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Chapter 1

Markov chains

1.1 The definition of a Markov chain
In Math 416, our primary goal is to describe probabilistic models which simu-

late real-world phenomena. As with all modeling problems, there is a “Goldilocks”
issue:

• If the model is too simple,

• if the model is too complex,

In applied probability, we want to model phenomena which evolve randomly.
The mathematical object which describes such a situation is a “stochastic process”:

Definition 1.1 A stochastic process {Xt : t ∈ I} is a collection of random vari-
ables indexed by t. The set I of values of t is called the index set of the stochastic
process, and members of I are called times. We assume that each Xt has the same
range, and we denote this common range by S. S is called the state space of the
process, and elements of S are called states.

Remark: {Xt} refers to the entire process (i.e. at all times t), whereas Xt is a
single random variable (i.e. refers to the state of the process at a fixed time t).

Remark: Think of Xt as recording your “ position” or “state” at time t. As t
changes, you think of “moving” or “changing states”. This process of “moving”
will be random, and modeled using probability theory.

4



1.1. The definition of a Markov chain

Almost always, the index set is {0, 1, 2, 3, ...} or Z (in which case we call the
stochastic process a discrete-time process, or the index set is [0,∞) or R (in which
case we call the stochastic process a continuous-time process) . The first three
chapters of these notes focus on discrete-time processes; chapters 4 and 5 center on
continuous-time processes.

In Math 414, we encountered the three most basic examples of stochastic pro-
cesses:

1. The Bernoulli process, a discrete-time process {Xt}with state space N where
Xt is the number of successes in the first t trials of a Bernoulli experiment.
Probabilities associated to a Bernoulli process are completely determined by
a number p ∈ (0, 1) which gives the probability of success on any one trial.

2. The Poisson process, a continuous-time process {Xt} with state space N
where Xt is the number of successes in the first t units of time. Probabili-
ties associated to a Poisson process are completely determined by a number
λ > 0 called the rate of the process.

3. i.i.d. processes are discrete-time processes {Xt} where each Xt has the same
density and all the Xt are mutually independent. Averages of random vari-
ables from these processes are approximately normal by the Central Limit
Theorem.

We now define a class of processes which encompasses the three examples
above and much more:

Definition 1.2 Let {Xt} be a stochastic process with state space S. {Xt} is said
to have the Markov property if for any times t1 < t2 < ... < tn and any states
x1, ..., xn ∈ S,

P (Xtn = xn |Xt1 = x1, Xt2 = x2, ..., Xtn−1 = xn−1) = P (Xtn = xn |Xtn−1 = xn−1).

A discrete-time stochastic process with finite or countable state space that has the
Markov property is called a Markov chain.

To understand this definition, think of time tn as the “present” and the times
t1 < ... < tn−1 as being times in the “past”. If a process has the Markov property,
then given some values of the process in the past, the probability of the present
value of the process depends only on the most recent given information, i.e. on
Xtn−1 .
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1.1. The definition of a Markov chain

Note: Bernoulli processes, Poisson processes and i.i.d. processes all have the
Markov property.

Question: What determines a Markov chain? In other words, what makes one
Markov chain different from another one?

Answer:

1. The state space S of the Markov chain

(Usually S is labelled {1, ..., d} or {0, 1} or {0, 1, 2, ...} or N or Z, etc.)

2. The initial distribution of the r.v. X0, denoted π0:

π0(x) = P (X0 = x) for all x ∈ S

π0(x) is the probability the chain starts in state x.

3. Transition probabilities, denoted P (x, y) or Px,y or Pxy:

P (x, y) = Pxy = Px,y = P (Xt = y |Xt−1 = x)

P (x, y) is the probability, given that you are in state x at a certain time, that
you are in state y at the next time.

Technically, transition probabilities depend not only on x and y but on t, but
throughout our study of Markov chains we will assume (often without stat-
ing it) that the transition probabilities do not depend on t; that is, that they
have the following property:

Definition 1.3 Let {Xt} be a Markov chain. We say the transition probabilities of
{Xt} are time homogeneous if for all s, t ∈ S,

P (Xt = y |Xt−1 = x) = P (Xs = y |Xs−1 = x),

i.e. that the transition probabilities depend only on x and y (and not on t).

The reason the transition probabilities are sufficient to describe a Markov chain
is that by the Markov property,

P (Xt = xt |X0 = x0, ..., Xt−1 = xt−1) = P (Xt = xt |Xt−1 = xt−1) = P (xt−1, xt).

In other words, conditional probabilities of this type depend only on the most
recent transition and ignore any past behavior in the chain.
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1.2. Basic examples of Markov chains

1.2 Basic examples of Markov chains
1. i.i.d. process (of discrete r.v.s)

• State space: S
• Initial distribution:

• Transition probabilities:

P (x, y) = P (Xt = y |Xt−1 = x) =

2. Bernoulli process

• State space: S = N = {0, 1, 2, 3, ...}.
• Initial distribution:

• Transition probabilities:

P (x, y) = P (Xt = y |Xt−1 = x) =


We represent these transition probabilities with the following picture:
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1.2. Basic examples of Markov chains

The above picture generalizes: Every Markov chain can be thought of as a ran-
dom walk on a graph as follows:

Definition 1.4 A directed graph is a finite or countable set of points called
nodes, usually labelled by integers, together with “arrows” from one point to
another, such that given two nodes x and y, there is either zero or one arrow
going directly from x to y.

Example:

Example:

Nonexample:

If one labels the arrow from x to y with a number P (x, y) such that for each
node x,

∑
y
P (x, y) = 1, then the directed graph represents a Markov chain,

where the nodes are the states and the arrows represent the transitions. If
you are in state x at time t− 1 (i.e. if Xt−1 = x), then to determine your state
Xt at time t, you follow one of the arrows starting at x (with probabilities as
indicated on the arrows which start at x).
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1.2. Basic examples of Markov chains

Example 3: Make a series of $1 bets in a casino, where you are 60% likely to
win and 40% likely to lose each game. Let Xt be your bankroll after the tth

bet.

3. Ehrenfest chain

Suppose you start with a container that looks like this:

Notice that the container has two “chambers”, with only a small slit open
between them. Suppose there are a total of d objects (think of the objects as
molecules of gas) in the container. Over each unit of time, one and only one
of these objects (chosen uniformly from the objects) moves through the slit to
the opposite chamber. For each t, let Xt be the number of objects in the left-
hand chamber. {Xt} is a Markov chain called the Ehrenfest chain; it models
the diffusion of gases across a semi-permeable membrane.

As an example, let’s suppose d = 3, and suppose all the objects start in the
left-hand chamber.

object which list of objects in the
switches chambers left-hand chamber

time t (chosen uniformly) after the switch Xt

9



1.3. Markov chains with finite state space

• State space of the Ehrenfest chain:

• Transition probabilities:

P (x, y) = P (Xt = y |Xt−1 = x) =


• Directed graph:

1.3 Markov chains with finite state space
Suppose {Xt} is a Markov chain with state space S = {1, ..., d}. Let π0 : S →

[0, 1] give the initial distribution (i.e. π0(x) = P (X0 = x)) and let the transition
probabilities be Px,y (Px,y is the same thing as P (x, y)).

If the state space is finite, the most convenient representation of the chain’s
transition probabilities is in a matrix:

Definition 1.5 Let {Xt} be a Markov chain with state space S = {1, ..., d}. The d×d
matrix of transition probabilities

P =


P1,1 P1,2 · · · P1,d
P2,1 P2,2 · · · P2,d

...
... . . . ...

Pd,1 Pd,2 · · · Pd,d


d×d

is called the transition matrix of the Markov chain.

A natural question to ask is what matrices can be transition matrices of a Markov
chain. Notice that all the entries of P must be nonnegative, and that the rows of P
must sum to 1, since they represent the probabilities associated to all the places x
can go in 1 unit of time.
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1.3. Markov chains with finite state space

Definition 1.6 A d× d matrix of real numbers P is called a stochastic matrix if

1. P has only nonnegative entries, i.e. Px,y ≥ 0 for all x, y ∈ {1, ..., d}; and

2. each row of P sums to 1, i.e. for every x ∈ {1, ..., d},
d∑
y=1

Px,y = 1.

Theorem 1.7 (Transition matrices are stochastic) A d×dmatrix of real numbers
P is the transition matrix of a Markov chain if and only if it is a stochastic matrix.

We can answer almost any question about a finite state space Markov chain by
performing some calculation related to the transition matrix.

n-step transition probabilities

Definition 1.8 Let {Xt} be a Markov chain and let x, y ∈ S. Define the n-step
transition probability from x to y by

P n(x, y) = P (Xt+n = y |Xt = x).

(Since we are assuming the transition probabilities are time homogeneous, these num-
bers will not depend on t.)

P n(x, y) measures the probability, given that you are in state x, that you are in
state y exactly n units of time from now.

Theorem 1.9 Let {Xt} be a Markov chain with finite state space S = {1, ..., d}. If P
is the transition matrix of {Xt}, then for every x, y ∈ S and every n ∈ {0, 1, 2, 3, ...},
we have

P n(x, y) = (P n)x,y,

the (x, y)−entry of the matrix P n.

PROOF By time homogeneity,

P n(x, y) = P (Xn = y |X0 = x)
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1.3. Markov chains with finite state space

.

Time n distributions

Definition 1.10 Let {Xt} be a Markov chain with state space S . A distribution
on S is a probability measure π on (S, 2S), i.e. a function π : S → [0, 1] such that∑
x∈S

π(x) = 1.

We often denote distributions as row vectors, i.e. if S = {1, 2, ..., d} then

π =
(
π(1) π(2) · · · π(d)

)
The coordinates of any distribution must be nonnegative and sum to 1.

Definition 1.11 Let {Xt} be a Markov chain. The time n distribution of the Markov
chain, denoted πn, is the distribution πn defined by

πn(x) = P (Xn = x).

πn(x) gives the probability that at time n, you are in state x.

Theorem 1.12 Let {Xt} be a Markov chain with finite state space S = {1, ..., d}. If

π0 =
(
π0(1) π0(2) · · · π0(d)

)
1×d

is the initial distribution of {Xt} (written as a row vector), and if P is the transition
matrix of {Xt}, then for every x, y ∈ S and every n ∈ I, we have

πn(y) = (π0P
n)y,

the yth−entry of the (1× d) row vector π0P
n.
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1.3. Markov chains with finite state space

PROOF This is a direct calculation:

πn(y) = P (Xn = y) =
∑
x∈S

P (Xn = y |X0 = x)P (X0 = x) (LTP)

=
∑
x∈S

(P n)x,y π0(x) (Theorem 1.9)

=
∑
x∈S

π0(x) (P n)x,y

= [π0P
n]y (def’n of matrix multiplication) �

Example: Consider the Markov chain with state space {0, 1} whose transition
matrix is

P =
(

1
2

1
2

1 0

)
and whose initial distribution is uniform.

1. Sketch the directed graph representing this Markov chain.

2. Find the distribution of X2.

3. Find P (X3 = 0).

4. Find P (X8 = 1 |X7 = 0).

5. Find P (X7 = 0 |X4 = 0).

13



1.4. Markov chains with infinite state space

1.4 Markov chains with infinite state space
Although the formulas for n−step transitions and time n distributions are mo-

tivated by those obtained in the previous section, the big difference if S is infinite
is that the transitions P (x, y) cannot be expressed in a matrix (since the matrix
would have to have infinitely many rows and columns). The proper notation is to
use functions:

Definition 1.13 Let {Xt} be a Markov chain with state space S.

1. The transition function of the Markov chain is the function

P : S × S → [0, 1] defined by P (x, y) = P (Xt = y |Xt−1 = x).

2. The initial distribution of the Markov chain is the function

π0 : S → [0, 1] defined by π0(x) = P (X0 = x).

3. The n−step transition function of the Markov chain is the function P n :
S × S → [0, 1] defined by

P n(x, y) = P (Xt+n = y |Xt = x).

4. The time n distribution of the Markov chain is the function

πn : S → [0, 1] defined by πn(x) = P (Xn = x).

As with finite state spaces, the transition functions must be “stochastic”:

Lemma 1.14 P : S × S → R is the transition function of a Markov chain with state
space S if and only if

1. for every x, y ∈ S, P (x, y) ≥ 0, and

2. for every x ∈ S,
∑
y∈S

P (x, y) = 1.

Lemma 1.15 If πn is the time n distribution of a Markov chain with state space S,
then

∑
x∈S

πn(x) = 1.

14



1.5. Recurrence and transience

Theorem 1.16 Let {Xt} be a Markov chain with transition function P and initial
distribution π0. Then:

1. For all x0, x1, ..., xn ∈ S,

P (X0 = x0, X1 = x1, ..., Xn = xn) = π0(x0)
n∏
j=1

P (xj−1, xj)

2. For all x, y ∈ S,

P n(x, y) =
∑

z1,...,zn−1∈S
P (x, z1)P (z1, z2) · · ·P (zn−2, zn−1)P (zn−1, y)

3. The time n distribution πn satisfies, for all y ∈ S,

πn(y) =
∑
x∈S

π0(x)P n(x, y).

1.5 Recurrence and transience
Goal: Determine the long-term behavior of a Markov chain.

General technique: Divide the states of the Markov chain into various “types”;
there will be general laws which govern the behavior of each “type” of state.

Definition 1.17 Let {Xt} be a Markov chain with state space S.

1. Given an event E, define Px(E) = P (E |X0 = x). This is the probability of
event E, given that you start at x.

2. Given a r.v. Z, define Ex(Z) = E(Z |X0 = x). This is the expected value of Z,
given that you start at x.

15



1.5. Recurrence and transience

Definition 1.18 Let {Xt} be a Markov chain with state space S.

1. Given a set A ⊆ S, let TA be the r.v. defined by

TA = min{t ≥ 1 : Xt ∈ A}.

(TA = ∞ if Xt /∈ A for all t.) TA is called the hitting time or first passage
time to A.

2. Given a state a ∈ S, denote by Ta the r.v. T{a}.

Note: TA : Ω→ N⋃{∞}, so
∞∑
n=1

P (TA = n) = 1− P (TA =∞) ≤ 1.

Definition 1.19 Let {Xt} be a Markov chain with state space S. A state a ∈ S is
called absorbing if P (a, a) = 1 (i.e. once you hit a, you never leave).

Examples of absorbing states:

Definition 1.20 Let {Xt} be a Markov chain with state space S.

1. For each x, y ∈ S, define

fx,y = Px(Ty <∞).

This is the probability you get from x to y in some finite (positive) time.

2. We say x leads to y (and write x→ y) if fx,y > 0. This means that if you start
at x, there is some positive probability that you will eventually hit y.

3. For each x ∈ S, set fx = fx,x = Px(Tx <∞).

4. A state x ∈ S is called recurrent if fx = 1. The set of recurrent states of the
Markov chain is denoted SR. The Markov chain {Xt} is called recurrent if
SR = S, i.e. all of its states are recurrent.

5. A state x ∈ S is called transient if fx < 1. The set of transient states of the
Markov chain is denoted ST . The Markov chain {Xt} is called transient if all
its states are transient.
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1.5. Recurrence and transience

Recurrent and transient states are the two “types” of states referred to earlier.

• a recurrent state (by definition) is “a state to which you must return” (with
probability 1)

• a transient state is (by definition) “a state to which you might not return”.

Definition 1.21 Let {Xt} be a Markov chain with state space S. For each x ∈ S ,
define

Vx = # of times t ≥ 0 such that Xt = x.

Vx is a r.v. called the number of visits to x.

Note: Vx : Ω→ {0, 1, 2, 3, ...}⋃{∞}.
Elementary properties of recurrent and transient states

The rest of this section is devoted to developing properties of recurrent and tran-
sient states.

