the poli-
cyholder to be more risk-averse

Suppose a policyholder holding a policy with a deductible d incurs loss X (where
X is some r.v.). If Y is the claim payment, what is Y as a function of X?

d d+r
X

Y
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On the previous page we saw that

Y = φ(X) =
{

0 if X ≤ d
X − d if X > d

This means the cdf of Y can be computed as follows:

Therefore, Y has no density, because FY isn’t continuous.

Nonetheless, we can use LOTUS to compute EY :

We have proven:

Theorem 7.1 (Expected value for insurance policy with deductible) Suppose
the loss incurred by a policyholder with deductible d is a cts r.v. X with finite expecta-
tion. If Y is the claim payment associated to this loss, then

EY =
∫ ∞

d
(x− d)fX(x) dx.
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EXAMPLE 1
Suppose that a loss random variable is uniform on [0, 10].

1. Compute the expected amount paid by the insurer, if the policy has a de-
ductible of 3.

2. Compute the variance of the amount paid by the insurer, if the policy has a
deductible of 3.

3. If a deductible is applied before any insurance payment, and the expected
payment of the insurer is 1.5, determine the size of the deductible.

276



7.2. Benefit limits

EXAMPLE 2
Suppose that a loss random variable is exponential with mean 10. If a deductible
of size 5 is applied, find the expected payment of the insurer.

Solution: X exp. w/ mean 10 means X ∼ Exp( ), i.e. fX(x) =

EY =
∫ ∞

d
(x− d)fX(x) dx

=
∫ ∞

5
(x− 5) 1

10e
−(1/10)x dx

7.2 Benefit limits
A second way that insurance companies mitigate their risk is by selling policies
that have benefit limits (a.k.a. coverage limits). Suppose a policy has a benefit
limit of l (and no deductible). This means that the maximum amount the insurance
company will pay its policyholder for a loss is l. Then if loss X is incurred by the
policyholder, the corresponding claim payment Y is

l
X

l

Y
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If there is both a benefit limit l and a deductible d, then if loss X is incurred by the
policyholder, the corresponding claim payment Y is

d d+l
X

l

Y

Using LOTUS, we can derive these formulas:

Theorem 7.2 (Expected value for insurance policy with benefit limit) Suppose
the loss X incurred by a policyholder with a benefit limit l is a continuous r.v. with
finite expectation. Then if Y is the claim payment associated to this loss,

EY =
∫ l

0
xfX(x) dx+ l · P (X ≥ l).

PROOF This will follow from the next theorem by setting d = 0. □

Theorem 7.3 (Exp. value for policy with deductible and benefit limit) Suppose
the loss X incurred by a policyholder with deductible d and benefit limit l is a contin-
uous r.v. with finite expectation. Then if Y is the claim payment associated to this
loss,

EY =
∫ d+l

d
(x− d)fX(x) dx+ l · P (X ≥ d+ l).

PROOF From the previous page, we know

Y = φ(X) =


0 if X ≤ d

X − d if d < X < d+ l
l if X ≥ d+ l
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So by LOTUS, we have

EY =
∫ ∞

0
φ(x)fX(x) dx

=
∫ d

0
0fX(x) dx+

∫ d+l

d
(x− d)fX(x) dx+

∫ ∞

d+l
lfX(x) dx

= 0 +
∫ d+l

d
(x− d)fX(x) dx+ l

∫ ∞

d+l
fX(x) dx

=
∫ d+l

d
(x− d)fX(x) dx+ l · P (X ≥ d+ l). □

EXAMPLE 3
Suppose that a loss random variable is uniform on [0, 10]. Find the expected amount
paid by the insurer, if the policy has a deductible of 1 and a coverage limit of 6.
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EXAMPLE 4
Suppose the loss from an accident is a continuous random variable with density

f(x) = 24
7 x

−4 when 1 < x < 2. Suppose that the insurance policy has a coverage
limit of 1.5. What is the standard deviation of the loss to the insurance company?

Last, V ar(Y ) = EY 2 − (EY )2 = 19
12 −

(157
126

)2
= 122

3969 and so

σY =
√
V ar(Y ) =

√
122
3969 =

√
122
63 ≈ .1753 .
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7.3 Proportional coverage
A third way insurance companies limit their exposure is by offering proportional
coverage. This means that they only cover a fraction of the loss, as opposed to the
entire loss. To compute quantities associated to proportional coverage, think of
the original loss as X and the claim payment as Y . Write Y as a piecewise-defined
function φ ofX and answer the question asked (if the question asks for an expected
value, variance or standard deviation, you have to do several integrals separately
according to each piece of the function φ).

EXAMPLE 5
Suppose that the damage (in thousands of dollars) caused when a piece of equip-
ment breaks is given by a continuous random variable with density f(x) = 2

x3

when x > 1. Suppose that the piece of equipment breaks 25% of the time. If an
insurance company agrees to cover 100% of the first $3000 in damage and 50% of
the next $3000 in damage, what is the expected value of the amount the insurance
company will have to pay?
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7.3. Proportional coverage

EXAMPLE 6
The cumulative distribution function for health care costs experienced by a policy-
holder is

F (x) =
{

1− e−x/100 for x > 0
0 otherwise

The policy has a deductible of 20. An insurer reimburses the policyholder for 100%
of health care costs between 20 and 120 (less the deductible); health care costs from
120 to 420 are reimbursed at 50%; health care costs above 420 are not reimbursed.
Find the cdf of the reimbursements.
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7.4 Chapter 7 Homework
Exercises from Sections 7.1 and 7.2

1. Suppose that a loss random variable is uniform on [0, 1000]. Determine the
expected amount paid by the insurer in each of the following cases:

a) The policy has a deductible of 300.

b) The policy has a coverage limit of 500.

c) The policy has a deductible of 100 and a coverage limit of 600.

2. Calculate the variance of the amount paid by the insurer in situation (a) of
the previous problem.

3. (AE) Suppose that a loss random variable is uniform on [0, 1000]. A de-
ductible of size d is applied before any insurance payment. If the expected
payment of the insurer is 150, find d.

4. (AE) Suppose that a loss random variable is exponential with mean 10. If a
deductible of size 5 is applied, find the expected payment of the insurer.

5. (AE) An insurance policy pays for a random loss X subject to a deductible C,
where 0 < C < 1. The loss amount is modeled as a continuous r.v. whose
density is f(x) = 4x3 on [0, 1]. If the probability that the insurance payment
is less than .5 is .2401, what is C?

6. Suppose that the loss from a hurricane is uniform on [0, 8]. A policyholder
holds a hurricane insurance policy with coverage limit that is twice its de-
ductible.

a) If the deductible is 1, compute the expected insurance payment for a loss
due to a hurricane.

b) If the expected insurance payment for a loss due to a hurricane is
10
7 ,

compute the smallest possible value of the deductible.

c) What deductible corresponds to the greatest expected insurance pay-
ment?

7. An insurance policy reimburses a loss up to a benefit limit of 15. The pol-

icyholder’s loss follows a distribution with density function f(x) = 2
x3 for

x > 1.

a) What is the probability that the benefit paid is less than 10?

b) What is the expected value of the benefit paid under this policy?
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Exercises from Section 7.3

8. Suppose the loss to a business from a fire, measured in thousands of dollars,
is a r.v. X with density

f(x) =
{

1
8(4− x) for 0 ≤ x ≤ 4

0 else .

The business is covered by an insurance policy with no deductible that pro-
vides 50% coverage for the first $2000 of damage and 25% coverage for the
remaining damage.

a) Find the standard deviation of the amount the insurance policy will pay
out, in the event of a loss.

b) Suppose that there is a 30% chance of one fire, and a 70% chance of no
fire. Find the expected amount the insurance company will have to pay.

c) Suppose that the number of fires the business will suffer in one year is a

Poisson r.v. with variance
1
8 . Assuming that the losses from each fire are

independent, find the variance of the amount the insurance company
will pay to the business.

9. A loss r.v. is uniform on [0, 2]. The loss is covered by a policy which has
a deductible of 1. For losses exceeding the deductible, the policy provides
proportional coverage covering p% of the loss. If the expected claim payment
is .2, find the value of p.

10. A homeowner takes out a policy on his house. The policy has a deductible
of 4 and reimburses the homeowner for 100% of the damage to the house for
damage between 4 and 10. The policy only reimburses the homeowner for
60% of damage between 10 and 20, and reimburses the policyholder for 20%
of damage above 20. If the damage to the house is a r.v. with density function

f(x) =


3

125000(x− 50)2 for 0 ≤ x ≤ 50

0 else
,

find the expected reimbursement.

11. (AE) The lifetime of a printer costing 100 is exponential with mean 2 years.
The manufacturer agrees to pay a full refund to a buyer if the printer fails
during the first year following its purchase, and a half refund if it fails during
its second year. If the manufacturer sells 100 printers, how much should it
expect to pay in refunds?
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Chapter 8

Markov chains

8.1 What is a Markov chain?
In MATH 416, our primary goal is to describe probabilistic models which simulate
real-world phenomena. As with all modeling problems, there is a “Goldilocks”
issue:

• If the model is too simple,

• if the model is too complex,

In applied probability, we want to model phenomena which evolve randomly. The
mathematical object which describes such a situation is a stochastic process:

Definition 8.1 A stochastic process {Xt : t ∈ I} is a collection of random vari-
ables indexed by t. The set I of values of t is called the index set of the stochastic
process, and members of I are called times. We assume that each Xt has the same
range, and we denote this common range by S. S is called the state space of the
process, and elements of S are called states.

Note: {Xt} refers to the entire process (i.e. at all times t), whereas Xt is a single
random variable (i.e. refers to the state of the process at a fixed time t).

Concept: Think of Xt as recording your “position” or “state” at time t. As t
changes, you think of “moving” or “changing states”. This process of “moving”
will be random, and modeled using the language and theory of probability we
learned in MATH 414.
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Almost always, the index set is {0, 1, 2, 3, ...} or Z (in which case we call the stochas-
tic process a discrete-time process), or the index set is [0,∞) or R (in which case
we call the stochastic process a continuous-time process). Chapter 8 of these notes
focuses on discrete-time processes; Chapters 9 and 11 study continuous-time pro-
cesses, and Chapter 10 contains ideas useful in both settings.

In MATH 414, we encountered three standard classes of stochastic processes:

1. The Bernoulli process, a discrete-time process {Xt}with state space N where
Xt is the number of successes in the first t trials of a Bernoulli experiment.
Probabilities associated to a Bernoulli process are completely determined by
a number p ∈ (0, 1) which gives the probability of success on any one trial.

2. The Poisson process, a continuous-time process {Xt} with state space N
where Xt is the number of births in the first t units of time. Probabilities as-
sociated to a Poisson process are completely determined by a number λ > 0
called the rate of the process.

3. i.i.d. processes are discrete-time processes {Xt} where each Xt has the same
density and all the Xt are mutually independent. Sums and averages of ran-
dom variables from these processes are approximately normal by the Central
Limit Theorem.

We now define a class of processes which encompasses the three examples above
and much more:

Definition 8.2 Let {Xt} be a stochastic process with state space S. {Xt} is said
to have the Markov property if for any times t1 < t2 < ... < tn and any states
x1, ..., xn ∈ S,

P (Xtn = xn |Xt1 = x1, Xt2 = x2, ..., Xtn−1 = xn−1) = P (Xtn = xn |Xtn−1 = xn−1).

A Markov chain is a discrete-time stochastic process with finite or countable state
space that has the Markov property.

To understand this definition, think of time tn as the “present” and the times
t1 < ... < tn−1 as being times in the “past”. If a process has the Markov property,
then given some values of the process in the past, the probability of the present
value of the process depends only on the most recent given information, i.e. only
on Xtn−1 .

Note: Bernoulli processes, Poisson processes and i.i.d. processes all have the
Markov property.
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8.1. What is a Markov chain?

The three ingredients of a Markov chain
QUESTION

What are the “ingredients” of a Markov chain? In other words, what makes one
Markov chain different from another one?

Answer:

1. The state space S of the Markov chain

(Usually S is labelled {1, ..., d} or {0, 1} or {0, 1, 2, ...} or N or Z, etc.)

2. The initial distribution of the r.v. X0, denoted π0:

π0(x) = P (X0 = x) for all x ∈ S

π0(x) is the probability the chain starts in state x.

3. Transition probabilities, denoted P (x, y) or Px,y or Pxy:

P (x, y) = Pxy = Px,y = P (Xt = y |Xt−1 = x)

P (x, y) is the probability, given that you are in state x at a certain time t − 1,
that you are in state y at the next time (which is time t).

Technically, transition probabilities depend not only on x and y but on t, but
throughout our study of Markov chains we will assume (often without stat-
ing it) that the transition probabilities do not depend on t; that is, that they
have the following property:

Definition 8.3 Let {Xt} be a Markov chain. We say the transition probabilities of
{Xt} are time homogeneous if for all s, t ∈ S,

P (Xt = y |Xt−1 = x) = P (Xs = y |Xs−1 = x),

i.e. that the transition probabilities depend only on x and y (and not on t).

The reason the transition probabilities are sufficient to describe a Markov chain is
that by the Markov property,

P (Xt = xt |X0 = x0, ..., Xt−1 = xt−1) = P (Xt = xt |Xt−1 = xt−1) = P (xt−1, xt).

In other words, conditional probabilities of this type depend only on the most
recent transition and ignore any past behavior in the chain.
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8.1. What is a Markov chain?

Simulating a Markov chain

To get used to how Markov chains work, let’s simulate one using a computer. Let’s
suppose:

• the state space is S = {1, 2, 3};

• the initial distribution π0 satisfies π0(1) = 1
2 , π0(2) = 1

6 and π0(3) = 1
3 . We

shorthand this by writing π0 as

π0 =
(1

2 ,
1
6 ,

1
3

)
.

• the transition probabilities are P (1, 1) = 1
3 , P (1, 2) = 1

2 , P (1, 3) = 1
6 , P (2, 1) =

2
3 , P (2, 2) = 0, P (2, 3) = 1

3 , P (3, 1) = 1
6 , P (3, 2) = 1

3 , P (3, 3) = 1
2 . A shorthand

way of writing all these is by treating them as entries of a matrix:

P =



1
3

1
2

1
6

2
3 0 1

3
1
6

1
3

1
2


We can capture the state space and the transition probabilities with the following
picture:

To simulate this Markov chain, we first have to select the stateX0 in which we start.

This is done using π0: we pick state 1 with probability
1
2 , state 2 with probability

1
6 , and state 3 with probability

1
3 .

One way to perform this random choice on a computer is to have the computer
generate a “uniformly random” real number in [0, 1] (in Mathematica, you use the

RandomReal[ ] command to do this). If the number is less than
1
2 , let X0 = 1; if the

number is between
1
2 and

1
2 + 1

6 , let X0 = 2; otherwise X0 = 3:
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Suppose we picked X0 = 3. Now, since X0 = 3, we pick the next state X1 using

Row 3 of P . By this, I mean X1 = 1 with probability
1
6 , X1 = 2 with probability

1
3 ,

andX1 = 3 with probability
1
2 (if you did this on a computer by selecting a random

real number in [0, 1], then X1 would be determined as follows:

Let’s suppose our random choice led to X1 = 1. The next thing to do is to pick the

state X2, which is done by using Row 1 of P (so X2 = 1 with probability
1
3 , etc.).

The idea expressed in the Markov property is that so long as we know X1, the fact
X0 was 3 is no longer relevant to the computation of X2, i.e. that X0 = 3 is “old
news”.

Similarly, once you’ve figured X2, the fact that X1 = 1 doesn’t influence how X3 is
generated, etc.

To get the rest of the chain {Xt}, you pick each stateXt from the previous oneXt−1:
if Xt−1 = j, Xt is chosen using Row j of P as described above.

8.2 Basic examples of Markov chains
EXAMPLE 1: I.I.D PROCESS {Xt} (OF DISCRETE R.V.S)

State space: S =

Initial distribution:

Transition probabilities: P (x, y) = P (Xt = y |Xt−1 = x) =
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EXAMPLE 2: BERNOULLI PROCESS {Xt}

State space: S = N = {0, 1, 2, 3, ...}

Initial distribution:

Transition probabilities:

P (x, y) = P (Xt = y |Xt−1 = x) =


We represent these transition probabilities with the following picture:

The above picture generalizes: Every Markov chain can be thought of as a random
walk on a graph as follows:

Definition 8.4 A directed graph is a finite or countable set of points called nodes,
usually labelled by integers, together with “arrows” from one point to another, such
that given two nodes x and y, there is either zero or one arrow going directly from x to
y.

EXAMPLES OF DIRECTED GRAPHS

199
&&

��

2 ee 4
��

��

6oo

3 YY

QQ

5 YY

@@ >>

NOT A DIRECTED GRAPH:

1 %%
99 2 // 3 ee
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If one labels the arrow from x to y with a number P (x, y) such that for each node
x,
∑
y
P (x, y) = 1, then the directed graph represents the transition probabilities of

a Markov chain, where the nodes are the states and the arrows represent the tran-
sitions. If you are in state x at time t − 1 (i.e. if Xt−1 = x), then to determine your
state Xt at time t, you follow one of the arrows starting at x (with probabilities as
indicated on the arrows which start at x).

EXAMPLE 3: BASIC URN MODEL

An urn initially holds 2 red and 2 green marbles. Every minute, you choose
a marble uniformly from the urn. If you draw a red marble, you put the red
marble back in the urn, and add two green marbles from the urn. If you draw
a green marble, you leave it out of the urn. Let Xt be the number of green
marbles in the jar after t draws.

EXAMPLE 4: SIMPLE UNBIASED RANDOM WALK

S = Z; P (x, x+ 1) = P (x, x− 1) = 1
2 for all x ∈ S.

· · · − 4

1
2
''
−3

1
2
%%

1
2

ff −2

1
2
%%

1
2

dd −1

1
2
""

1
2

dd 0

1
2
!!

1
2

cc 1

1
2
!!

1
2

`` 2

1
2
!!

1
2

`` 3

1
2
%%

1
2

`` 4 · · ·
1
2

bb

EXAMPLE 5: GAMBLER’S RUIN

Make a series of $1 bets in a casino, where you are 60% likely to win and 40%
likely to lose each game. Let Xt be your bankroll after the tth bet.
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8.3 Matrix theory applied to Markov chains
Suppose {Xt} is a Markov chain with finite state space S = {1, ..., d}. Let π0 : S →
[0, 1] give the initial distribution (i.e. π0(x) = P (X0 = x)) and let the transition
probabilities be Px,y (Px,y is the same thing as P (x, y)).
So long as the state space is finite, the most convenient representation of the chain’s
transition probabilities is in a matrix:

Definition 8.5 Let {Xt} be a Markov chain with state space S = {1, ..., d}. The d×d
matrix of transition probabilities

P =


P1,1 P1,2 · · · P1,d

P2,1 P2,2 · · · P2,d
...

... . . . ...
Pd,1 Pd,2 · · · Pd,d


d×d

is called the transition matrix of the Markov chain.

WHY USE MATRICES?
We will see that we can answer almost any question about a finite state space
Markov chain by performing some simple matrix algebra associated to the tran-
sition matrix P .

Stochastic matrices

A natural question to ask is exactly which matrices can be transition matrices of
some Markov chain. Notice that all the entries of P must be nonnegative, and that
the rows of P must sum to 1, since they represent the probabilities associated to all
the places x can go in 1 unit of time.

Definition 8.6 A d× d matrix of real numbers P is called a stochastic matrix if

1. P has only nonnegative entries, i.e. Px,y ≥ 0 for all x, y ∈ {1, ..., d}; and

2. each row of P sums to 1, i.e. for every x ∈ {1, ..., d},
d∑

y=1
Px,y = 1.

Theorem 8.7 (Transition matrices are stochastic) A d×d matrix of real numbers
P is the transition matrix of a Markov chain if and only if it is a stochastic matrix.
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n-step transition probabilities

Definition 8.8 Let {Xt} be a Markov chain and let x, y ∈ S. Define the n-step
transition probability from x to y by

P n(x, y) = P (Xt+n = y |Xt = x).

(Since we are assuming the transition probabilities are time homogeneous, these num-
bers will not depend on t.)

So P n(x, y) measures the probability, given that you are in state x, that you are in
state y exactly n units of time from now.

Theorem 8.9 Let {Xt} be a Markov chain with finite state space S = {1, ..., d}. If P
is the transition matrix of {Xt}, then for every x, y ∈ S and every n ∈ {0, 1, 2, 3, ...},
we have

P n(x, y) = (P n)x,y,

the (x, y)−entry of the matrix P n.

PROOF I’m going to prove this only when n = 2 (the proof for general n uses a
proof technique called “induction”, for which n = 2 constitutes the base case). By
time homogeneity,

P 2(x, y) = P (X2 = y |X0 = x)

Now, recall how matrix multiplication works: .












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Time n distributions

Definition 8.10 Let {Xt} be a Markov chain with state space S . A distribution
on S is a probability measure π on (S, 2S), i.e. a function π : S → [0, 1] such that∑
x∈S

π(x) = 1.

The coordinates of any distribution must be nonnegative and sum to 1.

We denote distributions as row vectors, i.e. if S = {1, 2, ..., d} then

π = (π(1), π(2), ..., π(d)) =
(
π(1) π(2) · · · π(d)

)
1×d

.

This is unusual, as normally one would represent a vector in Rd as a column matrix,
but this convention makes upcoming formulas easier.

Definition 8.11 Let {Xt} be a Markov chain. The time n distribution of the Markov
chain, denoted πn, is the distribution πn defined by

πn(x) = P (Xn = x).

So πn(x) gives the probability that at time n, you are in state x.

Theorem 8.12 Let {Xt} be a Markov chain with finite state space S = {1, ..., d}. If

π0 = (π0(1), π0(2), ..., π0(d))1×d

is the initial distribution of {Xt} (written as a 1 × d row vector), and if P is the
transition matrix of {Xt}, then for every x, y ∈ S and every n ∈ I, we have

πn(y) = (π0P
n)y,

the yth−entry of the (1× d) row vector π0P
n.

PROOF This is a direct calculation:

πn(y) = P (Xn = y) =
∑
x∈S

P (Xn = y |X0 = x)P (X0 = x) (LTP)

=
∑
x∈S

(P n)x,y π0(x) (Theorem 8.9)

=
∑
x∈S

π0(x) (P n)x,y

= [π0P
n]y (def’n of matrix multiplication) □
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EXAMPLE 6
Consider the Markov chain with state space {0, 1}whose transition matrix is

P =

 1
2

1
2

1 0


and whose initial distribution is uniform.

1. Sketch the directed graph representing this Markov chain.

2. Find the distribution of X2.

3. Find P (X3 = 0).

4. Find P (X8 = 1 |X7 = 0).

5. Find P (X7 = 0 |X4 = 0).
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Markov chains with infinite state space

Although the formulas for n−step transitions and time n distributions are moti-
vated by those obtained earlier in this section, the big difference if S is infinite
is that the transitions P (x, y) cannot be expressed in a matrix (since the matrix
would have to have infinitely many rows and columns). The proper notation is to
use functions:

Definition 8.13 Let {Xt} be a Markov chain with state space S.

1. The transition function of the Markov chain is the function

P : S × S → [0, 1] defined by P (x, y) = P (Xt = y |Xt−1 = x).

2. The initial distribution of the Markov chain is the function

π0 : S → [0, 1] defined by π0(x) = P (X0 = x).

3. The n−step transition function of the Markov chain is the function P n :
S × S → [0, 1] defined by

P n(x, y) = P (Xt+n = y |Xt = x).

4. The time n distribution of the Markov chain is the function

πn : S → [0, 1] defined by πn(x) = P (Xn = x).

As with finite state spaces, the transition functions must be “stochastic”:

Lemma 8.14 P : S × S → R is the transition function of a Markov chain with state
space S if and only if

1. for every x, y ∈ S, P (x, y) ≥ 0, and

2. for every x ∈ S,
∑
y∈S

P (x, y) = 1.

Lemma 8.15 If πn is the time n distribution of a Markov chain with state space S,
then

∑
x∈S

πn(x) = 1.
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Theorem 8.16 Let {Xt} be a Markov chain with transition function P and initial
distribution π0. Then:

1. For all x0, x1, ..., xn ∈ S,

P (X0 = x0, X1 = x1, ..., Xn = xn) = π0(x0)
n∏

j=1
P (xj−1, xj)

2. For all x, y ∈ S,

P n(x, y) =
∑

z1,...,zn−1∈S
P (x, z1)P (z1, z2) · · ·P (zn−2, zn−1)P (zn−1, y)

3. The time n distribution πn satisfies, for all y ∈ S,

πn(y) =
∑
x∈S

π0(x)P n(x, y).

8.4 The Fundamental Theorem of Markov chains
Many areas of mathematics have a central result which is key to understanding the
ideas of the subject. These central results are called “Fundamental Theorems”:

Fundamental Theorem of Arithmetic: every integer greater than 1 can be factored
uniquely into a product of prime numbers.

Fundamental Theorem of Algebra: every polynomial whose coefficients are in C
has a root in C.

Fundamental Theorem of Calculus: if f : R → R is cts and F (x) =
∫ x

a
f(t) dt,

then F ′(x) = f(x). (Also, if f : R → R is cts with antiderivative F , then∫ b

a
f(x) dx = F (b)− F (a).)

Fundamental Theorem of Line Integrals: If f = ∇f is a conservative vector field
on Rn, then for any piecewise C1 curve γ with initial point a and terminal

point b,
∫

γ
f · ds = f(b)− f(a).

Fundamental Theorem of Linear Algebra: IfA ∈Mmn(R), then dimC(A) = dimR(A),
[R(A)]⊥ = N(A) and [C(A)]⊥ = N(AT ).
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8.5. Stationary and steady-state distributions

This section is about the Fundamental Theorem of Markov Chains (FTMC). To get
an idea of what this theorem is about, we’ll do some experimentation.

What we (almost assuredly) saw in our experiment is that the Markov chain we
invented had a special distribution π, so that as n → ∞, the time n distributions
πn approached this distribution π, no matter what the initial distribution was. The
FTMC says that for most (not all) Markov chains, this phenomenon holds:

Theorem 8.17 (Fundamental Theorem of Markov Chains (FTMC)) Let {Xt} be
an irreducible, aperiodic, positive recurrent Markov chain. Then {Xt} has a unique
stationary distribution π, such that π is steady-state, meaning

lim
n→∞

πn(x) = π(x)

for all x ∈ S, no matter the initial distribution π0.

To understand this theorem, we need to learn the meaning of its vocabulary: irre-
ducible, aperiodic, positive recurrent, stationary, steady-state. Learning this vocabulary
is the goal of the next four sections.

8.5 Stationary and steady-state distributions
RECALL

A Markov chain is determined by three things:

•

•

•

From this, you get time n distributions πn which give the probability of each state
at time n:

πn(y) = P (Xn = y) =
∑
x∈S

πn−1(x)P (x, y) =
∑
x∈S

π0(x)P n(x, y)

(i.e. πn = π0P
n if S is finite and P is the transition matrix)

We are investigating the FTMC, which says that if {Xt} is “irreducible”, “aperi-
odic” and “positive recurrent”, then there is a “stationary, steady-state” distribu-
tion π such that πn(x) approaches π(x) for all x ∈ S. This upshot of the FTMC is
that for large n, πn(x) can be approximated by π(x).
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QUESTION

What do “stationary” and “steady-state” mean?

Stationary distributions

Let {Xt} be a Markov chain with state space S. Suppose π is a distribution on S so
that, if the initial distribution π0 is π, the time 1 distribution π1 is also π. Then π is
called “stationary” (because it didn’t change as time passed). More precisely:

Definition 8.18 Let {Xt} be a Markov chain. A distribution π on S is called sta-
tionary (with respect to {Xt}) if for all y ∈ S,∑

x∈S
π(x)P (x, y) = π(y).

If S is finite (say S = {1, 2, 3, ..., d}, to say π is stationary means (in matrix multipli-
cation terminology)

π P = π

if we write π =
(
π(1) π(2) · · · π(d)

)
1×d

.

Lemma 8.19 Let {Xt} be a Markov chain with state space S. If π is a stationary
distribution, then for all n > 0 and all y ∈ S, we have

π(y) =
∑
x∈S

π(x)P n(x, y).

(So if S is finite, this means π = π P n for all n.)

PROOF Definition of “stationary” + induction on n.

Lemma 8.20 Let {Xt} be a Markov chain with state space S. An initial distribution
π0 is stationary if and only if the time n distributions are the same for every n.

PROOF (⇒) Assume π0 is stationary.
Then, applying the previous lemma to any y ∈ S, we see

πn(y) =
∑
x∈S

π0(x)P n(x, y) = π0(y)

so πn = π0 as wanted.

(⇐) Assume the time n distributions are the same for every n.

299



8.5. Stationary and steady-state distributions

In particular, this means π1 = π0, meaning

π0(y) = π1(y) =
∑
x∈S

π0(x)P (x, y).

By definition, π0 is stationary. □

Put another way, this lemma says that stationary distributions are those which do
not change as time passes.

Steady-state distributions

A steady-state distribution for a Markov chain is like the special one in our ex-
periment: if π is steady-state for {Xt}, then no matter the initial distribution π0,
πn(x)→ π(x) as n→∞, so for large n, πn(x) ≈ π(x). More precisely:

Definition 8.21 Let {Xt} be a Markov chain with state space S . A distribution π on
S is called steady-state (with respect to {Xt}) if

lim
n→∞

P n(x, y) = π(y) for all x, y ∈ S.

Theorem 8.22 Let {Xt} be a Markov chain with state space S . Suppose π is a steady-
state distribution for {Xt}. Then for any initial distribution π0,

lim
n→∞

πn(y) = lim
n→∞

P (Xn = y) = π(y) ∀ y ∈ S.

PROOF By Theorem 8.16 (3), we get the top equation below. Then take the limit of
both sides as n→∞:

πn(y)

n→∞

��

= P (Xn = y) =
∑
x∈S

π0(x)P n(x, y)

n→∞

��

lim
n→∞

πn(y)
∑
x∈S

π0(x)π(y)

So steady-state distributions are those which “attract” the time n distribution as
n increases, no matter the initial distribution.
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EXAMPLE 7
Let p, q ∈ (0, 1) (there is no relationship between p and q). Consider a Markov chain
with S = {0, 1}whose transition matrix is

P =
(

1− p p
q 1− q

)
.

Find all stationary distributions of this Markov chain (there might not be any).

IN GENERAL

You find stationary distributions for finite state-space Markov chains by solving a
system of linear equations corresponding to π P = π as in Example 6.
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EXAMPLE 8
Find all stationary distributions of {Xt}, if {Xt} has transition matrix

1
7

4
7

2
7

0 5
7

2
7

3
7

1
7

3
7

 .

EXAMPLE 9
Let {Xt} be simple, unbiased random walk on Z (this means S = Z, and for every
x ∈ S, P (x, x+ 1) = P (x, x− 1) = 1

2 ). Find all stationary distributions of {Xt}.

· · · − 4

1
2
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−3

1
2
%%

1
2

ff −2

1
2
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1
2

dd −1

1
2
""

1
2

dd 0

1
2
!!

1
2

cc 1

1
2
!!

1
2

`` 2

1
2
!!

1
2

`` 3

1
2
%%

1
2

`` 4 · · ·
1
2

bb
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Number of stationary and steady-state distributions

BIG PICTURE QUESTIONS

Let {Xt} be a Markov chain.

1. Does {Xt} have a stationary distribution?

2. If so, how many stationary distributions does {Xt} have?

3. Does {Xt} have a steady-state distribution?

4. If so, how many steady-state distributions does {Xt} have?

In the rest of this section, we are going to run through some theorems addressing
these questions. We’ll start with ideas related to Question 2 above.

Definition 8.23 Suppose π1, π2, π3, ... are all distributions on a set S (there could be
finitely or countably many distributions). A convex combination of these distribu-
tions is another distribution of the form∑

j

αjπj

where the αj are nonnegative numbers satisfying
∑
j
αj = 1.

EXAMPLE

Let π1 = (.1, .5, .4), π2 = (0, 1, 0) and π3 = (.7, .2, .1). The distribution

.5π1 + .3π2 + .2π3 = .5(.1, .5, .4) + .3(0, 1, 0) + .2(.7, .2.1)
= (.05, .25, .2) + (0, .3, 0) + (.14, .04, .02)
= (.19, .59, .22)

is a convex combination of π1, π2 and π3 with α1 = .5, α2 = .3 and α3 = .2.
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Lemma 8.24 Any convex combination of distributions is a distribution.

PROOF If
π =

∑
j

αjπj,

then ∑
x∈S

π(x) =
∑
x∈S

∑
j

αjπj(x) =
∑

j

αj

∑
x∈S

πj(x) =
∑

j

αj · 1 = 1.

Since all the αj are nonnegative, we see π(x) ≥ 0 for all x as well.
Therefore π is a distribution. □

SPECIAL CASE

A convex combination of two distributions π1 and π2 is any distribution

απ1 + (1− α)π2

where α ∈ [0, 1].

Theorem 8.25 (Any convex comb. of stat. distributions is stationary) Suppose
π1, π2, π3, ... are all stationary distributions for a Markov chain {Xt}. Then any con-
vex combination of the πj is also a stationary distribution for {Xt}.

PROOF HW (you have to check that the stationarity equation π(y) =
∑
x∈S

π(x)P (x, y)

holds for the convex combination)

Corollary 8.26 (Number of stationary distributions) A Markov chain must have
either zero, one, or infinitely many stationary distributions.

PROOF Suppose the Markov chain has two different stationary distributions, say
π1 and π2. Then for any α ∈ [0, 1],

απ1 + (1− α)π2

is also a stationary distribution. Since there are infinitely many choices for α ∈
[0, 1], the Markov chain will have infinitely many stationary distributions. □
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Now we turn to Big Picture Question 4 from earlier (how many steady-state distri-
butions can a Markov chain have?)

Theorem 8.27 (Uniqueness of steady-state distributions) Let {Xt} be a Markov
chain with state space S. If the Markov chain has a steady-state distribution π, then

1. π is stationary for {Xt}; and

2. π is the only stationary distribution for {Xt}.

PROOF OF STATEMENT (2) We prove this by contradiction.
Suppose πdif is a stationary distribution, different from π.
That means there is y ∈ S such that πdif (y) ̸= π(y).
Now, use πdif as the initial distribution of the chain; by stationarity the time n

distribution of state y is [πdif ]n(y) = πdif (y). Thus

lim
n→∞

[πdif ]n(y) = lim
n→∞

πdif (y) = πdif (y) ̸= π(y).

This contradicts π being steady-state, completing the proof of (2). □

PROOF OF STATEMENT (1) WHEN S IS FINITE
Suppose π is steady-state and let y ∈ S. Then

π(y) = lim
n→∞

P n(x, y) (by definition of steady-state)

= lim
n→∞

P n+1(x, y)

= lim
n→∞

∑
z∈S

P n(x, z)P (z, y) (LTP)

=
∑
z∈S

lim
n→∞

P n(x, z)P (z, y)

=
∑
z∈S

π(z)P (z, y) (by definition of steady-state).

Since π(y) =
∑
z∈S

π(z)P (z, y), π is stationary by definition.

QUESTION

Why isn’t this proof valid if S is infinite?
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The perils of interchanging limits and infinite sums

In the argument on the previous page, we had the expression

lim
n→∞

∑
z∈S

P n(x, z)P (z, y)

which is a specific case of a more general expression of the form

lim
n→∞

∑
z

a(z)bn(z).

We’d like to interchange the limit and sum operations here (i.e. move the limit
after the sum), and we can always do this if the sum is a finite sum, but if the sum
is infinite, this may not be legal:

AN EXAMPLE WHERE INTERCHANGE OF LIMIT AND INFINITE SERIES FAILS

Suppose z ∈ {1, 2, 3, ...}, bn(z) = z2

n2 and a(z) = 1
z2 . Then

lim
n→∞

∞∑
z=1

a(z)bn(z) = lim
n→∞

∞∑
z=1

1
z2

(
z2

n2

)
= lim

n→∞

∞∑
z=1

1
n2 = lim

n→∞
∞ = ∞

but if we interchange the limit and the sum, we get

∞∑
z=1

a(z) lim
n→∞

bn(z) =
∞∑

z=1

1
z2 lim

n→∞

z2

n2 =
∞∑

z=1

1
z2 (0) =

∞∑
z=1

0 = 0 .

In proofs like this, there are two ways to get around this problem. The first is to use
what is called an argument by exhaustion, where we consider a finite subset of the
zs being added and write down an inequality like this (assuming all the bn(z) ≥ 0):

lim
n→∞

∞∑
z=1

a(z)bn(z) ≥ lim
n→∞

N∑
z=1

a(z)bn(z) =
N∑

z=1
a(z) lim

n→∞
bn(z).

Since this inequality holds for all N , we can then take a limit of both sides of this
as N →∞ to get

lim
n→∞

∞∑
z=1

a(z)bn(z) ≥
∞∑

z=1
a(z) lim

n→∞
bn(z).

In other words, if bn(z) ≥ 0, the limit of an infinite sum ≥ the infinite sum of the limits .

To complete an argument by exhaustion, you argue separately (somehow) that

lim
n→∞

∞∑
z=1

a(z)bn(z) ≤
∞∑

z=1
a(z) lim

n→∞
bn(z);

this argument depends on the particular a(z) and bn(z) under consideration.
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PROOF OF STATEMENT (1) WHEN S IS INFINITE
Suppose π is steady-state. We’ll prove π is stationary by establishing two claims:

Claim 1: For every y ∈ S, π(y) ≥
∑
z∈S

π(z)P (z, y).

To prove this, observe
π(y) = lim

n→∞
P n+1(x, y) (since π is steady-state)

= lim
n→∞

∑
z∈S

P n(x, z)P (z, y)

≥
∑
z∈S

lim
n→∞

P n(x, z)P (z, y) (limit of inf. series ≥ inf. series of limit)

=
∑
z∈S

π(z)P (z, y) (since π is steady-state).

Claim 2: For every y ∈ S, π(y) ≤
∑
z∈S

π(z)P (z, y).

To prove this, suppose not, i.e. ∃ y ∈ S where π(y) >
∑
z∈S

π(z)P (z, y).

This would mean that
1 =

∑
y∈S

π(y) >
∑
y∈S

∑
z∈S

π(z)P (z, y) =
∑
z∈S

∑
y∈S

π(z)P (z, y)

=
∑
z∈S

π(z)
∑
y∈S

P (z, y)

=
∑
z∈S

π(z) · 1

= 1
This is a contradiction (1 > 1 is false), so Claim 2 is true.

Claims 1 and 2 tell us that for every y ∈ S, π(y) =
∑
z∈S

π(z)P (z, y), i.e. that

π is stationary, as wanted. This completes the proof of Theorem 8.27. □
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EXAMPLE 7, REVISITED

For the Markov chain whose state space is S = {0, 1} and whose transition matrix

is P =
(

1− p p
q 1− q

)
, we saw that the stationary distribution was

π =
(

q

p+ q
,

p

p+ q

)
.

Is this distribution steady-state?

Solution: π is steady-state if lim
n→∞

P n(x, y) = π(y) for all x, y ∈ S, i.e.

lim
n→∞

P n =
( q

p+q
p

p+q
q

p+q
p

p+q

)
.

Q: How might we compute powers P n of the matrix P ?