Lemma 1.22 Let {Xt} be a Markov chain with state space S. Then

x→ y ⇐⇒ P n(x, y) > 0 for some n ≥ 1.

PROOF (⇒) Assume x→ y, i.e. fx,y = Px(Ty <∞) > 0.

(⇐) Suppose PN(x, y) > 0.

17



1.5. Recurrence and transience

Lemma 1.23 Let {Xt} be a Markov chain with state space S. Then

(x→ y and y → z)⇒ x→ z.

PROOF Apply Lemma 1.22 twice:

x→ y ⇒ ∃n1 such that P n1(x, y) > 0.

y → z ⇒ ∃n2 such that P n2(y, z) > 0.

Thus
P n1+n2(x, z) ≥ P n1(x, y)P n2(y, z) > 0,

so by Lemma 1.22 x→ z. �

Lemma 1.24 Let {Xt} be a Markov chain with state space S. Then for all x, y ∈ S
and all n ≥ 1,

P n(x, y) =
n∑

m=1
Px(Ty = m)P n−m(y, y).

PROOF

Application: We know that Px(Ty = 1) = P (x, y). Similarly,

Px(Ty = 2) =
∑
z 6=y

P (X0 = x,X1 = z,X2 = y) =
∑
z 6=y

P (x, z)P (z, y);

Px(Ty = n) =
∑
z 6=y

P (x, z)Pz(Ty = n− 1) for n ≥ 2

so the numbers inside the summation in Lemma 1.24 could all be computed induc-
tively.

18



1.5. Recurrence and transience

Corollary 1.25 Let {Xt} be a Markov chain with state space S. If a is an absorbing
state, then

P n(x, a) = Px(Ta ≤ n) =
n∑

m=1
Px(Ta = m).

PROOF If a is absorbing, then P (a, a) = 1 so P n−m(a, a) = 1 for all m ≤ n as well.
Therefore by Lemma 1.24,

P n(x, a) =
n∑

m=1
Px(Ta = m)P n−m(a, a) =

n∑
m=1

Px(Ta = m). �

Theorem 1.26 (Properties of recurrent and transient states) Let {Xt} be a Markov
chain with state space S. Then:

1. If y ∈ ST , then for all x ∈ S,

Px(Vy <∞) = 1 and Ex(Vy) = fx,y
1− fy

.

2. If y ∈ SR, then
Px(Vy =∞) = Px(Ty <∞) = fx,y

(in particular Py(Vy =∞) = 1) and

(a) if fx,y = 0, then Ex(Vy) = 0;

(b) if fx,y > 0, then Ex(Vy) =∞.

What this theorem says in English:

1. If y is transient, then no matter where you start, you only visit y a finite
number of times (and the expected number of times you visit is fx,y

1−fy ).

2. If y is recurrent, then

• it is possible to never hit y, but
• if you hit y, then you must visit y infinitely many times.

19



1.5. Recurrence and transience

PROOF First, observe that Vy ≥ 1 ⇐⇒ Ty < ∞, because both statements corre-
spond to hitting y in a finite amount of time.

Therefore Px(Vy ≥ 1) = Px(Ty <∞) = fx,y.

Now Px(Vy ≥ 2) =

Similarly Px(Vy ≥ n) =

Therefore, for all n ≥ 1 we have Px(Vy = n) =

Therefore Px(Vy = 0) =

First situation: y is transient (i.e. fy = fy,y < 1). Then

Px(Vy =∞) = lim
n→∞

Px(Vy ≥ n) =

Also,

Ex(Vy) = E(Vy |X0 = x) =
∞∑
m=1

m · P (Vy = m |X0 = x)

=

20



1.5. Recurrence and transience

Second situation: y is recurrent (i.e. fy = fy,y = 1). Then

One offshoot of the theorem above are these criteria, which can be useful in
some situations to determine if a state is recurrent or transient:

Corollary 1.27 (Recurrence criterion I) Let {Xt} be a Markov chain with state
space S. Let x ∈ S. Then

x is recurrent ⇐⇒
∞∑
n=1

P n(x, x) diverges.

PROOF

x ∈ SR ⇐⇒ Ex(Vx) =∞ ⇐⇒
∞∑
n=1

P n(x, x) =∞. �

Corollary 1.28 (Recurrence criterion II) Let {Xt} be a Markov chain with state
space S. If y ∈ ST , then for all x ∈ S,

lim
n→∞

P n(x, y) = 0.

The reason this is called a “recurrence criterion” is that the contrapositive says
that if P n(x, y) does not converge to 0, then y is recurrent.

PROOF y being transient implies Ex(Vy) < ∞ which implies
∞∑
n=1

P n(x, y) < ∞. By

the nth-term Test for infinite series (Calculus II), that means lim
n→∞

P n(x, y) = 0. �
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1.5. Recurrence and transience

Corollary 1.29 (Finite state space Markov chains are not transient) Let {Xt} be
a Markov chain with finite state space S . Then the Markov chain is not transient (i.e.
there is at least one recurrent state).

PROOF Suppose not, i.e. all states are transient. Then by the second recurrence
criterion,

0 = lim
n→∞

P n(x, y) ∀x, y ∈ S

⇒ 0 =
∑
y∈S

lim
n→∞

P n(x, y)

Example: Consider a Markov chain with state space {1, 2, 3} and transition
matrix

P =

 0 1 0
1 0 0
0 1− p p


where p ∈ (0, 1).

1. Which states are recurrent? Which states are transient?

2. Find fx,y for all x, y ∈ S.

3. Find the expected number of visits to each state, given that you start in any
of the states.
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1.5. Recurrence and transience

Theorem 1.30 (Recurrent states lead only to other recurrent states) Let {Xt} be
a Markov chain. If x ∈ S is recurrent and x→ y, then

1. y is recurrent;

2. fx,y = 1; and

3. fy,x = 1.

Proof: If y = x, this follows from the definition of “recurrent”, so assume y 6= x.
We are given x → y, so P n(x, y) > 0 for some n ≥ 1. Let N be the smallest n ≥ 1
such that P n(x, y) > 0. Then we have a picture like this:

Suppose now that fy,x < 1. Then

Now since fy,x = 1, y → x so there exists a number N ′ so that PN ′(y, x) > 0.

So for every n ≥ 0, PN ′+n+N(y, y) ≥ PN ′(y, x)P n(x, x)PN(x, y).

Therefore

Ey(Vy) =
∞∑
n=1

P n(y, y) ≥
∞∑

n=N ′+N+1
P n(y, y) =

∞∑
n=1

PN ′+n+N(y, y)

≥
∞∑
n=1

PN ′(y, x)P n(x, x)PN(x, y)

= PN ′(y, x)PN(x, y)
∞∑
n=1

P n(x, x)
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1.5. Recurrence and transience

Finally, as y ∈ SR and y → x, fx,y = 1 by statement (3) of this Theorem. This
proves (2). �

Corollary 1.31 Let {Xt} be a Markov chain. If y ∈ S is absorbing and x 6= y leads
to y, then x is transient.

PROOF If x ∈ SR, then fy,x = 1 by the previous theorem. But fy,x = 0 since y 6= x
and y is absorbing. �

Closed sets and communicating classes

Definition 1.32 Let {Xt} be a Markov chain with state space S, and let C be a subset
of S.

1. C is called closed if for every x ∈ C, if x→ y, then y must also be in C.

2. C is called a communicating class if C is closed, and if for every x and y in
C, x→ y (thus by symmetry y → x).

3. {Xt} is called irreducible if S is a communicating class.

• closed sets are those which are like the Hotel California: “you can never
leave”.

• A set is a communicating class if you never leave, and you can get from
anywhere to anywhere within the class.

• A Markov chain is irreducible if you can get from any state to any other state.

Theorem 1.33 (Main Recurrence and Transience Theorem) Let {Xt} be a Markov
chain with state space S.

1. If C ⊆ S is a communicating class, then every state in C is recurrent (i.e.
C ⊆ SR), or every state in C is transient (i.e. C ⊆ ST ).

2. If C ⊆ S is a communicating class of recurrent states, then fx,y = 1 for all
x, y ∈ C.

3. If C ⊆ S is a finite communicating class, then C ⊆ SR.

4. If {Xt} is irreducible, then {Xt} is either recurrent or transient.

5. If {Xt} is irreducible and S is finite, then {Xt} is recurrent.
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1.5. Recurrence and transience

Example: Let {Xt} be a Markov chain with state space {1, 2, 3, 4, 5, 6} whose
transition matrix is

P =



1 0 0 0 0 0
1
4

1
2

1
4 0 0 0

0 1
2

1
4

1
8 0 1

8
0 0 0 1

4
1
2

1
4

0 0 0 1
2 0 1

2
0 0 0 1

2 0 1
2


Determine which states of the chain are recurrent and which states are transient.
Identify all communicating classes. For each x, y ∈ S, compute fx,y.
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1.5. Recurrence and transience

Example: Describe the closed subsets of a Bernoulli process. Do Bernoulli pro-
cesses have any communicating classes?

Theorem 1.34 (Decomposition Theorem) Let {Xt} be a Markov chain with state
space S. If SR 6= ∅, then we can write

SR =
⋃
j

Cj

where the Cj are disjoint communicating classes (the union is either finite or count-
able).

PROOF SR 6= ∅ ⇒ let x ∈ SR. Define C(x) = {y ∈ S : x→ y}.

Observe that x ∈ C(x) since x is recurrent. Thus C(x) 6= ∅.

Claim: C(x) is closed.

Claim: C(x) is a communicating class.

This shows SR = ⋃
x∈SR

C(x). Left to show the C(x) are disjoint or coincide for

different x:
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1.5. Recurrence and transience

.

We can summarize all the qualitative results regarding recurrence and tran-
sience in the following block.

One catch: in this block, the phrase “you will” really means “the probability
that you will is 1”.

State space decomposition of a Markov chain

Given a Markov chain with state space S, we can write S as a disjoint union

S = SR
⋃ST =

(
∪
j
Cj

)⋃ST .

1. If you start in one of the Cj , you will stay in that Cj forever and visit

every state in that Cj infinitely often.

2. If you start in ST , you either

(a) stay in ST forever (but hit each state in ST only finitely many times)

or

(b) eventually enter a Cj , in which case you subsequently stay in

that Cj forever and visit every state in that Cj infinitely often.

Remark: 2 (a) above is only possible if ST is infinite.
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1.6. Absorption probabilities

1.6 Absorption probabilities
Question: Suppose you have a Markov chain with state space decomposition

as described above. Suppose you start at x ∈ ST . What is the probability that you
eventually enter recurrent communicating class Cj?

Definition 1.35 Let {Xt} be a Markov chain with state space S. Let x ∈ ST and let
Cj be a communicating class of recurrent states. The probability x is absorbed by
Cj , denoted fx,Cj , is

fx,Cj = Px(TCj <∞).

Lemma 1.36 Let {Xt} be a Markov chain with state space S. Let x ∈ ST and let C
be a communicating class of recurrent states. Then for any y ∈ C, fx,Cj = fx,y.

In the situation where ST is finite, we can solve for these probabilities by solv-
ing a system of linear equations. Here is the method:

Suppose ST = {x1, ..., xn}.

Since ST is finite, each xj must eventually be absorbed by a Cj , so we have∑
i

fxj ,Ci = 1 for all j.

Fix one of the Ci; then

fxj ,Ci = Pxj(TCi = 1) + Pxj(TCi > 1)

If you write this equation for each xj ∈ ST , you get a system of n equations in
the n unknowns fx1,Ci , fx2,Ci , fx3,Ci , ..., fxn,Ci . This can be solved for the absorption
probabilities for Ci; repeating this procedure for each i yields all the absorption
probabilities of the Markov chain.
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1.6. Absorption probabilities

Example: Consider a Markov chain with transition matrix

P =


1 0 0 0 0
1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 0 1

 ..

For every x, y ∈ S, compute fx,y.
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Chapter 2

Martingales

2.1 Motivation: betting on fair coin flips
Let’s suppose you are playing a game with your friend where you bet $1 on

each flip of a fair coin (fair means the coin flips heads with probability 1
2 and tails

with probability 1
2 ). If the coin flips heads, you win, and if the coin flips tails, you

lose (mathematically, this is the same as “calling” the flip and winning if your call
was correct).

Suppose you come to this game with $10. What will happen after four plays of
this game?

To set up some notation, we will let Xt be your bankroll after playing the game
t times; this gives a stochastic process {Xt}t∈N. We know X0 = 10, for example.
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2.1. Motivation: betting on fair coin flips

Sequence of flips Probability of X4 = bankroll
(in order) that sequence after four flips
H H H H 1

16 14
H H H T 1

16 12
H H T H 1

16 12
H H T T 1

16 10
H T H H 1

16 12
H T H T 1

16 10
H T T H 1

16 10
H T T T 1

16 8
T H H H 1

16 12
T H H T 1

16 10
T H T H 1

16 10
T H T T 1

16 8
T T H H 1

16 10
T T H T 1

16 8
T T T H 1

16 8
T T T T 1

16 6

To summarize, your bankroll after four flips, i.e. X4, has the following density:

x 6 8 10 12 14
P (X4 = x) 1

16
4
16

6
16

4
16

1
16

What happens if we assume some additional information? For example, sup-
pose that the first flip is heads. Given this, what is E[X4]? In other words, what is
E[X4 |X1 = 11]?

Repeating the argument from above, we see

Sequence of flips Probability of Resulting bankroll
(in order) that sequence after four flips
H H H H 1

8 14
H H H T 1

8 12
H H T H 1

8 12
H H T T 1

8 10
H T H H 1

8 12
H T H T 1

8 10
H T T H 1

8 10
H T T T 1

8 8
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2.1. Motivation: betting on fair coin flips

Therefore X4 |X1 = 11 has conditional density

x 6 8 10 12 14
P (X4 = x |X1 = 11) 0 1

8
3
8

3
8

1
8

and
E[X4 |X1 = 11] = 0(6) + 1

8(8) + 3
8(10) + 3

8(12) + 1
8(14) = 11.

A similar calculation would show that if the first flip was tails, then we would
have

E[X4 |X1 = 9] = 9.
From the previous two statements, we can conclude:

In fact, something more general holds. For this Markov chain {Xt}, we have
for any s ≤ t that

E[Xt |Xs] = Xs.

To see why, let’s define another sequence of random variables coming from the
process {Xt}. For each t ∈ {1, 2, 3, ...}, define

St = Xt −Xt−1 =
{

+1 if the tth flip is H (i.e. you win $1 on the tth game)
−1 if the tth flip is T (i.e. you lose $1 on the tth game).

Note that E[St] = 1
2(1) + 1

2(−1) = 0, and also note that

Xt = X0 + (X1 −X0) + (X2 −X1) + ...+ (Xt −Xt−1)
= X0 + S1 + ...+ St

= X0 +
t∑

j=1
Sj

so therefore

EXt = E

X0 +
t∑

j=1
Sj

 = E[X0] +
t∑

j=1
E[Sj] = E[X0] + 0 = EX0.

If we are given the value of X0 (and we usually are, given that X0 represents the
initial bankroll), we have

E[Xt |X0] = X0.

More generally, for any s ≤ t, we have

Xt = Xs + Ss+1 + Ss+2 + ...+ St = Xs +
t∑

j=s+1
Sj
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2.1. Motivation: betting on fair coin flips

so by a similar calculation as above, we have EXt = EXs so if we know the value
of Xs, we obtain

E[Xt |Xs] = Xs.

What we have proven is that the process {Xt} defined by this game is some-
thing called a “martingale”. Informally, a process is a martingale if, given the
state(s) of the process up to and including some time s (you think of time s as the
“present time”), the expected state of the process at a time t ≥ s (think of t as a
“future time”) is equal to Xs.

Unfortunately, to define this formally in a way that is useful for deriving for-
mulas, proving theorems, etc., we need quite a bit of additional machinery.

The major question: can you beat a fair game?

Suppose that instead of betting $1 on each flip, that you varied your bets from one
flip to the next. Suppose you think of a method of betting as a “strategy”. Here are
some things you might try:

Strategy 1: Bet $1 on each flip.

Strategy 2: Alternate between betting $1 and betting $2.

Strategy 3: Start by betting $1 on the first flip. After that, bet $2 if you lost the
previous flip, and bet $1 if you won the previous flip.

Strategy 4: Bet $1 on the first flip. If you lose, double your bet after each flip
you lose until you win once. Then go back to betting $1 and repeat the procedure.

Is there a strategy (especially one with bounded bet sizes) you can implement
such that your expected bankroll after the 20th flip is greater than your initial
bankroll X0? If so, what is it? If not, what about if you flip 100 times? Or 1000
times? Or any finite number of times?

Furthermore, suppose that instead of planning beforehand to flip a fixed num-
ber of times, decide that you will stop at a random time depending on the results
of the flips. For instance, you might stop when you win five straight bets. Or you
might stop when you are ahead $3.

The big picture question: All told, what we want to know is whether or not
there is a betting strategy and a time you can plan to stop so that if you implement
that strategy and stop when you plan to, you will expect to have a greater bankroll
than what you start with (even though you are playing a fair game).
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2.2. Filtrations

2.2 Filtrations
Goal: define what is meant in general by a “strategy”, and what is meant in

general by a “stopping time”.

Recall the following definition from Math 414:

Definition 2.1 Let Ω be a set. A nonempty collection F of subsets of Ω is called a
σ−algebra (a.k.a. σ−field) if

1. F is “closed under complements”, i.e. whenever E ∈ F , EC ∈ F .

2. F is “closed under finite and countable unions and intersections”, i.e. whenever
E1, E2, E3, ... ∈ F , both

⋃
j
Aj and

⋂
j
Aj belong to F as well.

Theorem 2.2 Let F be a σ−algebra on set Ω. Then ∅ ∈ F and Ω ∈ F .

(In Math 414, I used A rather than F to denote σ-algebras.)

Examples of σ-algebras

Example 1: Let Ω be any set. Let F = {∅,Ω}. This is called the trivial σ-algebra of
Ω.

Example 2: Let Ω be any set. Let F = 2Ω be the set of all subsets of Ω. This is
called the power set of Ω.

Example 3: Let Ω = [0, 1] × [0, 1]. Let F be the collection of all subsets of Ω of
the form A× [0, 1] where A ⊂ [0, 1].
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2.2. Filtrations

Example 4: Let Ω be any set and let P = {P1, P2, ..., Pn} be any partition of Ω
(that is, that Pi ∩ Pj = ∅ for all i 6= j and

⋃
j Pj = Ω). Then let F be the collection of

all sets which are unions of some number of the Pj . This F is called the σ-algebra
generated by P .

Measurability

Definition 2.3 Let Ω be a set and let F be a σ-algebra on Ω. A subset E of Ω is called
F−measurable (or just measurable) if E ∈ F . A function (i.e. a random variable)
X : Ω→ R is called F-measurable if for any open interval (a, b) ⊆ R, the set

X−1(a, b) = {ω ∈ Ω : X(ω) ∈ (a, b)}

is F-measurable.

Example: Let Ω = [0, 1] and let F be the σ-algebra generated by the partition
P = {[0, 1/3), [1/3, 1/2), [1/2, 1]}.
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2.2. Filtrations

More generally, if F is generated by a partition P , a r.v. X is measurable if and
only if it is constant on each of the partition elements; in other words, if X(ω) de-
pends not on ω but only on which partition element ω belongs to.

This idea illustrates the point of measurability in general: think of a σ-algebra
F as revealing some partial information about an ω (i.e. it tells you which sets in
F to which ω belongs, but not necessarily exactly what ω is); to say that a function
X is F-measurable means that the evaluation of X(ω) depends only on the infor-
mation contained in F .

Throughout this chart, let Ω = [0, 1]× [0, 1].

σ-algebra information F description of
F reveals about ω F-measurable functions
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Filtrations

Definition 2.4 Let Ω be a set and let I ⊆ [0,∞). A filtration {Ft}t∈I on Ω is a
sequence of σ-algebras indexed by elements of I which is increasing, i.e. if s, t ∈ I,
then

s ≤ t⇒ Fs ⊆ Ft.

Idea: for any filtration {Ft}, when s ≤ t, each Fs-measurable set is also Ft-
measurable, so as t increases, there are more Ft-measurable sets.

Put another way, as t increases you get more information about the points in Ω.

Definition 2.5 Let {Xt}t∈I be a stochastic process with index set I. The natural
filtration of {Xt} is described by setting

Ft = {events which are characterized only by the values of Xs for 0 ≤ s ≤ t}.

Every natural filtration is clearly a filtration. To interpret this in the context of
gambling, think of points in Ω as a list which records the outcome of every bet you
make. Ft is the σ-algebra that gives you the result of the first t bets; as t increases,
you get more information about what happens.

Example: Flip a fair coin twice, start with $10 and bet $1 on the first flip and $3
on the second flip. LetXt be your bankroll after the tth flip (where t ∈ I = {0, 1, 2}).
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Strategies

Definition 2.6 Let {Xt}t∈I be a stochastic process and let {Ft} be its natural fil-
tration. A predictable sequence (a.k.a. strategy) for {Xt} is another stochastic
process {Bt} such that for all s < t, Bt is Fs-measurable.

Idea: Suppose you are betting on repeated coin flips and you decide to imple-
ment a strategy where Bt is the amount you are going to bet on the tth flip.

• If you own a time machine, you would just go forward in time to see what
the coin flips to, bet on that, and win.

• But if you don’t own a time machine, the amount Bt you bet on the tth flip
is only allowed to depend on information coming from flips before the tth

flip, i.e. Bt is only allowed to depend on information coming from Xs for
s < t, i.e. Bt must be Fs-measurable for all s < t.

Remark: If the index set I is discrete, then a process {Bt} is a strategy for {Xt}
if for every t, Bt is Ft−1-measurable.

Examples: Suppose you are betting on repeated coin flips. Throughout these
examples, let’s use the following notation to keep track of whether you win or lose
each game:

X0 = your initial bankroll

Xt =
{
Xt−1 + 1 if you win the tth game
Xt−1 − 1 if you lose the tth game

St = Xt −Xt−1 =
{

1 if you win the tth game
−1 if you lose the tth game

So {Xt}would measure your bankroll after t games, if you are betting $1 on each
game. However, you may want to bet more or less than $1 on each game (varying
your bets according to some “strategy”). The idea is that Bt will be the amount
you bet on the tth game.

Strategy 1: Bet $1 on each flip.

Strategy 2: Alternate between betting $1 and betting $2.

Strategy 3: Start by betting $1 on the first flip. After that, bet $2 if you lost the
previous flip, and bet $1 if you won the previous flip.
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2.2. Filtrations

Strategy 4: Bet $1 on the first flip. If you lose, double your bet after each flip
you lose until you win once. Then go back to betting $1 and repeat the procedure.

“Strategy” 5: Bet $5 on the nth flip if you are going to win the nth flip, and bet
$1 otherwise.

Suppose we implement arbitrary strategy {Bt} when playing this game. Then
our bankroll after t games isn’t measured by {Xt} any longer; it is
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Definition 2.7 Let {Xt}t∈I be a discrete-time stochastic process; let St = Xt −Xt−1
for all t. Given a strategy {Bt} for {Xt}, the transform of {Xt} by {Bt} is the
stochastic process denoted {(B ·X)t}t∈N defined by

(B ·X)t = X0 +B1S1 +B2S2 + ...+BtSt = X0 +
t∑

j=1
BjSj.

The point: If you use strategy {Bt} to play game {Xt}, then your bankroll after
t games is (B ·X)t.

Note: (B ·X)0 = X0.

Example: Suppose you implement Strategy 4 as described above. If your initial
bankroll is $50, and the results of the first eight flips are H T T H T T T H, give the
values of Bt, Xt, St and (B ·X)t for 0 ≤ t ≤ 8.
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Stopping times

Definition 2.8 Let {Xt}t∈I be a stochastic process with standard filtration {Ft}. A
r.v. T : Ω → R ∪ {∞} is called a stopping time (for {Xt}) if for every a ∈ R, the
set of sample functions satisfying T ≤ a is Fa-measurable.

In other words, T is a stopping time if you can determine whether or not T ≤ a
solely by looking at the values of Xt for t ≤ a.

In the context of playing a game over and over, think of T as a “trigger” which
causes you to stop playing the game. Thus you would walk away from the table
with winnings given by XT (or, if you are employing strategy {Bt}, your winnings
would be (B ·X)T ).

Example: T = Ty = min{t ≥ 0 : Xt = y}

Example: T = min{t > 0 : Xt = X0}

Nonexample: T = min{t ≥ 0 : Xt = max{Xs : 0 ≤ s ≤ 100}}

Recall our big picture question: is there a strategy under which you can beat
a fair game?

Restated in mathematical terms: Suppose stochastic process {Xt} represents a
fair game (i.e. E[Xt|Xs] = Xs for all s ≤ t). Is there a predictable sequence {Bt} for
this process, and a stopping time T for this process such that E[(B ·X)T ] > X0? (If
so, what {Bt} and what T maximizes E[(B ·X)T ]?)

41



2.3. Conditional expectation with respect to a σ-algebra

2.3 Conditional expectation with respect to a σ-algebra
Recall from Math 414: Conditional expectation of one r.v. given another:

Here is a useful theorem that follows from this definition:

Theorem 2.9 Given any bounded, continuous function φ : R→ R,

E[X φ(Y )] = E [E(X|Y )φ(Y )] .

PROOF (when X, Y continuous):

E[X φ(Y )] =
∫ ∫

xφ(y)fX,Y (x, y) dA

=
∫ ∫

xφ(y)fX|Y (x|y)fY (y) dA

=
∫ ∫

xfX|Y (x|y)φ(y)fY (y) dx dy

=
∫ (∫

xfX|Y (x|y) dx
)
φ(y)fY (y) dy

=
∫
E(X|Y )(y)φ(y)fY (y) dy

= E [E(X|Y )φ(Y )] .

The proof when X, Y are discrete is similar, but has sums instead of integrals. �

To define the conditional expectation of a random variable given a σ-algebra,
we use Theorem 2.9 to motivate a definition:

Definition 2.10 Let (Ω,F , P ) be a probability space. Let X : Ω → R be a F-
measurable r.v. and let G ⊆ F be a sub σ-algebra. The conditional expectation
of X given G is a function E(X|G) : Ω→ R with the following two properties:

1. E(X|G) is G-measurable, and

2. for any bounded, G-measurable r.v. Z : Ω→ R, E[XZ] = E [E(X|G)Z].

Facts about conditional expectation given a σ-algebra:

1. Conditional expectations always exist.

2. Conditional expectations are unique up to sets of probability zero.

3. By setting Z = 1, we see that E[X] = E[X|G]. This gives you the idea behind
this type of conditional expectation: E(X|G) is a G-mble r.v. with the same
expected value(s) as the original r.v. X .
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Example: Let Ω = {A,B,C,D}; let F = 2Ω; let P be the uniform distribution on
Ω.

Let G be the σ-algebra generated by P = {{A,B}, {C,D}}.
Let X : Ω→ R be defined by X(A) = 2; X(B) = 6; X(C) = 3; X(D) = 1.
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Example: Let Ω = {A,B,C,D,E}; let F = 2Ω; let P (A) = 1
4 ; P (B) = P (C) =

P (E) = 1
8 ; P (D) = 3

8 .
Let G be generated by the partition P = {{A,B}, {C,D}, {E}}.
Let X(A) = X(B) = X(D) = 2; X(C) = 0; X(E) = 1.

Example: Let Ω = [0, 1]× [0, 1]; let F = L(Ω); let P be the uniform distribution.
Let G be the σ-algebra of vertical sets (i.e. sets of the form E× [0, 1]). Let X : Ω→ R
be X(x, y) = x+ y. Find E[X|G].
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The following properties of conditional expectation are widely used (their proofs
are beyond the scope of this class):

Theorem 2.11 (Properties of conditional expectation) Let (Ω,F , P ) be a proba-
bility space. Suppose X, Y : Ω → R are F-measurable r.v.s. Let a, b, c be arbitrary
real constants. Then:

1. Positivity: If X ≥ c, then E(X|G) ≥ c.

2. Linearity: E[aX + bY |G] = aE[X|G] + bE[Y |G].

3. Stability: If X is G-measurable, then E[X|G] = X and E[XY |G] = X E[Y |G].

4. Independence: If X is independent of any G-measurable r.v., then E[X|G] =
EX .

5. Tower property: IfH ⊆ G then E[E(X|G)|H] = E[X|H].

6. Preservation of expectation: E[E(X|G)] = EX .

7. Constants: E[a|G] = a.

(These statements hold with probability one.)
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2.4. Martingales and the Optional Sampling Theorem

2.4 Martingales and the Optional Sampling Theorem
A “martingale” is a mathematical formulation of a fair game:

Definition 2.12 Let {Xt}t∈I be a stochastic process with natural filtration {Ft}.

• The process {Xt} is called a martingale if for every s ≤ t in I,

E[Xt|Fs] = Xs.

• The process {Xt} is called a submartingale if for every s ≤ t in I,

E[Xt|Fs] ≥ Xs.

• The process {Xt} is called a supermartingale if for every s ≤ t in I,

E[Xt|Fs] ≤ Xs.

Theorem 2.13 (Characterization of discrete-time martingales) A discrete-time
process {Xt}t∈N is a martingale if and only if E[Xt+1|Ft] = Xt for every t ∈ N.

PROOF
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Theorem 2.14 (Properties of discrete-time martingales) Suppose that the stochas-
tic process {Xt}t∈N is a martingale whose natural filtration is {Ft}. Define St =
Xt −Xt−1 for all t. Then, for all t:

1. Xt = X0+
t∑

j=1
St;

2. St is Ft-measurable;

3. E[St+1|Ft] = 0;

4. E[St] = 0;

5. E[Xt] = E[X0].

PROOF First, statement (1):

Xt = X0 + (X1 −X0) + (X2 −X1) + ...+ (Xt −Xt−1)
= X0 + S1 + ...+ St

= X0 +
t∑

j=1
Sj

Statement (2) is obvious, since both Xt and Xt−1 are Ft-measurable.

Next, statement (3):

E[St+1|Ft] = E[Xt+1 −Xt|Ft]
= E[Xt+1|Ft]− E[Xt|Ft]
= E[Xt]− E[Xt|Ft] (since {Xt} is a martingale)
= E[Xt]− E[Xt] (by stability)
= 0.

(4): E[St] = E[Xt]−E[Xt−1] = E[X0]−E[X0] (since {Xt} is a martingale) which
simplifies to 0.

(5) follows from (1) and (4). �

Theorem 2.15 (Transforms of martingales are martingales) Let {Xt}t∈N be a mar-
tingale and suppose that {Bt} is a strategy for {Xt}. Then the transform {(B ·X)t}
is also a martingale.
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2.4. Martingales and the Optional Sampling Theorem

PROOF

E [(B ·X)t+1|Ft] = E

X0 +
t+1∑
j=1

BjSj|Ft

 (by the definition of (B ·X))

= E[X0|Ft] +
t∑

j=1
E[BjSj|Ft] + E[Bt+1St+1|Ft] (by linearity)

= X0 +
t∑

j=1
BjSj +Bt+1E[St+1|Ft] (by stability)

= X0 +
t∑

j=1
BjSj +Bt+10 (by (3) of Thm 2.14)

= X0 +
t∑

j=1
BjSj

= (B ·X)t.