A:

If you did all that for this matrix P , you’d find

λ = 1↔ (1, 1) λ = 1− p− q ↔ (−p, q)
so

Λ =
(

1 0
0 1− p− q

)
S =

(
1 −p
1 q

)
and therefore (after some calculation)

P n = SΛnS−1 =

 q
p+q

+ p
p+q

(1− p− q)n p
p+q
− q

p+q
(1− p− q)n

q
p+q
− p

p+q
(1− p− q)n p

p+q
+ q

p+q
(1− p− q)n

 .
Since −1 < 1− p− q < 1, lim

n→∞
P n =

( q
p+q

p
p+q

q
p+q

p
p+q

)
, so lim

n→∞
P n(x, y) = π(y) and

π =
(

q
p+q

, p
p+q

)
is indeed steady-state.

REMARK

There will be a better (less computationally intense) way of concluding π is steady-
state, based on theory we will develop in this chapter.
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8.6 Class structure and periodicity
What this section is about: The FTMC says that if {Xt} is irreducible, aperi-
odic and positive recurrent, then it has a steady-state distribution.

In this section, we discuss what is meant by “irreducible” and “aperiodic”.

To get started, we need to establish some notation that we’ll use frequently.

Definition 8.28 Let {Xt} be a Markov chain with state space S.

1. Given an event E, define Px(E) = P (E |X0 = x). This is the probability of
event E, given that you start at x.

2. Given a r.v. Z, define Ex(Z) = E(Z |X0 = x). This is the expected value of Z,
given that you start at x.

Definition 8.29 Let {Xt} be a Markov chain with state space S.

1. Given a set A ⊆ S, let TA be the r.v. defined by

TA = min{t ≥ 1 : Xt ∈ A}.

(We set TA = ∞ if Xt /∈ A for all t.) TA is called the hitting time or first
passage time to A.

2. Given a state a ∈ S, denote by Ta the r.v. T{a}.

Note: TA : Ω→ {1, 2, 3, ...}⋃{∞}, so
∞∑

n=1
P (TA = n) = 1− P (TA =∞) ≤ 1.

Class structure

Definition 8.30 Let {Xt} be a Markov chain with state space S.

1. For each x, y ∈ S, define fx,y = Px(Ty < ∞). This is the probability you get
from x to y in some finite (positive) time.

2. We say x leads to y (and write x→ y) if fx,y > 0. This means that if you start
at x, there is some positive probability that you will eventually hit y.

3. We say x and y communicate (and write x↔ y) if x→ y and y → x.
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Definition 8.31 Let {Xt} be a Markov chain with state space S, and let C ⊆ S.

1. C is called closed if for every x ∈ C, if x→ y, then y must also be in C.

2. C is called a communicating class if C is closed and all members of C com-
municate.

3. {Xt} is called irreducible if S is a communicating class.

What these definitions mean:
• closed sets are those which are like the Hotel California: “you can never

leave”.
• A set of states is a communicating class if you never leave, and you can get

from anywhere to anywhere within the class.
• A Markov chain is irreducible if you can get from any state to any other state.

Remark: whether or not a Markov chain is irreducible depends only on its transi-
tion probabilities, and not on its initial distribution.

EXAMPLE 10
Let {Xt} be a Markov chain with state space {1, 2, 3, 4, 5, 6}whose transition matrix
is

P =



1 0 0 0 0 0
1
4

1
2

1
4 0 0 0

0 1
2

1
4

1
8 0 1

8

0 0 0 1
4

1
2

1
4

0 0 0 1
2 0 1

2

0 0 0 1
2 0 1

2


Find all closed sets and all communicating classes of {Xt}.

OBSERVATION

To solve Example 10, the only thing relevant is whether the entries of P are zero or
nonzero. So long as an entry is nonzero, whether it is 1

2 or 1
4 or whatever doesn’t

affect the closed sets and communicating classes of {Xt}.
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EXAMPLE 11
Each matrix below is the transition matrix of a Markov chain with state space
{1, 2, 3, 4}. The “+” in the matrices represent arbitrary positive numbers. For each
Markov chain, find all its communicating classes and determine if the chain is ir-
reducible. 

+ 0 + 0
0 + + 0
0 + + +
+ 0 0 +




+ 0 + 0
0 + + 0
+ 0 + 0
+ + 0 +



Lemma 8.32 Let {Xt} be a Markov chain with state space S. Then

x→ y ⇐⇒ P n(x, y) > 0 for some n ≥ 1.

PROOF (⇒) Assume x→ y, i.e. fx,y = Px(Ty <∞) > 0.
Notice

Px(Ty <∞) =
∞∑

n=1
Px(Ty = n),

so if this sum is > 0, at least one of its terms must be > 0, meaning there must
be at least one N such that Px(Ty = N) > 0.
Since PN(x, y) ≥ Px(Ty = N), we can conclude PN(x, y) > 0 as wanted.

(⇐) Suppose P n(x, y) > 0 for one or more n. Take the smallest such n; for this
n, we have

Px(Ty = n) = P n(x, y) > 0.

Therefore
fx,y = Px(Ty <∞) ≥ Px(Ty = n) > 0,

so x→ y as wanted. □

311



8.6. Class structure and periodicity

Lemma 8.33 Let {Xt} be a Markov chain with state space S. Then

(x→ y and y → z)⇒ x→ z.

PROOF Apply Lemma 8.32 twice:

x→ y ⇒ there exists n1 such that P n1(x, y) > 0.

y → z ⇒ there exists n2 such that P n2(y, z) > 0.
Thus

P n1+n2(x, z) ≥ P n1(x, y)P n2(y, z) > 0,
so by Lemma 8.32 again, x→ z. □

RECALL

One of the necessary ingredients in the FTMC is that the chain is irreducible. In
the next example, we see why irreducibility is important to ensuring the existence
of a steady-state distribution.

EXAMPLE 12
Suppose {Xt} is a Markov chain with state space {0, 1} whose transition matrix is
the 2× 2 identity matrix (P = I).

1. Sketch the directed graph of this Markov chain, and find its communicating
classes. Is {Xt} irreducible?

2. Find all stationary distributions of this Markov chain.

3. Does {Xt} have a steady-state distribution? Explain.
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Periodicity

To explain the concept of periodicity, let’s start with this simple example, which
illustrates why “aperiodicity” is important in the FTMC:

EXAMPLE 13
Suppose {Xt} is a Markov chain with state space {0, 1}whose transition matrix is

P =
(

0 1
1 0

)
.

1. Sketch the directed graph of this Markov chain, and find its communicating
classes. Is {Xt} irreducible?

2. Find all stationary distributions of this Markov chain.

3. Suppose π0 = (1, 0). Compute πn for every n. Does lim
n→∞

πn exist?

4. Does {Xt} have a steady-state distribution? Explain.

The problem with the Markov chain in Example 13 (i.e. what causes its stationary
distribution to not be steady-state) is that it is “periodic”... if you start in a certain
state, you can only return to that state at times that are a multiple of 2. This means
the chain has period 2. More generally:

Definition 8.34 Let a and b be integers. We say a divides b (and write a|b) if b is a
multiple of a. The greatest common divisor of a set E of integers, denoted gcdE, is
the largest integer dividing every number in that set.

EXAMPLES

6 | 42 5 ̸ | 42 3 | 180
gcd{12, 36} = 12 gcd{18, 27, 15} = 3 gcd{8, 17} = 1
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Definition 8.35 Let {Xt} be a Markov chain with state space S. Let x ∈ S be such
that fx,x > 0 (equivalently, P n(x, x) > 0 for some n ≥ 1; equivalently, x → x).
The period of x, denoted by dx, is the largest integer which divides every n for which
P n(x, x) > 0. More formally,

dx = gcd{n : P n(x, x) > 0}.

Note: If P (x, x) > 0, then dx|1, so dx = 1.

EXAMPLE 14
Let {Xt} be simple, unbiased random walk on Z:

· · · − 4

1
2
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−3

1
2
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1
2

ff −2

1
2
%%

1
2

dd −1

1
2
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1
2

dd 0

1
2
!!

1
2

cc 1

1
2
!!

1
2

`` 2

1
2
!!

1
2

`` 3

1
2
%%

1
2

`` 4 · · ·
1
2

bb

Determine the period of each state.

Theorem 8.36 (Communicating states have the same period) Suppose {Xt} is
a Markov chain with state space S. Let x, y ∈ S be such that x↔ y. Then dx = dy.

PROOF Suppose states x and y lead to one another. Then:

x→ y ⇒ ∃n1 s.t. P n1(x, y) > 0
y → x ⇒ ∃n2 s.t. P n2(y, x) > 0.

(P.S. ∃ is short for “there exists”.)

Therefore

P n1+n2(x, x) ≥ P n1(x, y)P n2(y, x) > 0 ⇒ dx | (n1 + n2).

Now, take any n such that P n(y, y) > 0. Then

P n1+n+n2(x, x) ≥ P n1(x, y)P n(y, y)P n2(y, x) > 0⇒ dx | (n1 + n+ n2).

Notice that if dx divides both n1 + n2 and n1 + n+ n2, then dx divides the
difference, so dx |n.

We have shown dx divides any n such that P n(y, y) > 0, meaning dx is a
common divisor of these n.
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A symmetric argument (reversing the roles of x and y) shows dy ≤ dx.

So dx = dy, as wanted. □

Theorem 8.36 shows that period is a class property, meaning that it is a property
shared by all members of a communicating class. This implies:

Corollary 8.37 If {Xt} is an irreducible Markov chain, all states have the same pe-
riod.

Definition 8.38 An irreducible Markov chain with state space S is called aperiodic
if dx = 1 for all x ∈ S and is called periodic with period d if dx = d > 1 for all
x ∈ S.

EXAMPLE 15
Find the period of each Markov chain whose directed graph is given below.

1
!!
2oo

!!
3

��
4

^^ 1

��

2oo 3oo
!!
4``

5

@@

One important consequence of aperiodicity is that in an irreducible, aperiodic
Markov chain, for every pair of states you can get from one to the other in any
sufficiently large amount of time. This is made precise in Theorem 8.39:

Theorem 8.39 Suppose {Xt} is an irreducible, aperiodic Markov chain. Then, for
every x, y ∈ S, there is a number N such that P n(x, y) > 0 for all n ≥ N .

PROOF For each z ∈ S, let Iz ⊆ N be defined by Iz = {n : P n(z, z) > 0}.
This means that Iz is the set of times that you can get from state z back to itself.
Notice that Iz is closed under addition: if t, u ∈ Iz, then t+ u ∈ Iz.
Therefore if t ∈ Iz, then for any k ≥ 1, kt = t+ t+ t+ · · ·+ t ∈ Iz as well.
We know 1 = d = gcd Iz.

Claim 1: There is a number n1 such that n1 ∈ I and n1 + 1 ∈ Iz.
To prove this, suppose not. That means there is an integer g ≥ 2 which is

the smallest gap between two consecutive numbers in Iz.
Since g is a gap between numbers in I , we can select t so that t ∈ Iz and
t+ g ∈ Iz.

But, since {Xt} is aperiodic and g ≥ 2, g is not the period of {Xt}, so there
must be a time u ∈ Iz which g does not divide.
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Divide this u by g to get u = gq + r where the remainder r ∈ {1, 2, ..., g − 1}.
At this point, we know that since Iz is closed under addition and multi-

plication by scalars,
(q + 1)(t+ g) ∈ Iz and u+ (q + 1)t ∈ Iz.

But the gap between these two numbers is
(q + 1)(t+ g)− [u+ (q + 1)t] = (q + 1)g − u = qg + g − gq − r

= g − r < g,
contradicting g being the smallest gap between numbers in Iz.

Claim 2: There is a number n2 = n2(z) so that if n ≥ n2, n ∈ Iz.
To prove this, let n2 = n2

1, where n1 is as in Claim 1 (n1 ∈ Iz, n1 + 1 ∈ Iz).
Now suppose n ≥ n2.
Divide n− n2 by n1 to get

n− n2 = n1q + r (∗)
where the remainder r ∈ {0, 1, 2, ..., n1 − 1}.

Rewriting (∗), we get
n− n2 = n1q + r

n = n1q + r + n2
n = n1q + r + n2

1
n = n1q + r + rn1 − rn1 + n2

1
n = r(n1 + 1)− (n1 − r + q)n1

and therefore n ∈ Iz since n1 ∈ Iz and n1 + 1 ∈ Iz.

Now, fix x, y ∈ S. By irreducibility, x→ y, so ∃n3 so that P n3(x, y) > 0.
Finally, let N = n3 + n2(y). For any n ≥ N ,

P n(x, y) ≥ P n3(x, y)P n−n3(y, y) > 0,

using Claim 2 since n− n3 ≥ N − n3 = n2(y). This proves the theorem. □

8.7 Recurrence and transience
What this section is about: We are going to divide the states of a Markov chain
into different “types”. There will be general laws which govern the behavior
of each “type” of state, and the types of states of the chain gives you informa-
tion about whether the chain has stationary distributions and/or a steady-state
distribution.

316



8.7. Recurrence and transience

Definition 8.40 Let {Xt} be a Markov chain with state space S.

1. For each x ∈ S, set fx = fx,x = Px(Tx <∞).

2. A state x ∈ S is called recurrent if fx = 1.

The set of recurrent states of the Markov chain is denoted SR.

The Markov chain {Xt} is called recurrent if SR = S, i.e. all of its states are
recurrent.

3. A state x ∈ S is called transient if fx < 1.

The set of transient states of the Markov chain is denoted ST .

The Markov chain {Xt} is called transient if all its states are transient.

Recurrent and transient states are two of the “types” of states referred to earlier:

• a recurrent state (by definition) is “a state to which you must return” (with
probability 1)

• a transient state is (by definition) “a state to which you might not return”.

Expected number of visits to a state

The rest of this section is devoted to developing properties of recurrent and tran-
sient states. The key to deriving these properties is to connect recurrence/transience
with n-step transition probabilities P n(x, y):

behavior of the
n-step transitions

P n(x, y)
Thm 8.42←→ Thm 8.43←→

recurrence/
transience of
x and/or y

To connect these concepts, we will need a new idea that involves the expected
value of a new random variable that counts the number of times a Markov chain
“visits” each state.
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Definition 8.41 Let {Xt} be a Markov chain with state space S.

• For each y ∈ S, define the r.v. Vy, the number of visits to y, by

Vy = # of times t ≥ 1 such that Xt = y.

• For each y ∈ S and N ∈ {1, 2, 3, ...}, define the r.v. Vy,N , the number of visits
to y up to time N , by

Vy,N = # of times t ∈ {1, 2, ..., N} such that Xt = y.

Observe: Vy : Ω→ {0, 1, 2, 3, ...}⋃{∞}, but Vy,N : Ω→ {0, 1, 2, 3, ..., N}.

Now, for the first major theorem of this section. This result connects n-step transi-
tion probabilities to a state with the expected number of visits to that state:

Theorem 8.42 (Formula for expected number of visits) Let {Xt} be a Markov
chain with state space S. Then, for any x, y ∈ S, we have

Ex(Vy) =
∞∑

n=1
P n(x, y) and Ex(Vy,N) =

N∑
n=1

P n(x, y).

The proof of this theorem is the first of several places where it will be convenient
to use something called an indicator function or characteristic function. Suppose
E is a set and X is a r.v. Denote by 1E the r.v. defined by

1E(X) =
{

1 if X ∈ E
0 if X /∈ E .

Observe that if {Xt} is a sequence of r.v.s, we can count the number of the Xt that
are in set E by adding the 1E(Xt). In particular,
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PROOF The first equation follows as a direct calculation:

Ex(Vy) = Ex

[ ∞∑
n=1

1{y}(Xn)
]

=
∞∑

n=1
Ex(1{y}(Xn))

=
∞∑

n=1
[1 · Px(Xn = y) + 0 · Px(Xn ̸= y)]

=
∞∑

n=1
Px(Xn = y)

=
∞∑

n=1
P n(x, y).

The second equation has the same proof, with N instead of∞ as the upper limit of
the sum. □

Now for a theorem that connects expected number of visits with recurrence and
transience:

Theorem 8.43 (Properties of recurrent/transient states) Let {Xt} be a Markov
chain with state space S. Then:

1. If y ∈ ST , then for all x ∈ S,

Px(Vy <∞) = 1 and Ex(Vy) = fx,y

1− fy

<∞.

2. If y ∈ SR, then
Px(Vy =∞) = Px(Ty <∞) = fx,y

(in particular Py(Vy =∞) = 1) and

(a) if fx,y = 0, then Ex(Vy) = 0;

(b) if fx,y > 0, then Ex(Vy) =∞.

What this theorem says in English:

1. If y is transient, then no matter where you start, you only visit y a finite

number of times (and the expected number of times you visit is
fx,y

1− fy

).

2. If y is recurrent, then

• it may be possible that you never hit y, but
• if you hit y, then you must visit y infinitely many times.
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PROOF First, observe that Vy ≥ 1 ⇐⇒ Ty < ∞, because both statements corre-
spond to hitting y in a finite amount of time.

Therefore Px(Vy ≥ 1) = Px(Ty <∞) = fx,y.

Now Px(Vy ≥ 2) =

Similarly Px(Vy ≥ n) =

That means that for all n ≥ 1 we have Px(Vy = n) =

Case 1: y is transient (i.e. fy = fy,y < 1).
Then Px(Vy =∞) = lim

n→∞
Px(Vy ≥ n) = lim

n→∞
fx,yf

n−1
y = 0

so Px(Vy <∞) = 1 as wanted.

Also,

Ex(Vy) =
∞∑

n=0
n · Px(Vy = n)

=
∞∑

n=1
n · Px(Vy = n)

=
∞∑

n=1
nfx,yf

n−1
y (1− fy) (from above)

= fx,y(1− fy)
∞∑

n=1
nfn−1

y

= fx,y(1− fy) 1
(1− fy)2 (pink sheet)

= fx,y

1− fy

.

Case 2: y is recurrent (i.e. fy = fy,y = 1).

Then Px(Vy =∞) = lim
n→∞

Px(Vy ≥ n) = lim
n→∞

fx,yf
n−1
y = lim

n→∞
fx,y1n−1 = fx,y.

So if fx,y > 0, then Ex(Vy) =∞, since Px(Vy =∞) = fx,y > 0.

If fx,y = 0, then P n(x, y) = 0 for all n ≥ 1, so by Lemma 8.42,

Ex(Vy) =
∞∑

n=1
P n(x, y) =

∞∑
n=1

0 = 0. □
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Recurrence criteria

Putting the previous two results together yields these criteria, which can be useful
to determine if a state is recurrent or transient:

Corollary 8.44 (Recurrence criteria) Let {Xt} be a Markov chain with state space
S. Let y ∈ S.

1. y ∈ SR ⇐⇒ Ey(Vy) =∞ ⇐⇒
∞∑

n=1
P n(y, y) diverges.

2. If there exists x ∈ S so that lim
n→∞

P n(x, y) ̸= 0, then y ∈ SR.

(Restated, if y ∈ ST , then lim
n→∞

P n(x, y) = 0 for all x ∈ S.)

PROOF Statement (1) follows from 2(b) of Theorem 8.43 and Theorem 8.42.
For statement (2), y being transient implies Ex(Vy) <∞ by (1) of Theorem 8.43,

and that implies
∞∑

n=1
P n(x, y) <∞ by Theorem 8.42.

By the nth-term Test for infinite series (Calculus 2), lim
n→∞

P n(x, y) = 0. □

EXAMPLE 16
Consider a Markov chain with state space {1, 2, 3} and transition matrix

P =

 0 1 0
1 0 0
0 1− p p


where p ∈ (0, 1).

1. Which states are recurrent? Which states are transient?

2. Find fx,y for all x, y ∈ S.

3. Find the expected number of visits to each state, given that you start in any
of the states.
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Recurrence/transience and class structure

Theorem 8.45 (Recurrent states lead only to recurrent states) Suppose {Xt} is
a Markov chain. If x ∈ SR and x→ y, then:

1. fy,x = fx,y = 1; and

2. y ∈ SR.

PROOF If y = x, this follows from the definition of “recurrent”, so assume y ̸= x.
We are given x→ y, so P n(x, y) > 0 for some n ≥ 1. Let N be the smallest n ≥ 1
such that P n(x, y) > 0. Then we have a picture like this:

Proof that fy,x = 1:
Suppose not, i.e. that fy,x < 1. Then

1− fx ≥ P (x, y1)P (y1, y2)P (y2, y3) · · ·P (yN−1, yN) [1− fy,x] > 0
so 1− fx > 0, so fx < 1. This contradicts x ∈ SR. Therefore fy,x = 1.

Proof that y ∈ SR:
Since fy,x = 1, y → x, so ∃N ′ such that PN ′(y, x) > 0.

This means for every n ≥ 0, PN ′+n+N(y, y) ≥ PN ′(y, x)P n(x, x)PN(x, y).
We’ll prove y is recurrent by showing Ey(Vy) =∞:

Ey(Vy) =
∞∑

n=1
P n(y, y)

≥
∞∑

n=N ′+N+1
P n(y, y)

≥
∞∑

n=1
PN ′(y, x)P n(x, x)PN(x, y)

322



8.7. Recurrence and transience

Ey(Vy) ≥ PN ′(y, x)PN(x, y)
∞∑

n=1
P n(x, x)...

= PN ′(y, x)PN(x, y)Ex(Vx)
(Formula for expected number of visits)

=∞
(Recurrence criterion 1 of Corollary 8.44).

By a recurrence criteria, since Ey(Vy) =∞, y ∈ SR.

Proof that fx,y = 1:
Since y ∈ SR and y → x, fx,y = 1 by the first statement we proved. □

Corollary 8.46 (Finite state space Markov chains are not transient) Let {Xt} be
a Markov chain with finite state space S . Then the Markov chain is not transient (i.e.
there is at least one recurrent state).

PROOF Suppose not, i.e. all states are transient. Then by a recurrence criterion,

0 = lim
n→∞

P n(x, y) ∀x, y ∈ S

⇒ 0 =
∑
y∈S

lim
n→∞

P n(x, y)

⇒ 0 = lim
n→∞

∑
y∈S

P n(x, y)

⇒ 0 = lim
n→∞

1.

This is a contradiction! Therefore there must be at least one recurrent state. □

Theorem 8.47 (Decomposition Theorem) Let {Xt} be a Markov chain with state
space S. If SR ̸= ∅, then we can write

SR =
⋃
j

Cj

where the Cj are disjoint communicating classes (the union is either finite or count-
able).

PROOF Since SR ̸= ∅, we can choose some x ∈ SR.
Define C(x) = {y ∈ S : x→ y}, meaning that C(x) is the set of states you can

get to (eventually) from x.

Since x is recurrent, x ∈ C(x). Thus C(x) ̸= ∅, and SR = ⋃
x∈SR

C(x).
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Claim 1: C(x) is closed.

Claim 2: C(x) is a communicating class.

Claim 3: For x, y ∈ SR, the sets C(x) and C(y) are either disjoint or equal.
To verify this, suppose z ∈ C(x) ∩ C(y).
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Summary of the theory developed so far

Theorem 8.48 (Main Recurrence/Transience Theorem) Let {Xt} be a Markov
chain with state space S.

1. If C ⊆ S is a communicating class, then either every state in C is recurrent (i.e.
C ⊆ SR), or every state in C is transient (i.e. C ⊆ ST ).

2. If C ⊆ S is a communicating class of recurrent states, then fx,y = 1 for all
x, y ∈ C.

3. If C ⊆ S is a finite communicating class, then C ⊆ SR.

4. If {Xt} is irreducible, then {Xt} is either recurrent or transient.

5. If {Xt} is irreducible and S is finite, then {Xt} is recurrent.

Theorem 8.49 (State space decomposition) Let {Xt} be a Markov chain with state
space S. We can write S as a disjoint union

S = SR

⋃
ST =

(
∪
j
Cj

)⋃
ST

where the Cj are recurrent communicating classes (there might be communicating
classes in ST , but we don’t care so much about those). Then:

1. If you start in one of the Cj ,

• you willa stay in that Cj forever, and

• you will visit every state in that Cj infinitely often.

2. If you start in ST , you either

a) stay in ST forever (but hit each state in ST only finitely many times), or

b) you will eventually enter a Cj , in which case you subsequently stay in that
Cj forever and visit every state in that Cj infinitely often.

Situation 2 (a) above is only possible if ST is infinite.
aTechnicality: in this theorem, the phrase “you will” actually means “the probability that

you will is 1”.
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Absorption probabilities
QUESTION

Suppose you have a Markov chain with state space decomposition as described
above. Suppose you start at x ∈ ST . What is the probability that you eventually
enter recurrent communicating class Cj?

Definition 8.50 Let {Xt} be a Markov chain with state space S. Let x ∈ ST and let
Cj be a communicating class of recurrent states. The probability x is absorbed by
Cj , denoted fx,Cj

, is
fx,Cj

= Px(TCj
<∞).

Lemma 8.51 Let {Xt} be a Markov chain with state space S. Let x ∈ ST and let C
be a communicating class of recurrent states. Then for any y ∈ C, fx,Cj

= fx,y.

When ST is finite, we can solve for these probabilities by solving a system of linear
equations. Here is the method:

Suppose ST = {x1, ..., xn}.

Since ST is finite, each xj must eventually be absorbed by a Cj , so we have∑
i

fxj ,Ci
= 1 for all j.

Fix one of the Ci; then
fxj ,Ci

= Pxj
(TCi

= 1) + Pxj
(1 < TCi

<∞)

If you write this equation for each xj ∈ ST , you get a system of n equations in
the n unknowns fx1,Ci

, fx2,Ci
, fx3,Ci

, ..., fxn,Ci
. This can be solved for the

absorption probabilities for Ci; repeating this procedure for each i yields all the
absorption probabilities of the Markov chain.
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EXAMPLE 17
Consider a Markov chain with transition matrix

P =



1 0 0 0 0
1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 0 1


.

Determine which states of the chain are recurrent and which states are transient.
For every x ∈ ST , compute fx,1.
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EXAMPLE 18
Let {Xt} be a Markov chain with state space {1, 2, 3, 4, 5, 6}whose transition matrix
and associated directed graph are

P =



1 0 0 0 0 0
1
3

1
2

1
6 0 0 0

0 1
3

1
6

1
6 0 1

3

0 0 0 1
5

3
5

1
5

0 0 0 4
9 0 5

9

0 0 0 4
7 0 3

7


11 99 21

3

oo

1
2

EE

1
6
(( 3

1
3

hh

1
6

�� 1
6 //

1
3 ''

4

1
5

��
3
5
((

1
5
��

5

5
9ww

4
9

kk

6

3
7

EE

4
7

RR

Determine which states of the chain are recurrent and which states are transient.
For each x, y ∈ S, compute fx,y.
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(repeated for convenience)

11 99 21
3

oo

1
2

EE

1
6
(( 3

1
3

hh

1
6

�� 1
6 //

1
3 ''

4

1
5

��
3
5
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1
5
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5

5
9ww

4
9

kk

6

3
7

EE

4
7
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8.8 Positive and null recurrence
What this section is about: We want to address big picture question (1) from
earlier: when does a Markov chain have a stationary distribution?

We start with a couple of results telling us when there is no stationary distribution:

Theorem 8.52 (Stat. dists. give 0 probability to transient states) Let π be a sta-
tionary distribution of Markov chain {Xt}. If y ∈ ST , then π(y) = 0.

PROOF By stationarity, for all n ≥ 1,∑
x∈S

π(x)P n(x, y) = π(y).

Take limits on both sides as n→∞. By the third recurrence criterion, since
y ∈ ST , lim

n→∞
P n(x, y) = 0, so the equation above becomes 0 = π(y). □

Corollary 8.53 If an irreducible Markov chain has a stationary (or steady-state) dis-
tribution, then the chain is recurrent.

We’d like the converse of this corollary to be true (it would be great if every irre-
ducible, recurrent Markov chain had a stationary distribution). Unfortunately, it
isn’t. To see, why, consider this example, which we’ve seen before:

EXAMPLE OF RECURRENT CHAIN WITH NO STATIONARY DISTRIBUTION

Simple, unbiased random walk on Z:

· · · − 4

1
2
''
−3

1
2
%%

1
2

ff −2

1
2
%%

1
2

dd −1

1
2
""

1
2

dd 0

1
2
!!

1
2

cc 1

1
2
!!

1
2

`` 2

1
2
!!

1
2

`` 3

1
2
%%

1
2

`` 4 · · ·
1
2

bb

Earlier, we saw that {Xt} has no stationary distribution (because by symmetry,
such a distribution would have to be uniform on Z, and no such distribution
exists).

Now, let’s show that simple unbiased random walk is recurrent. Since {Xt} is
irreducible, it is sufficient to show that state 0 is recurrent. To do this, we’ll use
a recurrence criterion, and show that

∞∑
n=1

P n(0, 0) diverges.
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To show
∞∑

n=1
P n(0, 0) diverges, notice first that

P n(0, 0) =


. . if n is odd

if n = 2k is even

By a HW problem from MATH 414 (using Stirling’s Formula),
(

2k
k

)
≈ 4k

√
πk

for large k. So

∞∑
n=1

P n(0, 0) =
∞∑

k=1
P 2k(0, 0)

=
∞∑

k=1

(
2k
k

)(1
2

)k (1
2

)2k−k

=
∞∑

k=1

(
2k
k

)
1
4k

≈
∞∑

k=1

4k

√
πk

1
4k

= 1√
π

∞∑
k=1

1√
k
.

This series diverges by the , so by a
recurrence criterion 0 ∈ SR, and by irreducibility the entire chain is recurrent.

Punchline: Simple unbiased random walk is an example of a Markov chain
which is recurrent, but has no stationary distribution.

What’s “wrong” in this example? Simple, unbiased random walk is recurrent,
meaning that every state eventually returns to itself with probability 1. But it’s
only “barely” recurrent, because the expected amount of time it takes to return to your
initial value is infinite. The technical term for this kind of recurrence is null recur-
rence.

To have a stationary distribution, not only does an irreducible Markov chain need
to be recurrent (meaning every state returns to itself with probability 1), but the
expected amount of time it takes to return to each state must be finite. The term for this
is positive recurrence, and this is the last ingredient in the FTMC.
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Cesáro convergence

A sequence {an} is said to converge to limit L if lim
n→∞

an = L, in which case we
write an → L.

EXAMPLES (AND A NON-EXAMPLE)

•
1
n
→ 0.

•
n+ 1
n− 1 → 1.

• The sequence {xn} = {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, ...} does not converge:

2 4 6 8 10 12 14
n

1
2
xn

However, this sequence does have some regular behavior:

Definition 8.54 Let {xn} be a sequence of objects that can be added (like numbers,
functions, vectors, random variables, etc.) The sequence of Cesàro averages of
{xn} is the sequence {av(x)n} defined by setting

av(x)n = 1
n

n∑
k=1

xk

for all n. We say {xn} converges in the Cesàro sense to L if the Cesàro averages
converge to L, i.e. if

lim
n→∞

av(x)n = lim
n→∞

1
n

n∑
k=1

xk = L.

We write xn
Ces−→ L to represent this.
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EXAMPLE 19
Consider the sequence {xn} = {0, 1, 2, 0, 1, 2, ...}.

1. Compute the first six terms of the sequence of Cesáro averages of {xn}.

2. Determine what av(x)n is, in terms of n.

3. Show that xn
Ces−→ 1.

2 4 6 8 10 12 14
n

1/2

3/4

1

av(x)n
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Facts about Cesàro convergence:

an → L in the usual sense⇒ an
Ces−→ L

an
Ces−→ L and {an} converges ⇒ an → L

“Cesàro convergence is weaker than usual convergence”

Why do we care about Cesàro convergence?
APPLICATION 1: SLLN

The Strong Law of Large Numbers (Chapter 6 / MATH 414) says

APPLICATION 2: MARKOV CHAINS

For any Markov chain, we will see that although lim
n→∞

P n(x, y) may not exist, the
sequence P n(x, y) converges in the Cesàro sense for any x, y ∈ S (and the value
to which the Cesáro averages converge has a lot to do with stationary and steady-
state distributions, and with positive and null recurrence).

In particular, recall that
n∑

k=1
P k(x, y) =

Therefore, the Cesàro averages of the sequence {P n(x, y)} are actually

1
n

n∑
k=1

P k(x, y) =
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Positive and null recurrence

Definition 8.55 Let {Xt} be a Markov chain with state space S and transition func-
tion P .

1. Given y ∈ SR, define my = Ey(Ty). my is a number (possibly ∞) called the
mean return time to y.

2. A recurrent state y is called null recurrent ifmy =∞. The set of null recurrent
states of {Xt} is denoted SN . If all the states of {Xt} are null recurrent, {Xt} is
called null recurrent.

3. A recurrent state y is called positive recurrent if my <∞. The set of positive
recurrent states of {Xt} is denoted SP . If all the states of {Xt} are positive
recurrent, {Xt} is called positive recurrent.

Note: The mean return time of any transient state is trivially∞:

y ∈ ST ⇒ Py(Ty =∞) > 0 ⇒ Ey(Ty) =∞ automatically.

Theorem 8.56 Let {Xt} be a Markov chain with state space S . Let y ∈ S.

1. If Ty <∞ (i.e. if the chain hits y), lim
n→∞

Vy,n

n
= 1
my

.

2. If Ty =∞ (i.e. the chain never hits y), then lim
n→∞

Vy,n

n
= 0.

(Technically, these limits hold with probability 1.)

PROOF Let’s start with statement (2). If the chain never hits y, then Vy,n = 0 for all
n, so (2) follows.

To prove statement (1), assume WLOG1 that you start in state y (since by
hypothesis you must hit y at some point). Define these r.v.s:

• T r
y = min{n ≥ 1 : Vy,n = r} = time of rth return to y

• W 1
y = T 1

y

• W j
y = T j

y − T j−1
y for all j ≥ 2

x
1“WLOG” means “without loss of generality”
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8.8. Positive and null recurrence

The first key observation is that the W j
y are i.i.d., each with mean my.

So by the SLLN, P
(
W j

y
Ces−→ my

)
= 1. Restating this, we get

P
(
W j

y
Ces−→ my

)
= 1

P
(
av(W j

y )n → my

)
= 1

P
(

lim
n→∞

av(W j
y )n = my

)
= 1

P

 lim
n→∞

1
n

n∑
j=1

W j
y = my

 = 1

P

(
lim

n→∞

T n
y

n
= my

)
= 1

Since Vy,n →∞ as n→∞, we can substitute Vy,n for n to get

P

(
lim

n→∞

T Vy,n
y

Vy,n

= my

)
= 1. (#)

The second key observation is that

which is explained by this picture:

t
0 1 n

Ty
Vy,n Ty

1+Vy,n

y y y y y y

Therefore
T Vy,n

y

Vy,n

≤ n

Vy,n

≤
T 1+Vy,n

y ·
Vy,n

Take reciprocals to get the result lim
n→∞

Vy,n

n
= 1
my

. □
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8.8. Positive and null recurrence

Theorem 8.57 Let {Xt} be a Markov chain with state space S . Let x, y ∈ S.

1. lim
n→∞

Ex(Vy,n)
n

= fx,y

my

.

2. P n(x, y) Ces−→ fx,y

my

.

(Technically, these limits hold with probability 1.)

PROOF From the previous discussion, (1) implies (2), so it is sufficient to prove (1).
To do this, note

lim
n→∞

Ex(Vy,n)
n

= lim
n→∞

Ex

[
Vy,n

n

]

Corollary 8.58 Let {Xt} be a Markov chain with state space S.

1. Let C ⊆ S be a communicating class of recurrent states. Then for all x, y ∈ C,

lim
n→∞

Ex(Vy,n)
n

= 1
my

{
= 0 if my =∞ ⇐⇒ y ∈ SN ∪ ST

> 0 if my <∞ ⇐⇒ y ∈ SP
.

Furthermore, if P (X0 ∈ C) = 1, then lim
n→∞

Vy,n

n
= 1
my

∀ y ∈ C.

2. If y ∈ ST ∪ SN , then for all x ∈ S, P n(x, y) Ces−→ 0.

3. If y ∈ SP , then P n(y, y) Ces−→ 1
my

.
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8.8. Positive and null recurrence

PROOF Statement (1) follows immediately from Theorem 8.57.

For statement (2), notice that if y ∈ ST ∪ SN , my =∞ so

P n(x, y) Ces−→ fx,y

my

= fx,y

∞
= 0.

For statement (3), since y is recurrent, fy = fy,y = 1 so

P n(y, y) Ces−→ fy,y

my

= 1
my

. □

Note: Corollary 8.58 provides a new distinction between positive recurrent
and null recurrent states:

y ∈ SN ∪ ST ⇐⇒ P n(y, y) Ces−→ 0

y ∈ SP ⇐⇒ P n(y, y) Ces−→ 1
my

> 0.

Theorem 8.59 (Pos. recurrent states lead only to pos. recurrent states) Let {Xt}
be a Markov chain with state space S. If x ∈ SP and x→ y, then y ∈ SP .

PROOF x is recurrent, so by a previous theorem y → x. Thus ∃n1, n2 such that
P n1(x, y) > 0 and P n2(y, x) > 0. Therefore, for all m ≥ 0,

P n1+m+n2(y, y) ≥ P n1(x, y)Pm(x, x)P n2(y, x)
1
n

n∑
m=1

P n1+m+n2(y, y) ≥ 1
n
P n1(x, y)P n2(y, x)

n∑
m=1

Pm(x, x)

lim
n→∞

1
n

n∑
m=1

P n1+m+n2(y, y) ≥ lim
n→∞

1
n
P n1(x, y)P n2(y, x)

n∑
m=1

Pm(x, x)

lim
n→∞

1
n

n∑
m=1

P n1+m+n2(y, y) ≥ P n1(x, y)P n2(y, x) lim
n→∞

1
n

n∑
m=1

Pm(x, x)
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8.8. Positive and null recurrence

Corollary 8.60 (Null rec. states lead only to null rec. states) Let {Xt} be a Markov
chain. If x ∈ SN and x→ y, then y ∈ SN .

PROOF HW (this is a short argument putting together facts facts from Theorems
8.45 and 8.59) □

Corollary 8.61 Let {Xt} be a Markov chain with state space S. If C ⊆ S is a com-
municating class, then (every x ∈ C is transient) or (every x ∈ C is null recurrent)
or (every x ∈ C is positive recurrent).

Theorem 8.62 Let {Xt} be a Markov chain with state space S. If C ⊆ S is a finite
communicating class, then every x ∈ C is positive recurrent.

PROOF For every x ∈ C and k ∈ {1, 2, 3, ...}, we have
∑

y∈C
P k(x, y) = 1. So

1 = 1
n
· n = 1

n
(1 + 1 + 1 + ...+ 1) = 1

n

n∑
m=1

1 = 1
n

n∑
m=1

∑
y∈C

Pm(x, y)

Therefore there must be some y ∈ C such that my <∞, i.e. y ∈ SP . Since
positive recurrence is a class property, every x ∈ C is positive recurrent. □

Corollary 8.63 Any irreducible Markov chain with a finite state space is positive
recurrent.

339



8.9. Existence and uniqueness of stationary distributions

8.9 Existence and uniqueness of stationary distributions
What this section is about: We are going to prove that for an irreducible, pos-
itive recurrent Markov chain, then the chain has exactly one stationary distri-
bution.

We begin by showing that for an irreducible Markov chain, values of any of its
stationary distributions are determined by mean return times. To do this, we need
to return to a previously encountered dilemma:

More about interchanging infinite series and limits

Recall that in general, the limit of an infinite series ≥ the series of the limits (but
these aren’t always equal):

lim
n→∞

∞∑
z=1

a(z)bn(z) ≥
∞∑

z=1
a(z) lim

n→∞
bn(z). (8.1)

If you need to argue that the two sides of (8.1) are equal, you need to work hard.
One way to do this is an argument by exhaustion (discussed earlier); another way
is to appeal to the following theorem that comes from a branch of mathematics
called real analysis:

Theorem 8.64 (Bounded Convergence Theorem (BCT)) Let a(z) be nonnegative
numbers such that

∑
z

a(z) < ∞. Fix B > 0 and let bn(z) be numbers such that

|bn(z)| ≤ B for all z and n and

lim
n→∞

bn(z) = b(z) for all z.

Then ∑
z

a(z)bn(z) n→∞−→
∑

z

a(z)b(z),

in other words

lim
n→∞

∑
z

a(z)bn(x) =
∑

z

lim
n→∞

a(z)bn(z) =
∑

z

a(z) lim
n→∞

bn(z).

The condition |bn(z)| ≤ B means that the bn(z) are bounded, giving this theorem
its name.
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8.9. Existence and uniqueness of stationary distributions

Theorem 8.65 Let {Xt} be an irreducible Markov chain with state space S. If π is a
stationary distribution for {Xt}, then for every x ∈ S,

π(x) = 1
mx

.

PROOF Suppose π is stationary. Then, for all k ∈ {1, 2, 3, ...} and all z ∈ S, the
stationarity equation gives∑

z∈S
π(z)P k(z, x) = π(x).
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8.9. Existence and uniqueness of stationary distributions

Corollary 8.66 (Nonexistence of stationary distributions) .

1. A transient Markov chain has no stationary distributions.

2. A null recurrent Markov chain has no stationary distributions.

PROOF In either (1) or (2), mx =∞ for all x ∈ S. By the preceding theorem, any

stationary distribution π would have to satisfy π(x) = 1
mx

= 0 for all x ∈ S. But

then
∑
x∈S

π(x) = 0 ̸= 1, so π can’t be a distribution. □

Theorem 8.67 (Existence/uniqueness of stationary distributions) Let {Xt} be
an irreducible Markov chain.

{Xt} has a stationary distribution if and only if {Xt} is positive recurrent, in which
case the Markov chain has a unique stationary distribution π defined theoretically by

π(x) = 1
mx

for all x ∈ S.

PROOF What’s left to prove is that for an irreducible, positive recurrent Markov

chain {Xt}, the formula π(x) = 1
mx

actually defines a stationary distribution.

Case 1: S is finite:
In this situation, first notice that for all m > 0 and all z ∈ S,∑

x∈S
Pm(z, x) = 1

⇒ 1
n

n∑
m=1

∑
x∈S

Pm(z, x) = 1
n

n∑
m=1

1 = 1

lim
n→∞

1
n

n∑
m=1

∑
x∈S

Pm(z, x) = 1

lim
n→∞

∑
x∈S

1
n

n∑
m=1

Pm(z, x) = 1

∑
x∈S

lim
n→∞

1
n

n∑
m=1

Pm(z, x) = 1 (since S is finite)

∑
x∈S

fzx

mx

= 1 (since P n(z, x) Ces−→ fzx

mx

)

∑
x∈S

1
mx

= 1 (fzx = 1 since {Xt} pos. rec.).

Therefore π(x) = 1
mx

defines a distribution.
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8.9. Existence and uniqueness of stationary distributions

Continuing with Case 1 (where S is finite), what’s left is to show that the

distribution defined by π(x) = 1
mx

is in fact stationary (we have to

verify the stationarity equation). To do this, observe

Pm+1(z, y) =
∑
x∈S

Pm(z, x)P (x, y) (#)

Now, take Cesáro limits of both sides of (#). Start with the left-hand side:

lim
n→∞

1
n

n∑
m=1

Pm+1(z, y)

= lim
n→∞

1
n

[
n+1∑
m=1

Pm(z, y)− P 1(z, y)
]

= lim
n→∞

n+ 1
n
·
[

1
n+ 1

n+1∑
m=1

Pm(z, y)
]
− lim

n→∞

1
n
P (z, y)

Now for the right-hand side of (#):

lim
n→∞

1
n

n∑
m=1

∑
x∈S

Pm(z, x)P (x, y)

= lim
n→∞

∑
x∈S

1
n

n∑
m=1

Pm(z, x)P (x, y)

=
∑
x∈S

lim
n→∞

1
n

n∑
m=1

Pm(z, x)P (x, y) (since S is finite)

=
∑
x∈S

P (x, y)
[

lim
n→∞

1
n

n∑
m=1

Pm(z, x)
]

By equating the Cesáro limits of the two sides of (#), we get the stationarity
equation

π(y) = 1
my

=
∑
x∈S

1
mx

P (x, y) =
∑
x∈S

π(x)P (x, y),

proving the theorem in the situation where S is finite.

Notice that the argument above doesn’t work when S is infinite because you
can’t interchange the infinite sums with the limits. To prove the theorem when
S is infinite, we need an argument by exhaustion, given on the next page:
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8.9. Existence and uniqueness of stationary distributions

Case 2: S is infinite.
In this situation, let Sfinite ⊆ S be an arbitrary finite subset of S.
Now, instead of (#) above, we know the inequality

Pm+1(z, y) =
∑
x∈S

Pm(z, x)P (x, y) ≥
∑

x∈Sfinite

Pm(z, x)P (x, y) (♡)

Since Sfinite is finite, we can repeat everything we did on the previous
page to get

π(y) ≥
∑

x∈Sfinite

π(x)P (x, y).

Because Sfinite is arbitrary, by taking limits as Sfinite ↗ S we get

π(y) ≥
∑
x∈S

π(x)P (x, y) .

Now suppose π(y) >
∑
x∈S

π(x)P (x, y).

Then, by summing over all y ∈ S, we get∑
y∈S

π(y) >
∑
y∈S

∑
x∈S

π(x)P (x, y) =
∑
x∈S

∑
y∈S

π(x)P (x, y)

=
∑
x∈S

π(x)
∑
y∈S

P (x, y)

=
∑
x∈S

π(x) · 1

=
∑
x∈S

π(x)

which is a contradiction. Therefore
∑
x∈S

π(x)P (x, y) = π(y).

This doesn’t mean π is stationary (because we don’t know the values of π
sum to 1, but it does mean that a multiple of π, say Mπ, is stationary.

However, by Theorem 8.65 the only value of M that is possible is M = 1.

Therefore π(x) = 1
mx

defines a stationary distribution. □

Corollary 8.68 Any irreducible Markov chain on a finite state space has a unique
stationary distribution.
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8.9. Existence and uniqueness of stationary distributions

The ergodic theorem

Theorem 8.69 (Ergodic Theorem for Markov chains) Let {Xt} be an irreducible,
positive recurrent Markov chain with state space S and let π be its unique stationary
distribution. Then for all y ∈ S,

P
(

lim
n→∞

Vy,n

n
= π(y)

)
= 1.

PROOF We’ve seen that π(y) = 1
my

; the result follows from Theorem 8.57. □

A picture to explain the ergodic theorem:

t
0 1 n

y y y y y y

EXAMPLE 20
Suppose {Xt} is a Markov chain with S = {1, 2, 3, 4}whose stationary distribution
is
(

1
9 ,

2
9 ,

4
9 ,

2
9

)
. Suppose X0 = 1.

1. Estimate the number of times t in the interval [1, 900] such that Xt = 2.

2. What is the mean return time to state 2?
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8.9. Existence and uniqueness of stationary distributions

Stationary distributions for non-irreducible Markov chains

Definition 8.70 A distribution π on S is supported or concentrated on a subset
C ⊆ S if π(x) = 0 for all x /∈ C.

EXAMPLE 21
If S = {1, 2, 3, 4} and π = (1

2 , 0,
1
2 , 0), we say π is supported on {1, 3}.

Given a non-irreducible Markov chain {Xt}, we can identify the various positive
recurrent communicating classes of {Xt} and treat each of those classes as their
own Markov chain. That leads to this theorem, which sums up the content of this
section:

Theorem 8.71 (Existence/uniqueness of stationary distributions) Let {Xt} be
a Markov chain with state space S.

1. We can write S as the disjoint unioni

S = ST

⋃
SR = ST

⋃(
SN

⋃
SP

)
.

2. If SP = ∅, then {Xt} has no stationary distribution.

3. If SP ̸= ∅ consists of one communicating class, then {Xt} has a unique station-
ary distribution π defined by

π(x) =


1
mx

if x ∈ SP

0 else

4. If SP ̸= ∅ consists of more than one communicating class, then for each com-
municating class C ⊆ SP there is a unique stationary distribution supported on
that class (call it πC) defined by

πC(x) =


1
mx

if x ∈ C
0 else

Convex combinations of these πC are also stationary, so {Xt} has infinitely many
stationary distributions. (The stationary distributions are exactly the convex
combinations of these πC .)
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8.9. Existence and uniqueness of stationary distributions

EXAMPLE 22
Find all stationary distributions of the Markov chain with transition matrix

1
4 0 0 0 3

4 0
1
8

1
2

1
8

1
8

1
8 0

0 0 3
4 0 0 1

4
1
2 0 1

4
1
4 0 0

1
2 0 0 0 1

2 0
0 0 1

4 0 0 3
4


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8.9. Existence and uniqueness of stationary distributions

EXAMPLE 23
Let {Xt} be the Markov chain with state space S = {0, 1, 2, 3, ...} and transition
function P defined by

P (x, y) =



1
2 if y = 0
1
4 if y = x+ 1
1
4 if y = x+ 2

0 else

Show that {Xt} is positive recurrent, and compute π(0), π(1), π(2) and π(3) for the
stationary distribution π of {Xt}.
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8.10. Proving the Fundamental Theorem

8.10 Proving the Fundamental Theorem
Theorem 8.72 (FTMC) Let {Xt} be an irreducible, aperiodic, and positive recur-
rent Markov chain. Then the unique stationary distribution of this chain, defined by

π(x) = 1
mx

is steady-state, meaning

lim
n→∞

πn(x) = π(x)

for all x ∈ S, no matter the initial distribution π0.

PROOF Let {Yt} be a Markov chain, independent of {Xt}, with the same state space
and transition function as {Xt}, but where the initial distribution of {Yt} is the
stationary distribution π.

Pick b ∈ S arbitrarily and set T = min{t ≥ 1 : Xt = Yt = b}. (If there is no such
t, set T =∞.) We call T a “coupling time” because it is the first time at which
Xt and Yt are in the same place b (so Xt and Yt are “coupled” at state b).

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

⊕

×

Xt
Yt

1 2 3 4 T
t

b

Claim: P (T <∞) = 1.
The proof of this claim is HW. (This is where we use the aperiodicity of
{Xt}, because it applies Theorem 8.39 which says that for any two states,
it is possible to get from one to the other in all times greater than or
equal to some N .)

Now, define a new process {Zt}which starts out acting like {Xt}, but switches
to acting like {Yt} after the coupling time:

Zt =
{
Xt if t < T
Yt if t ≥ T
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8.10. Proving the Fundamental Theorem

{Zt} is a Markov chain with the same initial distribution as {Xt} and the same
transition function as {Xt}, therefore {Zt} ∼ {Xt} . Thus

|P (Xt = y)− π(y)|
= |P (Zt = y)− P (Yt = y)|
= |P (Xt = y and t < T ) + P (Yt = y and t ≥ T )− P (Yt = y)|
= |P (Xt = y and t < T )− P (Yt = y and t < T )|
≤ P (t < T )→ 0 as t→∞ by the Claim above.

Therefore |P (Xt = y)− π(y)| → 0 as t→∞, so

lim
t→∞

πt(y) = lim
t→∞

∑
x∈S

π0(x)P t(x, y) = π(y)

for all x and y.

By choosing π0 to be π0(x) =
{

1 if x = z
0 else , we see that

lim
t→∞

P t(z, y) = π(y)

for all z ∈ S; thus π is steady-state by definition. □

What if the Markov chain is periodic?

We have seen by example that if {Xt} is irreducible and positive recurrent but pe-
riodic, then the FTMC doesn’t hold (the stationary distribution isn’t steady state).
The reason the argument in the FTMC fails is the claim that P (T <∞) = 1 doesn’t
hold for periodic Markov chains.

To help understand what happens for a periodic Markov chain, let’s consider an
example:
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8.10. Proving the Fundamental Theorem

EXAMPLE 24
Consider a Markov chain {Xt} with state space {1, 2, 3, 4, 5, 6, 7, 8} whose directed
graph looks like the one below (with unspecified nonzero probabilities on the ar-
rows):

4
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Consider a table of values for P n(1, 1):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
P n(1, 1) · · ·

Similarly, a table of values for P n(3, 2) looks like

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
P n(3, 2) 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

and a table of values for P n(8, 4) looks like

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
P n(8, 4) 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

Observation 1: For every pair x, y of states, there is a number r = r(x, y) such
that P n(x, y) = 0 unless n has remainder r when divided by the period d (i.e.
unless n ≡ r mod d).

Question: What is the long-term behavior of the non-zero terms in these tables (the
ones marked with ∗s)?
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8.10. Proving the Fundamental Theorem

To determine the long-term behavior of the non-zero P n(x, y) as n → ∞, we
consider a new Markov chain {X̃t}, where one unit of time in {X̃t} corresponds
to 4 units of time in {Xt}, i.e. X̃t = X4t, i.e. the transition function for X̃t is
P̃ (x, y) = P 4(x, y). This new chain will be aperiodic but will not be irreducible; it
has the directed graph shown below at right:

{Xt} 4
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{X̃t} = {X4t} 4
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Let mx and m̃x denote the mean return times to each state x in {Xt} and {X̃t},
respectively. Since one unit of time in {X̃t} corresponds to four units of time in
{Xt}, we know that for every x ∈ S,

4m̃x = mx

Now, by the FTMC, we get

lim
n→∞

P̃ n(1, 1) = 1
m̃1

lim
n→∞

P 4n(1, 1) = 1
m1/4

lim
n→∞

P 4n+0(1, 1) = 4
m1

i.e. lim
n→∞

P dn+r(x, y) = d

my

= d · π(y).

Observation 2: In the charts on the previous page, the non-zero entries of
P n(x, y) approach d · π(y) as n→∞.

352



8.10. Proving the Fundamental Theorem

Our observations in the preceding example hold in general:

Theorem 8.73 Let {Xt} be an irreducible, positive recurrent Markov chain with state
space S, whose period is d ≥ 2. Let π denote its unique stationary distribution. Then,
for every pair of states x, y, there is a number r = r(x, y) so that :

1. P n(x, y) = 0 unless n = md+ r for some m ∈ N (i.e. unless n ≡ r mod d).

2. lim
m→∞

Pmd+r(x, y) = d · π(y).

PROOF Let mx be the mean return time of each state x with respect to the Markov
chain {Xt}. Now consider the Markov chain {X̃t}with the same initial
distribution as {Xt}whose transition function is P d. Note that the mean return
time for each state with respect to {X̃t} is

mx

d
.

{X̃t} is not irreducible; it has d disjoint communicating classes. Restricting {X̃t}
to each of these classes gives an aperiodic, pos.recurrent, irreducible chain to
which we can apply the FTMC; this gives

lim
m→∞

(P d)m(x, x) = 1
mx/d

= d

mx

, i.e. lim
m→∞

Pmd(x, x) = d · π(x).

More generally, if z ∈ S is such that P d(z, x) > 0, then z and x belong to the
same communicating class of {X̃t}, so

lim
m→∞

Pmd(z, x) = d · π(x).

Now let x, y ∈ S. If r is such that P r(x, y) > 0, then

lim
m→∞

Pmd+r(x, y) = lim
m→∞

∑
z∈S

P r(x, z)Pmd(z, y)

=
∑
z∈S

P r(x, z) d · π(y)

= 1 · d · π(y)
= d · π(y)

as desired. □
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8.11 Example computations
DIRECTIONS

For each given Markov chain in Examples 25-28:

1. Classify the states as transient, positive recurrent or null recurrent.

2. Find all communicating classes of the Markov chain.

3. Find the period of each state.

4. Find all stationary distribution(s) of the Markov chain (if any exist) and de-
termine which (if any) of these distributions are steady-state. (If you can’t
compute the entire stationary distribution, find as many values of the sta-
tionary distribution as you can.)

5. Find the mean return time to state 2.

EXAMPLE 25
The Ehrenfest chain with d = 4.
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EXAMPLE 26
The Markov chain whose transition matrix is

1
3

1
3

1
3 0 0 0 0

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1

4 0 3
4 0 0

0 0 0 1
2

1
4

1
4 0

0 0 0 0 0 0 1
0 0 0 0 0 1 0


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8.11. Example computations

EXAMPLE 27

Let {Xt} be a Markov chain with S = {0, 1, 2, 3, 4, 5, 6} such that P (0, y) = 1
6 for all

y ̸= 0; P (x, 0) = 1
2 if x ̸= 0; P (x, x+ 1) = 1

2 if x ∈ {1, 2, 3, 4, 5}; and P (6, 1) = 1
2 .
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EXAMPLE 28
Let {Xt} be a Markov chain with state space S = {0, 1, 2, 3, ...} whose transition
function is

P (0, y) =

 0 if y is odd or y = 0(
1
2

)y/2
if y ≥ 2 is even

P (1, y) =

 0 if y = 1 or y is even(
1
2

)(y−1)/2
if y ≥ 3 is odd

x ≥ 2⇒ P (x, y) =


1
2 if y = 0
1
2 if y = 1
0 else
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Alternate solution:

0 ++ (( '' && ''
2dd

��

4hh

{{

6jj

ww

8kk

uu

10 · · ·ll

tt1 33 66 77 88 773zz

UU

5vv

]]

7tt

cc

9ss

ff

11 · · ·rr

hh

Define a factor of {Xt} by grouping states:
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8.12 Chapter 8 Homework
Exercise from Section 8.2

1. Suppose we have two boxes and 2d marbles, of which d are black and d are
red. Initially, d of the balls are placed in Box 1, and the remainder are placed
in Box 2. At each trial, a ball is chosen uniformly from each of the boxes;
these two balls are put back in the opposite boxes. Let X0 denote the number
of black balls initially in Box 1, and let Xt denote the number of black balls
in Box 1 after the tth trial. Find the transition function of the Markov chain
{Xt}.

Exercises from Section 8.3

2. Consider a Markov chain with state space S = {0, 1}, where p = P (0, 1) and
q = P (1, 0); compute the following quantities in terms of p and q:

a) P (X2 = 0 |X1 = 1)
b) P (X3 = 0 |X2 = 0)
c) P (X2 = 1 |X0 = 0)

3. Continuing with the Markov chain described in Problem 2, suppose the ini-
tial distribution is π0 = (π0(0), π0(1)). Compute the following quantities in
terms of the entries of π0, p and q:

a) P (X0 = 0 |X1 = 0)
b) P (X1 = 0 |X0 = X2 = 0)

4. The weather in a city is always one of two types: rainy or dry. If it rains on a
given day, then it is 25% likely to rain again on the next day. If it is dry on a
given day, then it is 10% likely to rain the next day. If it rains today, what is
the probability it rains the day after tomorrow?

5. A Markov chain has state space S = {1, 2, 3, 4, 5} and transition matrix

P =



1
2 0 1

2 0 0

0 1
4 0 3

4 0

0 0 1
2 0 1

2
3
4 0 1

4 0 0

0 1
2 0 1

2 0


.

Assume that the initial distribution is uniform.
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a) Sketch the directed graph associated to this Markov chain.

b) Compute the distribution of X2 (this means compute π2).

c) Compute P (X3 = 5 |X2 = 4).
d) Compute P (X4 = 2 |X2 = 3).
e) Compute P (X4 = 5, X3 = 2, X1 = 1).
f) Compute P (X11 = 1 |X10 = 4, X9 = 2, X8 = 5, X6 = 1, X2 = 1).
g) Compute P (X8 = 3 |X7 = 1 and X9 = 5)

6. Consider a Markov chain with state space {1, 2, 3, 4, 5} and transition matrix

P =



0 1 0 0 0
2
7 0 5

7 0 0

0 3
4 0 1

4 0

0 0 1
3 0 2

3

0 0 0 1 0


a) Compute P 2 and P 3.

b) If the initial distribution is uniform, find the distributions at times 1, 2
and 3.

7. Consider the Markov chain with S = {1, 2, 3}whose transition matrix is

P =

 0 1 0
1− p 0 p

0 1 0

 ,
where p ∈ (0, 1) is a constant.

a) Compute P 2.

b) Show P 4 = P 2.

c) Compute P n for all n ≥ 1.

d) If the initial distribution is
(2

5 ,
2
5 ,

1
5

)
, find the time 200 distribution.

e) If the initial distribution is
(2

5 ,
2
5 ,

1
5

)
, find the time 111111 distribution.

8. A dysfunctional family has six members (named Al, Bal, Cal, Dal, Eal, and
Fal) who have trouble passing the salt at the dinner table. The family sits
around a circular table in clockwise alphabetical order. This family has the
following quirks:
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• Al is twice as likely to pass the salt to his left than his right.

• Cal and Dal alway pass the salt to their left.

• All other family members pass the salt to their left half the time and to
their right half the time.

a) Sketch the directed graph associated to the Markov chain that records
the location of the salt after t passes.

b) If Al has the salt now, what is the probability Bal has the salt 3 passes
from now?

c) If Al has the salt now, what is the probability that the first time he gets
it back is on the 4th pass?

d) If Bal has the salt now, what is the probability that Eal can get it in at
most 4 passes?

9. For the Markov chain given in Problem 6, find a distribution π on S with the
property that if the initial distribution is π, then the time 1 distribution is also
π.

10. Consider Markov chain with S = {0, 1, 2, ...}, where for all x ∈ S , P (x, x +
1) = 1

2x
and P (x, 0) = 1− 1

2x
.

a) Compute P (X8 = 9 |X7 = 8).
b) Compute P (X4 = 7 |X2 = 4).
c) Compute P (X4 = 7 |X2 = 5).
d) Compute P (X6 = 4 |X0 = 2)
e) If the initial distribution π0 is uniform on {0, 1}, compute π2.

Exercises from Section 8.5

11. Consider a Markov chain with state space {1, 2, 3}whose transition matrix is .4 .4 .2
.3 .4 .3
.2 .4 .4

 .
Find all stationary distributions of this Markov chain.

12. (20 ⋆ pts) Let {Xt} be a Markov chain that has a stationary distribution π.
Prove that if π(x) > 0 and x→ y, then π(y) > 0.
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13. Find all stationary distributions of the Markov chain with transition matrix

P =



1
9 0 4

9
4
9 0

0 0 0 0 1
2
9

2
9

2
9

1
3 0

0 0 1
9

8
9 0

0 0 7
9

2
9 0


.

Hint: The answer is π =
(

9
221 , something, something, something, 8

221

)
.

14. Compute all stationary distributions of the Markov chain described in Exer-
cise 1, in the situation where d = 3.

15. a) Show that the Markov chain introduced in Exercise 7 has a unique sta-
tionary distribution (and compute this stationary distribution, in terms
of p).

b) Is this stationary distribution steady-state? Why or why not?
Hint: The work you did in Problem 7 should be useful in answering this.

16. A transition matrix of a Markov chain is called doubly stochastic if its columns
add to 1 (recall that for any transition matrix, the rows must add to 1). Find
a stationary distribution of a finite state-space Markov chain with a doubly
stochastic transition matrix (the way you do this is by “guessing” the answer,
and then showing your guess is stationary).

NOTE: It is useful to remember the fact you prove in this question.

17. (20 ⋆ pts) Prove Theorem 8.25 from the notes, which goes like this: let
π1, π2, ..., be a finite or countable list of stationary distributions for a Markov
chain {Xt}. Let α1, α2, ... be nonnegative numbers whose sum is 1, and let
π =

∑
j

αjπj . Prove that the distribution π is stationary for {Xt}.

18. (20 ⋆ pts) Show that for any d × d stochastic matrix P , 1 is an eigenvalue of
P corresponding to eigenvector (1, 1, 1, ..., 1) ∈ Rd.

Hint: the crux of this question is to get you to remember what eigenvalues
and eigenvectors are (you learned about these creatures in MATH 322).

19. Let

P =


1
2

1
4

1
4

1
4

3
4 0

1
4

1
4

1
2

 .
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a) Find the eigenvalues of P by solving det(P − λI) = 0.

b) For each eigenvalue you found in part (a), find a corresponding eigen-
vector (by finding v ̸= 0 such that Pv = λv).

c) Diagonalize P (i.e. write P = SΛS−1 where Λ is a diagonal matrix whose
entries are eigenvalues of P , and S is a matrix whose columns are corre-
sponding eigenvectors of P ).

d) Compute P n (by multiplying out the formula P n = SΛnS−1).

e) Compute lim
n→∞

P n.

20. Let {Xt} be a Markov chain with state space {1, 2, 3}whose transition matrix
is the matrix P given in Exercise 19. Based on your work in Exercise 19, what
do you know about stationary and/or steady-state distributions of {Xt}?

21. Let {Xt} be a Markov chain with state space {1, 2, 3, 4} whose transition ma-
trix is

P =



1
7

6
7 0 0

11
14

3
14 0 0

0 0 1
5

4
5

0 0 2
5

3
5


.

a) Find all stationary distributions of {Xt}.
b) Does {Xt} have a steady-state distribution? Explain.

Exercises from Section 8.6

22. Consider a Markov chain with state space S = {0, 1}, where p = P (0, 1) and
q = P (1, 0). (Assume that neither p nor q are either 0 or 1.) Compute, for each
n, the following in terms of p and q:

a) P0(T0 = n)
Hint: There are two cases: one for n = 1, and one for n > 1.

b) P1(T0 = n)
c) P0(T1 = n)
d) P1(T1 = n)

23. For the same Markov chain described in Exercise 22, compute these quanti-
ties (in terms of p and q):
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a) f0,1

Hint: Recall that f0,1 = P0(T1 <∞). There are two ways to do this: first,
you can add up the values of P0(T1 = n) from n = 1 to∞; second, you
can compute P0(T1 =∞) and use the complement rule.

b) f1,0

c) f0,0

d) f1,1

24. Let {Xt} be the Markov chain described in Exercise 6.

a) For each x ∈ S, compute Px(T1 = 1).
b) For each x ∈ S, compute Px(T1 = 2).
c) For each x ∈ S, compute Px(T1 = 3).

25. Consider a Markov chain whose state space is S = {1, 2, 3, 4, 5, 6, 7} and
whose transition matrix is

1
2 0 1

8
1
4

1
8 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1
2 0 1

2

0 0 0 0 1
2

1
2 0

0 0 0 0 0 1
2

1
2


a) List all the closed subsets of this chain.

b) List all the communicating classes of this chain.

c) Write the period of each state that belongs to a communicating class.

26. Let p ∈ (0, 1) be a constant. Consider a Markov chain with state space S =
{0, 1, 2, 3, ...} where P (x, x + 1) = p for all x ∈ S and P (x, 0) = 1 − p for all
x ∈ S . Explain why this chain is irreducible by showing, for arbitrary states
x and y, a sequence of steps which could be followed to get from x to y.

Exercises from Section 8.7

27. For the Markov chain introduced in Exercise 2, compute E0(V1,3).

28. For the Markov chain given in Exercise 25:

364



8.12. Chapter 8 Homework

a) Determine which states are recurrent and which states are transient.

b) Compute fx,y for all x, y ∈ S.

c) Compute E1(V1).

29. Determine whether the Markov chain described in Exercise 26 is recurrent or
transient.

Hint: Compute f0 directly by adding up the values of P0(T0 = n).

30. Consider a Markov chain with state space S = {0, 1, 2, 3, ...} and transition
function defined by

P (x, y) =



1
2 if x = y
1
2 if x > 0 and y = x− 1(

1
2

)y+1
if x = 0 and y > 0

0 otherwise

.

a) Explain why this Markov chain is irreducible.

b) Is this chain recurrent or transient?

31. Consider a Markov chain with state space S = {0, 1, 2, 3, ...} and transition
function defined by

P (x, y) =


1
7 if y = 0
2
7 if y ∈ {x+ 2, x+ 4, x+ 6}
0 otherwise

.

Classify the states of this Markov chain as recurrent or transient, and find all
communicating classes (if any).

32. Consider a Markov chain with state space S = {1, 2, 3, 4, 5, 6} whose transi-
tion matrix is 

1
2

1
2 0 0 0 0

1
3

2
3 0 0 0 0

0 0 1
8 0 7

8 0
1
4

1
4 0 0 1

4
1
4

0 0 3
4 0 1

4 0

0 1
5 0 1

5
1
5

2
5


a) Determine which states are recurrent and which states are transient.
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b) Compute fx,1 for all x ∈ S.

c) Compute Ex(Vy) for all x, y ∈ ST .

33. Compute the stationary distribution of the Ehrenfest chain (introduced in one
of the group presentations), in the situation where d = 4.

34. a) What is the period of the Ehrenfest chain?

b) What is the period of the Markov chain introduced in Problem 1?

35. Let {Xt} be the Wright-Fisher chain (introduced in one of the group presen-
tations) with d = 3. Compute fx,0 for all x ∈ S.

36. Let {Xt} be the Wright-Fisher chain with d = 4. Compute E1(V2).

37. Let {Xt} be a Galton-Watson branching chain where each individual has ei-
ther 0 or 3 offspring, each with probability 1

2 . Compute the extinction proba-
bility η.

38. Let {Xt} be a Galton-Watson branching chain where the number of offspring
of each individual is Geom(p). Compute the extinction probability η.

Hint: There are two cases, depending on p.

39. Let Xt denote the number of people waiting for service at a fast-food restau-
rant at time t. Assume {Xt} is modeled by a discrete queuing chain where

with probability
2
3 , two customers enter the queue in each time period, and

with probability
1
3 , no customers enter the queue in each time period.

a) If there is initially 1 person being served, what is the probability that at
some point in the future, there will be no one in line?

b) If there are initially 4 people in the queue, what is the probability that
the queue never empties?

Exercises from Section 8.8

40. Compute the Cesàro limit of the sequence of numbers {0, 1, 0, 1, 0, 1, ...} (jus-
tify your answer).

41. Compute (directly, without appealing to any stationary distribution), in terms
of p and q, the mean return time to each state for the Markov chain given in
Problem 2.

42. For the Markov chain introduced in Exercise 32:
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a) Compute lim
n→∞

E1(V2,n)
n

.

b) Compute lim
n→∞

E6(V3,n)
n

.

c) Compute lim
n→∞

E6(V1,n)
n

.

d) Compute lim
n→∞

E3(V1,n)
n

.

43. Determine whether the chain introduced in Exercise 26 is positive recurrent
or null recurrent.

Hint: Compute the mean return time to state 0 by determining, for each n,

P0(T0 = n) and then using LOTUS to compute m0 = E0(T0) =
∞∑

n=1
nP0(T0 =

n).

Exercises from Section 8.9

44. Compute all the stationary distributions of the Markov chain introduced in
Exercise 32.

45. Fix nonnegative constants p0, p1, ... such that
∞∑

y=0
py = 1 and let Xt be a

Markov chain on S = {0, 1, 2, · · · }with transition function P defined by

P (x, y) =


py if x = 0
1 if x > 0, y = x− 1
0 else

a) Show this chain is recurrent.

b) Calculate, in terms of the py, the mean return time to 0.

c) Under what conditions on the py is the chain positive recurrent?

d) Suppose this chain is positive recurrent. Find π(0), the value that sta-
tionary distribution assigns to state 0.

e) Suppose this chain is positive recurrent. Find the value the stationary
distribution π assigns to an arbitrary state x.

Exercises from Section 8.10

46. (40 ⋆ pts) Complete the proof of Theorem 8.72 by explaining why P (T <
∞) = 1.

Hints: To do this,
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a) Define a new Markov chain (Xt, Yt) where the two coordinates act inde-
pendently. In particular, what is the state space of this chain, and what
is its transition function?

b) Prove that the chain (Xt, Yt) is irreducible, meaning that you can get
from any state (a, b) to any other state (x, y) in a finite amount of time.
To do this, you will need to apply Theorem 8.39.

c) The event T <∞ corresponds to the chain (Xt, Yt) hitting a certain state
(which one?) in a finite amount of time. By irreducibility of (Xt, Yt), this
probability is 1, which allows you to finish the proof of the claim.

Exercises from Section 8.11

47. Consider the irreducible Markov chain with state space S = {1, 2, 3, 4, 5}
whose transition matrix is 

0 1
3

2
3 0 0

0 0 0 1
4

3
4

0 0 0 1
2

1
2

1 0 0 0 0

1 0 0 0 0


.

a) Compute the period of this Markov chain.

b) Compute the stationary distribution. Is this distribution steady-state?

c) Describe P n for n large (there is more than one answer depending on
the relationship n and the period d).

d) Suppose the initial distribution is uniform on S . Estimate the time n
distribution for large n (there are cases depending on the value of n).

e) Compute lim
n→∞

1
n

n∑
k=1

P k.

f) Compute m1 and m2.

48. Let {Xt} be the Ehrenfest chain with d = 4 and X0 = 0 (i.e. there are no
particles in the left-hand chamber).

a) Estimate the distribution of Xt when t is large and even.

b) Estimate the distribution of Xt when t is large and odd.

c) Compute the expected amount of time until there are again no particles
in the left-hand chamber.
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49. Consider a Markov chain on S = {0, 1, 2, 3}with transition matrix

P =



0 1
3 0 2

3
1
5 0 4

5 0

0 1
3 0 2

3
1
5 0 4

5 0


.

a) Compute the Cesàro limit of P n.

b) Compute m0 and m2.

50. Consider a Markov chain {Xt} on S = {0, 1, 2, ...}with transition function

P (x, y) =


2−y−1 if x ≤ 3
1/4 if x > 3 and y ≤ 3
0 if x > 3 and y > 3

a) Show the chain is positive recurrent.
Hint: Consider a factor {Yt} defined by Yt = Xt if Xt ≤ 3 and Yt = 4
if Xt ≥ 4. Show {Yt} is positive recurrent; why does this imply {Xt} is
positive recurrent?

b) Find all stationary distributions of {Xt}.
Hint: The stationary distribution of Yt (from part (a)) tells you something
about the stationary distribution of Xt.

c) Suppose you start in state 2. How long would you expect it to take for
you to return to state 2 for the fifth time?

51. (20 ⋆ pts) Suppose a fair die is thrown repeatedly. Let Sn represent the sum
of the first n throws. Compute

lim
n→∞

P (Sn is a multiple of 13),

justifying your reasoning.

52. (30 ⋆ pts) Your professor owns 3 umbrellas, which at any time may be in his
office or at his home. If it is raining when he travels between his home and
office, he carries an umbrella (if possible) to keep him from getting wet.

a) If on every one of his trips, the probability that it is raining is p, what is
the long-term proportion of journeys on which he gets wet?

b) What p as in part (a) causes the professor to get wet most often?
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c) In the worst-case scenario described in part (b), on what fraction of his
trips will he get wet?

53. (30 ⋆ pts) A knight is placed in one corner of a chess board. At each step,
the knight chooses a square uniformly from the squares that the knight can
legally move to (i.e. two squares in one direction, and one to the side). Com-
pute the expected number of moves the knight will make before returning to
its starting position.
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Chapter 9

Continuous-time Markov chains

9.1 Introducing CTMCs
Goal: study analogues of Markov chains where time is measured continuously
rather than discretely. (The state space S will remain finite or countable.)

FIRST QUESTION

What “should” a continuous-time Markov chain look like?

(DISCRETE-TIME)
MARKOV CHAIN

CTMC
(CONTINUOUS-TIME

MARKOV CHAIN)

state
space S

finite or countable;
usually

S = {0, 1, ..., d} or
S = {0, 1, 2, ...} or

S = Z.

finite or countable;
usually S ⊆ Z

(same)

index
set I

Xt = state at time t
xxxt ∈ {0, 1, 2, ...} or t ∈ Zxxx

Xt = state at time t
t ∈ [0,∞) or t ∈ R

initial
distribution

π0 : S → [0, 1];∑
x∈S

π0(x) = 1

π0(x) = P (X0 = x)

π0 : S → [0, 1];∑
x∈S

π0(x) = 1

π0(x) = P (X0 = x)

(same)

(continued on next page)
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9.1. Introducing CTMCs

MARKOV CHAIN CTMC
tr

an
si

ti
on

pr
ob

ab
ili

ti
es

we specify time 1 transitions:
P : S × S → [0, 1]∑

y∈S
P (x, y) = 1∀x ∈ S

P (x, y) = P (Xt+1 = y|Xt = x)
(we assume these are ⊥ of t)

If S is finite, write P as a matrix:
P (x, y)↔ Px,y = Pxy

From the time 1 transitions, we
calculate transition probabilities

for any time n:
P n(x, y) = P (Xt+n = y|Xt = x)

=
∑
z∈S

P (x, z)P n−1(z, y)

If S finite, P n(x, y) = (P n)xy.

M
ar

ko
v

pr
op

er
ty

xx
xx

xx

P (Xt = xt|X0 = x0, ..., Xt−1 = xt−1)
= P (Xt = xt|Xt−1 = xt−1)

= P (xt−1, xt)
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9.1. Introducing CTMCs

Definition 9.1 A jump process {Xt : t ∈ I} is a stochastic process with index set
I = [0,∞) or R and finite or countable state space S such that with probability 1, the
functions t 7→ Xt (these functions are called sample functions of the process) are
right-continuous and piecewise constant.

That is, there exist times J1 < J2 < J3 < ... (these are r.v.s, not constants) and states
x0, x1, x2, ... ∈ S such that

Xt =


x0 if 0 ≤ t < J1
x1 if J1 ≤ t < J2
x2 if J2 ≤ t < J3
...

...

J1 J2 J3 J4
t

x1=x3

x4

x0

x2

Xt

The assumption that the sample functions are right-continuous is necessary for
technical reasons (we’ll see one of these reasons later).

Definition 9.2 A continuous-time Markov chain (CTMC) {Xt} is a jump pro-
cess satisfying the Markov property .
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9.2. General theory of CTMCs

9.2 General theory of CTMCs
QUESTIONS

1. What properties must the transition functions Pxy(t) of a CTMC have?

(Must they be continuous? Differentiable? Increasing? Decreasing? Do they
have a limit as t→∞? Do they have to go through certain points? Must their
formulas be a certain type? Etc.)

2. What information is really necessary to describe a CTMC?

(To describe a Markov chain, we only need to write down time 1 transitions–
they generate all the time n transitions. For a CTMC, is there something we
can write down that sufficiently “generates” all the time t transitions Pxy(t)?)

Waiting times and holding rates

Definition 9.3 Let {Xt} be a CTMC with state space S. For every x ∈ S, define:

Wx = the waiting time at state x
= the time until the first jump, if the chain starts at x
= min{t ≥ 0 : Xt ̸= x, given that X0 = x}
= XJ1|X0 = x.

Wx
t

x

Xt

OBSERVATIONS ABOUT WAITING TIMES

1. Waiting times are well-defined because of the assumption that the sample
functions are right-continuous.

2. By time homogeneity, the waiting times Wx depend only on state x (and not
on exactly what interval of time they are taking place).

3. By the Markov property, the waiting times Wx are ,

and since Wx is continuous, this means each Wx ∼ .

This allows us to define:
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9.2. General theory of CTMCs

Definition 9.4 Let {Xt} be a CTMC with state space S. For every x ∈ S, define:

qx = the holding rate of state x
= the parameter of the exponential r.v. Wx

= 1
Ex(Wx) .

Note: If the holding rate of a state is large, you expect to stay in the state for a

amount of time before jumping.

EXAMPLE 1
Let {Xt} be a CTMC. Suppose that the holding rate of state 3 is 4. What is the
probability that Xt = 3 for all t ≤ 2?

Jump probabilities

Definition 9.5 Let {Xt} be a CTMC. Let x, y ∈ S. Define

πx,y = the jump probability from x to y
= the probability that when the chain first jumps from state x, it jumps to state y
= Px (XWx = y) .

Properties of jump probabilities immediate from the definition:

πx,y ≥ 0 πx,x = 0
∑
y∈S

πx,y = 1.