By Theorem 1.12 above, {(B ·X)t} is a discrete-time martingale. �

Theorem 2.16 (Optional Stopping Theorem (OST)) Let {Xt} be a martingale.
Let T be a bounded stopping time for {Xt}. (To say T is bounded means there is a
constant n such that P (T ≤ n) = 1.) Then

E[XT ] = E[X0].

PROOF Let Bt =
{

1 if T ≥ t
0 else .

T is a stopping time ⇒ G = {T ≤ t− 1} = {Bt = 0} is Ft−1-measurable ∀t
⇒ GC = {T ≥ t} = {Bt = 1} is Ft−1-measurable ∀t
⇒ each Bt is Ft−1-measurable
⇒ {Bt} is a predictable sequence for {Xt}.

Now, we are assuming T is bounded; let n be such that P (T ≤ n) = 1. Now for
any t ≥ n, we have

(B ·X)t = X0 +
t∑

j=1
BtSt

= X0 +
t∑

j=1
Bt(Xt −Xt−1)

= X0 + (X1 −X0) + 1(X2 −X1) + ...+ 1(XT −XT−1)
+ 0(XT+1 −Xt) + 0(XT+2 −XT+1) + ...

= XT .
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2.4. Martingales and the Optional Sampling Theorem

Finally,

EXT = E[(B ·X)t]
= E[(B ·X)0] (since {(B ·X)t} is a martingale)
= EX0. �

Note: The OST is also called the Optional Sampling Theorem because of its
applications in statistics.

We will need the following “tweaked version” of the OST, which requires a
little less about T (it only has to be finite rather than bounded) but a little more
about {Xt} (the values of Xt have to be bounded until T hits):

Theorem 2.17 (OST (tweaked version)) Let {Xt} be a martingale. Let T be a
stopping time for {Xt} which is finite with probability one. If there is a fixed con-
stant C such that for sufficiently large n, T ≥ n implies |Xn| ≤ C, then

E[XT ] = E[X0].

PROOF Choose a sufficiently large n and let T = min(T, n). T is a stopping time
which is bounded by n, so the original OST applies to T , i.e.

EXT = EX0.

Now

|EXT − EX0| = |EXT − EXT |

Recall: Our big picture question is whether one can beat a fair game by varying
their strategy and/or stopping time. The OST implies that the answer is NO:
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2.4. Martingales and the Optional Sampling Theorem

Corollary 2.18 (You can’t beat a fair game) Let {Xt} be a martingale. Let T be a
finite stopping time for {Xt} and let {Bt} be any bounded strategy for {Xt}. Then

E(B ·X)T = EX0.

PROOF If {Xt} is a martingale, so is (B ·X)t. Therefore by the tweaked OST,

E(B ·X)T = E(B ·X)0 = EX0. �

Catch: If you are willing to play forever, and/or you are willing to lose a pos-
sibly unbounded amount of money first, the OST doesn’t apply, and you can beat
a fair game using Strategy 4 described several pages ago. But this isn’t realistic if
you are a human with a finite lifespan and finite wealth.

Application: Suppose a gambler has $50 and chooses to play a fair game re-
peatedly until either the gambler’s bankroll is up to $100, or until the gambler is
broke.

If the gambler bets all $50 on one game, then the probability he leaves a winner
is 1

2 . What if the gambler bets in some other way?

The results of this section also apply to sub- and supermartingales:

Corollary 2.19 Suppose that {Xt}t∈N is a submartingale and that {Bt} is a strategy
for {Xt}. Then:

1. The transform {(B ·X)t} is also a submartingale.

2. If T is a bounded stopping time for {Xt}. Then E[XT ] ≥ E[X0] (and E[(B ·
X)T ] ≥ E[X0]).

3. If T is a finite stopping time for {Xt} and there is a fixed constant C such that
for sufficiently large n, T ≥ n implies |Xn| ≤ C, then E[XT ] ≥ E[X0] (and
E[(B ·X)T ] ≥ E[X0]).
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2.5. Random walk in dimension 1

Corollary 2.20 Suppose that {Xt}t∈N is a supermartingale and that {Bt} is a strat-
egy for {Xt}. Then:

1. The transform {(B ·X)t} is also a supermartingale.

2. If T is a bounded stopping time for {Xt}. Then E[XT ] ≤ E[X0] (and E[(B ·
X)T ] ≤ E[X0]).

3. If T is a finite stopping time for {Xt} and there is a fixed constant C such that
for sufficiently large n, T ≥ n implies |Xn| ≤ C, then E[XT ] ≤ E[X0] (and
E[(B ·X)T ] ≤ E[X0]).

2.5 Random walk in dimension 1
Definition 2.21 A discrete-time stochastic process {Xt} with state space Z is called
a random walk (on Z) if there exist

1. i.i.d. r.v.s S1, S2, S3, ... taking values in Z (Sj is called the jth step or jth incre-
ment of the random walk), and

2. a r.v. X0 taking values in Z which is independent of all the Sj ,

such that for all t, Xt = X0+
t∑

j=1
Sj .

In this setting:

• X0 is your starting position;

• Sj = Xj −Xj−1 is the amount you walk between times j − 1 and j;

• and Xt is your position at time t.

Note: A random walk on Z is a Markov chain:

• State space: S = Z

• Initial distribution: X0

• Transition function: P (x, y) = P (Sj = y − x).
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2.5. Random walk in dimension 1

Note: Random walk models a gambling problem where you make the same bet
on the same game over and over. The amount you win/lose on the jth game is Sj .

Example: Make a series of bets (each bet is of of size B) which you win with
probability p and lose with probability 1− p. Then:

Theorem 2.22 Let {Xt} be a random walk. Then:

1. {Xt} is a martingale if ESj = 0;

2. {Xt} is a submartingale if ESj ≥ 0;

3. {Xt} is a supermartingale if ESj ≤ 0.

PROOF Applying properties of conditional expectation, we see

E[Xt+1|Ft] = E[Xt + St+1|Ft] = E[Xt|Ft] + E[St+1|Ft] = Xt + E[St+1].

If ESj = 0, then this reduces to Xt + 0 = Xt, so the process is a martingale by
Theorem 2.13. If ESj ≥ 0, then the last expression above is ≥ Xt so the process
is a submartingale, and if ESj ≤ 0, then the expression is ≤ Xt so the process is a
supermartingale. �
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2.5. Random walk in dimension 1

Definition 2.23 A random walk on Z is called simple if the steps Sj take values only
in {−1, 0, 1}. For a simple random walk, we define

p = P (Sj = 1) q = P (Sj = −1) r = P (Sj = 0).

For a simple random walk, we let

µ = ESj and σ2 = V ar(Sj).

Lemma 2.24 For a simple random walk, µ = ESj = p − q. If the simple random
walk is unbiased, then µ = 0 and σ2 = V ar(Sj) = p+ q.

PROOF HW

A simple random walk models a repeated game where you bet $1 on each play.

Note: A simple random walk is a Markov chain which has the following di-
rected graph:

Definition 2.25 A simple random walk on Z is called unbiased if p = q and is
called biased if p 6= q. A biased random walk is called positively biased if p > q
and negatively biased if p < q.

Note: A simple random walk is irreducible if and only if p > 0 and q > 0.

Note: Unbiased simple random walks are martingales; positively biased simple
random walks are submartingales; negatively biased simple random walks are
supermartingales.
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2.5. Random walk in dimension 1

Analysis of hitting times for simple random walk

Question: Under what circumstances is a simple random walk recurrent? When
is it transient?

To approach this question, we are going to solve a class of problems related to
hitting times. Recall that for a set A ⊆ S, TA = min{t ≥ 1 : Xt ∈ A}. TA is called
the hitting time to A.

First, for a simple random walk, if a, b ∈ A and a < x < b but A
⋂(a, b) = ∅,

then if you start at x, then TA = T{a,b}, because you cannot hit A at any point other
than a or b (that would require “jumping over” a or b). So we will restrict to hitting
times for sets consisting of two points: A = {a, b}.

First, we start with a result which says that if your initial state in a simple
random walk between two numbers a and b, you will definitely hit a or b (or both)
in the future:

Lemma 2.26 Let {Xt} be an irreducible simple random walk. Let A = {a, b} ⊆ Z
and suppose X0 = x where a < x < b. Then P (TA <∞) = 1.

PROOF Since {Xt} is irreducible, p > 0. Now let Gn be the event that between
times (n − 1)(b − a) and n(b − a), the chain always steps in the positive direction.
In precise math notation,

Gn = {Sj = 1∀j ∈ {(n− 1)(b− a) + 1, (n− 1)(b− a) + 2, ..., n(b− a)}} .

Note that

1. P (Gn) ≥ pb−a > 0.

2. since Gj and Gk refer to disjoint blocks of time in the chain, Gj ⊥ Gk.

Thus

P (no Gn occurs) = P

( ∞⋂
n=1

GC
n

)

=
∞∏
n=1

P (GC
n ) (since the Gns are ⊥)

= lim
N→∞

N∏
n=1

P (GC
n )

= lim
N→∞

(1− pb−a)N

= 0 (since 1− pb−a ∈ (0, 1))
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2.5. Random walk in dimension 1

Therefore with probability 1, at least one Gn occurs. This means that with prob-
ability 1, at some time in the future there will be b − a consecutive steps in the
positive direction, and that means that unless Ta has already occurred, after those
b − a consecutive steps, Xt will be ≥ b. Thus either Ta or Tb is finite, and therefore
P (TA <∞) = 1. �

At this point, we know that in an irreducible, simple random walk, if you start
at x and a < x < b, you will hit at least one of a or b in the future (with probability
one).

Question: what is the probability that you will hit a before b (as opposed to
hitting b before a)?

Px(Ta < Tb) = ?
Probabilities like Px(Ta < Tb) are called escape probabilities or first passage-time
probabilities.

To approach this question we will use martingales and the Optional Stopping
Theorem.

Lemma 2.27 Let {Xt} be an irreducible simple random walk. Then the following
three processes are martingales:

• {Yt}, where Yt = Xt − tµ;

• {Zt}, where Zt = (Xt − tµ)2 − tσ2;

• {Ut}, where Ut =
(
q
p

)Xt
;

• {Vt}, where Vt = eθXt

[MSj
(θ)]t (here the θ can be any arbitrary constant).

PROOF Throughout this proof, {Ft} is the natural filtration of {Xt} (thus also the
natural filtration of {Yt}, {Zt} and {Vt} since they are formulas of {Xt}). First, let
Yt = Xt − tµ. Then

E[Yt+1|Ft] = E[Xt+1 − (t+ 1)µ|Ft]
= E[Xt + St+1 − (t+ 1)µ|Ft]
= Xt + E[St+1|Ft]− (t+ 1)µ
= Xt + E[St+1]− (t+ 1)µ
= Xt + µ− tµ− µ
= Xt − tµ = Yt.

By Theorem 2.13, {Yt} is a martingale.
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2.5. Random walk in dimension 1

Next, let Ut =
(
q
p

)Xt
. Here is the calculation:

E[Ut+1|Ft] = E

(q
p

)Xt+1
∣∣∣∣∣∣Ft


= E

(q
p

)Xt+St+1
∣∣∣∣∣∣Ft


= E

(q
p

)Xt (q
p

)St+1
∣∣∣∣∣∣Ft


=
(
q

p

)Xt
E

(q
p

)St+1
∣∣∣∣∣∣Ft

 (stability)

=
(
q

p

)Xt
E

(q
p

)St+1
 (independence)

=
(
q

p

)Xt (q
p

)1

p+
(
q

p

)0

r +
(
q

p

)−1

q


=
(
q

p

)Xt
[q + r + p]

=
(
q

p

)Xt
= Ut.

By Theorem 2.13, {Ut} is a martingale.

56



2.5. Random walk in dimension 1

Next, let Vt = eθXt

[MSj
(θ)]t .

E[Vt+1|Ft] = E

[
eθXt+1

[MSj(θ)]t+1

∣∣∣∣∣Ft
]

= E

[
eθ(Xt+St+1)

[MSj(θ)]t+1

∣∣∣∣∣Ft
]

= E

[
eθXteθSt+1

[MSj(θ)]t+1

∣∣∣∣∣Ft
]

= eθXt

[MSj(θ)]t+1E
[
eθSt+1

∣∣∣Ft] (stability)

= eθXt

[MSj(θ)]t+1E
[
eθSt+1

]
(independence)

= eθXt

[MSj(θ)]t+1MSt+1(θ) (def’n of MGF)

= eθXt

[MSj(θ)]t
(since {Sj} i.i.d.)

= Vt.

By Theorem 2.13, {Vt} is a martingale.

The proof for {Zt} is left as a homework exercise. �

Theorem 2.28 (Escape probabilities for random walk) Let {Xt} be an irreducible,
simple random walk on Z. Let a < x < b be integers. Then:

• if p = q (i.e the random walk is unbiased), then

1. Px(Ta < Tb) = b−x
b−a

2. Px(Tb < Ta) = x−a
b−a

• if p 6= q (i.e. the random walk is biased), then

1. Px(Ta < Tb) = ( qp)
b
−( qp)

x

( qp)
b
−( qp)

a

2. Px(Tb < Ta) = ( qp)
x
−( qp)

a

( qp)
b
−( qp)

a
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PROOF Case 1: Suppose the random walk is unbiased. That means {Xt} is a mar-
tingale. Let T = min(Ta, Tb) = min{t : Xt ∈ {a, b}}. T is a finite stopping time,
and

XT =
{
b if Tb < Ta
a if Ta < Tb

.

That means that

EXT = b Px(Tb < Ta) + aPx(Ta < Tb)
= b[1− Px(Ta < Tb)] + aPx(Ta < Tb)
= b+ (a− b)Px(Ta < Tb).

By the “tweaked version” of the OST, we have

x = EX0 = EXT = b+ (a− b)Px(Ta < Tb).
Solve for Px(Ta < Tb) to get

Px(Ta < Tb) = x− b
a− b

= b− x
b− a

as desired (Px(Tb < Ta) = 1− b−x
b−a = x−a

b−a by the complement rule).

Case 2: Suppose the random walk is biased. Now {Xt} is no longer a martin-

gale, but from the preceding lemma, {Ut} is a martingale, where Ut =
(
q
p

)Xt
. Note

first that EU0 =
(
q
p

)x
and note second that UT =


(
q
p

)b
if Tb < Ta(

q
p

)a
if Ta < Tb

. Therefore

EUT =
(
q

p

)b
Px(Tb < Ta) +

(
q

p

)a
Px(Ta < Tb)

=
(
q

p

)b
[1− Px(Ta < Tb)] +

(
q

p

)a
Px(Ta < Tb)

=
(
q

p

)b
+
(q

p

)a
−
(
q

p

)bPx(Ta < Tb).

Again, let T = min(Ta, Tb) = min{t : Xt ∈ {a, b}}; by the OST we have(
q

p

)x
= EU0 = EUT =

(
q

p

)b
+
(q

p

)a
−
(
q

p

)bPx(Ta < Tb).

Solving for Px(Ta < Tb), we get

Px(Ta < Tb) =

(
q
p

)x
−
(
q
p

)b
(
q
p

)a
−
(
q
p

)b =

(
q
p

)b
−
(
q
p

)x
(
q
p

)b
−
(
q
p

)a .
The last statement follows from the complement rule. �
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Note: Px(Ta < Tb) + Px(Tb < Ta) = 1 (so you really only need to remember
formulas for one of these two quantities).

Example: I have $20 and you have $15. We each make a series of $1 bets until
one of us goes broke.

1. If we are equally likely to win each bet, what is the probability that you go
broke? What amount of money should I expect to end up with?

2. Suppose you are twice as likely as me to win each bet (assume no ties are
possible). In this setting, what is the probability you go broke?

A new kind of question: In the previous example, how long will it take for one
of us to go broke?