W2~Exp(q2)
π2,1

π2,3
π2,4

J1 J2 J3
t

1
2
3
4

Xt
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9.2. General theory of CTMCs

Properties of transition functions

Definition 9.6 Given two quantities x and y, let δx,y = δxy be the Kronecker delta,
i.e.

δx,y = δxy =
{

1 if x = y
0 else .

Theorem 9.7 (Properties of transition functions) Let {Xt} be a CTMC, and let
x, y ∈ S.

1. Pxy(0) = δxy.

2. For all t, the transition functions Px,y(t) satisfy the integral equation

Px,y(t) = δx,ye
−qxt +

∫ t

0
qxe

−qxs

[∑
z∈S

πx,zPz,y(t− s)
]
ds.

3. Pxy is a continuous function of t.

4. Pxy is a differentiable function of t, and

P ′
x,y(t) = −qxPx,y(t) + qx

∑
z∈S

πx,zPz,y(t).

PROOF Statement (1) is obvious. Next, statement (2):

Px,y(t) = Px(Xt = y)
= Px(Xt = y ∩ Wx > t) + Px(Xt = y ∩ Wx ≤ t)
= Px(Xt = y |Wx > t)P (Wx > t) + Px(Xt = y ∩ Wx ≤ t)

= δx,ye
−qxt +

∫ t

0
P (Xt = y |Wx = s)fWx(s) ds

(Law of Total Probability, continuous version)

Now take the conditional probability inside the integral and divvy it up
based on the location of the first jump:

Px,y(t) = δx,ye
−qxt +

∫ t

0
fWx(s)

∑
z∈S

P (Xs = z ∩ Xt = y |Wx = s) ds (♢)

= δx,ye
−qxt +

∫ t

0
qxe

−qxs

[∑
z∈S

πx,zPz,y(t− s)
]
ds.

This finishes the proof of the integral equation.
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9.2. General theory of CTMCs

Next, statement (3). In the integral equation, use the u-sub u = t− s, du = −ds:

Px,y(t) = δx,ye
−qxt +

∫ t

0
qxe

−qxs

[∑
z∈S

πx,zPz,y(t− s)
]
ds

= δxye
−qxt +−

∫ 0

t
qxe

−qx(t−u)
[∑

z∈S
πx,zPz,y(u)

]
du

= δxye
−qxt + qxe

−qxt
∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du (♡)

Last, we prove statement (4). By (3), the integrand of the integral in (♡) is cts.
Therefore

Px,y(t) = δxye
−qxt + qxe

−qxt
∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du (♠)

Thus Px,y is differentiable. Finally, we compute the derivative of Px,y:

P ′
x,y(t) = d

dt

[
δxye

−qxt + qxe
−qxt

∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du

]

= d

dt

[
e−qxt

(
δxy + qx

∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du

)]
.

Now use the Product Rule:

P ′
x,y(t)

= (first)′ · (second) + (second)′ · (first)

=
(
−qxe

−qxt
)(

δxy + qx

∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du

)

+
(
qxe

qxt
∑
z∈S

πx,zPz,y(t)
)(

e−qxt
)

= −qx

[
e−qxt

(
δxy + qx

∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du

)]
+ qx

∑
z∈S

πx,zPz,y(t)

= −qxPx,y(t) + qx

∑
z∈S

πx,zPz,y(t). (by (♠))

This finishes the proof. □
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9.2. General theory of CTMCs

Infinitesimal parameters

It will be convenient to give the values of P ′
x,y(0) their own names:

Definition 9.8 Let {Xt} be a CTMC. For any x, y ∈ S, define the infinitesimal
parameters a.k.a. generating parameters qxy = qx,y to be qxy = P ′

x,y(0).

Corollary 9.9 Let {Xt} be a CTMC. Then for any x, y ∈ S,

qxy = P ′
x,y(0) =

{
−qx if x = y
qxπx,y if x ̸= y

PROOF Set t = 0 in the last statement of Theorem 9.7:

P ′
x,y(t) = −qxPx,y(t) + qx

∑
z∈S

πx,zPz,y(t)

P ′
x,y(0) = −qxPx,y(0) + qx

∑
z∈S

πx,zPz,y(0)

= −qxδxy + qx [0 + 0 + ...+ 0 + πx,y · 1 + 0 + ...+ 0]
= −qxδxy + qxπx,y

=
{
−qx if x = y
qxπx,y if x ̸= y

. □

Note: qxx ≤ 0 for all x, and if x ̸= y then qxy ≥ 0.

Theorem 9.10 Let {Xt} be a CTMC and let x ∈ S. Then∑
y∈S

qxy = 0.

PROOF∑
y∈S

qxy = qxx +
∑
y ̸=x

qxy = −qx +
∑
y ̸=x

qxπx,y = −qx + qx

∑
y ̸=x

πx,y = −qx + qx(1) = 0.□

Why are the qxy called infinitesimal parameters? If t is very small (i.e. infinitesi-
mally small), then by linear approximation (Calculus 1) we have

Px,y(t) ≈ Px,y(0) + P ′
x,y(0)t = δx,y + qxyt.

So these parameters are measuring the infinitesimal rate of change in Px,y(t) when
t is small.
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9.2. General theory of CTMCs

EXAMPLE 2
Suppose {Xt} is a CTMC with state space {1, 2, 3, 4} such that q12 = 3, q13 = 2 and
q14 = 7.

1. Compute q11.

2. Use linear approximation to estimate P12(.08).
3. Use linear approximation to estimate P11(.03).
4. Compute the jump probabilities π13 and π14.

Backward and forward equations

We are ready to derive two sets of differential equations (actually initial value prob-
lems) which the transition functions of a CTMC must satisfy:

Theorem 9.11 (Backward equation) Let {Xt} be a CTMC. Then for all x, y ∈ S,

P ′
x,y(t) =

∑
z∈S

qx,zPz,y(t) and Px,y(0) = δxy.

PROOF From Theorem 9.7,

P ′
x,y(t) = −qxPx,y(t) + qx

∑
z∈S

πx,zPz,y(t)

= qxxPx,y(t) +
∑

z ̸=x∈S
qxπx,zPz,y(t)

= qxxPx,y(t) +
∑

z ̸=x∈S
qx,zPz,y(t)

=
∑
z∈S

qx,zPz,y(t). □
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9.2. General theory of CTMCs

The second set of ODE’s the transition functions satisfy is the “forward equation”
given in Theorem 9.13. Deriving this equation follows the same line of argument
as what we just went through over the last few pages, but instead of conditioning
on the first jump in the process (back in line (♢) of the proof of Theorem 9.7), you
condition on the last jump before time t. To make this argument go through, we
first need this lemma:

Lemma 9.12 (State reversal identity) Let {Xt} be a CTMC. Then

qxnP (Jn ≤ t < Jn+1 |X0 = x0, XJ1 = x1, XJ2 = x2, ..., XJn = xn)
= qx0P (Jn ≤ t < Jn+1 |X0 = xn, XJ1 = xn−1, XJ2 = xn−2, ..., XJn = x0) .

What this lemma says: Here’s a picture when n = 3:

t
J1 J2 J3 J4

t

x2

x1

x0

x3

Xt

t
J1 J2 J3 J4

t

x2

x1

x0

x3

Xt

PROOF The event Jn ≤ t < Jn+1 corresponds exactly to

Jn = Wx0 +Wx1 + ...+Wxn−1 +Wxn > t,

i.e.
Wxn > t−Wx0 −Wx1 − ...−Wxn−1 .

Since Wxn ∼ Exp(qxn), given values s0, ..., sn−1 of Wx0 , ...,Wxn−1 , the probability
of this is

e−qxn (t−s0−s1−...−sn−1) = exp
[
−qxn

(
t−

n−1∑
k=0

sk

)]
.

So by the continuous LTP, the conditional probability of Jn ≤ t < Jn+1 given
XJj

= xj for j ∈ {1, ..., n} is therefore

∫
· · ·

∫
∆

exp
[
−qxn

(
t−

n−1∑
k=0

sk

)]
fWx0 ,Wx1 ,...,Wxn

(s0, s1, ..., sn−1) dV
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9.2. General theory of CTMCs

and since Wx1 , ...,Wxn are independent, this is

∫
· · ·

∫
∆

exp
[
−qxn

(
t−

n−1∑
k=0

sk

)]
fWx0

(s0)fWx1
(s1) · · · fWxn−1

(sn−1) dV

and since Wxk
∼ Exp(qxk

), this is

∫
· · ·

∫
∆

exp
[
−qxn

(
t−

n−1∑
k=0

sk

)]
n−1∏
k=0

qxk
e−qxk

sk dV (9.1)

where ∆ is the set of (s1, ..., sn) ∈ Rn with sj ≥ 0.

In this last integral, perform a change of variables (with Jacobians) from the
variables (s0, ..., sn−1) to (u0, ..., un−1) by setting u0 = t− s0 − s1 − ...− sn−1,
u1 = sn−1, u2 = sn−2, u3 = sn−3, ..., un−1 = s1 in (9.1) above to rewrite it as

∫
· · ·

∫
∆
e−qx0 u0

n−1∏
k=0

qxn−k
e−qxn−k

uk dV ; (9.2)

this gives the conditional probability in the second expression in the lemma.

Notice that in (9.1), the integral has qx0 , ..., qxn−1 but in (9.2), the integral has
qxn , ..., qxn . So multiplying (9.1) by qxn is equal to what you get when you
multiply (9.2) by qx1 , proving the lemma. □

Theorem 9.13 (Forward equation) Let {Xt} be a CTMC. Then for all x, y ∈ S,

P ′
x,y(t) =

∑
z∈S

Px,z(t)qzy and Px,y(0) = δxy.

PROOF HW (starred problem)
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9.2. General theory of CTMCs

Summary so far

If {Xt} is a CTMC, then:

• The transition functions Px,y(t) must be differentiable, and must satisfy two
(systems of) differential equations:

Backward equation:

 P ′
x,y(t) =

∑
z∈S

qxzPz,y(t)

Px,y(0) = δxy

Forward equation:

 P ′
x,y(t) =

∑
z∈S

Px,z(t)qzy

Px,y(0) = δxy

• The numbers qxy = P ′
x,y(0) are called the infinitesimal parameters of the

CTMC.

– For small t, we can estimate Px,y(t) by Px,y(t) ≈ δxy + qxy(t).
– The infinitesimal parameters satisfy:

qxx ≤ 0; qxy ≥ 0 if x ̸= y;
∑
y∈S

qxy = 0.

– The holding rate qx of state x is qx = −qxx.
The waiting time in state x (until the next jump) is an Exp(qx) r.v.

• The jump probabilities πxy satisfy

πxx = 0; πxy = qxy

qx

= −qxy

qxx

if x ̸= y.

The infinitesimal parameters generate all the other information about the CTMC:

• You can compute the jump probabilities and the holding rates directly from
the qxy;

• You can write down a system of differential equations that (hypothetically /
theoretically) can be solved to produce formulas for the transition functions
Px,y(t).
In practice, these differential equations can be hard to solve unless the CTMC
is “nice” (it has a finite state space or is otherwise not too complicated). We’ll
talk about how to analyze these nice situations later; if the situation isn’t
nice, in a worst-case scenario you can estimate the values of Pxy(t) using a
numerical procedure like Euler’s method (MATH 330).
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9.3. CTMCs with finite state space

9.3 CTMCs with finite state space
In this section we discuss additional machinery to help us analyze CTMCs when
the state space S is finite. As with discrete-time Markov chains, we will use matri-
ces and linear algebra to help us keep track of the relevant information:

Definition 9.14 Let {Xt} be a CTMC with finite state space. For each t, set Pxy(t) =
P (Xs+t = y |Xs = x) (we assume that {Xt} is time homogeneous so that these
probabilities do not depend on s). Then let

P (t) =


P11(t) · · · P1d(t)

... . . . ...
Pd1(t) · · · Pdd(t)

 ;

P (t) is called the time t transition function or time t transition matrix of the
CTMC.

WHAT THE THEORY FROM SECTION 9.2 TELLS US

• every entry of every P (t) must be nonnegative;

• every entry of every P (t) must be a differentiable function;

• P (0) = I (i.e. Pxy(0) = δxy);

• for every t, the rows of P (t) must sum to 1:
d∑

y=1
Pxy(t) = 1.

Definition 9.15 Let {Xt} be a CTMC with finite state space S . Then the matrixQ =
P ′(0) is called the infinitesimal matrix or the generating matrix of the CTMC.

Q =


q11 · · · q1d
... . . . ...
qd1 · · · qdd

 =


P ′

11(0) · · · P ′
1d(0)

... . . . ...
P ′

d1(0) · · · P ′
dd(0)

 .

WHAT THE THEORY FROM SECTION 9.2 TELLS US

• qxx ≤ 0; qx = −qxx; qxy ≥ 0 if x ̸= y;
d∑

y=1
qxy = 0;

• a CTMC with finite state space is completely determined by its infinitesimal
matrix Q (and its initial distribution).
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9.3. CTMCs with finite state space

EXAMPLE 3
Suppose the transition matrix of some CTMC {Xt}with state space {0, 1} is

P (t) =

 2
5 + 3

5e
−5t 3

5 −
3
5e

−5t

2
5 −

2
5e

−5t 3
5 + 2

5e
−5t

 .
1. Compute the infinitesimal matrix of {Xt}.
2. Describe the waiting time to state 1 as a common r.v., giving its parameter(s).

Definition 9.16 Let {Xt} be a CTMC with finite state space S. The jump matrix of
the CTMC is the matrix Π whose entries are the jump probabilities, i.e.

Π =


π1,1 · · · π1,d

... . . . ...
πd,1 · · · πd,d

 .
The jump chain of {Xt} is the discrete-time Markov chain {X jump

t } with initial dis-
tribution π0 and transition matrix Π.

WHAT THE THEORY FROM SECTION 9.2 TELLS US

• πxx = 0; πxy = qxy

qx

= −qxy

qxx

if x ̸= y;
d∑

y=1
πxy = 1.
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9.3. CTMCs with finite state space

EXAMPLE 4
Suppose the infinitesimal matrix of some CTMC {Xt}with state space {1, 2, 3} is

Q =

 −3 2 1
4 −6 2
0 7 −7

 .
1. Describe the waiting times for each state. In which state, on the average,

would you expect to stay for the longest times before jumping?

2. Compute the jump matrix of the CTMC.

EXAMPLE 5
Consider a CTMC with state space {1, 2, 3} and infinitesimal matrix

Q =

 −2 1 1
1 −5 4
2 1 −3

 .
1. Sketch the directed graph of this CTMC.

2. Compute the jump matrix of this CTMC.

3. Suppose you start in state 1. What is the probability you stay in state 1 for at
most three units of time before jumping?

4. What is the probability that the first three jumps are from state 1 to state 3,
then state 3 to state 2, then state 2 to state 3 (given that you start in state 1)?

385



9.3. CTMCs with finite state space

Interpreting the forward and backward equations

To compute Q from P (t), we have seen that we use the formula

To go the other way (i.e. compute P (t) from Q), what we know so far is that we
can set up some differential equations:

Suppose the state space of {Xt} is finite and equal to {1, 2, ..., d}. In this setting, the
forward equation becomes

The backward equation works similarly. So, we have:

Theorem 9.17 Let {Xt} be a CTMC with finite state space. Then, the time t transi-
tion function P (t) satisfies both of these differential equations:

Forward equation:
{
P ′(t) = P (t)Q
P (0) = I

.

Backward equation:
{
P ′(t) = QP (t)
P (0) = I

.
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9.3. CTMCs with finite state space

Exponentiation of matrices

Consider the backward equation P ′(t) = QP (t); P (0) = I . Suppose that instead of
a matrix P (t), you had a function y(t) in the backward equation, and that instead
of constant matrix Q, you had a constant number q. This yields the ODE{

y′(t) = q y(t)
y(0) = 1

In MATH 330, you learn that this equation models ,
and its solution is

So in the matrix version that we have, the solution ought to be

Recall: the Taylor series of et:

et =
∞∑

n=0

tn

n! = 1 + t+ t2

2! + t3

3! + ...

Definition 9.18 Given a square matrix A, define the matrix exponential of A to be
the matrix eA (also denoted exp(A)) defined by

eA = exp(A) =
∞∑

n=0

1
n!A

n = I + A+ 1
2A

2 + 1
3!A

3 + ...

There’s an issue here with what it means for an infinite series of matrices to con-
verge. Take my word for it: this series converges for all square matrices A, to a
matrix eA = exp(A) which is the same size as A.

WARNING: If A =
(

1 2
3 4

)
, eA ̸=

(
e1 e2

e3 e4

)
.

More generally, if A is a square matrix, then for any t ∈ R, we have

etA = eAt =
∞∑

k=0

1
k! (At)

k = I + At+ A2

2 t2 + A3

3! t
3 + ...
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9.3. CTMCs with finite state space

Theorem 9.19 (Properties of matrix exponentials) LetA, B and S be square ma-
trices of the same size, where S is invertible. Let n ∈ {0, 1, 2, 3, ...}. Then:

1. If A is diagonal (i.e. A =

 λ1 0
. . .

0 λd

), then eA =

 eλ1 0
. . .

0 eλd

.

2. If AB = BA, then exp(A+B) = exp(A) exp(B).

3. If B = exp(A), then Bn = exp(An).

4. For any matrix A, (eA)n = eAn = enA.

5. exp(zero matrix) = I .

6. exp(SAS−1) = SeAS−1.

PROOF MATH 322 or MATH 330. □

Importance: Property (6) above suggests a method to compute the exponential of
a matrix A. Diagonalize A (this means write A = SΛS−1 where the columns of S
are eigenvectors of A and the entries of the diagonal matrix Λ are the correspond-
ing eigenvalues); then eA = SeΛS−1.

Theorem 9.20 Let P (t) be a family of square matrices, indexed by t. Then, the fol-
lowing are equivalent:

1. P (t) = eQt = exp(Qt) for some square matrix Q.

2. P (t) solves the forward equation P ′(t) = P (t)Q and P (0) = I ;

3. P (t) solves the backward equation P ′(t) = QP (t) and P (0) = I .

PROOF We start by proving (1)⇒ (2 and 3): suppose P (t) = eQt =
∞∑

n=0

1
n!Q

n.

Clearly P (0) = eQ0 = exp(zero matrix) = I , so the initial condition is satisfied.

Also,

P ′(t) = d

dt
eQt = d

dt

∞∑
n=0

Qn

n! t
n =

∞∑
n=1

Qn

(n− 1)!t
n−1

=


Q
( ∞∑

n=0

Qn

n!

)
= QeP t = QP (t).( ∞∑

n=0

Qn

n!

)
Q = eP tQ = P (t)Q.
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9.3. CTMCs with finite state space

The reverse implications (2 or 3)⇒ (1) come from the Existence-Uniqueness
Theorem of differential equations (MATH 330), which says that a system of
(ordinary) differential equations with given initial condition has a unique
solution (under natural hypotheses that hold here). Since eQt is a solution of
P ′(t) = QP (t); P (0) = I , it must be the only solution. □

Corollary 9.21 x

1. If {Xt} is a CTMC with finite state space S, then: the time t transition matrices
must satisfy P (t) = exp(Qt) for some matrix Q where

qxx ≤ 0 qxy ≥ 0 whenever x ̸= y
∑
y∈S

qxy = 0 for all x ∈ S.

In particular, this Q is the generating matrix of the CTMC: Q = P ′(0).

2. Any d× d matrix Q which has the properties

qxx ≤ 0 qxy ≥ 0 whenever x ̸= y
∑
y∈S

qxy = 0

generates a CTMC by setting P (t) = exp(Qt) for all t.

EXAMPLE 6
Consider a CTMC with state space {1, 2, 3} and infinitesimal matrix

Q =

 −2 1 1
1 −5 4
2 1 −3

 .
1. Compute P (t).
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x
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2. Recall from the previous page that

P (t) =


11
24 −

1
12e

−6t + 5
8e

−4t 1
6 −

1
6e

−6t 3
8 + 1

4e
−6t − 5

8e
−4t

11
24 + 5

12e
−6t − 7

8e
−4t 1

6 + 5
6e

−6t 3
8 −

5
4e

−6t + 7
8e

−4t

11
24 −

1
12e

−6t − 3
8e

−4t 1
6 −

1
6e

−6t 3
8 + 1

4e
−6t + 3

8e
−4t

 .

Compute P (X3/4 = 0 |X1/2 = 1).

3. If the initial distribution is π0 = (1
2 ,

1
4 ,

1
4), find the distribution at time t = ln 2.
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9.4 Class structure, recurrence and transience of CTMCs
Definition 9.22 Let {Xt} be a CTMC and let y ∈ S . Define the hitting time to y
to be

Ty = min{t ≥ J1 : Xt = y}.

(Recall that J1 is the time of the first jump.)

J1 Tx
t

x

Xt

Definition 9.23 Let {Xt} be a CTMC and let x, y ∈ S.

• Define fx,y = Px(Ty <∞). We say x→ y if fx,y > 0.

• x is called recurrent if fx,x = 1 and transient otherwise.

• x is called positive recurrent if x is recurrent mx = Ex(Tx) <∞.

• x is called null recurrent if x is recurrent and mx = Ex(Tx) =∞.

• {Xt} is irreducible if x→ y for all x, y ∈ S.

Definition 9.24 Let {Xt} be a CTMC with state space S. The embedded chain
or jump chain of the CTMC is the (discrete-time) Markov chain {X jump:t∈{0,1,2,...}

t }
whose transition probabilities are given by the jump probabilities πx,y.

Notice: (fx,y for a CTMC{Xt}) = (fx,y for its jump chain {X jump
t }). Therefore:

• a CTMC is recurrent, transient, etc. if and only if its jump chain is recur-
rent, transient, etc., respectively;

• irreducible CTMCs are either positive recurrent, null recurrent, or tran-
sient (and must be positive recurrent if their state space is finite); and

• all the same theorems regarding class structure for discrete-time Markov
chains hold for CTMCs.
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Stationary distributions

Definition 9.25 Let {Xt} be a CTMC with state space S. A distribution π on S is
called stationary if for all y ∈ S and all t ≥ 0,∑

x∈S
π(x)Px,y(t) = π(y).

If S is finite, this means πP (t) = π in matrix multiplication language.

Theorem 9.26 (Stationarity equation for CTMCs) Let {Xt} be a CTMC with state
space S. A distribution π on S is stationary if and only if∑

x∈S
π(x)qxy = 0 for all y ∈ S.

Note: If S is finite, this means πQ = 0 in matrix multiplication language. This
gives you a good way to find stationary distributions of CTMCs.

PROOF HW

EXAMPLE 7
Compute the stationary distribution of the CTMC with state space S = {1, 2, 3}
whose infinitesimal matrix is

Q =

 −3 2 1
0 −4 4
1 1 −2

 .
Solution: Write π = (a, b, c); then

πQ = 0 ⇒


−3a+ c = 0

2a− 4b+ c = 0
a+ 4b− 2c = 0
a+ b+ c = 1

⇒ π =
( 4

21 ,
5
21 ,

12
21

)
.

Remark: For the CTMC in Example 7, the jump matrix is Π =

 0 2
3

1
3

0 0 1
1
2

1
2 0

. If you

solve the equation πjumpΠ = πjump to find the stationary distribution of the jump
chain, you will get

πjump =
( 3

14 ,
5
14 ,

6
14

)
.

Question: Is there a connection between π and πjump?
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Theorem 9.27 Let {Xt} be a CTMC with state space S.

1. Suppose π is a stationary distribution for {Xt}. For each x ∈ S, set π′(x) =
π(x)qx. Then ∑

x∈S
π′(x)πx,y = π′(y).

2. Suppose π′ : S → [0,∞) is a function such that∑
x∈S

π′(x)πx,y = π′(y).

Then if we set, for each y ∈ S, π∗(y) = 1
qy
π′(y), then for all y ∈ S,

∑
x∈S

π∗(x)Px,y(t) = π∗(y).

PROOF HW

WARNING: The π′ defined in Theorem 9.27 may not be a distribution on S
(because its values may not sum to 1). But Theorem 9.27 says π′ satisfies the
stationarity equation for the jump chain, which in matrix language would be

π′ Π = π′.

This means that if
∑
y∈S

π′(y) = C, then by normalizing π′, which means setting

πjump(y) = 1
C
π′(y) for all y ∈ S, we get a stat. dist. πjump for the jump chain.

Similarly, the π∗ obtained in statement (2) of Theorem 9.27, once normalized,
would give the stat. dist. of {Xt}.

Consequence: if the jump chain of an irred. CTMC has a stat. dist., so does
the CTMC, so if the jump chain is pos. recurrent, so is the original CTMC.

The content of Theorem 9.27 can be summarized with this diagram:

stat. dist. π
of CTMC {Xt}

multiply by holding rates,
then normalize

))
stat. dist πjump

of jump chain {Xjump
t }

divide by holding rates,
then normalize

ii
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EXAMPLE 8
Suppose {Xt} is a CTMC with state space {1, 2, 3, 4}. If the stationary distribution
of the jump chain of {Xt} is uniform, and the holding rates are q1 = 2, q2 = 3,
q3 = 6, q4 = 4, compute the stationary distribution of {Xt}.

Theorem 9.28 (Steady-state distribution of CTMCs) Let {Xt} be an irreducible,
positive recurrent CTMC with a stationary distribution π. Then the stationary distri-
bution is steady-state, i.e.

• lim
t→∞

Px,y(t) = π(y) for all x, y ∈ S; and

• lim
t→∞

P (Xt = y) = π(y) for all y ∈ S, regardless of the initial distribution.

Why is the stationary distribution always steady-state? The short answer is

PROOF Fix h > 0 and consider the discrete-time Markov chain {Zn} = {Xhn} for
n ∈ {0, 1, 2, ...}.

{Zn} has transition functions P (x, y) = Px,y(h), and since these functions are
always positive for h > 0, {Zn} is irreducible and aperiodic.

So the FTMC applied to {Zn} gives a stat. dist. π for {Zn} (which must be the
stat. dist. for {Xt}) which is steady-state for {Zn}, i.e.

lim
n→∞

P n(x, y) = lim
n→∞

Px,y(hn) = π(y)

for all x, y ∈ S.
So for t that are multiples of h, Px,y(t)→ π(y).
Since h can be chosen arbitarily small and since t 7→ Px,y(t) is (uniformly) cts, it

follows (from a MATH 430 argument) that lim
t→∞

Px,y(t) = π(y). □
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Corollary 9.29 An irreducible, positive recurrent CTMC cannot have more than one
stationary distribution.

PROOF If π and π′ are both stationary, then they would both be steady-state for
{Zn} as described in the previous theorem. This is impossible. □

Theorem 9.30 (Stationary distributions of CTMCs) Let {Xt} be an irreducible
CTMC with state space S.

1. If {Xt} is transient or null recurrent, then it has no stationary distributions.

2. If {Xt} is positive recurrent, then it has one stationary distribution π given by

π(x) = 1
mxqx

for all x ∈ S.

PROOF The only thing left to prove is the formula for the stat. dist. in the positive
recurrent case.

Suppose {Xt} is irreducible and positive recurrent, and fix x ∈ S.
For each y ∈ S, define

τx(y) = Ex

[∫ Tx

0
1{Xs=y} ds

]
;

this is the expected amount of time the chain spends in state y before it first
returns to x.

A preview: This τx(y) will turn out not to depend on x at all.

Notice
∑
y∈S

τx(y) = Ex(Tx) = mx, so by setting πx(y) = 1
mx

τx(y), we get a

distribution πx on S. This πx(y) measures the fraction of the time in the CTMC
spent in state y before the first return to x.

A preview: This πx(y) will turn out not to depend on x at all.

Now let {Yn} denote the jump chain associated to {Xt} and let T jump
x be the first

return time to x in {Yn} (this is the number of jumps it takes x to return to
itself in the CTMC). We have

τx(y) = Ex

[ ∞∑
n=0

Wy1{Yn=y,n<T jump
x }

]

= 1
qy

Ex

[ ∞∑
n=0

1{Yn=y,n<T jump
x }

]

= 1
qy

Ex

T jump
x −1∑

n=0
1{Yn=y}

 .
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Define γx(y) = Ex

T jump
x −1∑

n=0
1{Yn=y}

, so that τx(y) = 1
qy

γx(y).

A preview: This γx(y) will turn out not to depend on x either.

Claim: “γxΠ = γx”, i.e.
∑
y∈S

γx(y)π(y, z) = γx(z).

To prove this claim, first note that since the jump chain is positive recurrent,
T jump

x <∞) with probability 1, so

γx(z) = Ex

T jump
x∑
n=1

1{Yn=z}


= Ex

[ ∞∑
n=1

1{Yn=z and n<T jump
x }

]

=
∞∑

n=1
Ex

[
1{Yn=z and n<T jump

x }

]
=

∞∑
n=1

P (Yn = z and n < T jump
x )

=
∑
y∈S

∞∑
n=1

P (Yn = z, Yn−1 = y and n < T jump
x )

=
∑
y∈S

π(y, z)
∞∑

n=1
P (Yn−1 = y and n < T jump

x )

=
∑
y∈S

π(y, z)Ex

[ ∞∑
m=0

1{Ym=y and n<T jump
x −1}

]

=
∑
y∈S

π(y, z)Ex

T jump
x −1∑
m=0

1{Ym=y}


=
∑
y∈S

π(y, z)γx(y).

Having proven the claim, by (2) of Theorem 9.27, τx is a multiple of a stationary
distribution of {Xt}. But the only multiple of τx which is a distribution is the
πx we defined earlier, i.e.

πx(y) = 1
mx

τx(y) = 1
mxqy

γx(y).

So for each x ∈ S, this πx must be stationary, and since there is at most one
stationary distribution, we know πx = π for all x ∈ S (this verifies that
none of πx(y), τx(y) and γx(y) actually depend on x). In particular,

π(x) = πx(x) = 1
mx

τx(x) = 1
mxqx

γx(x) = 1
mxqx

Ex

T jump
x −1∑

n=0
1{Yn=x}


= 1
mxqx

(1) = 1
mxqx

. □
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Corollary 9.31 Let {Xt} be an irreducible, positive recurrent CTMC and let x, y ∈
S. If we define τx(y) to be the expected amount of time spent in state y before the first
return to x, given that X0 = x, then

τx(y) = mxπ(y).

PROOF From above,
1

myqy

= πy(y) = πx(y) = 1
mxqy

γx(y), it must be that

γx(y) = mx

my

⇒ τx(y) = 1
qy

γx(y) = mx

qymy

= mxπ(y). □

Ergodic theorem

We finish this section with a theorem that says time averages (the proportion of
time spent in state x in a CTMC) converges to the space average (the value that the
stationary distribution assigns x).

Theorem 9.32 (Ergodic theorem for CTMCs) Let {Xt} be an irreducible, positive
recurrent CTMC, and let π be the stationary distribution of {Xt}. Then for all y ∈ S,

P
[

lim
t→∞

1
t

∫ t

0
1{Xs=y} ds = π(y)

]
= 1.

t
t

y

Xt

t
t

1

1{Xs=y}

SKETCH OF PROOF Let x = X0. The expected length of each block of time in [0, t]
between successive returns to x is mx, so by the Strong Law of Large
Numbers, the average length of the blocks approaches mx with probability 1.

In each block, the expected amount of time spent in state y is τx(y) = mxπ(y),
so by the SLLN the average time spent in y in each block approaches mxπ(y)
with probability 1.

Therefore the proportion of time spent in state y in each block approaches
mxπ(y)
mx

= π(y) with probability 1. The result follows. □
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9.5 Specific examples of CTMCs
Two-state CTMC

EXAMPLE 9
Let {Xt} be a CTMC on S = {0, 1} = {OFF, ON}. Let q01 = λ and q10 = µ.

1. Sketch the directed graph of {Xt}.

2. Compute the infinitesimal matrix of {Xt}.

3. Compute the stationary distribution of {Xt}.

4. Compute the transition matrices Px,y(t).
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Poisson processes
EXAMPLE 10

A Poisson process is a CTMC {Xt}on S = {0, 1, 2, ...} that starts at 0 (X0 = 0),
has constant holding rates (qx = λ for all x) and no deaths or simultaneous births
(πx,x+1 = 1 for all x).

1. Sketch the directed graph of a Poisson process.

2. Compute all the infinitesimal parameters of a Poisson process.

3. Use your answer to # 2 to simplify the forward equation for a Poisson process.

4. Compute Px,y(t) when y < x.

5. Compute Px,x(t).

6. Use your answer to # 3 to derive a recursive formula for Px,y+1(t) in terms of
Px,y(t).

7. Compute Px,x+1(t).

8. Compute Px,x+2(t).

9. Based on your answers to # 7 and # 8, give a formula for Px,x+n(t). (This
should match a formula associated to a Poisson process we derived in MATH
414.)
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The infinite server queue
EXAMPLE 11

Let Xt denote the number of people in line for some service (including those being
served).

Assume that the people arrive at rate λ (i.e. that the number of arrivals in line
follows a Poisson process with rate λ) and that the time it takes each customer to
be served is exponential with parameter µ.

Assume that there are an infinite number of servers (so no one has to wait in line
before being served).

The resulting CTMC {Xt} is called the infinite server queue or theM/M/∞ queue.

Question 1: Compute the time t transition function for the M/M/∞ queue.

Solution: We want Px,y(t) = P (Xt = y |X0 = x).
To compute this, note that of the y customers that are supposed to be in the
chain at time t, some of them (say k of the y) would have been in the chain at
time 0. Call these folks original customers and denote their number by Xorig

t .

The remaining y − k of them would have to have joined the queue after time 0,
but not be served by time t. Call these new arrivals still in the queue and
denote their number by Xnew

t .

We have

Px,y(t) =
min(x,y)∑

k=0
Px

 there are k original
customers still in the

queue at time t

 · P
 there are y − k new

arrivals in the queue
at time t


=

min(x,y)∑
k=0

Px

(
X

orig
t = k

)
P (Xnew

t = y − k) . ($)

Next, let’s compute Px

(
X

orig
t = k

)
. Each customer has a service time which is

Exp(µ), so the probability the customer is still in the queue at time t is

P (service time ≥ t) = P (Exp(µ) ≥ t) = e−µt.
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Since the customers act independently, we count the number still in the

queue by a r.v., i.e.

Px

(
X

orig
t = k

)
= b(e−µt, x, k) =

(
x

k

)
e−µkt

(
1− e−µt

)x−k
.

Now, we need to compute P (Xnew
t = y − k). More generally, let’s compute

P (Xnew
t = w) and substitute in w = y − k later.

Let Ct be the number of customers arriving in (0, t]. By the LTP, we have

P (Xnew
t = w) =

∞∑
c=0

P (Xnew
t = w |Ct = c)P (Ct = c).

Since there have to be at least w arrivals for Xnew
t to be w, this reduces to

P (Xnew
t = w) =

∞∑
c=w

P (Xnew
t = w |Ct = c) P (Ct = c)

P

(
of the c arrivals,

w are still in the queue

)
P (Pois(λt) = c)

b(c, P
(

any one arriving customer
is still in the queue

)
, w) e−λt(λt)c

c!

∫ t

0
P

(
customer is still

in queue at time t

∣∣∣∣∣ customer arrives
at time s

)
fS(s) ds

P (Exp(µ) ≥ t− s) 1
t

e−µ(t−s)

All together, this ends up being

P (Xnew
t = w) =

∞∑
c=w

(
c

w

) [∫ t

0
e−µ(t−s) 1

t
ds
]w [

1−
∫ t

0
e−µ(t−s) 1

t
ds
]c−w e−λt(λt)c

c! .

If you work this out (starred HW problem), you will get

P (Xnew
t = w) =

e− λ
µ

(1−e−µt)
[

λ
µ
(1− e−µt)

]w
w! .
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In other words, Xnew
t ∼ Pois

(
λ
µ

(1− e−µt)
)
. Therefore

P (Xnew
t = y − k) = P

(
Pois

(
λ

µ

(
1− e−µt

))
= y − k

)

=

[
λ
µ

(1− e−µt)
]y−k

(y − k)! exp
(
−λ
µ

(1− e−µt)
)
.

Finally, substituting back into ($), from two pages ago, we get

Px,y(t) =
min(x,y)∑

k=0
Px(Xorig

t = k) P (Xnew
t = y − k) ($)

=
min(x,y)∑

k=0

[(
x
k

)
e−µkt(1− e−µt)x−k

]
[

λ
µ (1− e−µt)

]y−k

(y − k)! exp
(
−λ

µ
(1− e−µt)

) .

Question 2: Show the M/M/∞ queue is positive recurrent, and compute its
stationary distribution.

Solution: Since the stationary distribution would be steady-state, let’s use our for-
mula for Px,y(t) and see what happens when t→∞:

lim
t→∞

Px,y(t) = lim
t→∞

(k = 0 term of the above sum)

= lim
t→∞

(
x
0

)
e−0

(
1− e−µt

)x


[

λ
µ

(1− e−µt)
]y

y! exp
(
−λ
µ

(
1− e−µt

))
= (1)1(1)x


[

λ
µ
(1)
]y

y! exp
(
−λ
µ

(1)
)

=

(
λ
µ

)y

y! e−(λ/µ).

We have proven:

Theorem 9.33 (Stat. dist. of the M/M/∞ queue) The M/M/∞ queue with ar-
rival rate λ and service rate µ is positive recurrent, and its stationary distribution is

Pois

(
λ

µ

)
.
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9.6 Chapter 9 Homework
Exercises from Section 9.2

1. Consider a continuous-time Markov chain {Xt}with state space S = {1, 2, 3, 4}
with holding rates q1 = q2 = 1, q3 = 3, q4 = 2 and jump probabilities π12 = 1

8 ,

π13 = 1
2 , π21 = 0, π23 = 1

4 , π31 = 1
6 , π32 = 2

5 , π41 = π42 = 1
6 .

a) Compute π34 and π44.
b) Compute the infinitesimal parameters qxy for all x, y ∈ S.
c) What is the probability that Xt = 2 for all t < 4, given that X0 = 2?
d) What is the probability that your first two jumps are first to state 3 and

then to state 2, given that you start in state 1?
e) What is P ′

13(0)?
f) Use linear approximation to estimate P31(.001) and P22(.06).

2. Let {Xt} be a CTMC with state space {1, 2, 3, 4, 5} where the following in-
finitesimal probabilities are known: q12 = q13 = 6, q14 = 4, q15 = 9, q21 = 4,
q23 = 0, q24 = q25 = 1, q32 = 0, q42 = q52 = 10, q43 = q41 = 2.

a) Suppose X0 = 1. What is probability that the first jump takes place
before time 10?

b) Suppose X0 = 2. What is the probability that the first two jumps are to
state 1, then to state 3?

c) Write the forward equation for P ′
12(t)

d) Write the backward equation for P ′
12(t).

e) If q44 = −30, what is q45?

3. Consider the CTMC {Xt}with state space {0, 1}where q0 = 3 and q1 = 4.

a) Write out the system of differential equations which constitute the back-
ward equation of {Xt}.

b) Write out the system of differential equations which constitute the for-
ward equation of {Xt}.