Theorem 2.29 (Wald’s First Identity) Let {Xt} be an irreducible, simple random
walk. Let a < x < b be integers and suppose X0 = x. Let T = min{Ta, Tb} = T{a,b}.
Then

E[XT ] = x+ µET = x+ (p− q)ET.
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PROOF By Lemma 2.27, we know that {Yt} is a martingale, where Yt = Xt− tµ. By
the Optional Stopping Theorem,

x = E[X0] = E[X0 − 0µ] = EY0 = EYT = E[XT − Tµ] = EXT − µET.

Solve for EXT to get the result. �

Usefulness of Wald’s First Identity: From the escape probability theorem, we
know that if the walk is biased,

P (XT = a) = Px(Ta < Tb) =

(
q
p

)b
−
(
q
p

)x
(
q
p

)b
−
(
q
p

)a

P (XT = b) = Px(Tb < Ta) =

(
q
p

)x
−
(
q
p

)a
(
q
p

)b
−
(
q
p

)a
so

E[XT ] =

and therefore, since EXT = x+ (p− q)ET ,

ET = E[XT ]− x
p− q

=

Example: Return to the earlier example (I have $20 and you have $15. We each
make a series of $1 bets until one of us goes broke.) How long will it take one of us
to go broke, if you are twice as likely as I am to win each bet?

Recall: We previously showed that the amount of money I expect to end up
with is E[XT ] = 35

(
1−220

1−235

)
≈ .001. Thus
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Question: What if we are equally likely to win each bet?

Repeating the same logic doesn’t work:

So in this setting, we need another fact to answer the question:

Theorem 2.30 (Wald’s Second Identity) Let {Xt} be a simple, irreducible unbi-
ased random walk. Let a < x < b be integers and suppose X0 = x. Let T =
min{Ta, Tb} = T{a,b}. Then

V ar(XT ) = V ar(Sj) · ET = σ2ET.

PROOF By Wald’s First Identity, we have EXT = x+ µET = x+ 0ET = x. There-
fore by the variance formula we see

V ar(XT ) = E[X2
T ]− (EXT )2 = E[X2

T ]− x2,

and therefore
x2 = E[X2

T ]− V ar(XT ). (2.1)

By Lemma 2.27, we know that {Zt} is a martingale, where

Zt = (Xt − tµ)2 − tσ2 = X2
t − tσ2.

Observe that EZ0 = E[(X0− 0µ)2− 0σ2] = E[X2
0 ] = x2. Therefore, applying the

OST, we have

x2 = EZ0 = EZT = E[X2
T − Tσ2] (2.2)

= E[X2
T ]− σ2ET. (2.3)

In Equations (2.1) and (2.3) above we have found x2 two different ways. This
means

E[X2
T ]− V ar(XT ) = x2 = E[X2

T ]− σ2ET.

Subtract E[X2
T ] from both sides and multiply through by (−1) to obtain Wald’s

Second Identity. �
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Usefulness of Wald’s Second Identity: Suppose {Xt} is a simple, unbiased,
random walk with r 6= 1. From the escape probability theorems, we know

P (XT = a) = Px(Ta < Tb) = b− x
b− a

P (XT = b) = Px(Tb < Ta) = x− a
b− a

so
E[XT ] =

E[X2
T ] =

V ar(XT ) = E[X2
T ]− (E[XT ])2 =

Also,

V ar(Sj) = E[S2
j ]− E[Sj] = E[S2

j ] =

and therefore

ET = V ar(XT )
V ar(Sj)

=

Theorem 2.31 (Wald’s Third Identity) Let {Xt} be an irreducible, simple random
walk. Let a < x < b be integers and suppose X0 = 0. Let T = min{Ta, Tb} = T{a,b}.
Then

E

[
eθXT

[MSj(θ)]T

]
= 1.

PROOF HW

Changing gears, we are now in a position to derive formulas for fx,y when
{Xt} is a random walk. These formulas are rather famous and known by the name
“Gambler’s Ruin”:
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2.5. Random walk in dimension 1

Theorem 2.32 (Gambler’s Ruin) Let {Xt} be an irreducible, simple random walk
on Z. Let a and x be distinct integers. Then

• if p = q (i.e. the walk is unbiased), then fx,a = Px(Ta <∞) = 1.

• if p > q (i.e. the walk is positively biased), then

fx,a = Px(Ta <∞) =

 1 if a > x(
q
p

)x−a
if a < x

• if p < q (i.e. the walk is negatively biased)„ then

fx,a = Px(Ta <∞) =

 1 if a < x(
p
q

)a−x
if a > x

PROOF Case 1: Suppose that a > x. To say that Xt = a for some t means that there
must be some number n (n is probably very, very negative) so that the walk hits a
before n. That means

fx,a = Px(Ta <∞) = lim
n→−∞

Px(Ta < Tn)

=


lim

n→−∞
x−n
a−n if p = q

lim
n→−∞

( qp)
x
−( qp)

n

( qp)
a
−( qp)

n if p 6= q

=


1 if p = q

1−0
1−0 if p > q

lim
n→−∞

( qp)
x
−( qp)

n

( qp)
a
−( qp)

n if p < q

=


1 if p ≥ q

lim
n→−∞

( qp)
x
−0

( qp)
a
−0

if p < q

=

 1 if p ≥ q(
q
p

)x−a
if p < q

=

 1 if p ≥ q(
p
q

)a−x
if p < q

Case 2: Now suppose that a < x. This is similar (HW problem). �
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2.5. Random walk in dimension 1

Why is this called “Gambler’s Ruin”? Suppose a gambler brings $50 to a
casino and makes a series of $1 bets in a game where he has a 50% chance of win-
ning each bet, and a 50% chance of losing each bet. The Gambler’s Ruin Theorem
says

Theorem 2.33 (Recurrence/transience of random walk on Z) Let {Xt} be an ir-
reducible, simple random walk on Z. Then {Xt} is recurrent if and only if the random
walk is unbiased.

PROOF Since {Xt} is irreducible, {Xt} is irreducible if and only if 0 is recurrent.
By direct calculation,

f0 = P0(T0 <∞)

= P0(T0 <∞|X1 = −1)P0(X1 = −1)
+ P0(T0 <∞|X1 = 0)P0(X1 = 0) (Law of Total Prob.)

+ P0(T0 <∞|X1 = 1)P0(X1 = 1)

= P1(T0 <∞)q + 1 · r + P1(T0 <∞)p

=


1 · q +r +

(
q
p

)
p . if p > q

1 · q +r +1 · p if p = q (Gambler’s Ruin)(
p
q

)
q +r +1 · p if p < q

=


2q + r . if p > q
1 if p = q
2p+ r if p < q

Therefore 0 is recurrent iff f0,0 = 1 iff p = q. �
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2.6. Random walk in higher dimensions

2.6 Random walk in higher dimensions
Notation: The vector ej ∈ Rd is the vector (0, 0, 0, ..., 0, 1, 0, ..., 0) which has a 1

in the jth place and zeros everywhere else. (Thus −ej is (0, 0, ..., 0,−1, 0, ..., 0).)

In this section we consider simple, unbiased random walks in Zd. This means
that we assume {Xt} is a Markov chain taking values in Zd with

• X0 = (0, 0, ..., 0) = 0;

• P (x,y) =
{

1
2d if x− y = ±ej for some j
0 else .

In other words, you start at the origin and move one unit in one of the coordinate
directions (the direction is chosen uniformly) at each step.

These random walks are all irreducible and have period 2.

Example: (d = 2) “Drunkard’s walk”

Questions: Will the drunk person ever make it home? Will they make it back
to the bar? (i.e. is the random walk recurrent?)

Recall the recurrence criterion from Chapter 1: A state x ∈ S in any Markov

chain is recurrent if and only if
∞∑
n=0

P n(x, x) diverges. So to determine whether a

random walk as set up above is recurrent, it is sufficient to check whether or not
∞∑
n=0

P n(0, 0) converges or diverges.
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2.6. Random walk in higher dimensions

Dimension 1: unbiased random walk on Z
Here, P (x, x+ 1) = P (x, x− 1) = 1

2 for all x.

Now

P n(0, 0) =



(
2k
k

)(
1
2

)k (1
2

)k
if n = 2k is even

0 if n is odd

So
∞∑
n=0

P n(0, 0) =
∞∑
k=0

P 2k(0, 0) =
∞∑
k=0

(
2k
k

)(1
2

)k (1
2

)k

≈
∞∑
k=0

4k√
πk

( 1
4k
)

(by a HW problem from 414)

=
∞∑
k=0

1√
πk

which diverges. Hence unbiased simple random walk in dimension 1 is recurrent.

Dimension 2: unbiased random walk on Z2

Here, the probability of moving in any particular direction on any one step is 1
4 .

Now

P n(0, 0) =


k∑
l=0

(2k)!
l!2(k−l)!2

(
1
4

)2k
if n = 2k is even

0 if n is odd
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2.6. Random walk in higher dimensions

So

∞∑
n=0

P n(0, 0) =
∞∑
k=0

P 2k(0, 0) =
∞∑
k=0

k∑
l=0

(2k)!
l!2(k − l)!2

(1
4

)2k

=
∞∑
k=0

1
16k

k∑
l=0

(2k)!
(k!)2 ·

(
k
l

)2

=
∞∑
k=0

1
16k

(
2k
k

)
k∑
l=0
·
(
k
l

)2

=
∞∑
k=0

1
16k

(
2k
k

)2

≈
∞∑
k=0

1
16k ·

(
4k√
πk

)2

=
∞∑
k=0

1
πk

which diverges. Hence unbiased simple random walk in dimension 2 is recurrent.

Dimension 3: unbiased random walk on Z3

Here the picture looks like

If you did the same kind of stuff as was done in dimensions 1 and 2, you’d get

∞∑
n=0

P n(0, 0) ≈
∞∑
k=0

1
(πk)3/2

which converges. Hence unbiased simple random walk in dimension 3 is transient.
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2.6. Random walk in higher dimensions

To summarize, we have the following characterization of simple, unbiased ran-
dom walk as recurrent or transient:

Theorem 2.34 (Polya’s Theorem) Let {Xt} be simple, unbiased random walk on
Zd as described in this section. Then:

1. If d = 1 or 2, then {Xt} is recurrent.

2. If d > 2, then {Xt} is transient.
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Chapter 3

Stationary distributions

3.1 Stationary and steady-state distributions
Recall: A Markov chain is determined by two things:

•

•

From this, you get time n distributions πn which give the probability of each
state at time n:

πn(y) = P (Xn = y) =
∑
x∈S

πn−1(x)P (x, y) =
∑
x∈S

π0(x)P n(x, y)

(i.e. πn = π0P
n if S is finite and P is transition matrix)

Motivating question: Can you predict/approximate πn (for large n) without
knowing π0?

Definition 3.1 A distribution π on S is called stationary (with respect to {Xt}) if
for all y ∈ S, ∑

x∈S
π(x)P (x, y) = π(y).

Note: If S is finite (say S = {1, 2, 3, ..., d}, to say π is stationary means (in matrix
multiplication terminology)

π P = π

if we write π =
(
π(1) π(2) · · · π(d)

)
.
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3.1. Stationary and steady-state distributions

Lemma 3.2 Let {Xt} be a Markov chain with state space S. If π is a stationary
distribution, then for all n > 0 and all y ∈ S, we have

π(y) =
∑
x∈S

π(x)P n(x, y).

(So if S is finite, this means π = π P n for all n.)

PROOF Definition of “stationary” + induction on n.

Lemma 3.3 Let {Xt} be a Markov chain with state space S. An initial distribution
π0 is stationary if and only if the time n distributions are the same for every n.

PROOF (⇒) Assume π0 is stationary. Then

(⇐) Assume the time n distributions are the same for every n. Then

Put another way, this lemma says that stationary distributions are those which do
not change as time passes.

Definition 3.4 Let {Xt} be a Markov chain with state space S. A distribution π on
S is called steady-state (with respect to {Xt}) if

lim
n→∞

P n(x, y) = π(y) for all x, y ∈ S.

Idea:
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3.1. Stationary and steady-state distributions

The idea on the previous page is made precise in the following theorem:

Theorem 3.5 Let {Xt} be a Markov chain with state space S. Suppose π is a steady-
state distribution for {Xt}. Then for any initial distribution π0,

lim
n→∞

πn(y) = lim
n→∞

P (Xn = y) = π(y) ∀ y ∈ S.

PROOF

πn(y) = P (Xn = y) =
∑
x∈S

π0(x)P n(x, y)

Big picture questions related to stationary and steady-state distributions: Given
Markov chain {Xt}with transition function P ,

1.

2.

3.

4.

Theorem 3.6 (Uniqueness of steady-state distributions) Let {Xt} be a Markov
chain with state space S . If the Markov chain has a steady-state distribution π, then π
is the only possible stationary distribution for {Xt}.

Proof: Suppose π0 6= π is stationary. Since π0 6= π, there is y ∈ S such that
π0(y) 6= π(y).

Use π0 as the initial distribution; then the time n distribution of state y is πn(y) =
π0(y) by stationarity. Thus

lim
n→∞

πn(y) = lim
n→∞

π0(y) = π0(y) 6= π(y);

this contradicts the preceding proposition since π is steady-state. �
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3.1. Stationary and steady-state distributions

Example: Consider a Markov chain with S = {1, 2}whose transition matrix is

P =
(

1− p p
q 1− q

)
.

(There is no relationship between p and q in this example.) Find all stationary
distributions of this Markov chain.

In general, you find stationary distributions for finite state-space Markov chains
by solving a system of linear equations corresponding to π P = π as above.

Example: Let {Xt} be simple, unbiased random walk on Z (p = q = 1
2 ). Find all

stationary distributions of {Xt}.
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3.2. Positive and null recurrence

Example: Find all stationary distributions of {Xt} if the Markov chain has tran-
sition matrix 

1
7

4
7

2
7

0 5
7

2
7

3
7

1
7

3
7

 .

3.2 Positive and null recurrence
A new type of convergence

Recall: A sequence {an} is said to converge to limit L if lim
n→∞

an = L. (We write
an → L to represent this.)

Example: 1
n
→ 0.

Example: n+1
n−1 → 1.

Example: The sequence {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, ...} does not converge. How-
ever, this sequence does have some regular behavior:
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3.2. Positive and null recurrence

Definition 3.7 Let {an} be a sequence of real numbers. The sequence of Cesàro
averages of {an} is the sequence {bn} defined by setting

bn = 1
n

n∑
j=1

aj

for all n. We say {an} converges in the Cesàro sense to L if the Cesàro averages
converge to L, i.e. if

lim
n→∞

bn = lim
n→∞

1
n

n∑
j=1

aj = L.

We write an
Ces→ L to represent this.

Example: the sequence {an} = {0, 1, 2, 0, 1, 2, ...} converges in the Cesàro sense
to 1.

Example: Strong Law of Large Numbers

Restated, this says says that the Cesàro averages of i.i.d. r.v.s with finite mean
converge to the mean with probability 1.

Facts:
an → L in the usual sense⇒ an

Ces→ L

an
Ces→ L and {an} converges ⇒ an → L

“Cesàro convergence is weaker than usual convergence”
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3.2. Positive and null recurrence

Application to Markov chains: For any Markov chain, we will see that al-
though lim

n→∞
P n(x, y) may not exist, the sequence P n(x, y) converges in the Cesàro

sense for any x, y ∈ S (and the value to which the Cesáro averages converge has a
lot to do with stationary and steady-state distributions).

Definition 3.8 Let {Xt} be a Markov chain with state space S and transition func-
tion P .

1. Given y ∈ S , define Vy,n = #(t ∈ {1, 2, ..., n} : Xt = y). This is a r.v. taking
values in {0, 1, 2, ..., n} called the number of visits to y up to time n.

2. Given y ∈ SR, define my = Ey(Ty). my is a number (possibly ∞) called the
mean return time to y.

3. A recurrent state y is called null recurrent ifmy =∞. The set of null recurrent
states of {Xt} is denoted SN . If all the states of {Xt} are null recurrent, {Xt} is
called null recurrent.

4. A recurrent state y is called positive recurrent if my <∞. The set of positive
recurrent states of {Xt} is denoted SP . If all the states of {Xt} are positive
recurrent, {Xt} is called positive recurrent.

Thus Ex(Vy,n) is the expected number of visits to state y in the time interval
[1, n], given that you start at x.

Note: It makes no sense to talk about mean return times of transient states,
because if y ∈ ST ,

Py(Ty =∞) > 0⇒ Ey(Ty) =∞ automatically.

Lemma 3.9 Let {Xt} be a Markov chain with state space S and transition function
P . Then for any x, y ∈ S and any n > 0,

Ex(Vy,n) =
n∑

m=1
Pm(x, y).

PROOF In the context of proving Theorem 1.26 earlier (see p. 21), we proved this
statement with n =∞; the proof is the same (just replace all the∞with n). �
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3.2. Positive and null recurrence

Theorem 3.10 Let {Xt} be a Markov chain with state space S . Let y ∈ S.

1. (a) If Ty <∞ (i.e. if the chain hits y), lim
n→∞

Vy,n
n

= 1
my

.

(b) If Ty =∞ (i.e. the chain never hits y), then lim
n→∞

Vy,n
n

= 0.

2. lim
n→∞

Ex(Vy,n)
n

= fx,y
my

for all x ∈ S.

3. P n(x, y) Ces→ fx,y
my

for all x ∈ S.

(These limits hold with probability 1.)

Proof: Statement 1 (b) is obvious. Also, (2⇒ 3) follows from Lemma 3.10.

Next, we prove that Statement 1 implies Statement 2:

lim
n→∞

Ex(Vy,n)
n

= lim
n→∞

Ex

[
Vy,n
n

]

Last, we prove Statement 1 (a):

Assume WLOG that you start at state y (since you must hit y at some point).
Define the following:

• T ry = min{n ≥ 1 : Vy,n = r} = time of rth return to y

• W 1
y = T 1

y

• W j
y = T jy − T j−1

y for all j ≥ 2
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3.2. Positive and null recurrence

Notice that the W j
y are i.i.d., each with mean my.

Strong Law of Large Numbers⇒ P

 lim
n→∞

1
n

n∑
j=1

W j
y = my

 = 1

⇒ P

(
lim
n→∞

T ny
n

= my

)
= 1 (∗)

Corollary 3.11 Let {Xt} be a Markov chain with state space S and let C ⊆ S be a
communicating class of recurrent states. Then for all x, y ∈ C,

lim
n→∞

Ex(Vy,n)
n

= 1
my

.

Furthermore, if P (X0 ∈ C) = 1, then lim
n→∞

Vy,n
n

= 1
my
∀ y ∈ C.

Corollary 3.12 Let {Xt} be a Markov chain with state space S. If y ∈ S is null
recurrent, then P n(x, y) Ces→ 0 for all x ∈ S.

PROOF

P n(x, y) Ces→ fx,y
my

= fx,y
∞

= 0. �
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3.2. Positive and null recurrence

Corollary 3.13 Let {Xt} be a Markov chain with state space S. If y ∈ S is positive
recurrent, then P n(y, y) Ces→ 1

my
.

PROOF

P n(y, y) Ces→ fy,y
my

= 1
my

. �

Note: The previous two corollaries provide a new distinction between positive
recurrent and null recurrent states. If y ∈ S is null recurrent (or transient), then
P n(y, y) Ces→ 0 but if y ∈ S is positive recurrent, then P n(y, y) Ces→ 1

my
> 0.

Theorem 3.14 (Positive recurrent states lead only to positive recurrent states)
Let {Xt} be a Markov chain with state space S . If x ∈ S is positive recurrent and
x→ y, then y is also positive recurrent.

PROOF By previous result, y → x. Thus there are n1 and n2 such that P n1(x, y) > 0
and P n2(y, x) > 0. Therefore

P n1+m+n2(y, y) ≥ P n1(x, y)Pm(x, x)P n2(y, x) for all m ≥ 0

⇒ 1
n

n∑
m=1

P n1+m+n2(y, y) ≥ 1
n
P n1(x, y)P n2(y, x)

n∑
m=1

Pm(x, x)
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3.2. Positive and null recurrence

Corollary 3.15 (Null recurrent states lead only to null recurrent states) Let {Xt}
be a Markov chain with state space S. If x ∈ S is null recurrent and x→ y, then y is
also null recurrent.

PROOF By previous result, y is recurrent. If y is positive recurrent, then by the
above theorem x is positive recurrent, a contradiction. Thus y must be null recur-
rent. �

Corollary 3.16 Let {Xt} be a Markov chain with state space S. If C ⊆ S is a com-
municating class, then (every x ∈ C is transient) or (every x ∈ C is null recurrent)
or (every x ∈ C is positive recurrent).

Theorem 3.17 Let {Xt} be a Markov chain with state space S. If C ⊆ S is a finite
communicating class, then every x ∈ C is positive recurrent.

PROOF

Corollary 3.18 Any irreducible Markov chain with a finite state space is positive
recurrent.

Existence and uniqueness of stationary distributions

The next result will not be proven; it is a fact from a branch of mathematics called
real analysis.
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3.2. Positive and null recurrence

Theorem 3.19 (Bounded Convergence Theorem for Sums) Let a(x) be nonneg-
ative numbers such that

∑
x
a(x) <∞. Fix B > 0 and let bn(x) be numbers such that

|bn(x)| ≤ B for all x and n and

lim
n→∞

bn(x) = b(x) for all x.

Then ∑
x

a(x)bn(x)→
∑
x

a(x)b(x).

Theorem 3.20 Let {Xt} be a Markov chain with state space S. If x ∈ S is either
transient or null recurrent, then for any stationary distribution π, π(x) = 0.

PROOF

x ∈ ST ∪ SN ⇒ lim
n→∞

1
n
Ez(Vx,n) = 0 for all z ∈ S.

If π is stationary, then
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3.2. Positive and null recurrence

Corollary 3.21 (Nonexistence of stationary distributions) .

1. A transient Markov chain has no stationary distributions.

2. A null recurrent Markov chain has no stationary distributions.

PROOF By the preceding theorem, a stationary distribution π for such a Markov
chain would have to satisfy π(x) = 0 for all x ∈ S. But then

∑
x∈S

π(x) = 0 6= 1 so π

would not be a distribution. �

Theorem 3.22 (Existence/uniqueness of stationary distributions) Let {Xt} be
an irreducible Markov chain with state space S. {Xt} has a stationary distribution if
and only if {Xt} is positive recurrent, in which case the Markov chain has a unique
stationary distribution π defined by π(x) = 1

mx
for all x ∈ S.

PROOF (⇐) Assume {Xt} is positive recurrent. First, observe that for any x, z ∈ S,

lim
n→∞

1
n
Ez(Vx,n) lim

n→∞

1
n

n∑
m=1

Pm(z, x) = fz,x
mx

= 1
mx

.

Second, we show that if π is stationary, then π(x) must equal 1
mx

for all x. On the
previous page, we showed that if π is stationary, then for all x we have

π(x) =
∑
z∈S

π(z) 1
mx

Third, we show that π(x) = 1
mx

is actually a distribution on S:∑
x∈S

Pm(z, x) = 1 ∀z ∈ S,∀m > 0

⇒ 1
n

n∑
m=1

∑
x∈S

Pm(z, x) = 1
n

n∑
m=1

1 = 1

lim
n→∞

1
n

n∑
m=1

∑
x∈S

Pm(z, x) = 1

∑
x∈S

lim
n→∞

1
n

n∑
m=1

Pm(z, x) = 1

∑
x∈S

1
mx

= 1.
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3.2. Positive and null recurrence

Fourth, we show that the distribution defined by π(x) = 1
mx

is in fact stationary
(we have to verify that

∑
x∈S

π(x)P (x, y) = π(y)):

Case 1: S is finite:

Case 2: S is infinite:

Let S ′ ⊆ S be an arbitrary finite subset of S. Repeating Case 1 with S ′ instead
of S, we get ∑

x∈S′
Pm(z, x)P (x, y) ≤ Pm+1(x, y)

⇒
∑
x∈S′

π(x)P (x, y) ≤ π(y).

Last, the (⇒) direction was proven earlier.
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3.2. Positive and null recurrence

Corollary 3.23 Any irreducible Markov chain on a finite state space has a unique
stationary distribution.

Theorem 3.24 (Ergodic Theorem for Markov chains) Let {Xt} be an irreducible,
positive recurrent Markov chain with state space S and let π be its unique stationary
distribution. Then for all x ∈ S,

P
(

lim
n→∞

Vx,n
n

= π(x)
)

= 1.

A picture to explain the ergodic theorem:

Stationary distributions for non-irreducible Markov chains

Definition 3.25 A distribution π on S is supported or concentrated on a subset
C ⊆ S if π(x) = 0 for all x /∈ C.

Example: If S = {1, 2, 3, 4} and π = (1
2 , 0,

1
2 , 0), we say π is supported on {1, 3}.
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3.2. Positive and null recurrence

Definition 3.26 Suppose π1, π2, π3, ... are all distributions on a set S (there could be
finitely or countably many distributions). A convex combination of these distribu-
tions is another distribution of the form∑

j

αjπj

where the αj are nonnegative numbers satisfying
∑
j
αj = 1.

Lemma 3.27 A convex combination of distributions is a distribution.

PROOF If
π =

∑
j

αjπj,

then ∑
x∈S

π(x) =
∑
x∈S

∑
j

αjπj(x) =
∑
j

αj
∑
x∈S

πj(x) =
∑
j

αj · 1 = 1.

Since all the αj are nonnegative, then π(x) ≥ 0 for all x as well, so π is a distribution.
�

Special case: A convex combination of two distributions π1 and π2 is a distri-
bution of the form

απ1 + (1− α)π2

where α ∈ [0, 1].

Theorem 3.28 (Convex combinations of stationary distributions are stationary)
Suppose π1, π2, π3, ... are all stationary distributions for a Markov chain {Xt}. Then
any convex combination of the πj is also a stationary distribution for {Xt}.

PROOF HW

Corollary 3.29 (Number of stationary distributions) A Markov chain must have
either zero, one, or infinitely many stationary distributions.

PROOF Suppose the Markov chain has two different stationary distributions, say
π1 and π2. Then for any α ∈ [0, 1],

απ1 + (1− α)π2

is also a stationary distribution. Since there are infinitely many choices for α, the
Markov chain will have infinitely many stationary distributions. �
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3.2. Positive and null recurrence

Summary of existence/uniqueness of
stationary distributions for Markov chains

Consider a Markov chain {Xt}with state space S. We can write

S = ST
⋃
SR = ST

⋃(
SN

⋃
SP
)

(disjoint union)

• If SP = ∅, then {Xt} has no stationary distribution.

• If SP 6= ∅ consists of one communicating class, then {Xt} has a unique sta-
tionary distribution π defined by

π(x) =
{ 1

mx
if x ∈ SP

0 else

• If SP 6= ∅ consists of more than one communicating class, then for each com-
municating class C ⊆ SP there is a unique (stationary distribution supported
on C) defined by

πC(x) =
{ 1

mx
if x ∈ C

0 else

Convex combinations of these πC are also stationary, so {Xt} has infinitely
many stationary distributions. (All stationary distributions are convex com-
binations of these πC .)

(This solves the big picture questions 1 and 2 from the beginning of the chapter.)
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3.2. Positive and null recurrence

Example: Find all stationary distributions of the Markov chain with transition
matrix 

1
4 0 0 0 3

4 0
1
8

1
2

1
8

1
8

1
8 0

0 0 3
4 0 0 1

4
1
2 0 1

4
1
4 0 0

1
2 0 0 0 1

2 0
0 0 1

4 0 0 3
4


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3.2. Positive and null recurrence

Example: Find all stationary distributions of the Markov chain {Xt} with state
space S = {0, 1, 2, 3, ...} and transition function P defined by

P (x, y) =


1
2 if y = 0
1
4 if y = x+ 1
1
4 if y = x+ 2
0 else
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3.3. Periodicity and convergence issues

3.3 Periodicity and convergence issues
Question: Which stationary distributions are steady-state?

First observation: We saw earlier that if π is steady-state, then π is the only
stationary distribution of {Xt}. Thus if SP contains more than one communicating
class, {Xt} has infinitely many stationary distributions, and none of these can be
steady-state.

We also know that for any transient or null recurrent state x, π(x) = 0 for any
stationary (hence any steady-state distribution).

So henceforth we assume {Xt} is an irreducible, positive recurrent Markov
chain. Given this,

we know P n(x, y) Ces→ π(y) ∀x, y ∈ S.
When does P n(x, y)→ π(y) ∀x, y ∈ S?

(Wouldn’t it be great if this was always true?)

Unfortunately, even for irreducible, positive recurrent Markov chains, the sta-
tionary distribution may not be steady-state.

Example: Consider the Markov chain with state space {1, 2} and transition ma-
trix

P =
(

0 1
1 0

)
.

88



3.3. Periodicity and convergence issues

Definition 3.30 Let a and b be integers. We say a divides b (and write a|b) if b is a
multiple of a. The greatest common divisor of a set E of integers, denoted gcdE, is
the largest integer dividing every number in that set.

Examples:

Definition 3.31 Let {Xt} be a Markov chain with state space S. Let x ∈ S be such
that fx > 0 (equivalently, P n(x, x) > 0 for some n ≥ 1; equivalently, x → x). The
period of x, denoted by dx, is the largest integer which divides every n for which
P n(x, x) > 0. More formally,

dx = gcd{n : P n(x, x) > 0}.

Note: If P (x, x) > 0, then dx|1, so dx = 1.

Example: In simple random walk on Z with r = 0, dx = 2 for all x.

Theorem 3.32 (States lead only to states of the same period) Suppose {Xt} is a
Markov chain with state space S. Let x, y ∈ S be such that x → y and y → x. Then
dx = dy.

PROOF

x→ y ⇒ ∃n1 s.t. P n1(x, y) > 0
y → x⇒ ∃n2 s.t. P n2(y, x) > 0.

Therefore
P n1+n2(x, x) ≥ P n1(x, y)P n2(y, x) > 0⇒ dx | (n1 + n2).

Let n be such that P n(y, y) > 0. Then

P n1+n+n2(x, x) ≥ P n1(x, y)P n(y, y)P n2(y, x) > 0⇒ dx | (n1 + n+ n2).
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3.3. Periodicity and convergence issues

Now if dx divides both n1 + n2 and n1 + n + n2, then dx divides the difference,
so dx |n.

Corollary 3.33 If {Xt} is an irreducible Markov chain, all states have the same pe-
riod.

Definition 3.34 An irreducible Markov chain with state space S is called aperiodic
if dx = 1 for all x ∈ S and is called periodic with period d if dx = d > 1 for all
x ∈ S.

Examples:

Theorem 3.35 Suppose {Xt} is an irreducible, aperiodic Markov chain. Then, for
every x, y ∈ S, there is a number N such that P n(x, y) > 0 for all n ≥ N .

PROOF Let I ⊂ N be defined by I = {n : P n(x, y) > 0}; I is the set of times that
you can get from state x to state y. We know 1 = d = gcd I .