4. (60 ⋆ pts) In this problem, we prove Theorem 9.13, which asserts that a
CTMC {Xt} satisfies the forward equation.

a) Take a look at this equation (I hope you can convince yourself that this
equation is true):

Px,y(t) = Px(Xt = y) =
∞∑

n=0

∑
z ̸=y

Px(Jn ≤ t < Jn+1, XJn−1 = z,XJn = y).
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i. In this equation, describe in English what the n is referring to.
ii. In this equation, describe in English what the z is referring to.

b) Using the time reversal identity proven in Lemma 9.12, prove

Px(Jn ≤ t < Jn+1 |XJn−1 = z,XJn = y)

= qx

∫ t

0
e−qys qz

qx

Px(Jn−1 ≤ t− s < Jn |XJn−1 = z) ds.

c) Use the multiplication principle and substitute in the formula you found
in part (b) to the equation from part (a) to derive the following “forward
integral equation”:

Px,y(t) = δx,ye
−qxt +

∫ t

0

∑
z ̸=x

Px,z(t− s)qzye
−qys ds

d) Perform the u-sub u = t − s in the forward integral equation of part (c)
and simplify what you get to obtain

Px,y(t) = δx,ye
−qyt + e−qyt

∫ t

0

∑
z ̸=x

Px,z(u)qzye
qyu du.

e) Explain why you know from the formula of part (d) that Px,y is a differ-
entiable function of t.

f) Differentiate both sides of the equation in (d), and rewrite the equation
you obtain to get the forward equation

P ′
x,y(t) =

∑
z∈S

Px,z(t)qzy.

Hint: This should resemble the computation done in the proof of Theo-
rems 9.7 and 9.11.

Exercises from Section 9.3

5. Let {Xt} be a CTMC with time t transition matrix

P (t) = 1
22


12− 11e−13t/2 + 21e−11t/2 4 + 11e−13t/2 − 15e−11t/2 b(t)

12− 33e−13t/2 + 21e−11t/2 4 + 33e−13t/2 − 15e−11t/2 6− 6e−11t/2

12 + 44e−13t/2 −Ke−11t/2 4− 44e−13t/2 + 40e−11t/2 6 + 16e−11t/2

 ,

where b(t) is a function and K is a constant.

a) Compute b(t).
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b) Compute K.

c) Compute the infinitesimal matrix Q.

d) Compute the jump matrix Π.

6. Consider a continuous-time Markov chain {Xt}with with state space {1, 2, 3}
and infinitesimal matrix

Q =

 −5 3 b
4 −6 2
2 1 −3

 .
where b is a constant.

a) What is b?

b) Compute the jump matrix Π.

c) Compute the holding rate of state 2.

d) Suppose X0 = 2. What is the probability that when the chain jumps, the
next state is 3?

e) Suppose X0 = 3. What is the probability that Xt = 3 for all t ∈ [0, 4]?
f) Suppose X0 = 3. What is the expected amount of time before the first

jump?

7. Let {Xt} be the CTMC of Problem 6.

a) Compute the time t transition matrix P (t).
b) Compute the probability that X5 = 2 given that X2 = 2.

c) If the initial distribution is
(1

5 ,
3
5 ,

1
5

)
, find the distribution at time t =

ln 6. Simplify this answer to remove any exponentials and logarithms.

d) Show that lim
t→∞

P (Xt = 2 |X0 = x) does not depend on x, and find its
value.

Exercises from Section 9.4

8. (20 ⋆ pts) (In this problem, we prove Theorem 9.26 from the lecture notes.)
Suppose {Xt} is a continuous-time Markov chain with finite state space S
and infinitesimal matrix Q.

a) Prove that if π is stationary (i.e. πP (t) = π for all t ≥ 0), then πQ = 0.

b) Prove that if πQ = 0, then π is stationary.

9. (40 ⋆ pts) Prove Theorem 9.27 from the lecture notes.
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10. Consider the CTMC {Xt} from Problem 6.

a) Compute the stationary distribution of {Xt}.
b) Compute the mean return time to each state.

c) Compute τ2(3), where τ2(3) is as defined in the proof of Theorem 9.30
(it is the expected amount of time the chain spends in state 3 before it
returns to state 2).

11. Compute the stationary distribution of the CTMC described in Problem 1.

12. Suppose {Xt} is a continuous-time Markov chain with state space {1, 2, 3}
and time t transition matrix

P (t) = 1
9


1 + 6te−3t + 8e−3t 6− 6e−3t 2− 6te−3t − 2e−3t

1− 3te−3t − e−3t 6 + 3e−3t 2 + 3te−3t − 2e−3t

1 + 6te−3t − e−3t 6− 6e−3t 2− 6te−3t + 7e−3t

 .

a) Compute the infinitesimal matrix of this process.

b) What is the probability that X2 = 1, given that X0 = 1?

c) What is the probability that Xt = 1 for all t < 2, given that X0 = 1?

d) Compute the steady-state distribution π.

e) Compute the mean return time to each state.

f) Suppose you let time pass from t = 0 to t = 1 200 000. What is the
expected amount of time in this interval for which Xt = 3?

g) Suppose X0 = 2. What is the expected amount of time spent in state 3
before the first time the chain returns to state 2?

h) Suppose X0 = 2. What is the expected amount of time spent in state 3
before the eleventh time the chain returns to state 2?

13. Consider a continuous-time Markov chain {Xt}with with state space {1, 2, 3}
and infinitesimal matrix

Q =

 −4 1 3
0 −1 1
0 2 −2

 .
a) Classify the states as recurrent or transient.

b) Are the recurrent states positive recurrent or null recurrent? Explain.

c) Find all stationary distributions of {Xt}. Are any of them steady-state?
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14. Consider a CTMC {Xt}, whose directed graph is as given below (the fact that
the holding rate of state 4 is 0 means that once you are in state 4, you stay in
state 4 forever):

2 1

1
2 ..

1
2





6 21
3

nn

1
3

zz

1
3





9 3 1
3

00

2
3

::

0 4

Compute E1(T4).
Hint: For i = 1, 2, 3, let ki = Ei(T4). Set up a system of equations that will
enable you to solve for all of the ki.

Exercises from Section 9.5

15. Let {Xt} be an irreducible CTMC with state space S = {0, 1} where P00(t) =
7
10 + 3

10e
−4t. Compute P (X5 = 0 |X0 = 1).

16. (30 ⋆ pts) Let {Xt} be the infinite server queue. Finish the calculation in the
middle of Example 11, starting with

P (Xnew
t = w) =

∞∑
c=w

(
c

w

) [∫ t

0
e−µ(t−s) 1

t
ds
]w [

1−
∫ t

0
e−µ(t−s) 1

t
ds
]c−w e−λt(λt)c

c! ,

and working out this expression to show that

P (Xnew
t = w) =

e− λ
µ(1−e−µt) [λ

µ
(1− e−µt)

]w
w! .

17. A pure birth process is a CTMC with state space {0, 1, 2, ...}where πx,x+1 = 1
for all x ∈ S (this is like a Poisson process, but without the assumption that
the holding rates are constant, so hypothetically the qx’s might be the same
or different).

a) Sketch the directed graph of a pure birth process.

b) Compute all the infinitesimal parameters of a pure birth process.

c) Use your answer to part (b) to simplify the forward equation of this
process.

d) What is Px,y(t) when y < x?

e) Compute Px,x(t).
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f) Solve the differential equation from part (a) to obtain a recursive for-
mula for Px,y+1(t) in terms of Px,y(t).
Hint: there are two cases, depending on whether or not qx = qx+1.

g) Compute Px,x+1(t), under the assumption that qx ̸= qx+1.

h) Compute Px,x+1(t), under the assumption that qx, qx+1 and qx+2 are all
distinct.

18. (40 ⋆ pts) A pure death process is a CTMC with state space {0, 1, 2, ...}where
q0 = 0 (so 0 is absorbing) and πx,x−1 = 0 for all x ≥ 1.

a) Simplify the forward equation of this process as in part (c) of the previ-
ous exercise.

b) Let x ≥ 1. Compute Px,x(t).
c) Solve the differential equation from part (a) to obtain a recursive for-

mula for Px,y−1(t) in terms of Px,y(t).
d) Compute Px,x−1(t), under the assumption that qx ̸= qx−1.

e) Compute Px,x−1(t), under the assumption that qx = qx−1.

19. Let {Xt} be an (M/M/∞)-queue where the arrivals follow a Poisson process
with mean 12 arrivals per hour, and the service times are exponential with
parameter 4 (i.e. the mean service time is 1

4 hour).

a) If there are currently 8 individuals in the queue, what is the probability
that exactly 5 of those 8 individuals are still in the queue at time 3

4?

b) What is the probability that there will be 7 individuals in the queue at
time 3

2 who were not originally in the queue?

c) Compute and simplify P2,2(t).
d) Use the steady-state distribution to estimate the probability that at some

distant time in the future, there are 7 individuals in the queue.

20. (40 ⋆ pts) A large triangle has three verticesA,B and C. You and your friend
initially stand at vertex A. You decide to move from one vertex to the next
clockwise vertex at random times, where the times between your movements
are i.i.d. exponential r.v.s, each having parameter λ. Your friend decides to
move from one vertex to the next counterclockwise vertex at random times,
where the times between their movements are i.i.d. exponential r.v.s, each
having parameter µ.

Here is the catch: you and your friend are handcuffed, so when you move,
your friend moves with you, and when your friend moves, you move with
them. Derive a formula which gives the probability you and your friend are
both on vertex A at time t.
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21. Consider a CTMC {Xt}with S = {0, 1, 2, 3, ...}where

qxy =


λx if y = x+ 1
µx if y = x− 1

−(λ+ µ)x if y = x
0 else

for positive constants λ and µ.

a) Simplify the forward equation of this process.

b) Let gx(t) = Ex(Xt). Use the forward equation to show

g′
x(t) = (λ− µ)gx(t).

c) Based on part (b), derive a formula for gx(t).
d) Compute E0(X8).
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Chapter 10

Martingales

10.1 Background: a gambling problem
Suppose you are playing a game with your friend where you bet $1 on each flip

of a fair coin (fair means the coin flips heads with probability
1
2 and tails with

probability
1
2 ). If the coin flips heads, you win, and if the coin flips tails, you lose

(mathematically, this is the same as “calling” the flip and winning if your call was
correct).

Suppose you come to this game with $10. What will be the situation after three
coin flips?

Let Xt be your bankroll after playing the game t times; this gives a stochastic pro-
cess {Xt}t∈N. We know X0 = 10, for example.
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10.1. Background: a gambling problem

Sequence of flips Probability of X3 = bankroll
(in order) that sequence after three flips

H H H 1
8 13

H H T 1
8 11

H T H 1
8 11

H T T 1
8 9

T H H 1
8 11

T H T 1
8 9

T T H 1
8 9

T T T 1
8 7

To summarize, your bankroll after three flips, i.e. X3, has the following density:

x 7 9 11 13

P (X3 = x) 1
8

3
8

3
8

1
8

so your expected bankroll is

EX3 = 1
8(7) + 3

8(9) + 3
8(11) + 1

8(13) = 7 + 27 + 33 + 13
8 = 80

8 = 10.

Notice that your expected bankroll after 3 rolls is the amount you started with:

EX3 = X0.

The major question: can you beat a fair game?

Suppose that instead of betting $1 on each flip, that you varied your bets from one
flip to the next. Suppose you think of a method of betting as a betting strategy. Here
are some things you might try:

Strategy 1: Bet $1 on each flip.

Strategy 2: Alternate between betting $1 and betting $2.

Strategy 3: Start by betting $1 on the first flip.
After that, bet $2 if you lost the previous flip, and bet $1 otherwise.

Strategy 4: Bet $1 on the first flip.
If you lose, double your bet after each flip you lose until you win once.
Then go back to betting $1 and repeat the procedure.
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QUESTION

Is there a strategy (especially one with bounded bet sizes) you can implement such
that your expected bankroll after the 20th flip is greater than your initial bankroll
X0? If so, what is it? If not, what about if you flip 100 times? Or 1000 times? Or
any finite number of times?

Furthermore, suppose that instead of planning beforehand to flip a fixed number
of times, decide that you will stop at a random time depending on the results of the
flips. For instance, you might stop when you win five straight bets. Or you might
stop when you are ahead $3.

MORE GENERAL QUESTION

Is there is a betting strategy and a (possibly random) time you can plan to stop, so
that if you implement that strategy and stop when you plan to, you will expect to
have a greater bankroll than what you start with (even though you are playing a
fair game)?

The idea of a martingale

Let’s return to the setup of the previous section, where you were wagering $1 on
each flip of a fair coin. We saw that in this setting, E[X3] = X0.

QUESTION

What happens if we condition on some additional information? For example, sup-
pose that the first flip is heads (so that you win your first bet, so that X1 = 11).
Given this, what is E[X3]? In other words, what is E[X3 |X1 = 11]?

Repeating the argument from the previous section, we see

Sequence of flips Probability of Resulting bankroll
(in order) that sequence after four flips

H H H 1
4 13

H H T 1
4 11

H T H 1
4 11

H T T 1
4 9

Therefore X3 |X1 = 11 has conditional density

x 13 11 9

P (X3 = x |X1 = 11) 1
4

1
2

1
4

and therefore E[X3 |X1 = 11] = 0(6) + 1
4(13) + 1

2(11) + 1
4(9) = 11.
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A similar calculation would show that if the first flip was tails, then

E[X3 |X1 = 9] = 9.
Either way,

In fact, something more general holds. For this Markov chain {Xt}, we have
for any s ≤ t that

E[Xt |Xs] = Xs.

To see why, let’s define another sequence of random variables coming from the
process {Xt}. For each t ∈ {1, 2, 3, ...}, define

St = Xt −Xt−1

= the tth step of the process

=
{

+1 if the tth flip is H (i.e. you win $1 on the tth game)
−1 if the tth flip is T (i.e. you lose $1 on the tth game).

Notice:

• E[St] = 1
2(1) + 1

2(−1) = 0;

• for any s ≤ t, St ⊥ Xs;

• for any s ≤ t, Xt = Xs + Ss+1 + Ss+2 + ...+ St = Xs +
t∑

j=s+1
Sj .

Therefore

E[Xt |Xs] = E

Xs +
t∑

j=s+1
Sj

∣∣∣∣∣∣Xs


= E[Xs |Xs] +

t∑
j=s+1

E [Sj |Xs]

= Xs +
t∑

j=s+1
E[Sj]

= Xs + 0
= Xs.

What we have proven is that the process {Xt} defined by this game is something
called a martingale. Informally, a process is a martingale if, given the state(s) of
the process up to and including some time s (you think of time s as the “present
time”), the expected state of the process at a time t ≥ s (think of t as a “future
time”) is equal to Xs.

Unfortunately, to define this formally in a way that is useful for deriving formulas,
proving theorems, etc., we need some additional machinery.
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10.2. Filtrations

10.2 Filtrations
σ-algebras

Goal of this section: We want to develop mathematical language and notation
that will allow us to rigorously define what is meant in general by a strategy,
and what is meant in general by a stopping time.

To do this, we will need to further explore the language of σ-algebras first encoun-
tered back in Chapter 1:

Definition 10.1 Let Ω be a set. A nonempty collection F of subsets of Ω is called a
σ−algebra (a.k.a. σ−field) if

1. F is “closed under complements”, i.e. whenever E ∈ F , EC ∈ F .

2. F is “closed under finite and countable unions and intersections”, i.e. whenever
E1, E2, E3, ... ∈ F , both

⋃
j
Ej and

⋂
j
Ej belong to F as well.

Theorem 10.2 Let F be a σ−algebra on set Ω. Then ∅ ∈ F and Ω ∈ F .

EXAMPLES OF σ-ALGEBRAS

1. Let Ω be any set. Let F = {∅,Ω}. This is called the trivial σ-algebra of Ω.

2. Let Ω be any set. Let F = 2Ω be the set of all subsets of Ω. This is called the
power set of Ω.

3. Let Ω be any set and let P = {P1, P2, ..., Pn} be any partition of Ω (that is, that
Pi ∩ Pj = ∅ for all i ̸= j and

⋃
j Pj = Ω). Then let F be the collection of all sets

which are unions of some number of the Pj . This F is called the σ-algebra
generated by P .

Ω

P1 P2
P3

P4

E F G
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4. Let Ω = [0, 1]× [0, 1].

• Let F1 be the trivial σ-algebra of Ω.

• Let F2 be the collection of all subsets of Ω of the form A × [0, 1] where
A ⊂ [0, 1].

• Let F3 be the power set of Ω.

Ω

0 1

1

0 1

1

0 1

1

0 1

1

0 1

1

0 1

1

Suppose ω = (x, y) ∈ Ω.

1. If you know all the sets in F1 to which ω belongs, what do you know about
ω?

2. If you know all the sets in F2 to which ω belongs, what do you know about
ω?

3. If you know all the sets in F3 to which ω belongs, what do you know about
ω?
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Measurability

Definition 10.3 Let Ω be a set and let F be a σ-algebra on Ω.
A subset E of Ω is called F−measurable (or just measurable) if E ∈ F .
A function (i.e. a r.v.) X : Ω→ R is calledF-measurable if for any open interval
(a, b) ⊆ R, the set

X−1(a, b) = {ω ∈ Ω : X(ω) ∈ (a, b)}

is F-measurable.

How to interpret this: Think of a σ-algebra F as revealing some partial infor-
mation about an ω (i.e. it tells you which sets in F to which ω belongs, but not
necessarily exactly what ω is).

To say that a function X is F-measurable means that the evaluation of X(ω)
depends only on the information contained in F .

EXAMPLE

Let Ω = [0, 1] and let F be the σ-algebra generated by the partition

P = {[0, 1/3), [1/3, 1/2), [1/2, 1]}.
0 11/3 1/2

Determine whether each of these functions X is F-measurable:

1. X : Ω→ R defined by X(ω) = 2ω.

2. X : Ω→ R defined by X(ω) = 2.

3. X : Ω→ R defined by X(ω) =
{

1 if ω < 1
2

0 else .

More generally: if F is generated by a partition P , a r.v. X is measurable if and
only if it is constant on each of the partition elements; in other words, if X(ω) de-
pends not on ω but only on which partition element ω belongs to.
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Throughout this chart, let Ω = [0, 1]× [0, 1], so ω ∈ Ω↔ ω = (x, y).

σ-algebra information F description of
F reveals about ω F-measurable functions

trivial σ-algebra
Ftriv = {∅,Ω} nothing

Fx = sets of form
A× [0, 1]

Ω

0 1

1

the
x-coordinate

of ω

Fy = sets of form
[0, 1]× A

0 1

1

power set
F = 2Ω

everything
(x and y)

Note:
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Filtrations

Definition 10.4 Let Ω be a set and let I ⊆ [0,∞).
A filtration {Ft}t∈I on Ω is a sequence of σ-algebras indexed by elements of I

which is increasing, i.e. if s, t ∈ I, then

s ≤ t⇒ Fs ⊆ Ft.

Idea: for any filtration {Ft}, when s ≤ t, each Fs-measurable set is also Ft-
measurable, so as t increases, there are more Ft-measurable sets. Put another way,
as t increases you get more information about the points in Ω.

Definition 10.5 Let {Xt}t∈I be a stochastic process with index set I.
The natural filtration of {Xt} is described by setting

Ft = {events which are characterized only by the values of Xs for 0 ≤ s ≤ t}.

Idea: in the context of gambling, think of points in Ω as a list which records the
outcome of every bet you make. Ft is the σ-algebra that gives you the result of
the first t bets; as t increases, you get more information about what happens.

EXAMPLE

Flip a fair coin twice, start with $10 and bet $1 on the first flip and $3 on the second
flip. Let Xt be your bankroll after the tth flip (where t ∈ I = {0, 1, 2}). Describe the
filtration {F0,F1,F2}.
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Strategies

Definition 10.6 Let {Ft} be the natural filtration of stochastic process {Xt}.
A strategy for {Xt} is another stochastic process {Bt} such that for all s < t, Bt

is Fs-measurable.

Idea: Suppose you are betting on repeated coin flips and you decide to imple-
ment a strategy where Bt is the amount you are going to bet on the tth flip.

• If you own a time machine, you would just go forward in time to see
what the coin flips to, bet on that, and win.

• But if you don’t own a time machine, the amount Bt you bet on the tth

flip is only allowed to depend on information coming from flips before
the tth flip, i.e. Bt is only allowed to depend on information coming from
Xs for s < t, i.e. Bt must be Fs-measurable for all s < t.

Remark: If the index set I is discrete, then a process {Bt} is a strategy for {Xt} if
and only if for every t, Bt is Ft−1-measurable.

EXAMPLES OF STRATEGIES

Suppose you are betting on repeated coin flips. Throughout these examples, let’s
use the following notation to keep track of whether you win or lose each game:

X0 = your initial bankroll

Xt =
{
Xt−1 + 1 if you win the tth game
Xt−1 − 1 if you lose the tth game

St = Xt −Xt−1 =
{

1 if you win the tth game
−1 if you lose the tth game

So {Xt}would measure your bankroll after t games, if you are betting $1 on each
game. However, you may want to bet more or less than $1 on each game (varying
your bets according to some “strategy”). The idea is that Bt will be the amount
you bet on the tth game.

Strategy 1: Bet $1 on each flip.

Strategy 2: Alternate between betting $1 and betting $2.
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Strategy 3: Start by betting $1 on the first flip.
After that, bet $2 if you lost the previous flip, and bet $1 otherwise.

Strategy 4: Bet $1 on the first flip.
If you lose, double your bet after each flip you lose until you win once.
Then go back to betting $1 and repeat the procedure.

“Strategy” 5: Bet $5 on the nth flip if you are going to win the nth flip,
and bet $1 otherwise.

Suppose we implement arbitrary strategy {Bt}when playing this game. Then our
bankroll after t games isn’t measured by {Xt} any longer; it is
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Definition 10.7 Let {Xt}t∈I be a discrete-time stochastic process.
The tth step of {Xt} is St = Xt −Xt−1 for all t.
Given a strategy {Bt} for {Xt}, the transform of {Xt} by {Bt} is the process
{(B ·X)t}t∈N defined by

(B ·X)t = X0 +B1S1 +B2S2 + ...+BtSt = X0 +
t∑

j=1
BjSj.

Idea: If you use strategy {Bt} to play game {Xt}, then your bankroll after t
games is (B ·X)t.

Note: (B ·X)0 = X0.

EXAMPLE

Suppose you implement Strategy 4 as described above (double bet when you lose;
reset bet size to $1 when you win). If your initial bankroll is $50, and the results of
the first eight flips are H T T H T T T H, give the values of Bt, Xt, St and (B · X)t

for 0 ≤ t ≤ 8.

result of bankroll using
time bet size “W-L” record the tth game strategy {Bt}
t Bt Xt St (B ·X)t

0 DNE 50 DNE 50

1

2

3

4

5

6

7

8
...

...
...

...
...

424



10.2. Filtrations

Stopping times

Definition 10.8 Let {Xt}t∈I be a stochastic process with standard filtration {Ft}. A
r.v. T : Ω → R ∪ {∞} is called a stopping time (for {Xt}) if for every a ∈ R, the
set of sample functions satisfying T ≤ a is Fa-measurable.

Idea: In other words, T is a stopping time if you can determine whether or not
T ≤ a solely by looking at the values of Xt for t ≤ a.

In the context of playing a game over and over, think of T as a “trigger” which
causes you to stop playing the game. Thus you would walk away from the table
with winnings given by XT (or, if you are employing strategy {Bt}, your winnings
would be (B ·X)T ).

EXAMPLES

• T = Ty = min{t ≥ 0 : Xt = y} • T = min{t > 0 : Xt = X0}

t

y

Xt

t

X0

Xt

NON-EXAMPLE

• T = min{t ≥ 0 : Xt = max{Xs : 0 ≤ s ≤ 100}}

100
t

X0

Xt
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10.3. Conditional expectation and martingales

RECALL OUR BIG PICTURE QUESTION

Is there a strategy under which you can beat a fair game?

Using the language of this section, we can restate this more formally:

BIG PICTURE QUESTION (PHRASED WITH MORE PRECISE LANGUAGE)
Suppose process {Xt} represents a fair game.

• Is there a predictable sequence {Bt} for this process, and a stopping time T
so that E[(B ·X)T ] > X0?

• If so, what {Bt} and what T maximizes E[(B ·X)T ]?

10.3 Conditional expectation and martingales
Goal of this section: We want to give a formal definition of what it means for
a process to represent a “fair game”. Such a process will be called a martingale.

RECALL FROM CHAPTER 5
We learned how to define the conditional expectation of one r.v. X given another Y :

We learned several properties of conditional expectation in MATH 414:

• it’s linear;

• it preserves constants and inequalities;

• you can pull out what’s known (a.k.a. stability);

• it simplifies for independent r.v.s;

• etc.

Here is a new property we didn’t discuss back in Chapter 5:
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10.3. Conditional expectation and martingales

Theorem 10.9 Given any bounded, continuous function ϕ : R→ R,

E[X ϕ(Y )] = E [E(X|Y )ϕ(Y )] .

PROOF (when X, Y continuous):

E[X ϕ(Y )] =
∫ ∫

xϕ(y)fX,Y (x, y) dA (LOTUS)

=
∫ ∫

xϕ(y)fX|Y (x|y)fY (y) dA (multiplication principle)

=
∫ ∫

xfX|Y (x|y)ϕ(y)fY (y) dx dy

=
∫ (∫

xfX|Y (x|y) dx
)
ϕ(y)fY (y) dy

=
∫
E(X|Y )(y)ϕ(y)fY (y) dy (def’n of cond’l expectation)

= E [E(X|Y )ϕ(Y )] (LOTUS).

If X, Y are discrete, the proof is similar, but has sums instead of integrals. □

Now, we are going to define something new called the conditional expectation of
a r.v. with respect to a σ-algebra (as opposed to a second r.v.). To do this, we use the
property of Theorem 10.9 to motivate a definition:

Definition 10.10 Let (Ω,F , P ) be a probability space, let X : Ω → R be a F-
measurable r.v. and let G ⊆ F be a sub σ-algebra.

The conditional expectation ofX given G is a function E(X|G) : Ω→ R with
the following two properties:

1. E(X|G) is G-measurable, and

2. for any bounded, G-measurable r.v. Z : Ω→ R, E[XZ] = E [E(X|G)Z].

Remarks:

1. These conditional expectations always exist, and are always unique up to sets
of probability zero.

2. By setting Z = 1, we see that

E[X] = E[E[X|G]].

This gives you the idea behind this type of conditional expectation: E[X|G]
is a G-mble r.v. with the same expected value(s) as the original r.v. X .
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10.3. Conditional expectation and martingales

Properties of conditional expectation

To understand conditional expectation, it is useful to understand that this is an
idea parallel to a concept from linear algebra: projection.

PROJECTION CONDITIONAL
EXPECTATION .

vector
space Rn

description
of vectors

traditional vectors
v = (v1, ..., vn)

notion of
“dot product”
of two vectors

v ·w =
n∑

j=1
vjwj

notion of
norm/size

||v ·w|| =
√

v · v

=
√√√√ n∑

j=1
v2

j

notion of
orthogonality

perpendicularity:

v ⊥ w⇔ v ·w = 0
v ⊥ W ⇔

v ⊥ w for all w ∈ W

subspace W

picture

v

W

π (v)
W

object
under

consideration

πW (v) =
vector in W that

is closest to v
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10.3. Conditional expectation and martingales

PROJECTION CONDITIONAL
EXPECTATION .

formula for
the object

πW (v) =
∑

j

(v · xj)xj

where {x1,x2, ...} is an
orthonormal basis

of W

(the orthonormal basis
comes from Gram-Schmidt)

orthogonal
decomposition

v = πW (v) + πW ⊥(v)
where πW (v) ∈ W

and πW ⊥(v) ∈ W⊥.

Equivalently,
v− πW (v) ∈ W⊥.

dot product
with vector
in subspace

If w ∈ W , then

v ·w
= (πW (v) + πW ⊥(v)) ·w
= πW (v) ·w + πW (v) ·w
= πW (v) ·w + 0
= πW (v) ·w.

linearity
properties

πW (v1 + v2)
= πW (v1) + πW (v2)
πW (r v1) = r πW (v1)

tower
property

If W2 ⊆ W2, then
πW2 ◦ πW1(v) = πW2(v).

stability
If w ∈ W , then
πW (w) = w and

πW (v + w) = πW (v) + w.

orthogonality
property

If v ∈ W⊥,
then πW (v) = 0.
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10.3. Conditional expectation and martingales

Our observations in the previous two pages lead us to some of these properties
of conditional expectation; others are new. These properties are widely used (but
proving them is beyond the scope of this class).

Theorem 10.11 (Properties of conditional expectation) Let (Ω,F , P ) be a prob-
ability space, and let G andH be σ−algebras on Ω.

Suppose X, Y : Ω→ R are F-measurable r.v.s, and let a, b ∈ R.
Then, with probability one, all these statements hold:

Positivity: If X ≥ c, then E(X|G) ≥ c.

Linearity: E[aX + bY |G] = aE[X|G] + bE[Y |G].

Stability (pulling out what’s known): If X is G-measurable, then

E[X|G] = X and E[XY |G] = X E[Y |G].

Independence property: If X ⊥ G, then E[X|G] = EX .

Tower property: IfH ⊆ G, then E[E(X|G)|H] = E[X|H].

Law of Total Expectation: E[E(X|G)] = EX .

Constants are preserved: E[a|G] = a.

An important use of conditional expectation is to define a martingale, which is a
mathematical formulation of a fair game:

Definition 10.12 Let {Xt}t∈I be a stochastic process with natural filtration {Ft}.
The process {Xt} is called a martingale if for every s ≤ t in I,

E[Xt | Fs] = Xs.

Note: To prove that a process {Xt} is a martingale, typically you need to show
that the equation in Definition 10.12 holds. This involves applying the proper-
ties given in Theorem 10.11.
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10.3. Conditional expectation and martingales

Example computations
EXAMPLE 1

Let Ω = {A,B,C,D}; letF = 2Ω; let P ∼ Unif(Ω). Let G be the σ-algebra generated
by the partition P = {{A,B}, {C,D}}. Let X : Ω → R be defined by X(A) = 2;
X(B) = 6; X(C) = 3; X(D) = 1. Compute E[X|G].

A B C D
1/4 1/4 1/4 1/4

ω

1

2

3

4

5

6

7


{A,B} {C,D}
ω

1

2

3

4

5

6

7

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10.3. Conditional expectation and martingales

EXAMPLE 2
Let Ω = {A,B,C,D,E}; let F = 2Ω; let P (A) = 1

4 ; P (B) = P (C) = P (E) = 1
8 ;

P (D) = 3
8 . Let G be generated by the partition P = {{A,B}, {C,D}, {E}}. Let

X(A) = X(D) = 2; X(C) = 0; X(B) = X(E) = 1. Compute E[X|G].

A B C D E
1/4 1/8 1/8 3/8 1/8

ω

1

2

3


ω

1

2

3


EXAMPLE 3
Let Ω = [0, 1] × [0, 1]; let F = 2Ω; let P be the uniform distribution. Let G be
the σ-algebra of vertical sets (i.e. sets of the form A × [0, 1]). Let X : Ω → R be
X(x, y) = x+ y. Compute E[X|G].
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10.3. Conditional expectation and martingales

Properties of martingales

Theorem 10.13 (Characterization of discrete-time martingales) A discrete-time
process {Xt}t∈N is a martingale if and only if E[Xt+1|Ft] = Xt for every t ∈ N.

PROOF We use the tower property of conditional expectation. Let s ≤ t. Then

E[Xt|Fs] = E[E[· · ·E[E[E[Xt|Ft−1]|Ft−2]|Ft−3] · · · |Fs+1]|Fs]

= E[E[· · ·E[E[Xt−1|Ft−2]|Ft−3] · · · |Fs+1]|Fs]

= E[E[· · ·E[Xt−2|Ft−3] · · · |Fs+1]|Fs]
= ...

= E[Xs+1|Fs]
= Xs.

By definition, {Xt} is a martingale. □

Theorem 10.14 (Properties of the steps of a discrete-time martingale) Suppose
{Xt}t∈N is a martingale with natural filtration {Ft}. Define St = Xt − Xt−1; St is
called the tth step of the martingale {Xt}. Then, for all t:

1. Xt = X0+
t∑

j=1
St;

2. St is Ft-measurable;

3. E[St+1|Ft] = 0.

PROOF First, statement (1):

Xt = X0 + (X1 −X0) + (X2 −X1) + ...+ (Xt −Xt−1)
= X0 + S1 + ...+ St

= X0 +
t∑

j=1
Sj

Statement (2) is clear, since both Xt and Xt−1 are Ft-measurable.
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10.3. Conditional expectation and martingales

Last, statement (3):

E[St+1|Ft] = E[Xt+1 −Xt|Ft]
= E[Xt+1|Ft]− E[Xt|Ft]
= Xt − E[Xt|Ft] (since {Xt} is a martingale)
= Xt −Xt (by stability)
= 0. □

Theorem 10.15 (Transforms of martingales are martingales) Let {Xt}t∈N be a
martingale and suppose that {Bt} is a strategy for {Xt}. Then the transform {(B ·
X)t} is also a martingale.

PROOF

E [(B ·X)t+1|Ft]

= E

X0 +
t+1∑
j=1

BjSj|Ft

 (by the definition of (B ·X))

= E[X0|Ft] +
t∑

j=1
E[BjSj|Ft] + E[Bt+1St+1|Ft] (by linearity)

= X0 +
t∑

j=1
BjSj +Bt+1E[St+1|Ft] (by stability)

= X0 +
t∑

j=1
BjSj +Bt+1(0) (by (3) of Thm 10.14)

= X0 +
t∑

j=1
BjSj

= (B ·X)t. (by the definition of (B ·X))

By Theorem 10.13, {(B ·X)t} is a discrete-time martingale. □
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10.4. Optional Stopping Theorem

10.4 Optional Stopping Theorem
OUR “BIG PICTURE” QUESTIONS

Suppose {Xt} is a martingale.

• Is there a predictable sequence {Bt} for this process, and a stopping time T
so that E[(B ·X)T ] > X0?

• If so, what {Bt} and what T maximizes E[(B ·X)T ]?

We are ready to prove a theorem that says the answer to our first question is

Theorem 10.16 (Optional Stopping Theorem (OST)) Let {Xt} be a martingale
and let T be a boundeda stopping time. Then

E[XT ] = E[X0].
aTo say T is bounded means there is a constant n such that P (T ≤ n) = 1.

The OST is also called the Optional Sampling Theorem because of its applications
in statistics.

PROOF Let Bt =
{

1 if t ≤ T
0 else .

(This defines a strategy(?) in which you bet $1 on each game game until the
stopping time T hits, and then stop playing.)

T is a stopping time ⇒ G = {T ≤ t− 1} = {Bt = 0} is Ft−1-measurable
⇒ GC = {T ≥ t} = {Bt = 1} is Ft−1-measurable
⇒ each Bt is Ft−1-measurable
⇒ {Bt} is a strategy for {Xt}.

Now, we are assuming T is bounded; let n be such that P (T ≤ n) = 1.
For any t ≥ n, we have

(B ·X)t = X0 +
t∑

j=1
BtSt

= X0 +
t∑

j=1
Bt(Xt −Xt−1)

= X0 + 1(X1 −X0) + 1(X2 −X1) + ...+ 1(XT −XT −1)
+ 0(XT +1 −Xt) + 0(XT +2 −XT +1) + ...

= XT .

Finally, EXT = E[(B ·X)t]
= E[(B ·X)0] (since {(B ·X)t} is a martingale)
= EX0. □
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10.4. Optional Stopping Theorem

We will need the following “tweaked version” of the OST, which requires a little
less about T (it only has to be finite rather than bounded) but a little more about
{Xt} (the values of Xt have to be bounded until T hits):

Theorem 10.17 (OST (tweaked version)) Let {Xt} be a martingale. Let T be a
stopping time for {Xt} which is finite with probability one. If there is a fixed constant
C such that for sufficiently large n, T ≥ n implies |Xn| ≤ C, then

E[XT ] = E[X0].

PROOF Choose a sufficiently large n and let T = min(T, n). T is a stopping time
which is bounded by n, so the original OST applies to T , i.e. EXT = EX0 .

Now
|EXT − EX0| = |EXT − EXT |

≤ E |XT −XT | (by△ inequality)
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10.4. Optional Stopping Theorem

Corollary 10.18 (You can’t beat a fair game) Let {Xt} be a martingale. Let T be a
finite stopping time for {Xt} and let {Bt} be any bounded strategy for {Xt}. Then

E(B ·X)T = EX0.

PROOF If {Xt} is a martingale, so is (B ·X)t. Therefore by the tweaked OST,

E(B ·X)T = E(B ·X)0 = EX0. □

Catch: If you are willing to play forever, and/or you are willing to lose a pos-
sibly unbounded amount of money first, the OST doesn’t apply, and you can
beat a fair game using Strategy 4 described several pages ago. But this isn’t
realistic if you are a human with a finite lifespan and finite wealth.

APPLICATION

Suppose a gambler has $50 and chooses to play a fair game repeatedly until either
the gambler’s bankroll is up to $100, or until the gambler is broke.

If the gambler bets all $50 on one game, then the probability he leaves a winner is
1
2 . What if the gambler bets in some other way?
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10.5. Escape problems

10.5 Escape problems
MOTIVATING PROBLEM

You own a share of stock. Currently, it is worth $50, and you expect that as time
passes, the value of this stock will go up and down “randomly” according to some
mathematical model. You have an investment strategy where, if at some point
in the future the stock is worth $80, you will sell it and “cash out while you are
ahead”, but if at some point in the future the stock price drops to $35, you will sell
it, “cutting your losses”.

t
35

50

80

Xt

Relevant questions in this setting:

• How long are you going to hold the stock? More specifically:

– What is the probability that you actually sell the stock?

– What is the expected amount of time you hold the stock before selling?
(also the variance, MGF, density function, etc.)

• When you sell the stock, what is the distribution of the price you sell it for?

– What is the probability you sell the stock for $80 (as opposed to $35)?

– What is the expected amount you sell the stock for?
(also the variance, MGF, etc.)
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Escaping processes

Definition 10.19 Let {Xt} be a stochastic process with state space S ⊆ R. We say
that {Xt} is escaping if for every a, x, b ∈ S with a < x < b,

1. Px(T{a,b} <∞) = 1; and

2. Px(Xt ∈ (a, b) | t < T{a,b}) = 1.

Recall: TA = min{t ≥ 1 : Xt ∈ A}. is the hitting time to A. (If A = {a}, then Ta

is short for T{a}.)

Interpretation: When {Xt} first hits state a or b, we think of the process as
having “escaped” the interval (a, b) that it starts in. To say that a process is
escaping means

• with probability 1, the process escapes (this is condition (1) above), and

• when the process escapes, it hits a or b (and doesn’t jump over them...
this is condition (2) above).

t
a

x

b

Xt

Questions we care about: Let {Xt} be an escaping process with a < x < b. Let
T = T{a,b} = min{Ta, Tb}. T is called an escape time.

Px(XT = a) = Px(Ta < Tb) = ? E[XT ] = ? ET = ?

Remark: For an escaping process starting at x ∈ (a, b), the events

Ta < Tb and Tb < Ta

are complements, so
Px(Ta < Tb) = 1− Px(Tb < Ta). (10.1)
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Escape Time Theorem

We can apply martingale theory to the questions we are interested in:

Theorem 10.20 (Escape Time Theorem) Let {Xt} be an escaping process. If ψ :
R→ R is a function so that {ψ(Xt)} is a martingale, then for all a < x < b,

Px(Ta < Tb) = ψ(b)− ψ(x)
ψ(b)− ψ(a) and Px(Tb < Ta) = ψ(x)− ψ(a)

ψ(b)− ψ(a) .

PROOF Let T = T{a,b}. This is a hitting time that is finite with probability 1.
Also, whenever t < T{a,b}, Xt ∈ (a, b). Therefore, the (tweaked version of the)
OST applies to the martingale {ψ(Xt)} to give

E[ψ(XT )] = E[ψ(XT )] OST= E[ψ(X0)] = E[ψ(x)] = ψ(x). (10.2)

At the same time, given X0 = x, XT has the following density:

y . . . .