Claim: There is a number n1 such that n1 ∈ I and n1 + 1 ∈ I .
Proof: Suppose not; then there is an integer k ≥ 2 which is the smallest gap

between two consecutive numbers in I . Since {Xt} is aperiodic, k is not the period
of {Xt} so k cannot divide some number in I . Let n1 ∈ I be such that n1 + k ∈ I .
Now let m1 ∈ I be a number which is not divisible by k. Write m1 = mk + r where
r ∈ {1, 2, ..., k − 1}. We know

(m+ 1)(n1 + k) ∈ I and m1 + (m+ 1)n1 ∈ I
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3.3. Periodicity and convergence issues

but the difference of these numbers is

mk + k −m1 = k − r ∈ {1, 2, ..., k − 1}.

This contradicts the definition of k, so k = 1, proving the claim (as the smallest gap
between two consecutive numbers in I is 1).

Now, we know there is an n1 such that n1 ∈ I , n1 + 1 ∈ I . Let N = n2
1. Then if

n ≥ N , we can divide n−N by n1 and write

n−N = mn1 + r

where m ∈ N and r ∈ {0, 1, ..., n1 − 1}. Now

n = r(n1 + 1) + (n1 − r +m)n1

which is in I since n1 + 1 ∈ I , n1 ∈ I . �

Theorem 3.36 (Existence of steady-state distributions) Let {Xt} be an irreducible,
positive recurrent Markov chain with state space S. Let π denote its unique stationary
distribution. Then:

1. If {Xt} is aperiodic, then π is steady-state, i.e.

lim
n→∞

P n(x, y) = π(y) for all x, y ∈ S.

2. If {Xt} has period d ≥ 2, then for all x, y ∈ S there exists an integer r =
r(x, y) ∈ [0, d) such that

(a) P n(x, y) = 0 unless n = md + r for some m ∈ N (i.e. unless n ≡ r
mod d)

(b) lim
m→∞

Pmd+r(x, y) = d · π(y).

PROOF Let {Yt} be a Markov chain, independent of {Xt}, with the same state space
and transition function as {Xt}, where the initial distribution of {Yt} is the station-
ary distribution π.

Pick b ∈ S arbitrarily and set T = min{t ≥ 1 : Xt = Yt = b} (if there is no such t,
set T =∞).
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3.3. Periodicity and convergence issues

Claim: P (T <∞) = 1.
Proof of Claim: HW (this requires aperiodicity of {Xt} because it uses Theorem

3.35).
Hint: Consider a Markov chain with state space S×S where the first coordinate

is Xt and the second coordinate is Yt. Explain why this Markov chain is irreducible
and positive recurrent; it follows that P (T <∞) = 1 (why?).

Now, define for each t, r.v.s Zt by

Zt =
{
Xt if t < T
Yt if t ≥ T

{Zt} is a Markov chain with the same initial distribution as {Xt} and the same
transition function as {Xt}, therefore {Zt} = {Xt}. Therefore

|P (Xt = y)− π(y)| = |P (Zt = y)− P (Yt = y)|
= |P (Xt = y and t < T ) + P (Yt = y and t ≥ T )− P (Yt = y)|
= |P (Xt = y and t < T )− P (Yt = y and t < T )|
≤ P (t < T )→ 0 as t→∞ by the Claim above.

Therefore |P (Xt = y)− π(y)| → 0 as t→∞, so

lim
t→∞

πt(y) = lim
t→∞

∑
x∈S

π0(x)P t(x, y) = π(y)

for all x and y. By choosing π0 to be

π0(x) =
{

1 if x = z
0 else ,

we see that
lim
t→∞

P t(z, y) = π(y)

for all z ∈ S; thus π is steady-state. This proves statement 1 of the theorem.
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3.3. Periodicity and convergence issues

To prove statement 2, letmx be the mean return time of each state xwith respect
to the Markov chain {Xt}. Now consider the Markov chain {X̃t} with the same
initial distribution as {Xt}whose transition function is P d, i.e. let

P (X̃t = x) = P (Xdt = x).
Note that the mean return time for each state with respect to {X̃t} is mx

d
.

{X̃t} is not irreducible; it has d disjoint, positive recurrent communicating classes.
Restricting the Markov chain {X̃t} to each of these classes gives an aperiodic, pos-
itive recurrent, irreducible chain to which we can apply part 1 of this theorem; this
gives

lim
m→∞

(P d)m(x, x) = 1
mx/d

= d

mx

,

i.e.
lim
m→∞

Pmd(x, x) = dπ(x).

More generally, if z ∈ S is such that P d(z, x) > 0, then z and x belong to the same
communicating class of {X̃t}, so

lim
m→∞

Pmd(z, x) = dπ(x).

Now let x, y ∈ S. If r is such that P r(x, y) > 0, then

lim
m→∞

Pmd+r(x, y) = lim
m→∞

∑
z∈S

P r(x, z)Pmd(z, y) =
∑
z∈S

P r(x, z)dπ(y) = dπ(y)·1 = dπ(y)

as desired. �

A picture to explain this theorem in the periodic case:

So P n(x, y) looks like

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
P n(x, y) 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
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3.4 Examples
Directions: For each given Markov chain:

1. Classify the states as transient, positive recurrent or null recurrent;
2. Find all communicating classes of the Markov chain;
3. Find the period of each state;
4. Find all stationary distribution(s) of the Markov chain (if any exist);
5. Find the steady-state distribution of the Markov chain (if it exists).

Example 1: The Ehrenfest chain with d = 4
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Example 2: The Markov chain whose transition matrix is

1
3

1
3

1
3 0 0 0 0

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1

4 0 3
4 0 0

0 0 0 1
2

1
4

1
4 0

0 0 0 0 0 0 1
0 0 0 0 0 1 0


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Example 3: Let {Xt} be a Markov chain with S = {0, 1, 2, 3, 4, 5, 6} such that
P (0, y) = 1

6 for all y 6= 0; P (x, 0) = 1
2 if x 6= 0; P (x, x + 1) = 1

2 if x ∈ {1, 2, 3, 4, 5};
and P (6, 1) = 1

2 .
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Example 4: Let {Xt} be a Markov chain with state space S = {0, 1, 2, 3, ...}
whose transition function is

P (0, y) =

 0 if y is odd or y = 0(
1
2

)y/2
if y ≥ 2 is even

P (1, y) =

 0 if y = 1 or y is even(
1
2

)(y−1)/2
if y ≥ 3 is odd

x ≥ 2⇒ P (x, y) =


1
2 if y = 0
1
2 if y = 1
0 else

97



Chapter 4

Continuous-time Markov chains

4.1 Motivation
Our goal in this chapter is to study analogues of Markov chains (including ran-

dom walk) where time is measured continuously rather than discretely.

First Question: What “should” a continuous-time Markov chain look like?
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4.1. Motivation

CTS-TIME
MARKOV CHAIN MARKOV CHAIN

state finite or countable; usually finite or countable;
space S S = {0, 1, ..., d} or usually S ⊆ Z

S = {0, 1, 2, ...} or (same)
S = Z.

index Xt = state at time t Xt = state at time t
set I t ∈ {0, 1, 2, ...} or t ∈ Z t ∈ [0,∞) or t ∈ R
initial π0 : S → [0, 1]; π0 : S → [0, 1];

distribution
∑
x∈S

π0(x) = 1 ∑
x∈S

π0(x) = 1
π0(x) = P (X0 = x) π0(x) = P (X0 = x)

(same)
transition we specify time 1 transitions:

probabilities P : S × S → [0, 1]∑
y∈S

P (x, y) = 1∀x ∈ S

P (x, y) = P (Xt+1 = y|Xt = x)
(we assume these are ⊥ of t)

If S is finite, write P as a matrix:
P (x, y)↔ Px,y = Pxy

From the time 1 transitions, we
calculate transition probabilities

for any time n:
P n(x, y) = P (Xt+n = y|Xt = x)

=∑
z∈S

P (x, z)P n−1(z, y)

If S finite, P n(x, y) = (P n)xy.

Markov P (Xt = xt|X0 = x0, ..., Xt−1 = xt−1)
property = P (Xt = xt|Xt−1 = xt−1)

= P (xt−1, xt)
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4.1. Motivation

Definition 4.1 A jump process {Xt : t ∈ I} is a stochastic process with index set
I = [0,∞) or R and finite or countable state space S such that with probability 1, the
functions t 7→ Xt (these functions are called sample functions of the process) are
right-continuous and piecewise constant.

That is, there exist times J1 < J2 < J3 < ... (these are r.v.s, not constants) and
states x0, x1, x2, ... ∈ S such that

Xt =


x0 if 0 ≤ t < J1
x1 if J1 ≤ t < J2
x2 if J2 ≤ t < J3

The assumption that the sample functions are right-continuous is necessary for
technical reasons (see p. 67 Norris).

Definition 4.2 A continuous-time Markov chain (CTMC) {Xt} is a jump pro-
cess satisfying the Markov property .
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4.2 CTMCs with finite state space
In this section, S is assumed finite; we will write S = {1, 2, ..., d}.

Definition 4.3 Let {Xt} be a CTMC with finite state space. For each t, set Pxy(t) =
P (Xs+t = y |Xs = x) (we assume that {Xt} is time homogeneous so that these
probabilities do not depend on s). Then let

P (t) =


P11(t) · · · P1d(t)

... . . . ...
Pd1(t) · · · Pdd(t)

 ;

P (t) is called the time t transition function or time t transition matrix of the
CTMC.

Theorem 4.4 (Properties of transition matrices) Let {Xt} be a CTMC with in-
dex set I and finite state space S, and let P (t) be the transition matrices of this CTMC.
Then:

1. Every transition matrix is stochastic (it has nonnegative entries and the rows
sum to 1), i.e. for all t ∈ I,

Pxy(t) ∈ [0, 1] and
∑
y∈S

Pxy(t) = 1 for all x ∈ S.

2. P (0) = I , the d× d identity matrix;

3. The Chapman-Kolmogorov (C-K) equation holds: for all s, t ∈ I,

P (s)P (t) = P (s+ t).

PROOF See page 99. �

Question: Which families P (t) of matrices satisfy the four conditions of the
preceding theorem?

Related Question: Suppose f : [0,∞) → R satisfies the analogue of (2) and (3)
above, i.e. f(0) = 1 and f(s)f(t) = f(s + t) for all s, t ≥ 0. If f is continuous, what
must f be?
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4.2. CTMCs with finite state space

Answer to related question: Let t > 0;

f(t) = f
(
t

n
+ t

n
+ t

n
+ ...+ t

n

)
=
[
f
(
t

n

)]n
so f

(
t
n

)
= [f(t)]1/n.

Therefore if f(t) = 0 for any t > 0, f( t
n
) = 0 for all n so f(0) = lim

n→∞
f
(
t
n

)
= 0 as

well, contradicting a hypothesis. Thus f(t) > 0 for all t.

Now let C = f(1) > 0. Then for any m ∈ N,

f(m) = f(1 + 1 + ...+ 1) = [f(1)]m = Cm

and for any m
n
∈ Q,

f
(
m

n

)
= [f(m)]1/n = Cm/n.

By continuity, it must be that f(t) = Ct = et lnC = eqt for all t ≥ 0. We have proven:

Lemma 4.5 If f : [0,∞) → R is a continuous function satisfying f(0) = 1 and
f(s)f(t) = f(s+ t) for all s, t ≥ 0, then f(t) = eqt for some constant q.

Back to matrices: the idea is that

(P (s+ t) = P (s)P (t)∀s, t and P (0) = I) ⇒

where Q is some matrix. This makes sense because

Problem: What does eQt = exp(Qt) mean? What is eQ = exp(Q) for a matrix Q?
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4.2. CTMCs with finite state space

Exponentiation of matrices

Recall the Taylor series of et:

et =
∞∑
n=0

tn

n! = 1 + t+ t2

2! + t3

3! + ...

= lim
n→∞

(
1 + t

n

)n
.

The fact that the limit above equals et is a homework problem that uses L’Hôpital’s
Rule.

Definition 4.6 Given a square matrix A, define the matrix exponential of A to be
the matrix eA (also denoted exp(A)) defined by

eA = exp(A) =
∞∑
n=0

1
n!A

n = I + A+ 1
2A

2 + 1
3!A

3 + ...

= lim
n→∞

(
I + 1

n
A
)n
.

That the two definitions (the one with the series and the one with the limit) are
equal will not be proven here; the proof is similar to the HW problem described
above.

Note: If A =
(

1 2
3 4

)
, eA 6=

(
e1 e2

e3 e4

)
.

Observe:

eAt = I + At+ A2

2 t2 + A3

3! t
3 + ...

= lim
n→∞

(
I + t

n
A
)n
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Theorem 4.7 (Properties of matrix exponentials) Let A, B and S be square ma-
trices of the same size, where S is invertible. Then:

1. If A is diagonal (i.e. A =


λ1 0

. . .
0 λd

), then

eA =


eλ1 0

. . .
0 eλd

 .

2. If AB = BA, then exp(A+B) = exp(A) exp(B).

3. If B = exp(A), then Bn = exp(An) for all n ∈ {0, 1, 2, 3, ...}.

4. For any matrix A, (eA)n = eAn.

5. exp(zero matrix) = I .

6. exp(SAS−1) = SeAS−1.

PROOF Math 322 �

Importance: Property (6) above suggests a method to compute the exponential
of a matrix A. Diagonalize A (this means write A = SΛS−1 where the columns of S
are eigenvectors of A and the entries of the diagonal matrix Λ are the correspond-
ing eigenvalues); then eA = SeΛS−1.

Theorem 4.8 Let P (t) be a family of square matrices, indexed by t. Then, the follow-
ing are equivalent:

1. P (t) = eQt for some square matrix Q.

2. d
dt
P (t) = P (t)Q and P (0) = I .

3. d
dt
P (t) = QP (t) and P (0) = I ;

4. dk

dtk
P (t)

∣∣∣
t=0

= Qk for all k;

5. P (0) = I and P (s+ t) = P (s)P (t) for all s, t ≥ 0.
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4.2. CTMCs with finite state space

Note: In the theorem above, d
dt
P (t) means differentiate each entry of P (t) with

respect to t, i.e.
d

dt

(
t2 2

sin t t

)
=
(

2t 0
cos t 1

)
;

PROOF (1)⇒ (5) follows from properties of matrix exponentials.

(1)⇒ (2), (3):

d

dt
P (t) = d

dt
eQt = d

dt

∞∑
n=0

Qn

n! t
n =

∞∑
n=1

Qn

(n− 1)!t
n−1

(1)⇒ (4):

dk

dtk
P (t)

∣∣∣∣∣
t=0

= dk

dtk

∞∑
n=0

Qn

n! t
n

∣∣∣∣∣
t=0

=
∞∑
n=k

Qn

(n− k)!t
n−k

∣∣∣∣∣
t=0

= Qk.

(2)⇒ (1); (3)⇒ (1) follow from the fact that a system of (ordinary) differential
equations with given initial condition has a unique solution (under natural hy-
potheses that hold here).

(4)⇒ (1) by Taylor series:

P (t) =
∞∑
k=0

1
k!

[
dk

dtk
P (t)

∣∣∣∣∣
t=0

]
tk =

∞∑
k=0

Qk

k! t
k = exp(Qt).
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4.2. CTMCs with finite state space

(5)⇒ (1): As-yet unproven lemma: (5) implies that P (t) is a continuous and
differentiable function of t.

Assuming this lemma, let h > 0 be small, and define Q = P ′(0). By linear
approximation,

P (h) ≈ P (0) + hP ′(0) = I +Qh

So for any t > 0,

P (t) = P
(
t

n
+ t

n
+ ...+ t

n

)
=
[
P
(
t

n

)]n
≈
[
I +Q

t

n

]n

Definition 4.9 Let {Xt} be a CTMC with finite state space. Then, by the preceding
theorem, the time t transition function P (t) satisfies these differential equations:

1. the forward equation P ′(t) = P (t)Q; P (0) = I ;

2. the backward equation P ′(t) = QP (t); P (0) = I .