Px(XT = y)

Therefore, we can directly compute E[ψ(Xt)] by LOTUS:

ψ(x) = E[ψ(Xt)] (by eqn (10.2) above)

=
∑

y

ψ(y)Px(XT = y) (LOTUS)

= ψ(a) · Px(XT = a) + ψ(b) · Px(XT = b)
= ψ(a) · Px(Ta < Tb) + ψ(b) · Px(Tb < Ta) (by the density above)
= ψ(a)Px(Ta < Tb) + ψ(b) [1− Px(Ta < Tb)] (by eqn (10.1) above)
= [ψ(a)− ψ(b)]Px(Ta < Tb) + ψ(b).

Solve for Px(Ta < Tb) to get

Px(Ta < Tb) = ψ(x)− ψ(b)
ψ(a)− ψ(b) = ψ(b)− ψ(x)

ψ(b)− ψ(a) ;

by the complement rule

Px(Tb < Ta) = 1− Px(Ta < Tb) = ψ(x)− ψ(a)
ψ(b)− ψ(a) . □

In the next few sections we will apply Theorem 10.20 to a variety of problems that
involve computing Px(Ta < Tb) for escaping processes.
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Applications to classification of Markov chains
RECALL

Let {Xt} be a Markov chain with state space S . Then:

fx,y = Px(Ty <∞) = P (chain hits y, given that it starts at x)
fx = fx,x = P (chain returns to x)

x is recurrent ⇔ fx = 1⇔ x must return to itself
x is transient ⇔ fx < 1⇔ x is not recurrent

{Xt} is recurrent (transient)⇔ every state x ∈ S is recurrent (transient)
{Xt} is irreducible⇒ either {Xt} is recurrent, or {Xt} is transient.

We will see that ideas associated to escape times will help us determine the class
structure of certain Markov chains.

Theorem 10.21 (Escape Time Corollary) Let {Xt} be a Markov chain with S ⊆
Z, which is also an escaping process. If ψ : R → R is a function so that {ψ(Xt)} is a
martingale, then

• if x < y, then fx,y = lim
a→−∞

Px(Ty < Ta) = lim
a→∞

ψ(x)− ψ(a)
ψ(y)− ψ(a) .

• if x > y, then fx,y = lim
b→∞

Px(Ty < Tb) = lim
b→∞

ψ(b)− ψ(x)
ψ(b)− ψ(y) .

• fx,x = P (x, x) +
∑
y ̸=x

fy,x P (x, y).

PROOF For the first statement, let x < y and X0 = x.
Notice that as a decreases toward −∞, the events (Ty < Ta) increase:

(Ty < Ta) ⊆ (Ty < Ta+1).

Therefore, by continuity of probability measures (all the way back in Chapter
1), this means

lim
a→−∞

Px(Ty < Ta) = Px

[⋃
a<x

(Ty < Ta)
]
.

But if the chain hits state y, then it must hit y before it hits some a < x, so
Ty <∞ if and only if Ty < Ta for some a < x. So

fx,y = Px(Ty <∞) = Px

[⋃
a<x

(Ty < Ta)
]

= lim
a→−∞

Px(Ty < Ta)
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10.5. Escape problems

as wanted.

The second statement is a HW problem (the proof is similar to the proof of the
first statement).

For the last statement, use the LTP based on the first step in the chain (similar
to how we computed absorption probabilities back in Chapter 9):

fx,x = Px(Tx <∞)
=
∑
y∈S

Px(Tx <∞|X1 = y)Px(X1 = y)

= 1Px(X1 = x) +
∑
y ̸=x

Px(Tx <∞|X1 = y)P (x, y)

= P (x, x) +
∑
y ̸=x

fy,x P (x, y). □

442



10.6. Simple random walk on Z

10.6 Simple random walk on Z
A simple random walk models a repeated game where you bet $1 on each play;
simple random walk is a Markov chain which has the following directed graph:
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Definition 10.22 A simple random walk on Z is a Markov chain {Xt} with state
space Z and transition probabilities

P (x, y) =


p if y = x+ 1
q if y = x− 1
r if y = x

where p, q and r are non-negative constants so that p+ q + r = 1.

Given a simple random walk, for each j ≥ 1 we let the jth step of the walk be the r.v.

Sj = Xj −Xj−1.

In a simple random walk, the steps Sj form an i.i.d. sequence {Sj} of r.v.s, each
having density

s −1 0 1
fSj

(s) = P (Sj = s) q r p
.

We denote the mean and variance of Sj by

µ = ESj and σ2 = V ar(Sj).

We can write Xt = Xt−1 + St; notice St ⊥ Ft−1 where {Ft} is the natural filtration.

Definition 10.23 A simple random walk on Z is called unbiased if p = q and is
called biased if p ̸= q. A biased random walk is called positively biased if p > q
and negatively biased if p < q.

Lemma 10.24 For a simple random walk, µ = ESj = p − q. If the simple random
walk is unbiased, then µ = 0 and σ2 = V ar(Sj) = p+ q.

PROOF HW
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10.6. Simple random walk on Z

Remark: The reason these walks are called simple is that the steps take only the
values −1, 0 and 1. For example, here is the directed graph of a (non-simple)
random walk where the steps have the density

s −1 2 3
fSj

(s) = P (Sj = s) 2
5

1
5

2
5

:

· · ·
p

**

2/5

$$−2
1/5

))

2/5
jj

2/5

$$−1
1/5

))

2/5
kk

2/5

$$0
1/5

((

2/5
jj

2/5

##1
1/5

((

2/5
hh

2/5

$$2
2/5
hh

1/5
))3

2/5
hh · · ·

Properties of simple random walk

Class structure

A simple random walk is irreducible if and only if p > 0 and q > 0. If r = 0, the
walk has period 2; otherwise the walk is aperiodic.

Escaping property

Lemma 10.25 Let {Xt} be an irreducible simple random walk. Let A = {a, b} ⊆ Z
and suppose X0 = x where a < x < b. Then P (TA <∞) = 1.

PROOF Since {Xt} is irreducible, p > 0.

Now letGn be the event that between times (n−1)(b−a) and n(b−a), the chain
always steps in the positive direction. In precise math notation,

Gn = {Sj = 1∀j ∈ {(n− 1)(b− a) + 1, (n− 1)(b− a) + 2, ..., n(b− a)}} .

Note that

1. P (Gn) ≥ pb−a > 0.

2. since Gj and Gk refer to disjoint blocks of time in the chain, Gj ⊥ Gk.

Thus
P (no Gn occurs) = P

( ∞⋂
n=1

GC
n

)
=

∞∏
n=1

P (GC
n ) (since the Gns are ⊥)

= lim
N→∞

N∏
n=1

P (GC
n )

= lim
N→∞

(1− pb−a)N

= 0 (since 1− pb−a ∈ (0, 1))
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10.6. Simple random walk on Z

So with probability 1, at least one Gn occurs.

This means that with probability 1, at some time in the future there will be
b− a consecutive steps in the positive direction, and that means that unless Ta

has already occurred, after those b− a consecutive steps, Xt will be ≥ b.

Thus either Ta or Tb is finite, and therefore P (TA <∞) = 1. □

Corollary 10.26 Simple random walks are escaping (unless r = 1).

PROOF If r ̸= 1, then either p > 0 or q > 0. To show condition (1) in the definition
of escaping, there are three cases:

Case 1: p > 0 and q > 0. In this case, the walk is irreducible, so it is escaping by
Lemma 10.25.

Case 2: p > 0 and q = 0. Here, the walk only steps to the right, so fx,x+1 = 1 so
fx,b = 1 for any b > x. Therefore Px(Tb <∞) = 1, so Px(T{a,b} <∞) = 1.

Case 3: If p = 0 and q > 0. Here, the walk only steps to the left, so, fx,x−1 = 1 so
fx,a = 1 for any a < x. Therefore Px(Ta <∞) = 1, so Px(T{a,b} <∞) = 1.

Condition (2) in the definition of escaping (when the walk leaves the interval
(a, b), it must do so either at a or at b) follows from the fact that the random
walk is simple (so it can’t “jump over” a or b).

Associated martingales

Lemma 10.27 Let {Xt} be an irreducible simple random walk on Z. Then, each of the
following three processes is a martingale:

• {Xt − tµ};

• {(Xt − tµ)2 − tσ2};

•
{(

q
p

)Xt
}

;

Remark: If {Xt} is unbiased, the first bullet point tells you that {Xt} is itself a
martingale (since µ = 0).

PROOF Throughout this proof, let {Ft} be the natural filtration of {Xt} (thus also
the natural filtration of all the processes in the lemma, since they are each a
formula of {Xt}).

To show {Xt−tµ} is a martingale, let Yt = Xt−tµ. Since the index set is discrete,
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10.6. Simple random walk on Z

it is sufficient to show E[Yt+1 | Ft] = Yt. Toward that end:

E[Yt+1 | Ft] = E[Xt+1 − (t+ 1)µ | Ft] (definition of Yt+1)

= E[Xt + St+1 − (t+ 1)µ | Ft]

(this is a standard way
of splitting up Xt+1,
when proving things
are martingales)

= E[Xt | Ft] + E[St+1 | Ft]− E[(t+ 1)µ | Ft] (linearity)

= Xt + E[St+1 | Ft]− (t+ 1)µ (since Xt is Ft-measurable
and (t+ 1)µ is constant)

= Xt + E[St+1]− (t+ 1)µ (since St+1 ⊥ Ft)
= Xt + µ− tµ− µ (since E[St+1] = µ)
= Xt − tµ
= Yt.

Thus {Yt} = {Xt − tµ} is a martingale.

The proof that {(Xt − tµ)2 − tσ2} is a HW problem.

Last, let Yt =
(
q

p

)Xt

. We will verify that E[Yt+1 | Ft] = Yt:

E[Yt+1 | Ft] = E

(q
p

)Xt+1
∣∣∣∣∣∣Ft


= E

(q
p

)Xt+St+1
∣∣∣∣∣∣Ft


= E

(q
p

)Xt
(
q

p

)St+1
∣∣∣∣∣∣Ft


=
(
q

p

)Xt

E

(q
p

)St+1
∣∣∣∣∣∣Ft

 (stability)

=
(
q

p

)Xt

E

(q
p

)St+1
 (since St+1 ⊥ Ft).

To compute the remaining expected value remember that St+1 has density

s −1 0 1
fSt+1(s) = P (St+1 = s) q r p

.
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10.6. Simple random walk on Z

Therefore, by LOTUS,

E

(q
p

)St+1
 =

(
q

p

)1

p+
(
q

p

)0

r +
(
q

p

)−1

q = q + r + p = 1.

Substituting into the previous page,

E[Yt+1 | Ft] =
(
q

p

)Xt

(1) = Yt,

verifying that {Yt} =


(
q

p

)Xt
 is a martingale. □

Escape probabilities

Theorem 10.28 Let {Xt} be an irreducible simple random walk on Z. Let a < x < b
be integers. Then:

• if p = q (i.e the random walk is unbiased), then

Px(Ta < Tb) = b− x
b− a

and Px(Tb < Ta) = x− a
b− a

.

• if p ̸= q (i.e. the random walk is biased), then

Px(Ta < Tb) =

(
q
p

)b
−
(

q
p

)x

(
q
p

)b
−
(

q
p

)a and Px(Tb < Ta) =

(
q
p

)x
−
(

q
p

)a

(
q
p

)b
−
(

q
p

)a

PROOF Case 1: Suppose the random walk is unbiased. Define ψ(x) = x; by the
preceding lemma, {ψ(Xt)} = {Xt} = {Xt − t(0)} = {Xt − tµ} is a martingale.
By the Escape Time Theorem,

Px(Ta < Tb) = ψ(b)− ψ(x)
ψ(b)− ψ(a) = b− x

b− a

and Px(Tb < Ta) = ψ(x)− ψ(a)
ψ(b)− ψ(a) = x− a

b− a
.

Case 2: Suppose the random walk is biased. Let ψ(x) =
(
q

p

)x

; by the preceding

lemma, {ψ(Xt)} =


(
q

p

)Xt
 is a martingale. Apply the Escape Time Theorem
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10.6. Simple random walk on Z

to get

Px(Ta < Tb) = ψ(b)− ψ(x)
ψ(b)− ψ(a) =

(
q
p

)b
−
(

q
p

)x

(
q
p

)b
−
(

q
p

)a

and Px(Tb < Ta) = ψ(x)− ψ(a)
ψ(b)− ψ(a) =

(
q
p

)x
−
(

q
p

)a

(
q
p

)b
−
(

q
p

)a . □

EXAMPLE 4
I have $20 and you have $15. We each make a series of $1 bets until one of us goes
broke.

1. If we are equally likely to win each bet, what is the probability that you go
broke? What amount of money should I expect to end up with?

2. Suppose you are twice as likely as me to win each bet (assume no ties are
possible). In this setting, what is the probability you go broke?

3. How long (how many bets), on the average, will it take for one of us to go
broke?
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10.6. Simple random walk on Z

Theorem 10.29 (Wald’s First Identity) Let {Xt} be an irreducible, simple random
walk. Let a < x < b be integers and suppose X0 = x. Let T = min{Ta, Tb} = T{a,b}.
Then

E[XT ] = x+ µET = x+ (p− q)ET.

PROOF By Lemma 10.27, we know that {Xt − tµ} is a martingale.
By the OST,

x = E[X0] = E[X0 − 0µ] OST= E[XT − Tµ] = EXT − µET.

x = EXt − µET

Add µET to both sides to get the result. □

Applying Wald’s First Identity: If the walk {Xt} is biased, we know

P (XT = a) = Px(Ta < Tb) =

(
q
p

)b
−
(

q
p

)x

(
q
p

)b
−
(

q
p

)a

P (XT = b) = Px(Tb < Ta) =

(
q
p

)x
−
(

q
p

)a

(
q
p

)b
−
(

q
p

)a

so

E[XT ] =

By Wald’s First Identity, since EXT = x+ (p− q)ET ,

ET = E[XT ]− x
p− q

= above− x
p− q

.

QUESTION 3 OF EXAMPLE 4, REVISITED

(Recall that I have $20 and you have $15; we each make a series of $1 bets until one
of us goes broke.) How long will it take one of us to go broke, if you are twice as
likely as I am to win each bet?

Solution: We previously showed that the amount of money I expect to end up

with is E[XT ] = 35
(

1− 220

1− 235

)
≈ .001. Thus
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10.6. Simple random walk on Z

Follow-up question: What if we are equally likely to win each bet?

Repeating the same logic doesn’t work:

So in this setting, we need another fact to answer the question:

Theorem 10.30 (Wald’s Second Identity) Let {Xt} be an unbiased simple, irre-
ducible random walk. Let a < x < b be integers and suppose X0 = x. Let T =
min{Ta, Tb} = T{a,b}. Then

V ar(XT ) = V ar(Sj) · ET = σ2ET.

PROOF By Wald’s First Identity, EXT = x+ µET = x+ 0ET = x. So

V ar(XT ) = E[X2
T ]− (EXT )2 = E[X2

T ]− x2,

and we can rearrange this to get

x2 = E[X2
T ]− V ar(XT ). (10.3)

By Lemma 10.27, we know that {Yt} = {(Xt − tµ)2 − tσ2} is a martingale.

Observe that EY0 = E[(X0 − 0µ)2 − 0σ2] = E[X2
0 ] = x2. So by the OST,

x2 = EY0
OST= EYT = E[X2

T − Tσ2] (10.4)
= E[X2

T ]− σ2ET. (10.5)

Equations (10.3) and (10.5) above give two different quantities both equal to x2,
so those quantities are equal, i.e.

E[X2
T ]− V ar(XT ) = x2 = E[X2

T ]− σ2ET.

Subtract E[X2
T ] from both sides and multiply through by (−1) to obtain Wald’s

Second Identity. □
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10.6. Simple random walk on Z

Applying Wald’s Second Identity: Suppose {Xt} is a simple, unbiased ran-
dom walk with r ̸= 1. From the escape probabilities, we know

P (XT = a) = Px(Ta < Tb) = b− x
b− a

P (XT = b) = Px(Tb < Ta) = x− a
b− a

so

E[XT ] =

E[X2
T ] =

V ar(XT ) = E[X2
T ]− (E[XT ])2 =

Also,

V ar(Sj) = E[S2
j ]− E[Sj] = E[S2

j ] =

and therefore

ET = V ar(XT )
V ar(Sj)

=

Gambler’s Ruin

The formulas for fx,y in a simple random walk are known as Gambler’s Ruin:

Theorem 10.31 (Gambler’s Ruin) Let {Xt} be an irreducible, simple random walk
on Z. Let x and y be distinct integers (x ̸= y). Then

fx,y =



1 if the walk is unbiased

1
if the walk is biased
toward walking from x toward y(

min{p, q}
max{p, q}

)|x−y|
if the walk is biased
against walking from x toward y
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10.6. Simple random walk on Z

Applying Gambler’s Ruin: Suppose {Xt} is a simple random walk with p = .2
and q = .7.

{Xt} is negatively biased, i.e. , meaning it is biased towards walking
to smaller y from x, and biased against walking to larger y from x. Applying
the formulas of Gambler’s Ruin,

f−2,5 = f8,0 =

Why is this called “Gambler’s Ruin”? Suppose a gambler brings $50 to a
casino and makes a series of $1 bets in a game where he has a 50% chance of
winning each bet, and a 50% chance of losing each bet. The Gambler’s Ruin
Theorem says

PROOF We prove Gambler’s Ruin with several cases:

If the walk is unbiased and x < y:
From the Escape Time Corollary

fx,y = lim
a→−∞

Px(Ty < Ta)
which by the escape probability formulas for unbiased walks is

lim
a→−∞

x− a
y − a

L= lim
a→−∞

−1
−1 = 1 .

If the walk is unbiased and x > y:
If x > y, then from the Escape Time Corollary

fx,y = lim
b→∞

Px(Ty < Tb)
which by the escape probability formulas for unbiased walks is

lim
b→∞

b− x
b− a

L= lim
b→∞

1
1 = 1 .
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10.6. Simple random walk on Z

If the walk is positively biased (p > q) and x < y:
From the Escape Time Corollary

fx,y = lim
a→−∞

Px(Ty < Ta),
which by the escape probability formulas for biased walks is

lim
a→−∞

(
q
p

)x
−
(

q
p

)a(
q
p

)y
−
(

q
p

)a =

(
q
p

)x
−∞(

q
p

)y
−∞

= ∞
∞

L= lim
a→−∞

0−
(

q
p

)a
ln
(

q
p

)
0−

(
q
p

)a
ln
(

q
p

) = 1 .
.

If the walk is positively biased (p > q) and x > y:
From the Escape Time Corollary

fx,y = lim
b→∞

Px(Ty < Tb),
which by the escape probability formulas for biased walks is

lim
b→∞

(
q
p

)b
−
(

q
p

)x

(
q
p

)b
−
(

q
p

)y =
0−

(
q
p

)x

0−
(

q
p

)y

=
(
q

p

)x−y

=
(

min{p, q}
max{p, q}

)|x−y|

.

.

The situation where the walk is negatively biased is a HW problem. □

Recurrence/transience

Theorem 10.32 Let {Xt} be an irreducible, simple random walk on Z. Then {Xt} is
recurrent if and only if the random walk is unbiased.

PROOF Since {Xt} is irreducible,

{Xt} is recurrent ⇐⇒ 0 ∈ SR ⇐⇒ f0 = 1.

If the walk is unbiased:
From the Escape Time Corollary,

f0 = f0,0 = P (0, 0) +
∑
y ̸=0

fy,0 P (0, y)

= P (0, 0) + f−1,0P (0,−1) + f1,0P (0, 1)
= r + f−1,0 q + f1,0 p

= r + (1)q + (1)p (by Gambler’s Ruin)

= r + q + p = 1 .
Therefore unbiased simple walks are recurrent.
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If the walk is positively biased (p > q):
Again, from the Escape Time Corollary,

f0 = f0,0 = P (0, 0) +
∑
y ̸=0

fy,0 P (0, y)

= P (0, 0) + f−1,0P (0,−1) + f1,0P (0, 1)
= r + f−1,0 q + f1,0 p

= r + (1)q +
(

min{p, q}
max{p, q}

)|1−0|

p (by Gambler’s Ruin)

= r + q +
(

q
p

)
p (since p > q)

= r + q + q

< r + q + p (since p > q)

= 1.
Therefore f0 < 1, so positively biased simple walks are transient.

The situation where the walk is negatively biased is similar and left as HW. □

Remark: In the process of proving this theorem we have proven that for any
simple random walk,

f0 = r + 2 min(p, q).

By symmetry, it must be that this formula also equals fx for any x ∈ Z.

Random walk in higher dimensions

In this section we discuss simple, unbiased random walks in Zd. This means that
we assume {Xt} is a Markov chain taking values in Zd with

• X0 = (0, 0, ..., 0) = 0;

• P (x,y) =


1
2d if x− y = ± ej for some j
0 else

.

Notation: The vector ej ∈ Rd is the vector (0, 0, 0, ..., 0, 1, 0, ..., 0) which has a 1 in
the jth place and zeros everywhere else. (Thus −ej is (0, 0, ..., 0,−1, 0, ..., 0).)
So in these higher-dimensional walks, you start at the origin and at each step, you
move one unit in one of the coordinate directions, choosing the direction you move
in uniformly.

These random walks are all irreducible and have period 2.
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EXAMPLE: SIMPLE RANDOM WALK ON Z
When d = 1, this is a description of simple, unbiased random walk on Z with

p = q = 1
2 . This Markov chain is

EXAMPLE: DRUNKARD’S WALK (RANDOM WALK ON Z2)

EXAMPLE: DRUNK BIRD’S FLIGHT (RANDOM WALK ON Z3)

Main question: Will the drunk person ever make it home? Will they make it
back to the bar? What about the inebriated bird? In other words, is unbiased
random walk on Zd recurrent or transient?

In a group activity, you have proven (or will prove):

Theorem 10.33 (Pólya’s Theorem) Let {Xt} be simple, unbiased random walk on
Zd as described in this section. Then:

1. If d = 1 or 2, then {Xt} is null recurrent.

2. If d > 2, then {Xt} is transient.

Mathematician Shizuo Kakutani famously described this theorem by saying “A
drunk man will find his way home, but a drunk bird may be lost forever.”
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Summary of simple random walks on Z
x

process
{Xt}

UNBIASED

SIMPLE

RANDOM WALK

BIASED

SIMPLE

RANDOM WALK

State
space

Z Z

Process
determined by

p and q, with p = q

(r = 1− p− q)
p and q, with p ̸= q

(r = 1− p− q)
Other

quantities

µ = 0

σ2 = p+ q

µ = p− q
σ2 = p+ q − (p− q)2

Associated
martingales

{Xt}

{X2
t − tσ2}

{(
q
p

)Xt
}

{(Xt − µt)2 − tσ2}

Px(Ta < Tb)
b− x
b− a

(
q
p

)b
−
(

q
p

)x

(
q
p

)b
−
(

q
p

)a

Px(Tb < Ta) x− a
b− a

(
q
p

)x
−
(

q
p

)a

(
q
p

)b
−
(

q
p

)a

Ex[T{a,b}]

(b− x)(x− a)
p+ q

(comes from
Wald’s 2nd Id:

V arx(XT ) = σ2 ET )

Solve for this
using Wald’s 1st Id:
EXT = x+ µET

fx,y

(for x ̸= y)
Gambler’s Ruin:

fx,y = 1

Gambler’s Ruin:

fx,y = 1
if walk tends toward y;

fx,y =
(

min{p, q}
max{p, q}

)|x−y|

if walk tends away from y

fx 1 r + 2 min(p, q)
Recurrence/

transience
null

recurrent
transient
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10.7. Birth and death chains

10.7 Birth and death chains
Definition 10.34 A Markov chain is called a birth and death chain if its state space
is S = {0, 1, ..., d} or S = {0, 1, 2, ...} and for every x ∈ S, there are nonnegative
numbers px, qx and rx so that

1. for all x ∈ S, px + qx + rx = 1;

2. q0 = 0;

3. if S = {0, 1, ..., d}, then pd = 0; and

4. for all x ∈ S,


P (x, x+ 1) = px

P (x, x) = rx

P (x, x− 1) = qx

.

DIRECTED GRAPHS OF BIRTH AND DEATH CHAINS

0
p0
((

r0

��
1

p1
((

q1
hh

r1

��
2

p2 **

q2
hh

r2

��
· · ·

q3

hh · · ·
px−2,,

x− 1
px−1

))

qx−1
jj

rx−1

��
x

px --

qx

mm

rx

��
x+ 1

px+1
**

qx+1

ii

rx+1

��
· · ·

qx+2
ll

if S = {0, 1, 2, ...}, or

0
p0
((

r0

��
1

p1
((

q1
hh

r1

��
2

p2 **

q2
hh

r2

��
· · ·

q3

hh · · ·
pd−3 ,,

d− 2
pd−2 ,,

qd−2
jj

rd−2

��
d− 1

pd−1
))

qd−1
ll

rd−1

��
d

qd

mm

rd

��

if S = {0, 1, ..., d}.
EXAMPLES OF BIRTH AND DEATH CHAINS

• The Ehrenfest chain

0
1
(( 1

d−1
d
((

1
d

hh 2
d−2

d **

2
d

hh · · ·
3
d

hh · · ·
3
d ,,
d− 2

2
d ,,

d−2
3

jj d− 1
1
d
))

d−1
d

ll d
1
mm

• The gambler’s ruin chain

0

1

��
1

1
2
((

1
2

hh 2
1
2 **

1
2

hh · · ·
1
2

hh · · ·
1
2 ,,
x− 1

1
2
))

1
2

jj x

1
2 --

1
2

mm x+ 1
1
2 **

1
2

ii · · ·
1
2

ll
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Properties of birth and death chains

Class structure

A birth and death chain is irreducible if and only if no px nor qx is 0 (other than q0
or pd).

If a birth and death chain is not irreducible, then the communicating classes of the
chain are themselves birth and death chains (after perhaps relabeling the state
space).

If all the rx = 0, the birth and death chain has period 2; otherwise the chain is
aperiodic.

Escaping property

Lemma 10.35 Irreducible birth and death chains are escaping.

PROOF This proof is essentially the same as the proof that random walks are
escaping.

Let p = min{pa, pa+1, ..., pb}; since {Xt} is irreducible, p > 0.

Now let Gn be the event that between times (n− 1)(b− a) and n(b− a), there
are only births in the birth-death chain.

Note that P (Gn) ≥ pb−a > 0, so by repeating the rest of the proof given for
random walks, we see P (TA =∞) ≤ P (no Gn occurs) = 0. □

Steps

Definition 10.36 Let {Xt} be a birth and death chain. For each t ≥ 1, define the tth

step of the chain to be
St = Xt −Xt−1.

PROPERTIES

• Xt = Xs +
t∑

j=s+1
St;

• the St are ⊥ (but in general, not identically distributed) with cond’l density

s −1 0 1
P (St = s |Xt−1 = x) qx rx px

;

• St ⊥ Fs for all s < t.

458



10.7. Birth and death chains

Associated martingale

Lemma 10.37 Let {Xt} be an irreducible birth and death chain. Let γ0 = 1, and for
each y > 0, let

γy = qyqy−1qy−2 · · · q2q1

pypy−1py−1 · · · p2p1
.

Define the function ψ : S → R by setting ψ(0) = 1 and for y ≥ 1, setting

ψ(y) = 1 + q1

p1
+ q2q1

p2p1
+ ...+ qy−1qy−2 · · · q2q1

py−1py−2 · · · p2p1

= γ0 + γ1 + γ2 + ...+ γy−1

=
y−1∑
j=0

γj.

Then the stochastic process {ψ(Xt)} is a martingale.

PROOF Since {Xt} is discrete-time, so is {ψ(Xt)}, so it is sufficient to verify

E[ψ(Xt) | Ft−1] = ψ(Xt−1).

We’ll show this with a slightly unusual type of computation:

E[ψ(Xt) | Ft−1] = E [ψ(Xt)− ψ(Xt−1) + ψ(Xt−1) | Ft−1]
= E [ψ(Xt)− ψ(Xt−1) | Ft−1] + E [ψ(Xt−1) | Ft−1]
= E [ψ(Xt)− ψ(Xt−1) | Ft−1] + ψ(Xt−1) (stability)

What’s left to show is that the blue term above is zero. To do this, let x = Xt−1
(this value is information included in Ft−1). Then:
• with probability px, the tth step is a birth, so Xt = x+ 1, so

ψ(Xt)− ψ(Xt−1) = ψ(x+ 1)− ψ(x) =
(x+1)−1∑

j=0
γj −

x−1∑
j=0

γj = γx.

• with probability qx, the tth step is a death, so Xt = x− 1, so

ψ(Xt)− ψ(Xt−1) = ψ(x− 1)− ψ(x) =
(x−1)−1∑

j=0
γj −

x−1∑
j=0

γj = −γx−1.

• with probability rx, the tth step is a loop, so Xt = x, so

ψ(Xt)− ψ(Xt−1) = ψ(x)− ψ(x) = 0.
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10.7. Birth and death chains

Therefore, by LOTUS, the blue term above is

E [ψ(Xt)− ψ(Xt−1) | Ft−1] = pxγx − qxγx−1 + rx(0)

= px

(
qxqx−1 · · · q1

pxpx−1 · · · p1

)
− qx

(
qx−1 · · · q1

px−1 · · · p1

)

= qxqx−1 · · · q1

px−1 · · · p1
− qxqx−1 · · · q1

px−1 · · · p1
= 0.

This finishes the proof. □

Escape probabilities

Theorem 10.38 Let {Xt} be an irreducible birth and death chain. For any a < x < b,

Px(Ta < Tb) =

b−1∑
y=x

γy

b−1∑
y=a

γy

and Px(Tb < Ta) =

x−1∑
y=a

γy

b−1∑
y=a

γy

where the γy are as defined in Lemma 10.37:

γ0 = 1; γy = qyqy−1 · · · q1

pypy−1 · · · p1
for y > 0.

PROOF By the escape time theorem (Theorem 10.20), since {ψ(Xt)} is a martingale,

Px(Ta < Tb) = ψ(b)− ψ(x)
ψ(b)− ψ(a) =

b−1∑
y=0

γy−
x−1∑
y=0

γy

b−1∑
y=0

γy−
a−1∑
y=0

γy

=

b−1∑
y=x

γy

b−1∑
y=a

γy

(and the other formula comes from the complement rule). □

Recurrence / transience

Lemma 10.39 Let {Xt} be an irreducible birth and death chain with infinite state
space. Then {Xt} is recurrent if and only if f1,0 = 1.

PROOF {Xt} is irreducible, so {Xt} is recurrent⇔ 0 is recurrent⇔ f0,0 = 1. Now

f0,0 = P0(T0 <∞)
= P0(T0 = 1) + P0(T0 ∈ [2,∞))

=
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Theorem 10.40 Let {Xt} be an irreducible birth and death chain with S = {0, 1, 2, ...}.
Then defining γy as in the previous theorem,

{Xt} is recurrent ⇐⇒
∞∑

y=0
γy =∞.

PROOF By the preceding lemma, {Xt} is recurrent if and only if f1,0 = 1:

f1,0 = lim
b→∞

P1(T0 < Tb) (by Corollary 10.21)

= lim
b→∞


b−1∑
y=1

γy

b−1∑
y=0

γy

 (by Theorem 10.38
with x = 1, a = 0, b = b)

= lim
b→∞


b−1∑
y=0

γy − γ0

b−1∑
y=0

γy



= lim
b→∞


b−1∑
y=0

γy − 1
b−1∑
y=0

γy

 (γ0 = 1 by definition)

= lim
b→∞

1− 1
b−1∑
y=0

γy


= 1− 1

∞∑
y=0

γy

=



. . if
∞∑

y=0
γy diverges

. . if
∞∑

y=0
γy converges to C

This proves the theorem. □
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EXAMPLE 5
Let {Xt} be a birth and death chain on S = {0, 1, 2, 3, ...} such that

px = x+ 2
2(x+ 1) and qx = x

2(x+ 1) .

Is this chain recurrent or transient?
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Positive recurrence / stationary distribution

Theorem 10.41 Let {Xt} be an irreducible birth and death chain. Define, for each
y ∈ S,

ζ0 = 1; ζy = p0p1 · · · py−1

q1q2 · · · qy

for y > 0.

Then:

1. If
∑
y∈S

ζy converges, then {Xt} is positive recurrent and has one stationary dis-

tribution π defined by

π(x) = ζx∑
y∈S

ζy

.

(This includes all situations where S is finite.)

2. If
∑
y∈S

ζy diverges, then {Xt} has no stationary distributions (so it is either null

recurrent or transient).

Think of this mysterious ζy as “the product of all the ps to the left of y over the
product of all the qs to the left of y in the directed graph:

0
p0
((

r0

��
1

p1
((

q1
hh

r1

��
2

p2 **

q2
hh

r2

��
· · ·

q3

hh · · ·
py−2 ,,

y − 1
py−1

))

qy−1
jj

ry−1

��
y

py --

qy

mm

ry

��
y + 1

qd

ii

rd

�� py+1
** · · ·

qy+2
ll

PROOF Suppose {Xt} has a stat. dist. π. Such a π must satisfy
the stationarity equation, which can be rearranged as follows:

π(y) =
∑
x∈S

π(x) P (x, y) ← = 0 unless x ∈ {y − 1, y, y + 1}

= π(y − 1)P (y − 1, y) + π(y)P (y, y) + π(y + 1)P (y + 1, y)
= π(y − 1)py−1 + π(y)ry + π(y + 1)qy+1

= π(y − 1)py−1 + π(y)[1− py − qy] + π(y + 1)qy+1

0 = π(y − 1)py−1 − π(y)py − π(y)qy + π(y + 1)qy+1.

Moving some terms over, this becomes

π(y)qy − π(y + 1)qy+1 = π(y − 1)py−1 − π(y)py. (10.6)
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Let y = 0. Equation (10.6) reduces to

π(0)q0 − π(1)q1 = π(−1)p−1 − π(0)p0

−π(1)q1 = −π(0)p0

π(1) = p0

q1
π(0) (10.7)

π(1) = ζ1 π(0).

Similarly, if you plug in y = 1 into (10.6) and use (10.7), you will get

π(2) = p1

q2
π(1) = p1p0

q2q1
π(0) = ζ2 π(0),

and by induction you can prove

π(y) = ζy π(0).

This shows: if π is stationary, then π(y) = ζy π(0) for all y ∈ S.

Case 1:
∑
y∈S

ζy diverges. That would force
∑
y∈S

π(y) to diverge, so there is no

stat. dist., so {Xt} is not positive recurrent.

Case 2:
∑
y∈S

ζy converges. Then
∑
y∈S

π(y) = π(0)
∑
y∈S

ζy, so for this sum to equal 1

we need π(0) = 1∑
y∈S

ζy

. Therefore we get a distribution π defined by

π(y) = ζy π(0) = ζy∑
y∈S

ζy

which is stationary, making the chain positive recurrent. □
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EXAMPLE 6

Let {Xt} be a birth-death chain on {0, 1, 2, 3, ...} with p0 = 1; px = 1
x+ 1 for all

x ≥ 1; qx = x

x+ 1 for all x ≥ 1. Find the stationary distribution of {Xt}, if one

exists.

Solution: First, compute the ζy: ζ0 = 1 and for y ≥ 1,

ζy = p0p1 · · · py−1

q1q2 · · · qy

=

Then apply Theorem 10.41:

∑
y∈S

ζy =
∞∑

y=0
ζy =

So the stationary distribution π satisfies

π(x) = ζx∑
y

ζy

= ζx

2e = x+ 1
2ex! .

465
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10.8 Birth and death CTMCs
A birth and death CTMC is a CTMC whose jump chain is a birth and death chain.
Equivalently:

Definition 10.42 A birth and death CTMC (or birth-death CTMC) is a CTMC
{Xt} whose state space is either S = {0, 1, ..., d} or S = {0, 1, 2, ...}, such that
qx,y = 0 whenever |x− y| > 1.
The numbers λx = qx,x+1 are called the birth rates of the process and the numbers
µx = qx,x−1 are called the death rates.
A birth-death CTMC is called a pure birth process if µx = 0 for all x, and is called
a pure death process if λx = 0 for all x.

In a birth and death CTMC, we are given

 birth rates λx = qx,x+1

death rates µx = qx,x−1

So the directed graph of a birth-death CTMC looks like

λ0
0

1 ..
λ1 + µ1

1

λ1
λ1+µ1 ..

µ1
λ1+µ1

ll λ2 + µ2

2

λ2
λ2+µ2 ..

µ2
λ2+µ2

nn λ3 + µ3

3

λ3
λ3+µ3

++

µ3
λ3+µ3

nn · · ·
µ4

λ4+µ4

nn

and if the CTMC was a pure birth process, the directed graph would be

λ0
0

1 // λ1
1

1 // λ2
2

1 // λ3
3

1 // · · ·

We know that
a CTMC is



irreducible
recurrent
transient

pos. recurrent
null recurrent


⇐⇒ its jump chain is



irreducible
recurrent
transient

pos. recurrent
null recurrent


.

For a birth and death CTMC, the jump chain is a (discrete-time) birth and death
chain with

px = λx

λx + µx

= λx

qx

and qx = µx

λx + µx

= µx

qx

.
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We learned in Section 10.7 that the jump chain (and hence the birth and death

CTMC) is transient if and only if
∞∑

y=0
γy <∞where

γ0 = 1 and γy = qy · · · q1

py · · · p1
for y > 0.

This happens if and only if

∞∑
y=1

qy · · · q1

py · · · py

<∞

i.e.
∞∑

y=1

µy

qy

· µy−1

qy−1
· · · µ1

q1
λy

qy

λy−1

qy−1
· · · λ1

q1

<∞

i.e.
∞∑

y=1

µyµy−1 · · ·µ1

λyλy−1 · · ·λ1
<∞.

We have proven:

Theorem 10.43 An irreducible birth-death CTMC with state space S = {0, 1, ..., }
is transient if and only if

∑
y∈S

γy <∞, where γ0 = 1 and γy = µy · · ·µq

λy · · ·λ1
for y > 0.

This is the same result as we had for discrete-time birth and death chains, with µs
instead of qs and λs instead of ps.

Similarly, one can classify birth-death CTMCs as positive recurrent or not, and
compute their stationary distribution, using the following machinery:

Definition 10.44 Let {Xt} be an irreducible birth-death CTMC. Define

ζ0 = 1 and ζy = λ0 · · ·λy−1

µ1 · · ·µy

for every y > 0 in S.

Think of ζy as “the product of all the λs to the left of y over the product of all the
µs to the left of y” (so this is the same idea as the ζy we cooked up for discrete-time
birth and death chains).
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Theorem 10.45 An irreducible birth and death CTMC on S = {0, 1, ..., } is positive
recurrent if and only if ∑

y∈S
ζy <∞.

In that situation, the stationary distribution of the birth and death CTMC is given by

π(x) = ζx∑
y∈S

ζy

.

EXAMPLE 7
Show that the birth-death CTMC {Xt} with λx = 1 and µx = 2 for all x is positive
recurrent, and compute its stationary distribution.

Solution: Compute ζy for each y. ζ0 = 1 and for y ≥ 1, we have

ζy = λ0 · · ·λy−1

µ1 · · ·µy

= 1(1) · · · 1
2(2) · · · 2 = 1

2y
.

Since
∞∑

y=0
ζy =

∞∑
y=0

1
2y

= 2 <∞,

{Xt} is positive recurrent. The stationary distribution is therefore given by

π(x) = ζx∑
y

ζy

= ζx

2 =
1

2x

2 = 1
2x+1 .

(In other words, π =
(1

2 ,
1
4 ,

1
8 ,

1
16 , ...

)
.)

Branching processes

Suppose that at time t = 0 you have a population of X0 = x beings, where X0 is a
r.v. taking values in {0, 1, 2, ...}.
Each being does nothing for time A (A : Ω → [0,∞) is an exponential r.v. with
parameter λ) and then either splits into two beings (with probability p ∈ (0, 1)) or
dies (with probability 1− p). Each being behaves independently of other beings.

For t ∈ [0,∞), let Xt be the number of particles at time t. {Xt} is a CTMC called a
(Markov) branching process.
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“population picture” process {Xt}

t t

2

4

6

8

10
Xt

PROPERTIES OF BRANCHING PROCESSES

In a Markov branching process,

1. 0 is absorbing (this means P0,0(t) = 1 for every t ≥ 0);

2. every nonzero state in S is transient (because that state leads to 0 with posi-
tive probability, but 0 doesn’t lead back); and

3. the directed graph looks like

Theorem 10.46 Let {Xt} be a branching process. Then the extinction probability
η = f1,0 satisfies

η =


1− p
p

if p > 1
2

1 if p < 1
2

.

1
4

1
2

3
4 1

p

1
4

1
2

3
4

1

η
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PROOF First, note η = f1,0 in the branching process is the same as η = f1,0 in
the associated jump chain. Now use the formulas derived in the proof of
Theorem 10.40. First, γ0 = 1 and if y > 0,

γy = q1q2 · · · qy

p1 · · · py

= (1− p)(1− p) · · · (1− p)
p p · · · p

=
(

1− p
p

)y

,

so

f1,0 = 1− 1
∞∑

y=0
γy

(from the proof of Thm 10.40)

= 1−
 ∞∑

y=0

(
1− p
p

)y
−1

=


1−

 1
1−

(
1−p

p

)
−1

if
1− p
p

< 1

1− [∞]−1 else

=


1−

[
1− 1− p

p

]
if 1− p < p

1 else

=


1− p
p

if p >
1
2

1 else
□

Note: As with a Galton-Watson branching chain, fx,0 = ηx for all x ∈ {0, 1, 2, ...}.

EXAMPLE 8

Suppose {Xt} is a continuous-time Markov branching process with p = 7
11 . If

X0 = 6, what is the probability Xt ̸= 0 for all t?
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Summary of birth and death processes

x

DISCRETE-TIME

BIRTH AND DEATH

CHAIN

BIRTH AND DEATH

CTMC

State space
{0, 1, ..., d} or
{0, 1, 2, ...}

{0, 1, ..., d} or
{0, 1, 2, ...}

Process
determined by

px and qx

for each x ∈ S
(rx = 1− px − qx)

λx and µx

for each x ∈ S
(qx = λx + µx)

Other quantities

γj = qjqj−1 · · · q1

pjpj−1 · · · p1

ζj = pj−1pj−2 · · · p0

qjqj−1 · · · q1

(γ0 = ζ0 = 1)

γj = µjµj−1 · · ·µ1

λjλj−1 · · ·λ1

ζj = λj−1λj−2 · · ·λ0

µjµj−1 · · ·µ1

(γ0 = ζ0 = 1)

Associated
martingale

{ψ(Xt)}, where
ψ(0) = 1 and

ψ(y) =
y−1∑
j=0

γj

N/A

Px(Ta < Tb)
ψ(b)− ψ(x)
ψ(b)− ψ(a) N/A

Px(Tb < Ta) ψ(x)− ψ(a)
ψ(b)− ψ(a) N/A

Recurrence/
transience test

transient if
∑

y γy <∞;
recurrent if

∑
y γy =∞

transient if
∑

y γy <∞;
recurrent if

∑
y γy =∞

Positive recurrence
test

pos. recurrent
if and only if∑

y ζy <∞

pos. recurrent
if and only if∑

y ζy <∞
stationary

distribution
(if positive recurrent)

π(x) = ζx∑
y ζy

π(x) = ζx∑
y ζy
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10.9 Chapter 10 Homework
Exercises from Section 10.2

1. In each part of this question, you are given a set Ω and a collection F of
subsets of Ω. Determine, with brief justification, whether or not F is a σ-
algebra on Ω:

a) Ω = {0, 1, 2, 3, ...}; F = {∅, {0, 2, 4, 6, 8, ...}, {1, 3, 5, 7, 9, ...},Ω}.
b) Ω = Z; F is the collection of all bounded subsets of Ω (a set is bounded

if it is a subset of the interval [−N,N ] for some N ).

c) Ω = [0, 1]3; F is the collection of sets of the form E × [0, 1], where E ⊆
[0, 1]2.

d) Ω = [0, 1]3; F is the collection of sets of the form A× B × [0, 1], where A
and B are subsets of [0, 1].

2. In each part of this problem, you are given a set Ω, a σ-algebra F , and a r.v.
X : Ω→ R. Determine if the given r.v. X is F-measurable.

a) Ω = {1, 2, 3, 4}; F is generated by the partition of Ω into even and odd
numbers; X(ω) = ω2.

b) Ω = {1, 2, 3, 4}; F is generated by the partition of Ω into even and odd
numbers; X(ω) = 1

4ω
4 − 10ω2 + 30ω.

c) Ω = [0, 1]× [0, 1]; F is the σ−algebra of vertical sets (i.e. sets of the form
A× [0, 1]); X(x, y) = xy.

d) Ω = [0, 1]× [0, 1]; F is the σ−algebra of vertical sets (i.e. sets of the form
A× [0, 1]); X(x, y) = y2 − y + 3.

e) Ω = [0, 1]× [0, 1]; F is the σ−algebra of vertical sets (i.e. sets of the form
A× [0, 1]); X(x, y) = x3 − x.

3. Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and that you implement Strategy 3 as described in
Section 10.2 of the notes (bet $1 on the first flip; afterwards, bet $2 if you lost
the previous flip and $1 if you won the previous flip). If the first eight flips
are H T T H T T H H, compute the amount you have won or lost in the first
eight flips.

4. Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and that you implement Strategy 4 as described in
Section 10.2 of the notes. If your initial bankroll is $100, compute the expected
amount of your bankroll after 3 flips.
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5. Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and you implement a strategy described as follows:
on the first flip, bet 1. On even numbered flips (the second, fourth, sixth, etc.),
bet 3 if you won the previous flip, and bet 1 if you lost the previous flip. On
odd numbered flips (other than the first flip), bet 2 if the preceding two flips
were the same, and bet 1 if the preceding two flips were different.

a) Let Bt be the size of your bet on the tth flip. Define Bt using mathemati-
cal notation.

b) Suppose the results of the first ten flips are H T T H H T H H H T.
Assuming X0 = 0, compute (B ·X)t for 0 ≤ t ≤ 10.

6. Suppose {Xt} is a discrete-time process with state space Z. Determine, with
brief justification, whether or not the following random variables are stop-
ping times:

a) Ta = min{t ≥ 0 : Xt = X0}.
b) Tb = min{t ≥ 0 : Xt ≥ 20}.
c) T = min{t ≥ 0 : Xt = X10}.
d) T = max{t ≥ 0 : Xt = X0}.
e) T = min{Ta, Tb}, where Ta and Tb are as in parts (a) and (b).

f) T = max{Ta, Tb}, where Ta and Tb are as in parts (a) and (b).

Exercises from Section 10.3

7. Let Ω = {1, 2, 3, 4, 5, 6} have the uniform distribution and suppose F is the
σ−algebra generated by the partition {{1, 2}, {3, 4, 5}, {6} of Ω. Let X be the
random variable defined by X(1) = 5, X(2) = X(3) = X(4) = 1, X(5) =
X(6) = 9. Compute E[X|F ].

8. Let Ω = [0, 1] × [0, 1] have the uniform distribution, and let X : Ω → R be
X(x, y) = x2y + x.

a) Compute E[X|Fx], where Fx is the σ-algebra of vertical sets (i.e. sets of
the form A× [0, 1]).

b) Compute E[X|Fy], where Fy is the σ-algebra of horizontal sets (i.e. sets
of the form [0, 1]×B).

9. Suppose {Xt} is a discrete-time stochastic process in which you flip a coin

that flips heads with probability
1
3 and tails with probability

2
3 . Let {Ft}

473



10.9. Chapter 10 Homework

be the natural filtration of {Xt}, and let X be a random variable defined by
setting

X =



0 if the first three flips are heads
10 if the first two flips are heads but the third is tails
4 if the first flip is heads but the second flip is tails
−7 if the first flip is tails but the second and third flips are heads
−1 if the first flip is tails and the second and third flips have

opposite results
3 if the first three flips are tails

Compute E[X|F1] and E[X|F2].

Exercises from Section 10.4

10. Let {Xt} be the Wright-Fisher chain (introduced in a group presentation).
Prove that {Xt} is a martingale.

11. Let {Xt} be the Pólya urn model. For each t, let Mt be the fraction of balls in
the urn which are red. Prove that {Mt} is a martingale.

12. (20 ⋆ pts) Modify the Pólya urn model so that you add c ≥ 2 balls of the
color you most recently drew to the urn after each draw (instead of adding
one marble of the color you drew). Is the {Mt} described in Problem 11 still
a martingale?

Exercises from Section 10.5

13. (20 ⋆ pts) Finish the proof of the Escape Time Corollary (Theorem 10.21), by
writing a proof of the second statement of that theorem.

14. Suppose {Xt} is an escaping process so that {
√
Xt} is a martingale. Compute

P16(T25 < T9).

15. Suppose {Xt} is an irreducible, escaping Markov chain with state space S =
Z. Suppose also that {e−Xt} is a martingale.

a) Compute f2,3.

b) Compute f2,1.

c) Classify this Markov chain as recurrent or transient.
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Exercises from Section 10.6

16. Prove Lemma 10.24 from the notes, which says that for a simple, random
walk, µ = p− q, and that if the walk is unbiased, then σ2 = p+ q.

17. Prove the second statement of Lemma 10.27 from the notes, which says that
if {Xt} is an irreducible, simple random walk then {(Xt − tµ)2 − tσ2} is a
martingale (MSj

is the MGF of the step size Sj).

18. (20 ⋆ pts) Suppose {Xt} is an irreducible, simple random walk and let t be

any constant. Prove that
{

eθXt

[MSj
(t)]t

}
is a martingale.

19. (20 ⋆ pts) Prove Wald’s Third Identity, which says: let {Xt} is an irreducible,
simple random walk starting at 0. Let a < 0 < b be integers and set T =
min{Ta, Tb} = T{a,b}. Then

E

[
eθXT

[MSj
(θ)]T

]
= 1.

20. (20 ⋆ pts) Finish the proof of Gambler’s Ruin (Theorem 10.31) by writing out
the cases where the walk is negatively biased.

21. (20 ⋆ pts) Finish the proof of Theorem 10.32 by writing out a proof that neg-
atively biased, irreducible, simple random walks are transient.

22. A gambler makes a series of independent $1 bets. He decides to quit betting
as soon as his net winnings reach $25 or his net losses reach $50. Suppose the
probabilities of his winning and losing each bet are each equal to 1

2 .

a) Find the probability that when he quits, he will have lost $50.

b) Find the expected amount he wins or loses.

c) Find the expected number of bets he will make before quitting.

23. A typical roulette wheel has 38 numbered spaces, of which 18 are black, 18
are red, and 2 are green. A gambler makes a series of independent $1 bets,
betting on red each time (such a bet pays him $1 if the ball in the roulette
wheel ends up on a red number). He decides to quit betting as soon as his
net winnings reach $25 or his net losses reach $50.

a) Find the probability that when he quits, he will have lost $50.

b) Find the expected amount he wins or loses.

c) Find the expected number of bets he will make before quitting.
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24. Suppose two friends, George the Genius and Ichabod the Idiot, play a game
that has some elements of skill and luck in it. Because George is better at the
game than Ichabod, George wins 55% of the games they play and Ichabod
wins the other 45% (the result of each game is independent of each other
game). Suppose George and Ichabod both bring $100 to bet with, and they
agree to play until one of them is broke.

a) Suppose George and Ichabod wager $1 on each game. What is the prob-
ability that George ends up with all the money?

b) Suppose George and Ichabod wager $5 on each game. What is the prob-
ability that George ends up with all the money?

c) Suppose George and Ichabod wager $25 on each game. What is the
probability that George ends up with all the money?

d) Suppose George and Ichabod wager $100 on each game. What is the
probability that George ends up with all the money?

e) Based on the answers to parts (a), (b) and (c), determine which of the
following statements is true:

Statement I: The more skilled player benefits when the amount wa-
gered on each game increases.

Statement II: The more skilled player is harmed when the amount wa-
gered on each game increases.

f) Suppose you had $1000 and needed $2000 right away, and you therefore
decided to go to a casino and turn your $1000 into $2000 by gambling
on roulette. In light of your answer to the previous question, which
of these strategies gives you the highest probability of ending up with
$2000: betting $1000 on red on one spin of the wheel, or betting $1 on red
repeatedly, trying to work your way up to $2000 without going broke
first?

25. Consider an irreducible, simple random walk Xt starting at zero, where r =
0.

a) Find the probability that Xt = −2 for some t > 0.

b) Find p such that P (Xt = 4 for some t > 0) = 1
2 .

Exercises from Section 10.7

26. Let {Xt} be an irreducible birth and death chain with S = {0, 1, 2, 3, ...}.
Prove that if for all x ≥ 1, px ≤ qx, then the chain is recurrent.
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27. Let {Xt} be an irreducible birth and death chain with S = {0, 1, 2, 3, ...} such
that

qx

px

=
(

x

x+ 1

)2
for all x ≥ 1.

a) Is this chain recurrent or transient?

b) Compute fx,0 for all x ≥ 1.

Hint:
∞∑

n=1

1
n2 = π2

6 .

28. Compute the stationary distribution of the Ehrenfest chain, for arbitrary d.

Hint: the Ehrenfest chain is a birth and death chain.

29. Compute all stationary distributions of the Markov chain with state space
S = {0, 1, ..., d} and transition function

P (x, x+ 1) = (d− x)2

d2

P (x, x) = 2x(d− x)
d2

P (x, x− 1) = x2

d2

(This chain was introduced in Exercise 4 of the Chapter 8 Homework... it
counts the number of black balls in one of two boxes, when randomly chosen
balls are exchanged between two boxes at each step of the chain.)

Hint: You may need the following identity, which can be assumed without
proof:

d∑
j=0

(
d
j

)2

=
(

2d
d

)
.

30. Consider a birth and death chain on S = {0, 1, 2, ...}with

px = 1
2x+1 ∀x; qx = 1

2x−1 ∀x > 1; q1 = 1
2 .

a) Prove this chain is positive recurrent.

b) Compute its stationary distribution.

c) Compute the mean return time to state 2.

477



10.9. Chapter 10 Homework

Exercises from Section 10.8

31. Consider a birth and death CTMC {Xt} on {0, 1, 2, 3, ...} whose death rates
are given by µx = x for all x ∈ S.

a) Determine whether the process is transient, null recurrent or positive
recurrent, if the birth rates are λx = x+ 1 for all x ∈ S.

b) Determine whether the process is transient, null recurrent or positive
recurrent, if the birth rates are λx = x+ 2 for all x ∈ S.

32. Let {Xt} be a continuous-time Markov branching process with p = 2
3 .

a) Compute the extinction probability η.

b) Compute f5,0.

c) What is the minimum value of x so that Px(T0 =∞) > 99
100?

33. If {Xt} is a continuous-time Markov branching process with extinction prob-

ability η = 3
8 , what is the probability that each particle splits into two “chil-

dren” (as opposed to dying)?

34. In Chapter 9, we derived the fact that the stationary distribution of the (M/M/∞)-
queue was Pois

(
λ
µ

)
by computing the time t transitions and taking their limit

as t → ∞. We can also determine this stationary distribution using the ma-
chinery of Chapter 10:

a) Let {Xt} be the (M/M/∞)-queue. Explain why {Xt} is a birth and death
CTMC.

b) Determine the birth and death rates of {Xt}.
c) Compute ζy for each y ∈ {0, 1, 2, 3, ...}.
d) Prove using Theorem 10.45 that {Xt} is positive recurrent.

e) Verify using Theorem 10.45 that the stationary distribution of {Xt} is

Pois

(
λ

µ

)
.

35. Suppose customers call a technical support line according to a Poisson pro-
cess with parameter λ > 0. They are provided with technical support by n
agents where n is a positive integer (n is a constant, not a r.v.). Suppose that
the amount of time it takes an agent to solve a customer’s problem is expo-
nentially distributed with parameter µ (and that these times are independent
of the Poisson process and all independent of one another). Last, assume that
whenever there are more than n customers calling the technical support line,
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the excess customers get placed on hold until one of the n agents is available.
Let Xt represent the number of people on the phone with technical support
(including those on hold) at time t. {Xt} is called the n−server queue or the
(M/M/n)−queue.

a) Explain why {Xt} is a birth and death CTMC.

b) Compute the birth and death rates of {Xt}.
c) Compute ζy for each y ∈ {0, 1, 2, 3, ...}.
d) Show that λ < nµ if and only if {Xt} is positive recurrent.

e) Show that λ > nµ if and only if {Xt} is transient.

36. (60 ⋆ pts) Suppose d particles are distributed into two boxes, A and B. Each
particle in box A remains in that box for a random length of time that is expo-
nentially distributed with parameter µ before moving to box B. Each particle
in box B remains in that box for a random length of time that is exponentially
distributed with parameter λ before moving to box A. All particles act inde-
pendently of one another. For each t ≥ 0, let Xt be the number of particles in
box A at time t. Then {Xt} is a birth and death CTMC on S = {0, 1, 2, ..., d}.

a) This setup be thought of as a continuous version of what discrete-time
Markov chain?

b) Find the birth and death rates.

c) Find Px,d(t) for all x ∈ S. Hint: Think of each particle as generating its
own CTMC, where state zero corresponds to being in box B and state 1
corresponds to being in box A. This is a two-state CTMC, so its transition
probabilities were derived in Chapter 9. From these transition probabil-
ities, you can get the probability that any one fixed particle is in box A
at time t. Multiply these together to get Px,d(t).

d) FindEx(Xt). Hint: WriteXt = At+Bt whereAt is the number of particles
in box A that started in box A and Bt is the number of particles in box
A at time t that started in box B. If X0 = x, then At and Bt are both
binomial, defined in terms of x and the transition function of the two-
state birth-death process described in the hint for part (c).

e) Compute the steady-state distribution for this process; identify this dis-
tribution as a common r.v. (stating the parameters).

f) Verify that as t → ∞, Ex(Xt) converges to the expected value of the
steady-state distribution.
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Chapter 11

Brownian motion

11.1 Definition and construction
Goal: Develop a model for “continuous random movement”, i.e. a version of
simple random walk where both the index set (the set of times) and the state
space are continuous: we want I = [0,∞) and S = R.

Construction of this process

Let {St}∞
t=1 be the steps of a random walk {Xt} starting at x with r = 0 (no loops),

i.e. {St} is an i.i.d. process with

s −1 1
fSt(s) = P (St = s) 1− p p

.

OBSERVATIONS

• the step size {St} is ±1 unit; and

ESj = p−(1−p) = 2p−1; V ar(Sj) = E[S2
j ]−E[Sj]2 = 1−(2p−1)2 = 4p(1−p).

• the random walk {Xt} satisfies Xt = X0 +
t∑

j=1
St = x+

t∑
j=1

St.
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1 2 3 4 5 6 7 8 9 10
t

-5
-4
-3
-2
-1

1
2
3
4
5
Xt

• E[Xt] = x+ t E[Sj]− t = x+ t(2p− 1), so E[Xt] is linear in t .

• V ar[Xt] = V ar[X0] + V ar

[
t∑

j=1
Sj

]
= 0 + t V ar(sj) = 4p(1− p)t, so

V ar(Xt) is proportional to t .

• By the CLT, the sum of t independent Sj’s is approximately normal

n((2p− 1)t, 4p(1− p)t).

Restated, this means that for large t,

Xt = X0 +
t∑

j=1
St ≈ x+ n((2p− 1)t, 4p(1− p)t)

= n (x+ (2p− 1)t, 4p(1− p)t) .

We are going to build a new process by considering “random walks” where the
steps take place more and more frequently, and where the sizes of the steps are
shrunk.

The eventual goal is to define a process {Wt} with index set [0,∞) and state space
R, where like simple random walk,

E[Wt] is linear in t and V ar(Wt) is proportional to t ,

and the process has the additional property that

the sample functions t 7→ Wt are continuous .

Toward that end, for each n ∈ N, think of a “random walk” that steps every ∆t = t

n
units of time (so that the walk steps n times between times 0 and n).
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A preview: eventually we want to let n → ∞, so that there will be an “infinite
number of steps” that are “infinitely close together”.

First try: suppose Xt = x+
n∑

j=1
Sj .

Problem! If we do this, then V ar(Xt) = nV ar(Sj) = n [4p(1− p)].
As n→∞, this variance tends to∞, so we would end up with a process
{Xt} for which V ar(Xt) =∞ for all t. This is bad; we want V ar(Xt) to be
proportional to the time t (not the number of steps n).

Fix: change the size of each step from 1 unit to ∆x units, and let
{
W

(n)
t

}
be the

process defined by adding n independent steps of size ∆x:

W
(n)
t = x+

n∑
j=1

(∆x)Sj.

Now,

V ar
(
W

(n)
t

)
= V ar

x+
n∑

j=1
(∆x)Sj


=

n∑
j=1

V ar (∆xSj)

=
n∑

j=1
(∆x)2 V ar(Sj)

= (∆x)2
n∑

j=1
V ar(Sj)

= (∆x)2 nV ar(Sj)
= (∆x)2 n [4p(1− p)] .

We want this variance to be proportional to t, so we need (∆x)2 n proportional
to t, so we need a constant σ2 > 0 so that

(∆x)2n = σ2t, i.e. (∆x)2 = σ2 t

n
= σ2∆t, i.e. ∆x = σ

√
∆t .

In other words, we need the size of the jumps to be proportional to the square
root of the time between jumps.
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t
n

2 t
n

3 t
n t

t

-6 t /n

-4 t /n

-2 t /n

2 t /n

4 t /n

6 t /n

Wt
(n)

We’re not done yet; we need to make the mean of W (n)
t work out. At this point,

E
[
W

(n)
t

]
= E

x+
n∑

j=1
(∆x)Sj


= x+ (∆x)E

 n∑
j=1

Sj


= x+ (∆x)n(2p− 1)
= x+

(
σ
√

∆t
)
n (2p− 1)

= x+ σ

√
t

n
n (2p− 1)

= x+ σ(2p− 1)
√
t
√
n.

To make this a linear function of t, we need 2p−1 proportional to
√
t√
n

, i.e. we need

a constant µ so that

σ(2p− 1) = µ

(√
t√
n

)
, i.e. p = 1

2

[
1 + µ

√
t

σ
√
n

]
.

That makes E
[
W

(n)
t

]
= x+

√
t√
n
·
√
t
√
nµ = x+µ t which is the kind of formula we

want (the mean is linear in t and doesn’t depend on n).
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Unfortunately, this choice of p screws with the variance, because now,

V ar(W (n)
t ) = (∆x)2 n [4p(1− p)]

=
(
σ
√

∆t
)2
n [4p(1− p)]

=
(
σ2∆t

)
n [4p(1− p)]

= σ2 t
[
1− (2p− 1)2

]
(since ∆t = t

n
)

= σ2 t
(

1− µ2 t

n

)
.

This quantity depends on n, which seems bad. BUT! as n→∞, this variance tends
to σ2t, which is proportional to t and doesn’t depend on n.

Since the W (n)
t are (x plus) the sum of the tn i.i.d. r.v.s {∆x)Sj , as n→∞ they will

tend to a normal r.v. by the Central Limit Theorem. From above, the parameters of
this normal r.v. must be µt and σ2t, so we can conclude that

Wt = lim
n→∞

W
(n)
t ∼ n(x+ µt, σ2t).

10/7 10
t

-6 10 /7

-4 10 /7

-2 10 /7

2 10 /7

4 10 /7

6 10 /7

Wt
(7)

10
t

Wt
(50)

10
t

Wt
(1000)

10
t

Wt

This produces a stochastic process {Wt} called a Brownian motion (or a Weiner pro-
cess). To summarize, the way we constructed this {Wt} is

Wt = lim
n→∞

W
(n)
t

= lim
n→∞


random walks with

steps that occur at times separated by gaps ∆t = t
n

,
where the size of each step is ±∆x = ±σ

√
∆t = ±σ

√
t
n

 .
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Definition of Brownian motion

Definition 11.1 A stochastic process {Wt} is called a Brownian motion (BM)
with drift if there are numbers µ ∈ R, σ2 > 0 and x ∈ R so that:

the process starts at x: W0 = x (assume x = 0 unless told otherwise).

increments of the process are normal (with parameters proportional to the elapsed
time): for every s < t,

Wt −Ws ∼ n(µ(t− s), σ2(t− s)).

the process has independent increments: for any 0 ≤ t1 < t2 < · · · < tn, the
r.v.s

Wt2 −Wt1 , Wt3 −Wt2 , ..., Wtn −Wtn−1

are independent.

sample functions are continuous: with probability 1, the functions t 7→ Wt are
continuous.

The number µ is called the drift parameter of {Wt}; we say {Wt} has positive drift
if µ > 0 and has negative drift if µ < 0.

If the process has no drift, i.e. µ = 0, we call {Wt} a Brownian motion.

The number σ2 is called the variance parameter of {Wt}.

A standard Brownian motion is a BM starting at x = 0 with no drift (µ = 0) and
variance parameter σ2 = 1.

Theorem 11.2 The process {Wt} we constructed earlier is, in fact, a BM.

REAL-WORLD APPLICATIONS OF BROWNIAN MOTION

• movements of particles suspended in a liquid

(first noticed by Robert Brown (1827), for whom the process is named);

• fluctuations in the stock market;

• the path-integral formulation of quantum mechanics;

• option pricing models (Black-Scholes equations);

• cosmology models

Why is BM so prevalent? As we have seen, Brownian motions approximate ran-
dom walks with small but frequent jumps (so long as the size of the jump is pro-
portional to the square root of the time between jumps).
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EXAMPLE SAMPLE FUNCTIONS OF BMS

x = 0, µ = 0, σ2 = 1
4 x = 0, µ = 0, σ2 = 1 x = 0, µ = 0, σ2 = 3

1 2 3 4 5
t

-8

-4

4

8

Wt

5 10 15 20 25
t

-8

-4

4

8

Wt

5 10 15 20 25
t

-8

-4

4

8

Wt

x = 0, µ = −1
2 , σ

2 = 1 x = 0, µ = 1, σ2 = 1 x = −12, µ = 2
3 , σ

2 = 5

5 10 15 20 25
t

-8

-4

4

8

Wt

5 10 15 20 25
t

-8

-4

4

8

Wt

5 10 15 20 25
t

-24

-12

12

24

Wt

You can simulate a sample function of a BM with this Mathematica code:

ListLinePlot[x+RandomFunction[WienerProcess[µ, σ2], {xmin, xmax, .01}]]
(Change x, µ and σ2 to match the parameters of the given BM.)

AN INTERESTING QUESTION

Assume the price of a share of Coca-Cola is modeled by a BM with µ = 1
2 and

σ2 = 4, and that the price of a share of McClendon Soft Drink Corporation is
modeled by a BM with µ = −1 and σ2 = 16. Both stocks are currently valued at
$100 per share.

Would you rather buy a share of Coca-Cola or a share of McClendon Soft Drink
Corporation?
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What do we know about Brownian motion so far?
EXAMPLE 1

Suppose {Wt} is a BM starting at x = 2 with parameters µ = 1
3 and σ2 = 9.

1. Describe the random variable W3.

2. Describe the random variable W8 −W2.

3. Compute the probability that W8 > 1.

4. Compute the probability that W7 −W5 ≤ 2.

5. Compute the probability that W8 −W7 < 1 and W14 −W12 > −3.

6. Compute the expected value of W6.

7. Compute the covariance between W6 and W11.
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11.2 Symmetries and scaling laws
This section is about identifying properties of a Brownian motion that come from
the fact that “everything is normal”. More specifically, we will discover formulas
of a Brownian motion that turn out to be themselves BMs.

To prove that these formulas are actually BMs, we could check the four criteria
of Definition 11.1. However, there is a better way that involves a key property of
BMs: namely, that they are Gaussian:

Gaussian processes

Definition 11.3 Let {Xt} be a stochastic process with index set I. We say that {Xt}
is Gaussian if any finite linear combination of the Xt’s is joint normal.
More precisely, we require that for any times t1, ..., tn ∈ I and any constants c1, ..., cn ∈
R, the random variable

n∑
j=1

cjXtj
= c1Xt1 + c2Xt2 + ...+ cnXtn

is normal.

Theorem 11.4 Any BM {Wt} is a Gaussian process.

PROOF To show this, let c1, ..., cn ∈ R and let t1, ..., tn ∈ [0,∞); without loss of
generality t1 < t2 < ... < tn. Let t0 = 0 (for notational purposes only). The goal
is to verify that

n∑
i=1

cjWti
= c1Wt1 + c2Wt2 + ...+ cnWtn

is normal. To show this, break this sum into independent increments:

n∑
i=1

cjWti

= c1Wt1 + c2Wt2 + c3Wt3 + ...+ cnWtn

= c1Wt1 + c2 [Wt1 + (Wt2 −Wt1)] + c3 [Wt1 + (Wt2 −Wt1) + (Wt3 −Wt2)] + ...

= (c1 + ...+ cn)Wt1 + (c2 + ...+ cn)(Wt2 −Wt1) + (c3 + ...+ cn)(Wt3 −Wt2) + ...

=
 n∑

j=1
cj

Wtj
+
 n∑

j=2
cj

 (Wt2 −Wt1) +
 n∑

j=3

 (Wt3 −Wt2) + ...
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From the previous page,

n∑
i=1

cjWti
=

n∑
i=1

 n∑
j=i

cj

 (Wti
−Wti−1).

Since {Wt} is a BM, each of the terms inside the parentheses above are normal
and independent.

That means any linear combination of them is normal, so
n∑

j=1
bjWtj

is normal.

By definition, {Wt} is Gaussian. □

Lemma 11.5 Let {Wt} be a BM. For any function f : [0,∞)→ R and any function
g : [0,∞)→ [0,∞) and any constant b ∈ R, if we define the process {Xt} by

Xt = f(t)Wg(t) + b,

then {Xt} is Gaussian.

PROOF Let c1, ..., cn ∈ R and let t1, ..., tn ∈ [0,∞). Then,

n∑
j=1

cjXtj
=

n∑
j=1

cj

[
f(tj)Wg(tj) + b

]
= b n+

n∑
j=1

[cjf(tj)]Wg(tj)

is a linear combination of the Wt’s (which is normal since {Wt} is Gaussian)
plus a constant, which is normal.

That means {Xt} is Gaussian. □

Criteria for a process being a BM

Now, we can give a criteria for checking whether a process is a BM. The idea is that
any Gaussian process with the same means and covariances as a BM must be a BM.

Theorem 11.6 Suppose {Xt : t ∈ [0,∞)} is a stochastic process such that:

1. {Xt} is Gaussian;

2. there is a constant a so that E[Xt] = x+ at; and

3. there is a constant b > 0 so that Cov(Xs, Xt) = bmin(s, t).

Then {Xt} ∼ {Wt}, where {Wt} is a BM starting at x with drift µ = a and variance
parameter σ2 = b.
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PROOF We check the parts of Definition 11.1 one-by-one:

Starts at x: by assumption (3), V ar[X0] = Cov(X0, X0) = bmin(0, 0) = 0.
Therefore X0 is a constant, which must be x since E[X0] = x+ a(0) = x.

Normal increments: this follows from {Xt} being assumed Gaussian, since any
increment Xt1 −Xt0 is a linear combination of the Xt’s.

⊥ increments: Let t1 < t2 < t3 < t4.

Cov(Xt2 −Xt1 , Cov(Xt4 −Xt3) = Cov(Xt2 , Xt4)− Cov(Xt2 , Xt3)
− Cov(Xt1 , Xt4) + Cov(Xt1 , Xt3)

= bmin(t2, t4)− bmin(t2, t3)
− bmin(t1, t4) + bmin(t1, t3)

= b t2 − b t2 − b t1 + b t1

= 0.
ThereforeXt2−Xt1 andXt4−Xt3 are uncorrelated. But since {Xt} is Gaussian,
any combination of the Xt’s is normal. That means (Xt1 , Xt2 , Xt3 , Xt4) has a
joint normal distribution, which implies that uncorrelated combinations of
those variables are independent (see Chapter 6). Thus {Xt} has independent
increments.

Cts sample functions (sketch of proof): fix t0 ≥ 0. Since {Xt} is Gaussian, for
each t, Xt −Xt0 is normal with mean

E[Xt −Xt0 ] = E[Xt]− E[Xt0 ] = x+ at− (x+ at0) = a(t− t0)
and variance

V ar(Xt −Xt0) = Cov(Xt −Xt0 , Xt −Xt0)
= Cov(Xt, Xt)− Cov(Xt, Xt0)− Cov(Xt0 , Xt) + Cov(Xt0 , Xt0)
= b t− 2bmin(t, t0) + b t0

= b(t+ t0 − 2 min(t, t0)).
If t is close enough to t0, both the mean and variance of Xt − Xt0 ∼ n(a(t −
t0), b(t + t0 − 2 min(t, t0)) will be small. This will force Xt − Xt0 to be small
with high probability, which will force the sample functions to be continuous
(with probability 1). □

t0 t
t

Wt
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Examples

Theorem 11.7 Let {Wt} be a BM. Then, for any constants a and b, {aWt + b} is a
BM.

PROOF Suppose {Wt} starts at x, has drift µ and variance parameter σ2.

First, by Lemma 11.5 with f(t) = a, g(t) = t and b = b, {aWt + b} is Gaussian.

Second, E[aWt + b] = aE[Wt] + b = a(x+ µt) + b = (ax+ b) + (aµ)t.

Third, Cov(aWs + b, aWt + b) = a2Cov(Ws,Wt) = a2σ2 min(s, t).

So by Theorem 11.6, {−Wt} is a BM starting at ax+b, with drift aµ and variance
parameter a2σ2. □

Theorem 11.8 (Universal scaling law) Let {Wt} be a BM with zero drift, starting
at zero. Then, for any constant a, {aWt/a2} is a BM with zero drift and the same
variance parameter as {Wt}.

PROOF Suppose {Wt} has variance parameter σ2.

First, by Lemma 11.5 with f(t) = axx, g(t) = t
a2xx and b = 0xx, {aWt/a2} is

Gaussian.

Second, E[aWt/a2 ] = aE[Wt/a2 ] = a(0) = 0

Third, Cov(aWs/a2 , aWt/a2) = a2Cov(Ws/a2 ,Wt/a2) = a2σ2 min(s,t)
a2 = σ2 min(s, t)

Theorem 11.6 gives the result. □
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The universal scaling law tells us that if we take a trajectory of a zero drift BM
that starts at 0, and zoom in on part of it (zooming in faster horizontally than we
do vertically), we will see the same thing no matter how much we zoom in, i.e.
the trajectories are “self-similar”. Thus the trajectories in a BM are objects called
fractals.

Theorem 11.9 (Inversion symmetry) Let {Wt} be a BM with zero drift, starting
at zero. Then {tW1/t} is a zero drift BM starting at zero.

PROOF HW

A picture explaining inversion symmetry:

1 2 3 4 5
t

Wt

1
5
1
2 1 2 3 4 5

t

Markov properties

Theorem 11.10 (Markov property for BM) Let {Wt} be a BM. For any constant
r ≥ 0, {Wr+t −Wr} is a BM, independent of Wr.

r
t

Wt
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PROOF Let Xt = Wr+t −Wr.

First, we show {Xt} is Gaussian: let c1, ..., cn ∈ R and t1, ..., tn ∈ [0,∞):
n∑

j=1
cjXj =

n∑
j=1

cj

[
Wr+tj

−Wr

]

=
n∑

j=1

[
cjWr+tj

− cjWr

]

=
n∑

j=1
cjWr+tj

−

 n∑
j=1

cj

Wr

The first term is normal since {Wt} is Gaussian; the second term is normal and
independent of the first, so the whole sum is normal. This makes {Xt}Gaussian
by defintion.

Second, we compute the mean of {Xt}:

EXt = E[Wr+t −Wr] = EWr+t − EWr = x+ µ(r + t)− (x+ µr) = µt.

Third, we compute the covariances of {Xt}:

Cov(Xs, Xt) = Cov(Ws+r −Wr,Wt+r −Wr)
= Cov(Ws+r,Wt+r)− Cov(Wr,Wt+r)− Cov(Ws+r,Wr) + Cov(Wr,Wr)
= σ2 min(s+ r, t+ r)− σ2r − σ2r + σ2r

= σ2[min(s, t) + r]− σ2r

= σ2 min(s, t).

By Theorem 11.6, {Xt} is a BM starting at 0 with drift µ and variance parameter
σ2. It is independent of Wr by the independent increment property. □

A stronger version of the Markov property is this result (which, by the way, also
holds for Markov chains and CTMCs). Its proof is beyond the scope of this class:

Theorem 11.11 (Strong Markov property) Let {Wt} be a BM and let T be a stop-
ping time for {Wt}. Define Xt = WT +t −WT . Then {Xt} is a BM, independent of
{Wt : t ≤ T}.
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11.3 Martingales and escape problems
In this section, we look at properties of BM that resemble properties of random
walks we studied in the previous chapter.

Escaping property

Theorem 11.12 Let {Wt} be a BM. Then {Wt} is escaping.

PROOF Let a < x < b and let T = T{a,b}. We need to verify two properties: the first
is that Px(T <∞). To do this, for n ∈ {0, 1, 2, ...}, let En be the event that
between times n and n+ 1, the value of the BM goes up by at least b− a.
This event has probability

p = P (En) = P (Wn+1 −Wn > b− a) = P (n(µ, σ2) > b− a)

= 1− Φ
(
b− a− µ

σ

)
∈ (0, 1),

and since the En are ⊥,

P (no En occurs) = P

( ∞⋂
n=0

EC
n

)
=

∞∏
n=0

P (EC
n ) =

∞∏
n=0

(1− p) = (1− p)∞ = 0.

Thus, for some n, En occurs. That means the BM goes up by at least b− a
between times n and n+ 1, so it must be that for the n where En occurs,
either Wn ≤ a or Wn+1 ≥ b. Either way, T <∞.

The second property, that Px(Wt ∈ (a, b) | t < T{a,b}) = 1, follows from the fact
that the sample functions are continuous. □

Associated martingales

Theorem 11.13 Let {Wt} be a BM. Then these processes are all martingales:

• {Wt − µt}

• {(Wt − µt)2 − σ2t}

•
{

exp
(−2µ
σ2 Wt

)}

PROOF We start with the proof that {Wt − µt} is a martingale.
Let {Ft} be the natural filtration of {Wt}, and let 0 < s < t.
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Our goal is to show E[Wt − µt | Fs] = E[Ws − µs]:

E[Wt − µt | Fs]

= E[Ws + (Wt −Ws)− µt | Fs]
(this is a typical way of
breaking up Wt when proving
things are martingales)

= E[Ws | Fs] + E[Wt −Ws | Fs]− E[µt | Fs] (linearity)
= Ws + E[Wt −Ws | Fs]− µt (stability)
= Ws + E[Wt −Ws]− µt (since Wt −Ws ⊥ Fs)
= Ws + µ(t− s)− µt (since Wt −Ws ∼ n(µ(t− s), σ2(t− s)))
= Ws − µs.

Thus {Wt − µt} is a martingale.

The other proofs are HW problems. □

Escape probabilities

Theorem 11.14 Suppose {Wt} is a BM, and let a < x < b.

• If the BM has zero drift, then

Px(Ta < Tb) = b− x
b− a

and Px(Tb < Ta) = x− a
b− a

.

• If the BM has drift µ ̸= 0, then

Px(Ta < Tb) =
exp

(
−2µb

σ2

)
− exp

(
−2µx

σ2

)
exp

(
−2µb

σ2

)
− exp

(
−2µa

σ2

)
and

Px(Tb < Ta) =
exp

(
−2µx

σ2

)
− exp

(
−2µa

σ2

)
exp

(
−2µb

σ2

)
− exp

(
−2µa

σ2

) .
PROOF Suppose that {Wt} has zero drift. Then {Wt} is a martingale, and since
{Wt} is escaping, the Escape Time Theorem (Theorem 10.20) applies with
ψ(x) = x to give

Px(Ta < Tb) = ψ(b)− ψ(x)
ψ(b)− ψ(a) = b− x

b− a

and
Px(Tb < Ta) = ψ(x)− ψ(a)

ψ(b)− ψ(a) = x− a
b− a

.

The proof when the BM has drift is HW. □
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EXAMPLE 2
Suppose the price of a stock is currently $70. If the price is modeled with a BM
with drift with µ = 1

2 and σ2 = 8, what is the probability the price of the stock hits
$80 before it hits $60?

Theorem 11.15 (Wald’s First Identity for BM) Let {Wt} be a BM and suppose
a < x < b. Let T = T{a,b}. Then

Ex[WT ] = x+ µET.

PROOF From a previous theorem, we know that {Wt − µt} is a martingale.
Therefore

Ex[WT ]− µET = Ex[WT − µT ] OST= Ex[W0 − µ(0)] = x− 0 = x.

Add µET to both sides to get the result. □

Theorem 11.16 (Wald’s Second Identity for BM) Let {Wt} be a BM with zero
drift and suppose a < x < b. Let T = T{a,b}. Then:

Ex[W 2
T ] = x2 + σ2 Ex[T ].

PROOF From earlier, we know {(Wt−µt)2−σ2t} is a martingale; since the BM has
zero drift this reduces to {W 2

t − σ2t}. Therefore

Ex(W 2
T − σ2T ) OST= Ex(W 2

0 − σ2(0)) = x2.

Also,

Ex(W 2
T − σ2T ) = Ex(W 2

T )− Ex(σ2T ) = Ex[W 2
T ]− σ2Ex[T ].

Equate these two formulas and add σ2Ex[T ] to both sides to get Wald’s Second
Identity. □
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Theorem 11.17 Let {Wt} be a BM with zero drift and suppose a < x < b. Then

Ex[T{a,b}] = (x− a)(b− x)
σ2 .

PROOF Let T = T{a,b}. From earlier, we can compute

Ex[W 2
T ] = a2Px(Ta < Tb) + b2Px(Tb < Ta) (LOTUS)

= a2
(
b− x
b− a

)
+ b2

(
x− a
b− a

)
(escape probabilities)

= a2b− a2x+ b2x− b2a

b− a

= ab(a− b) + (b2 − a2)x
b− a

= −ab(b− a) + (b− a)(b+ a)x
b− a

= −ab+ (b+ a)x = ax+ bx− ab.

By Wald’s Second Identity, we therefore have

ax+ bx− ab = x2 + σ2Ex[T ];

solve for Ex[T ] to get

Ex[T ] = ax+ bx− ab− x2

σ2 = (x− a)(b− x)
σ2 . □

EXAMPLE 3
Suppose the price of a stock is modeled by a BM with no drift and σ2 = 5. If the
price of the stock is initially 40,

1. What is the probability that the stock price hits 60 before it hits 30?

2. How long should expect to wait until the first instant where the stock price
is either 30 or 60?
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Recurrence and transience

Theorem 11.18 Suppose {Wt} is a BM, and let x ̸= y be real numbers. Then:

fx,y = Px(Ty <∞) =


1 if the BM has zero drift

1 if the BM drifts from x towards y

exp
(
−2µ|x− y|

σ2

)
if the BM drifts from x away from y

PROOF This proof splits into several cases, all of which apply the Escape Time
Corollary (Theorem 10.21) and the escape probabilities of BM (Theorem 11.14).

First, if the BM has zero drift, then for ψ(x) = x, {ψ(Wt)} is a martingale.

Case 1: if x < y, then fx,y = lim
a→−∞

Px(Ty < Ta) = lim
a→−∞

x− a
y − a

L= lim
a→−∞

−1
−1 = 1.

Case 2: if x > y, then fx,y = lim
b→∞

Px(Ty < Tb) = lim
b→∞

b− x
b− y

L= lim
b→∞

1
1 = 1.

On the other hand, if the BM has drift µ ̸= 0, then for ψ(x) = exp
(

−2µ
σ2 x

)
,

{ψ(Wt)} is a martingale.

Case 3: if x < y and µ > 0 (so the BM drifts towards y), then

fx,y = lim
a→−∞

Px(Ty < Ta) = lim
a→−∞

exp
(

−2µx
σ2

)
− exp

(
−2µa

σ2

)
exp

(
−2µy

σ2

)
− exp

(
−2µa

σ2

)
L= lim

a→−∞

0− exp
(

−2µa
σ2

)
· −2µ

σ2

0− exp
(

−2µa
σ2

)
· −2µ

σ2

= 1.

Case 4: if x < y and µ < 0 (so the BM drifts away from y), then

fx,y = lim
a→−∞

Px(Ty < Ta) = lim
a→−∞

exp
(

−2µx
σ2

)
− exp

(
−2µa

σ2

)
exp

(
−2µy

σ2

)
− exp

(
−2µa

σ2

)
=

exp
(

−2µx
σ2

)
− exp (−∞)

exp
(

−2µy
σ2

)
− exp (−∞)

= exp
(−2µx

σ2 + 2µy
σ2

)
= exp

(
−2µ(y − x)

σ2

)
= exp

(
−2µ|x− y|

σ2

)
.

This leaves two cases corresponding to when x > y. These are left as HW. □
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Theorem 11.19 Let {Wt} be a BM.

• If {Wt} has zero drift, then {Wt} is recurrent.

• If {Wt} has nonzero drift, then {Wt} is transient.

PROOF Assume first that the BM has zero drift. Then, by the continuous LTP
(conditioning on the value of W1), we have

fx = fx,x = Px(Tx <∞) =
∫ ∞

−∞
Py(Tx <∞) fW1(y) dy

=
∫ ∞

−∞
fy,x fn(x+µ,σ2)(y) dy

=
∫ ∞

−∞
1 fn(x+µ,σ2)(y) dy

= 1

so x is recurrent, making the BM {Wt} recurrent.

Now, assume that the BM has drift µ ≥ 0 (otherwise consider {−Wt}). Then,

fx = fx,x = Px(Tx <∞)

=
∫ ∞

−∞
Py(Tx <∞) fW1(y) dy

=
∫ ∞

−∞
fy,xfn(x+µ,σ2)(y) dy.

Now split this integral into the part where y ≤ x and the part where y > x:

fx =
∫ x

−∞
fy,x fn(x+µ,σ2)(y) dy +

∫ ∞

x
fy,x fn(x+µ,σ2)(y) dy.

For the first integral, since y < x and the drift is positive, fy,x = 1 so we get∫ x

−∞
(1) fn(x+µ,σ2)(y) dy = P (n(x+ µ, σ2) ≤ x) = Φ

(
x+ µ− x

σ

)
= Φ(0) = 1

2 .

For the second integral, since y > x and the drift is positive, fy,x = exp
(

−2µ|x−y|
σ2

)
so we get ∫ ∞

x
exp

(
−2µ|x− y|

σ2

)
fn(x+µ,σ2)(y) dy

=
∫ ∞

x
exp

(
−2µ(y − x)

σ2

)
1

σ
√

2π
exp

(
−(y − x− µ)2

2σ2

)
dy

=
∫ ∞

x

1
σ
√

2π
exp

[
−(y − x− µ)2 − 4µ(y − x)

2σ2

]
dy.
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Now use the u-sub u = y − x, du = dy to get

∫ ∞

0

1
σ
√

2π
exp

[
−(u− µ)2 − 4µ(u)

2σ2

]
du

=
∫ ∞

0

1
σ
√

2π
exp

[
−(u+ µ)2

2σ2

]
du

=
∫ ∞

0
fn(−µ,σ2)(u) du

= P (n(−µ, σ2) > 0) < 1
2 .

Adding the blue and red parts together, we see fx <
1
2 + 1

2 = 1.
Therefore x is transient, meaning {Wt} is transient. □

But there’s actually more to show here - we need to know that {Wt} returns to its
starting value at an unbounded set of times in the future.

5 10 15 20 25
t

-8

-4

4

8

Wt

We’ll address this question (and other things) in the next section.
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11.4 Reflection principle
QUESTION

Let {Wt} be a BM with zero drift. From the previous section, we know Wt hits b,
i.e. fx,b = 1, i.e. Px(Tb <∞) = 1.

What is the distribution of the r.v Tb which measures the time it takes to hit b?

Theorem 11.20 (Reflection principle) Let {Wt} be a BM with zero drift, starting
at x. Fix b ̸= x. Then

FTb
(t) = P (Tb ≤ t) = 2− 2Φ

(
|x− b|
σ
√
t

)
.

PROOF Case 1: b > x. We observe first that Wt ≥ b only if Tb ≤ t:

Therefore

P (Wt ≥ b) = P (Wt ≥ b
⋂
Tb ≤ t) = P (Wt ≥ b |Tb ≤ t)P (Tb ≤ t)
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which implies

FTb
(t) = P (Tb ≤ t) = P (Wt ≥ b)

P (Wt ≥ b |Tb ≤ t)

=

=

=

= 2− 2Φ
(
b− x
σ
√
t

)

= 2− 2Φ
(
|x− b|
σ
√
t

)
.

Case 2: b < x. Here, Wt ≤ b only if , so

Corollary 11.21 Let {Wt} be a zero drift BM with parameter σ2 starting at x. Fix
b > 0 and let Tb = min{t ≥ 0 : Wt = b}. Then Tb has density

fTb
(t) = |x− b|

σ
√

2π t3
exp

[
−(x− b)2

2 t σ2

]
.

PROOF HW (just differentiate FTb
with respect to t and simplify). □

502



11.4. Reflection principle

EXAMPLE 4
Let {Wt} be a BM with parameter 6. If W1 = 2, what is the probability Wt = −5 for
some t ∈ [1, 5]?

Consequences of the reflection principle

Theorem 11.22 (Strong recurrence of BM) Let {Wt} be a BM with zero drift. With
probability 1, there is an unbounded set of times t such that Wt = W0.

PROOF It is sufficient to show P0(Ws = 0 for some s ≥ 1) = 1. We have

P0(Ws = 0 for some s ≥ 1)
= lim

t→∞
P0(Ws = 0 for some s ∈ [1, t])

= lim
t→∞

∫ ∞

−∞
fW1(b)P0(Ws = 0 for some s ∈ [1, t] |W1 = b) db

= lim
t→∞

∫ ∞

−∞

1
σ
√

2π
exp

(
−b2

2σ2

)[
2− 2Φ

(
b

σ
√
t− 1

)]
db
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From the previous page,

P0(Ws = 0 for some s ≥ 1)

= lim
t→∞

∫ ∞

−∞

1
σ
√

2π
exp

(
−b2

2σ2

) [
2
∫ ∞

b
σ

√
t−1

fn(0,1)(x) dx
]
db

= lim
t→∞

2
σ
√

2π

∫ ∞

−∞
exp

(
−b2

2σ2

)∫ ∞

b
σ

√
t−1

1√
2π

exp
(
−x2

2

)
dx db

= lim
t→∞

2
σ
√

2π

∫ ∞

−∞
exp

(
−b2

2σ2

)∫ ∞

b√
t−1

1
σ
√

2π
exp

(
−u2

2σ2

)
du db

= 1
πσ2

∫ ∞

−∞

∫ ∞

0
exp

(
−(u2 + b2)

2σ2

)
du db

(now change the integral to polar coordinates)

b

u

= 1
πσ2

∫ ∞

r=0

∫ π

0
exp

(
−r2

2σ2

)
r dθ dr

= 1
σ2

∫ ∞

0
e−r2/2σ2

r dr

(let v = − r2

2σ2 ; dv = − r

σ2dr, i.e. −σ2 dv = r dr)xxxxxx

= 1
σ2 (−σ2)

∫ −∞

0
ev dv

=
∫ 0

−∞
ev dv

= e0 − e−∞ = 1. □
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Theorem 11.23 Let {Wt} be a BM with zero drift. For every ϵ > 0 (no matter how
small), there are infinitely many times t ∈ (0, ϵ) so that Wt = W0.

PROOF First, we can assume W0 = 0 (otherwise shift {Wt} by a constant so that it
starts at 0).

Next, let Xt =
{
tW1/t if t > 0

0 if t = 0 . From Theorem 11.9, {Xt} is also a BM with

zero drift.

By strong recurrence, there is an unbounded set of times t1, t2, t3, ... such that

Xt1 = Xt2 = ... = X0 = 0.

t

Xt

ϵ
t

Wt

But that means W1/t1 ,W1/t2 , ... must also all be zero.

And given any ϵ > 0, there will be infinitely many of the times
1
t1
,

1
t2
,

1
t3
... in the

interval (0, ϵ) (since the tj are unbounded). □

CONSEQUENCE

If the trajectory of a zero drift BM crosses a horizontal line, then it actually crosses
that horizontal line infinitely many times that are arbitrarily close to any one of the
times it crosses the line:

t

Wt
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11.4. Reflection principle

Theorem 11.24 (Nondifferentiability of paths) Let {Wt} be a BM. With prob-
ability 1, a Brownian sample function t 7→ Wt is nowhere differentiable (i.e. not
differentiable at any time t).

CONSEQUENCE

With probability 1, the sample functions of a Brownian motion are “infinitely jagged”,
i.e. nowhere smooth.

PROOF We proceed with two cases:

Case 1: {Wt} has zero drift.
In this case, we will first prove the sample function isn’t differentiable at 0.
To do this, by the definition of derivative,

d

dt
Wt

∣∣∣∣∣
t=0

exists ⇐⇒ lim
h→0

Wh −W0

h
exists

⇐⇒ lim
h→0

Wh

h
exists

⇒ Wh

h
< A

for some fixed constant A,
and for all h ∈ (0, ϵ)

⇐⇒ Wh < Ah for all h ∈ (0, ϵ).
But by the reflection principle,

lim
h→0

P (Wh < Ah) = lim
h→0

[
1−

(
2− 2Φ

(
Ah√
h

))]
= lim

h→0

[
2Φ(A

√
h)− 1

]
= 2Φ(0)− 1

= 2
(

1
2

)
− 1 = 0.

Therefore P
(
d

dt
Wt

∣∣∣∣∣
t=0

exists
)

= 0.

Now, if {Wt} is a BM with zero drift that is differentiable at t0, {Wt+t0 −Wt0}
would be a BM with zero drift that was differentiable at 0, contradicting
the above argument. Therefore {Wt} is nowhere differentiable (with
probability 1).

Case 2: {Wt} has nonzero drift µ.
If such a BM is differentiable at time t, then {Wt − µt} is differentiable at time
t (as it is the difference of two differentiable functions).

But {Wt − µt} is a BM with zero drift, so this would violate Case 1. □
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11.5. Brownian motion in higher dimensions

11.5 Brownian motion in higher dimensions

Definition 11.25 Let {Wt} (a.k.a. {
−→
Wt}) be a stochastic process with state space Rd.

{Wt} is called a d-dimensional Brownian motion if each coordinate of the process
is a BM, and the coordinates are independent.

If each of the coordinates is a standard BM (they have zero drift, start at 0 and
variance parameter 1), then we call {Wt} a standard d-dimensional BM.

Escape probabilities

Let {Wt} be a standard d−dim’l BM and fix 0 < r < R <∞.

Define the sets

Ar = {x ∈ Rd : ||x|| = r};
AR = {x ∈ Rd : ||x|| = R};
A = {x ∈ Rd : ||x|| ∈ (r, R)};

and also let

TAr = min{t ≥ 0 : Wt ∈ Ar};
TAR

= min{t ≥ 0 : Wt ∈ AR};
T = min{T1, T2}.

r R

A

AR

Ar

x

||x||

(d=2)

Our goal is to determine the escape probabilities Px(TAr < TAR
) and Px(TAR

< TAr).

To do this, for x ∈ A, define f(x) = Px(TAR
< TAr).

By rotational symmetry, we can write f(x) = g(||x||) for some function g : R → R
such that g(r) = 0 and g(R) = 1.
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11.5. Brownian motion in higher dimensions

f has another important property: the value of f at x is equal to the average value
of f along any circle of small radius centered at x:

Therefore f : A → R is what is called a harmonic function, meaning it satisfies the
following equation, which is called the heat equation (Google the “Dirichlet prob-
lem” or “heat equation” for more on this):

d∑
j=1

∂2

∂x2
j

f(x) = 0 for all x ∈ A.

To analyze this equation, first observe that for any xj , we can use the Chain Rule
to obtain

∂

∂xj

(||x||) = ∂

∂xj

(√
x2

1 + ...+ x2
d

)
= 1

2
√
x2

1 + ...+ x2
d

· 2xj

= xj√
x2

1 + ...+ x2
d

= xj

||x||
. (11.1)

Therefore

0 =
d∑

j=1

∂2

∂x2
j

f(x)

=
d∑

j=1

∂2

∂x2
j

g(||x||)

=
d∑

j=1

∂

∂xj

[
g′(||x||) xj

||x||

]
(using the Chain Rule with the above computation)

=
d∑

j=1

g′′(||x||) xj

||x||
· xj

||x||
+ g′(||x||)

1 · ||x|| − xj

||x||xj

||x||2


(Product and Quotient Rules)
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11.5. Brownian motion in higher dimensions

From the previous page, we have

0 =
d∑

j=1

[
x2

jg
′′(||x||)
||x||2

+ g′(||x||)
||x||

−
g′(||x||)x2

j

||x||3

]

= g′′(||x||)
||x||2

d∑
j=1

x2
j +

d∑
j=1

g′(||x||)
||x||

− g′(||x||)
||x||3

d∑
j=1

x2
j

= g′′(||x||)
||x||2

||x||2 + d
g′(||x||)
||x||

− g′(||x||)
||x||3

||x||2

(since
d∑

j=1
x2

j = ||x||2)

0 = g′′(||x||+ d
g′(||x||)
||x||

− g′(||x||)
||x||

Multiply through by ||x|| to obtain

0 = ||x||g′′(||x||) + (d− 1)g′(||x||). (11.2)

Thinking of ||x|| as an independent variable “t”, this is the second-order ODE

0 = tg′′(t) + (d− 1)g′(t). (11.3)

which has no g in it (only t, g′ and g′′); therefore it can be solved with MATH 330
methods:

Integrate g′(t) = Ct1−d to get

g(t) =


. . if d = 2

if d ≥ 3
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11.5. Brownian motion in higher dimensions

If you plug in the known values of g (i.e. g(r) = 0 and g(R) = 1) and solve for the
constants (HW), you will obtain:

Theorem 11.26 (Annular escape probabilities) Let {Wt} be a standard d-dim’l
BM. Suppose r ≤ ||x|| ≤ R. Then, if Ar and AR are the spheres of radius r and R
centered at the origin, we have

Px(TAR
< TAr) =



x− r
R− r

if d = 1

ln ||x|| − ln r
lnR− ln r if d = 2

r2−d − ||x||2−d

r2−d −R2−d
if d ≥ 3

In all cases, Px(TAr < TAR
) = 1− Px(TAR

< TAr).

Recurrence/transience

Dimension 3 (or higher):

Suppose r > 0 is the radius of a small sphere centered at the origin. If a 3-
dimensional BM travels to x with ||x|| > r, then

Px(TAr <∞) = lim
R→∞

Px(TAr < TAR
)

= lim
R→∞

[1− Px(TAR
< TAr)]

=

=

= (something bigger than 1)negative number

< 1.

So there is a chance that the BM never comes back to within r of the origin. Thus
we say that in dimension 3 or higher, BM is transient.
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11.5. Brownian motion in higher dimensions

Dimension 2:

(more interesting) Repeating the above calculation when d = 2, we get

Px(TAr <∞) = lim
R→∞

Px(TAr < TAR
)

=

=

=

This time, it is assured that the BM will return to within r of the origin, so in dimen-
sion 2, BM is “neighborhood recurrent”, because it returns to any “neighborhood”
(i.e. within any positive distance) of where it was.

BUT: does a 2-dim’l BM get back exactly to where it was? Suppose a 2-dim’l BM
starts at 0 and then travels distance ||x|| away. The probability that it returns to 0
is

Px(TA0 <∞) = lim
r→0

Px(TAr < TAR
)

= 1− lim
r→0

Px(TAR
< TAr)

= 1− lim
r→0

ln ||x|| − ln r
lnR− ln r

=

=

=

Therefore, with probability 1, 2-dim’l BMs do not return to where they start, so
2-dim’l BM is “point transient”.

Dimension 1:

We already proved 1-dim’l BM with zero drift is point recurrent in Theorem 11.19.
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11.5. Brownian motion in higher dimensions

Putting everything together, we have shown the following set of facts:

Theorem 11.27 Let {Wt} be a standard d-dimensional BM.

1. If d = 1, then {Wt} is point recurrent.

2. If d = 2, then {Wt} is point transient, but neighborhood recurrent.

3. If d ≥ 3, then {Wt} is transient.

EXAMPLE 5
Suppose a standard 3-dimensional BM starts at the point (1, 1, 1). What is the prob-
ability that the point strikes the sphere of radius 1 centered at the origin before it
strikes the sphere of radius 2 centered at the origin?
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11.6. Chapter 11 Homework

11.6 Chapter 11 Homework
Exercises from Section 11.1

1. Suppose {Wt} is a Brownian motion starting at 0 with variance parameter
σ2 = 3.

Note: if no drift is specified in a BM, that means the BM has zero drift.

a) Compute P (W4 ≥ 1).
b) Compute P (W9 −W2 ≤ −2).
c) Compute P (W7 > W5).
d) Compute the variance of W8.

e) Compute Cov(W3,W7).
f) Compute V ar(W8 +W9).

2. Suppose {Xt} is a BM with drift µ = 5 starting at x = −1 that has variance
parameter σ2 = 4.

a) Compute P (X1 ≥ 6).
b) Compute P (X9 −X7 ≤ 3).
c) Compute P (X4 > 15 |X2 = 7, X1 = −1).
d) Compute P (X13 > X7).
e) Compute the mean and variance of X8.

f) Compute Cov(X11, X16).
g) Compute V ar(X2 +X5).

3. Suppose {Wt} is a BM with σ2 = 5. Compute

P (W8 < 2 |W2 = W1 = 3).

Exercises from Section 11.2

4. Let {Wt} be standard BM and let Xt = (Wt)2 for all t.

Recall: “standard” means x = 0, µ = 0 and σ2 = 1.

a) Is {Xt} a Gaussian process? Explain your answer.

b) Find the mean function of {Xt}.
c) Find the joint moment generating function of Ws and Wt.

d) Use your answer to part (b) to find E[W 2
sW

2
t ].
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11.6. Chapter 11 Homework

e) Find the covariance function of {Xt}.

5. Let {Wt} be a BM with parameter σ2 and let a ≤ s and a ≤ t. Prove that

E[(Ws −Wa)(Wt −Wa)] = σ2 min(s− a, t− a).

6. Prove the inversion symmetry of BM (Theorem 11.9), which says that if {Wt}
is a Brownian motion with zero drift, starting at zero, then {tW1/t} is a stan-
dard Brownian motion.

7. Prove that if {Wt} and {Ŵt} are independent Brownian motions, then for
any constants b1 and b2, the process {b1Wt + b2Ŵt} is also a Brownian motion.
Determine formulas for its parameters, in terms of b1, b2, and the parameters
of {Wt} and {Ŵt}.
Note: The result of this problem generalizes: any linear combination of a finite
number of independent BMs is also a BM (although you don’t have to prove
this).

Exercises from Section 11.3

8. Let {Wt} be a BM. Prove that {(Wt − µt)2 − σ2t} is a martingale.

9. (20 ⋆ pts) Let {Wt} be a BM. Prove that
{
exp

(
−2µ
σ2 Wt

)}
is a martingale.

10. (30 ⋆ pts) Prove the second statement of Theorem 11.14 in the lecture notes,
in which escape probabilities for BM with drift are derived.

11. (20 ⋆ pts) Let {Wt} be a BM. Finish the proof of Theorem 11.18 by verifiying
that if x > y, then

fx,y =


1 if µ < 0 (the BM drifts from x towards y)

exp
(
−2µ|x− y|

σ2

)
if µ > 0 (the BM drifts from x away from y) .

12. You own one share of stock whose price is approximated by a BM with σ2 =
10 (and time is measured in days). You bought the stock when its price was
$15, but now it is worth $25.

a) Suppose you decide to sell the stock when the price of the stock next
reaches either $28 or $20:

i. What is the probability you sell the stock for $28?
ii. What is the expected amount you will sell the stock for?

iii. How much longer should you expect to hold the stock before sell-
ing?
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11.6. Chapter 11 Homework

b) Suppose you change your mind and decide to sell the stock when the
price of the stock reaches $27. What is the probability you hold the stock
forever?

13. Suppose that you own a collectible item whose value at time t is modeled by
a BM with drift where σ2 = 2 and µ = 1

5 . The item is presently valued at $30,
and you plan to sell the item when the value of the item reaches $45 or $20,
whichever happens first.

a) What is the probability that you sell the item for $45?

b) What is the expected value at which you will sell the item?

c) How long should you expect to keep the item before you sell it?

14. The value of a painting is a BM with drift µ = 4 and variance parameter
σ2 = 8.

a) If the painting is currently worth 30, what is the probability that it is
eventually worth 200?

b) If the painting is currently worth 30, what is the probability that it is
eventually worthless?

Exercises from Section 11.4

15. Suppose instead that you decide to sell the stock of Exercise 12 the next time
its price hits $15 or after ten days, whichever happens first. What is the prob-
ability that when you sell your stock, you will have to sell it for $15?

16. Prove Corollary 11.21 from the notes, which says that if {Wt} is a zero drift
BM with parameter σ2 starting at x, and if Tb = min{t ≥ 0 : Wt = b}, then Tb

has density

fTb
(t) = |x− b|

σ
√

2 π t3
exp

[
−(x− b)2

2 t σ2

]
.

17. Let {Wt} be a Brownian motion with parameter σ2 and fix t ≥ 0. Let M =
max{Ws : 0 ≤ s ≤ t}. Prove M is a continuous r.v. (this implies M > 0 with
probability one) and compute the density function of M .

Note: This is a transformation problem. The way you show M(t) is continu-
ous is by computing its CDF and recognizing that this CDF is a continuous
function.

18. (40 ⋆ pts) Let {Wt} be a standard Brownian motion, and let 0 < t0 < t1.
Show

P (Wt = 0 for some t ∈ (t0, t1)) = 2
π

arctan
√
t1 − t0
t0

.
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11.6. Chapter 11 Homework

Hint: Condition on the value ofWt0 and use the result of Corollary 11.21. You
will get a double integral; reverse the order of the integrals and then evaluate
using a u-sub on each integral.

19. Let {Wt} be a standard Brownian motion, and let L be the largest time t ∈
[0, 1] such that Wt = 0.

a) Compute the density function of L. Hint: Use the fact proved in Exercise
18.

b) Use a computer or graphing calculator to graph the density function you
found in part (a)..

c) Based on the graph you produce in part (b), describe qualitatively what
is true about L (i.e. which values of L are most likely)?

Exercises from Section 11.5

20. In the lecture, we saw that for a 2-dimensional Brownian motion, the function
g described in Section 11.5 had the form

g(t) = C ln t+D

for unknown constants C and D. Use the fact that g(r) = 0 and g(R) = 1 to
solve for C and D, and therefore write g in terms of r and R. (You should get
the formula stated in Theorem 11.26.)

21. In the lecture, we saw that for a d-dimensional Brownian motion where d ≥ 3,
the function g described in Section 11.5 had the form

g(t) = C

2− dt
2−d +D

for unknown constants C and D. Use the fact that g(r) = 0 and g(R) = 1 to
solve for C and D, and therefore write g in terms of r and R. (You should get
the formula stated in Theorem 11.26.)

22. Let {Wt} be a standard 2-dimensional BM, starting at the origin.

a) What is the probability that Wt = (0, 0) for some t > 0?
b) What is the probability that Wt ∈ {(x, y) : x2 +y2 < 1} for some t > 100?
c) Suppose W15 = (3, 4). What is the probability that, after time 15, Wt

strikes the circle {(x, y) : x2 + y2 = 4} before it strikes the circle {(x, y) :
x2 + y2 = 49}?

23. Suppose that the position of a particle of pollen suspended in a liquid is mod-
eled by a standard 3-dimensional BM, and that at time 4, the pollen is at po-
sition (1, 2, 3).
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11.6. Chapter 11 Homework

a) What is the probability that the pollen particle eventually reaches (0, 4,−1)?
b) What is the probability that the pollen particle strikes the sphere of ra-

dius 4 centered at the origin before it strikes the sphere of radius 2 cen-
tered at the origin?

24. Suppose {Wt} is a standard 5-dimensional BM with

W0 = (1, 2, 1,−3, 1).

What is the probability that ||Wt|| = 2||W0|| before ||Wt|| = 1
2 ||W0||?

25. (30 ⋆ pts) Let {Wt} and {Ŵt} be independent, standard BMs and let a be a
positive constant.

a) Prove that P
(
Wt = aŴt for infinitely many t

)
= 1.

b) What is the probability that Wt = Ŵt + a for infinitely many t? Prove
your answer.

26. (30 ⋆ pts) Let {Wt}, {Ŵt}, {W̃t} be independent, standard BMs.

a) Is P
(
Wt = Ŵt for infinitely many t

)
= 1? Why or why not?

b) Is P
(
Wt = Ŵt = W̃t for infinitely many t

)
= 1? Why or why not?

27. (50 ⋆ pts) Let {(Xt, Yt)} be a standard 2-dimensional Brownian motion. Let
T = min{t : Xt = 1}. Compute the density function of YT , and identify YT as
a common random variable.
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Appendix A

Tables

A.1 Charts of properties of common r.v.s (the “blue sheet”)
The next page has a chart listing relevant properties of the common discrete ran-
dom variables.

The following page has a chart listing relevant properties of the common continu-
ous random variables.
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A.1. Charts of properties of common r.v.s (the “blue sheet”)
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A.2. Useful sum and integral formulas (the “pink sheet”)

A.2 Useful sum and integral formulas (the “pink sheet”)
Triangular Number Formula: For all n ∈ {1, 2, 3, ...},

1 + 2 + 3 + ...+ n =
n∑

j=0
j = n(n+ 1)

2 .

Finite Geometric Series Formula: for all r ∈ R,
N∑

n=0
rn = 1− rN+1

1− r .

Infinite Geometric Series Formulas: for all r ∈ R such that |r| < 1,
∞∑

n=0
rn = 1

1− r

∞∑
n=N

rn = rN

1− r .

Derivative of the Geometric Series Formula: for all r ∈ R such that |r| < 1,
∞∑

n=0
nrn = r

(1− r)2 .

Exponential Series Formula: for all r ∈ R,
∞∑

n=0

rn

n! = er.

Binomial Theorem: for all n ∈ N, and all x, y ∈ R,
n∑

k=0

(
n
k

)
xkyn−k = (x+ y)n.

Vandermonde Identity: for all n, k, r ∈ N,
n∑

x=0

(
r
x

)(
n− r
k − x

)
=
(
n
k

)
.

Gamma Integral Formula: for all r > 0, λ > 0,∫ ∞

0
xr−1e−λx dx = Γ(r)

λr
.

Normal Integral Formula: for all µ ∈ R and all σ > 0,∫ ∞

−∞
exp

(
−(x− µ)2

2σ2

)
dx = σ

√
2π.

Beta Integral Formula: for all r > 0, λ > 0,∫ 1

0
xα−1(1− x)β−1 dx = Γ(α)Γ(β)

Γ(α + β) .
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A.3. Table of values for the cdf of the standard normal

A.3 Table of values for the cdf of the standard normal
Entries represent Φ(z) = P (n(0, 1) ≤ z). The value of z to the first decimal is in the
left column. The second decimal place is given in the top row.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8436 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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A.4. Road map of standard computations with joint distributions

A.4 Road map of standard computations with joint distributions
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A.5 Facts associated to escape probabilities (the “orange sheet”)
B

IR
T

H
A

N
D

D
E

A
T

H
P

R
O

C
E

SS
P

R
O

C
E

SS
{X

t
}

SI
M

P
L

E
R

A
N

D
O

M
W

A
L

K
D

IS
C

R
E

T
E

-T
IM

E
C

T
M

C
B

R
O

W
N

IA
N

M
O

T
IO

N

Im
po

rt
an

t
au

xi
lia

ry
qu

an
ti

ti
es

µ
=
p

−
q

σ
2

=
p

+
q

−
(p

−
q)

2

γ
j

=
q j
q j

−
1

··
·q

1

p
j
p

j
−

1
··

·p
1

ζ j
=
p

j
−

1
p

j
−

2
··

·p
0

q j
q j

−
1

··
·q

1

(γ
0

=
ζ 0

=
1)

γ
j

=
µ

j
µ

j
−

1
··

·µ
1

λ
j
λ

j
−

1
··

·λ
1

ζ j
=
λ

j
−

1
λ

j
−

2
··

·λ
0

µ
j
µ

j
−

1
··

·µ
1

(γ
0

=
ζ 0

=
1)

(q
x

=
λ

x
+
µ

x
)

A
ss

oc
ia

te
d

m
ar

ti
ng

al
e(

s)

{X
t

−
µ
t}

{(
X

t
−
µ
t)

2
−
tσ

2
}

{ ( q p

) X t}
{ψ

(X
t
)}

,w
he

re
ψ

(0
)=

1
an

d

ψ
(y

)=
y

−
1 ∑ j

=
0

γ
j

N
/A

{W
t

−
µ
t}

{(
W

t
−
µ
t)

2
−
t
σ

2
}

{ ex
p
( −2µ σ

2
W

t

)}
P

x
(T

a
<
T

b
)

(P
x
(T

b
<
T

a
)

is
1−

th
is

)

b
−
x

b
−
a

if
un

bi
as

ed
;

( q p

) b −
( q p

) x
( q p

) b −
( q p

) a
if

bi
as

ed

ψ
(b

)−
ψ

(x
)

ψ
(b

)−
ψ

(a
)

N
/A

b
−
x

b
−
a

if
µ

=
0;

ex
p
( −2µ

b
σ

2

) −
ex

p
( −2µ

x
σ

2

)
ex

p
( −2µ

b
σ

2

) −
ex

p
( −2µ

a
σ

2

) i
fµ

̸=
0

E
x
[T

{a
,b

}
]

(b
−
x

)(
x

−
a
)

p
+
q

if
un

bi
as

ed
;

if
bi

as
ed

,s
ol

ve
fo

r
th

is
us

in
g
E
X

T
=
x

+
µ
E
T

N
/A

(x
−
a
)(
b

−
x

)
σ

2
if
µ

=
0;

so
lv

e
us

in
g

E
W

T
=
x

+
µ
E
T

if
µ

̸=
0

f x
,y

(f
or
x

̸=
y

)

1
if

w
al

k
is

un
bi

as
ed

or
te

nd
s

to
w

ar
d
y

;
( m

in
{p

,q
}

m
ax

{p
,q

}

) |x−y
|

if
w

al
k

te
nd

s
aw

ay
fr

om
y

N
/A

1
if
µ

=
0;

ex
p
( −

2µ
|x

−
y
|

σ
2

)
if
µ

̸=
0

f x
r

+
2m

in
(p
,q

)
f 0

=
1

−
[ ∑ y

γ
y

] −1
1

if
µ

=
0;

1 2
+

Φ
( −µ σ

) if
µ

̸=
0

R
ec

ur
re

nc
e/

tr
an

si
en

ce
nu

ll
re

cu
rr

en
t⇔

un
bi

as
ed

tr
an

si
en

t⇔
bi

as
ed

re
cu

rr
en

t⇔
∑ y

γ
y

=
∞

po
si

ti
ve

re
cu

rr
en

t⇔
∑ y

ζ y
<

∞
nu

ll
re

cu
rr

en
t⇔

µ
=

0
tr

an
si

en
t⇔

µ
̸=

0
st

at
io

na
ry

di
st

ri
bu

ti
on

(i
fp

os
it

iv
e

re
cu

rr
en

t)

N
/A

π
(x

)=
ζ x ∑ y
ζ y

N
/A

526


	Contents
	Probability spaces
	The big picture
	Probability spaces
	Elementary properties of probability spaces
	Conditional probability and independence
	The Law of Total Probability and Bayes' Law
	Chapter 1 Homework

	Discrete random variables
	Introducing random variables
	Density functions of discrete random variables
	Counting principles
	Bernoulli processes
	Summary of Chapter 2
	Chapter 2 Homework

	Continuous random variables
	Density functions of continuous random variables
	Distribution functions
	Transformations of random variables
	Poisson processes
	More on gamma random variables
	Summary of Chapter 3
	Chapter 3 Homework

	Joint distributions
	Introducing joint distributions
	Discrete joint distributions
	Multinomial and hypergeometric distributions
	Continuous joint distributions
	Independence of random variables
	Example computations with joint distributions
	Conditional density
	Transformations of continuous joint distributions
	Chapter 4 Homework

	Expected value
	Definition of expected value
	Properties of expected value
	Variance
	Expected values and variances of common random variables
	Covariance and correlation
	Conditional expectation and conditional variance
	Probability generating functions
	Moments and moment generating functions
	Uniqueness of MGFs
	Joint moment generating functions
	Markov and Chebyshev inequalities
	Chapter 5 Homework

	I.i.d. processes and normal random variables
	I.i.d. processes
	Laws of Large Numbers
	Limits of normalized averages
	Normal random variables
	Applications of the Central Limit Theorem
	Stirling's formula
	Bivariate normal densities
	Joint normal densities in higher dimensions
	Chapter 6 Homework

	Applications to insurance
	Deductibles
	Benefit limits
	Proportional coverage
	Chapter 7 Homework

	Markov chains
	What is a Markov chain?
	Basic examples of Markov chains
	Matrix theory applied to Markov chains
	The Fundamental Theorem of Markov chains
	Stationary and steady-state distributions
	Class structure and periodicity
	Recurrence and transience
	Positive and null recurrence
	Existence and uniqueness of stationary distributions
	Proving the Fundamental Theorem
	Example computations
	Chapter 8 Homework

	Continuous-time Markov chains
	Introducing CTMCs
	General theory of CTMCs
	CTMCs with finite state space
	Class structure, recurrence and transience of CTMCs
	Specific examples of CTMCs
	Chapter 9 Homework

	Martingales
	Background: a gambling problem
	Filtrations
	Conditional expectation and martingales
	Optional Stopping Theorem
	Escape problems
	Simple random walk on Z
	Birth and death chains
	Birth and death CTMCs
	Chapter 10 Homework

	Brownian motion
	Definition and construction
	Symmetries and scaling laws
	Martingales and escape problems
	Reflection principle
	Brownian motion in higher dimensions
	Chapter 11 Homework

	Tables
	Charts of properties of common r.v.s (the ``blue sheet'')
	Useful sum and integral formulas (the ``pink sheet'')
	Table of values for the cdf of the standard normal
	Road map of standard computations with joint distributions
	Facts associated to escape probabilities (the ``orange sheet'')