Corollary 4.10 If P (t) is the time t transition function for a CTMC with finite state
space, then P (t) = exp(Qt) for some matrix Q (in fact, Q must be equal to P ′(0)).

Q-matrices

Next question: What matrices are possible for the Q, if P (t) = exp(Qt) are the
transition matrices of a CTMC?
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4.2. CTMCs with finite state space

Definition 4.11 A square matrix Q =


q11 · · · q1d
... . . . ...
qd1 · · · qdd

 is called a Q-matrix if

1. qii ≤ 0 for all i; that is, the diagonal entries are nonpositive;

2. qij ≥ 0 for all i 6= j; that is, the off-diagonal entries are nonnegative; and

3.
d∑
j=1

qij = 0 for all i; that is, the rows sum to zero.

Example:

Q =

 −3 2 1
4 −6 2
0 7 −7



Theorem 4.12 A square matrix Q is a Q-matrix if and only if for every t, P (t) =
exp(Qt) is a stochastic matrix.

PROOF
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4.2. CTMCs with finite state space

.

Corollary 4.13 If {Xt} is a CTMC with finite state space S, then the time t transition
matrices must satisfy P (t) = exp(Qt) for some Q-matrix Q. Conversely, every Q-
matrix Q defines a CTMC by setting P (t) = exp(Qt) for all t.

Definition 4.14 Let {Xt} be a CTMC with finite state space S. Then the matrix
Q = P ′(0) is called the infinitesimal matrix of the CTMC.

Consequence: A CTMC with finite state space is completely determined by its
infinitesimal matrix Q (and its initial distribution).

Question: Do the entries of Q have any significance?
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Definition 4.15 Let {Xt} be a CTMC with finite state space S. Given each state
x ∈ S , define the waiting time Wx to be the smallest t ≥ 0 such that Xt 6= x, given
that X0 = x.

Note: We assume the sample functions are right-continuous in part to make
sure that Wx is well-defined. We don’t want, for example

Theorem 4.16 (Waiting times in a CTMC are exponential) Let {Xt} be a CTMC
with finite state space S and Q-matrix Q. Then for each state x ∈ S , the waiting time
Wx is exponential with parameter qx = −qxx = −(the x, x-entry of Q).

PROOF

P (Wx > t) = P (Xs = x∀ s ∈ [0, t] |X0 = x)

= lim
n→∞

P
(
Xs = x ∀ s ∈

{
0, 1
n
,

2
n
, ...,

tn

n

}
|X0 = x

)
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4.2. CTMCs with finite state space

Recall from calculus that for a differentiable function f , if n is large, then 1
n

is
small so f( 1

n
) is approximately equal to L( 1

n
) where L is the tangent line to f at 0,

i.e. L(x) = f(0) + f ′(0)x. Thus f( 1
n
) ≈ f(0) + f ′(0) 1

n
. Applying this where f = Pxx,

we see

P (Wx > t) = lim
n→∞

[
Pxx

( 1
n

)]tn
= lim

n→∞

[
Ixx + qxx

1
n

]tn
=
[

lim
n→∞

(
1 + qxx

n

)n]t
= eqxxt.

Therefore
FWx(t) = P (Wx ≤ t) = 1− eqxxt

so Wx is exponential with parameter qx = −qxx as desired. �

Definition 4.17 Let {Xt} be a CTMC with finite state space S. For each x ∈ S,
define the holding rate of x to be the nonnegative number qx satisfying all of the
following:

• qx = −P ′xx(0);

• qx = −qxx where qxx is the (x, x)−entry of the Q-matrix of the CTMC;

• qx = parameter of the waiting time Wx;

• 1
qx

= E[Wx] = expected amount of time you stay in state x before leaving/jumping.

This theory tells you that in a CTMC, your position (state) as time passes is

110



4.2. CTMCs with finite state space

Definition 4.18 Let {Xt} be a CTMC with finite state space S. For each x, y ∈ S ,
define the jump probability from x to y to be

πx,y = P (XWx = y |X0 = x).

The jump matrix of the CTMC is the matrix Π whose entries are the jump probabili-
ties, i.e.

Π =


π1,1 · · · π1,d

... . . . ...
πd,1 · · · πd,d

 .

Theorem 4.19 (Formula for jump probabilities) Let {Xt} be a CTMC with finite
state space S whose infinitesimal matrix is Q. Then for all x, y ∈ S,

πx,y =
{

0 if x = y
qxy
qx

= −qxy
qxx

if x 6= y

PROOF Later.

Recall the Q-matrix we wrote down a few pages ago:

Q =

 −3 2 1
4 −6 2
0 7 −7


If this is the infinitesimal matrix of some CTMC {Xt} then:
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4.2. CTMCs with finite state space

Example: Consider a CTMC with state space {1, 2, 3} and infinitesimal matrix

Q =

 −2 1 1
1 −2 1
1 1 −2

 .

1. Find the jump matrix of this CTMC.

2. Suppose you start in state 1. What is the probability you stay in state 1 for at
least three units of time before jumping?

3. What is the probability that the first three jumps are from state 1 to state 3,
then state 3 to state 2, then state 2 to state 3 (given that you start in state 1)?
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4.2. CTMCs with finite state space

4. Find P (t).
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4.3. General theory of CTMCs

5. Find P (X3/4 = 0 |X1/2 = 1).

6. If the initial distribution is π0 = (1
2 ,

1
4 ,

1
4), find the distribution at time t = ln 2.

4.3 General theory of CTMCs
At this point we are no longer assuming that the state space S is finite.

Recall that a CTMC is a jump process that satisfies the Markov property. As
before, we can define a time t transition function, i.e. for every x, y ∈ S and every
t ∈ I, set

Px,y(t) = P (Xs+t = y |Xs = x)
and assume that these numbers do not depend on s (i.e that the process is time
homogeneous).

As with Markov chains, the difference if S is infinite is that one cannot think of
these transition functions as matrices.

However, one can still derive the Chapman-Kolmogorov equation for a general
CTMC:

Px,y(s+ t) =
∑
z∈S

Px,z(s)Pz,y(t)

and from the Markov property, one can deduce that the waiting times Wx must
be memoryless, hence exponential. For each x ∈ S , we can define qx to be the
parameter of the waiting time Wx, and then we can define jump probabilities as
before: for every x 6= y ∈ S,

πx,y = P (XWx = y |X0 = x).
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4.3. General theory of CTMCs

(If x = y, we set πx,y = 0.)

Let δxy be the Kronecker delta, i.e.

δxy =
{

1 if x = y
0 else

Theorem 4.20 (Integral Equation) Let {Xt} be a CTMC. Then for all t ≥ 0,

Px,y(t) = δxye
−qxt +

∫ t

0
qxe
−qxs

[∑
z∈S

πx,zPz,y(t− s)
]
ds.

PROOF

Px,y(t) = Px(Xt = y) = Px(Xt = y ∩ Wx > t) + Px(Xt = y ∩ Wx ≤ t)
= Px(Xt = y |Wx > t)P (Wx > t) + Px(Xt = y ∩ Wx ≤ t)

= δx,ye
−qxt +

∫ t

0
P (Xt = y |Wx = s)fWx(s) ds

(Law of Total Probability, continuous version)

Thus

Px,y(t) = δx,ye
−qxt +

∫ t

0
fWx(s)

∑
z∈S

P (Xs = z ∩ Xt = y |Wx = s) ds

= δx,ye
−qxt +

∫ t

0
qxe
−qxs

∑
z∈S

πx,zPz,y(t− s) ds. �

Theorem 4.21 (Continuity of transition probabilities) Let {Xt} be a CTMC. Then
for any x, y ∈ S, the function t 7→ Px,y(t) is a continuous function of t.

PROOF In the integral equation, set u = t− s so that du = −ds. Then

Px,y(t) = δxye
−qxt +−

∫ 0

t
qxe
−qx(t−u)

[∑
z∈S

πx,zPz,y(u)
]
du

= δxye
−qxt + qxe

−qxt
∫ t

0
eqxu

[∑
z∈S

πx,zPz,y(u)
]
du (?)
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4.3. General theory of CTMCs

Theorem 4.22 (Differentiability of transition probabilities) Let {Xt} be a CTMC.
Then for any x, y ∈ S, the function t 7→ Px,y(t) is a differentiable function of t, and

P ′x,y(t) = −qxPx,y(t) + qx
∑
z∈S

πx,zPz,y(t).

PROOF By Theorem 4.21, the integrand of the integral in (?) is continuous. There-
fore

Px,y(t) = δxye
−qxt + qxe

−qxt
∫ t

0
eqxu)

[∑
z∈S

πx,zPz,y(u)
]
du

Therefore Px,y(t) is differentiable. (By the way, this proves the “As-yet un-
proven lemma” from page 89.) Now

P ′x,y(t) = d

dt

[
δxye

−qxt + qxe
−qxt

∫ t

0
eqxu)

[∑
z∈S

πx,zPz,y(u)
]
du

]

= −qx
[
e−qxt

(
δxy + qx

∫ t

0
eqxu)

[∑
z∈S

πx,zPz,y(u)
]
du

)]
+ e−qxtqxe

qxt
∑
z∈S

πx,zPz,y(t)

= −qxPx,y(t) + qx
∑
z∈S

πx,zPz,y(t). �

Corollary 4.23 Let {Xt} be a CTMC. Then for any x, y ∈ S,

P ′x,y(0) = −qxδxy + qxπx,y.

Proof: From Theorem 4.22,

P ′x,y(0) = −qxPx,y(0) + qx
∑
z∈S

πx,zPz,y(0)

= −qxδxy + qx [0 + 0 + ...+ 0 + πx,y · 1 + 0 + ...+ 0]
= −qxδxy + qxπx,y.

Definition 4.24 Let {Xt} be a CTMC. For any x, y ∈ S, define the infinitesimal
parameters qxy = qx,y to be qxy = P ′x,y(0).

From Corollary 4.23 we immediately see
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4.3. General theory of CTMCs

Theorem 4.25 (Formula for infinitesimal parameters) Let {Xt} be a CTMC whose
infinitesimal parameters are qxy. Then

qxy =
{
−qx if x = y
qxπx,y if x 6= y

Note: qxx ≤ 0 for all x, and if x 6= y then qxy ≥ 0.

Note: If S is finite, then these are the entries of the Q-matrix (a.k.a. infinitesimal
matrix) of the CTMC.

Why are they called infinitesimal parameters? If t is very small (i.e. infinitesi-
mally small), then

Px,y(t) ≈ Px,y(0) + P ′x,y(0)t = δx,y + qxyt.

The next theorem says that the property of rows of a Q-matrix summing to zero
generalizes, even when the state space is infinite:

Theorem 4.26 Let {Xt} be a CTMC and let x ∈ S. Then∑
y∈S

qxy = 0.

PROOF ∑
y∈S

qxy = qxx +
∑
y 6=x

qxy =
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4.4. Class structure, recurrence and transience of CTMCs

Theorem 4.27 (Backward equation) Let {Xt} be a CTMC. Then for all x, y ∈ S,

P ′x,y(t) =
∑
z∈S

qx,zPz,y(t) and Px,y(0) = δxy.

Note: If S is finite, this is equivalent to P ′(t) = QP (t);P (0) = I .

PROOF By Theorem 4.22,

P ′x,y(t) = −qxPx,y(t) + qx
∑
z∈S

πx,zPz,y(t)

= qxxPx,y(t) + qx
∑

z 6=x∈S
πx,zPz,y(t)

=
∑
z∈S

qx,zPz,y(t). �

Theorem 4.28 (Forward equation) Let {Xt} be a CTMC. Then for all x, y ∈ S,

P ′x,y(t) =
∑
z∈S

Px,z(t)qzy and Px,y(0) = δxy.

Note: If S is finite, this is equivalent to P ′(t) = P (t)Q;P (0) = I .

PROOF Omitted (see Norris text).

4.4 Class structure, recurrence and transience of CTMCs
Definition 4.29 Let {Xt} be a CTMC and let y ∈ S . Define the hitting time to y
to be

Ty = min{t ≥ J1 : Xt = y}.

(Recall that J1 is the time of the first jump.) (For convenience, set Ty = 1 if y is
absorbing and X0 = y.)
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4.4. Class structure, recurrence and transience of CTMCs

Definition 4.30 Let {Xt} be a CTMC and let x, y ∈ S.

• Define fx,y = Px(Ty <∞). We say x→ y if fx,y > 0.

• x is called recurrent if fx,x = 1 and transient otherwise.

• x is called positive recurrent if x is recurrent mx = Ex(Tx) <∞.

• x is called null recurrent if x is recurrent and mx = Ex(Tx) =∞.

• {Xt} is irreducible if x→ y for all x, y ∈ S.

Definition 4.31 Let {Xt} be a CTMC with state space S. The embedded chain
or jump chain of the CTMC is the (discrete-time) Markov chain whose transition
probabilities are P (x, y) = πx,y.

Notice that fx,y for the embedded chain is the same as fx,y for the CTMC; so a
CTMC is recurrent, transient, etc. if and only if its embedded chain is recurrent,
transient, etc., respectively.

Furthermore, irreducible CTMCs are either positive recurrent, null recurrent,
or transient (and must be positive recurrent if their state space is finite). All the
same theorems regarding class structure for discrete-time Markov chains hold for
CTMCs.

Definition 4.32 Let {Xt} be a CTMC with state space S. A distribution π on S is
called stationary if for all y ∈ S and all t ≥ 0,∑

x∈S
π(x)Px,y(t) = π(y).

Note: If S is finite, this means πP (t) = π in matrix multiplication language.

Theorem 4.33 (Stationarity equation for CTMCs) Let {Xt} be a CTMC with state
space S. A distribution π on S is stationary if and only if∑

x∈S
π(x)qxy = 0 for all y ∈ S.

Note: If S is finite, this means πQ = 0 in matrix multiplication language. This
gives you a good way to find stationary distributions of CTMCs.
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4.4. Class structure, recurrence and transience of CTMCs

PROOF HW

Theorem 4.34 Let {Xt} be an irreducible CTMC with state space S.

1. If {Xt} is transient or null recurrent, then it has no stationary distributions.

2. If {Xt} is positive recurrent, then it has one stationary distribution π given by
π(x) = 1

mxqx
for all x ∈ S, and this distribution is steady-state, i.e.

• lim
t→∞

Px,y(t) = π(y) for all x, y ∈ S; and

• lim
t→∞

P (Xt = y) = π(y) for all y ∈ S, regardless of the initial distribution.

PROOF Omitted (see chapter 3, sections 5 and 6 of Norris).

Why does π(x) = 1
mxqx

? Some motivation:

Why is the stationary distribution always steady-state?
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4.4. Class structure, recurrence and transience of CTMCs

We finish this section with a theorem that says the proportion of time spent in
state x in a CTMC converges to the value that the stationary distribution gives x.

Theorem 4.35 (Ergodic theorem for CTMCs) Let {Xt} be an irreducible, positive
recurrent CTMC, and let π be the stationary distribution of {Xt}. Then for all x ∈ S,

P
[

lim
t→∞

1
t

∫ t

0
1{Xs=x} ds = π(x)

]
= 1.

A picture to explain:
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Chapter 5

Branching and queuing models

5.1 Birth-death Markov chains
Definition 5.1 A Markov chain with state space S = {0, 1, 2, ...} or S = {0, 1, 2, ..., d}
is called a birth-death chain if for every x ∈ S, there are three nonnegative numbers
px, qx and rx such that

1. For all x ∈ S, px + qx + rx = 1;

2. q0 = 0;

3. If S = {0, 1, ..., d}, then pd = 0; and

4. For all x ∈ S,


P (x, x+ 1) = px
P (x, x) = rx
P (x, x− 1) = qx

Examples: gambler’s ruin, Ehrenfest chain.

Every birth-death chain has a directed graph that looks like this:
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5.1. Birth-death Markov chains

Observe: A birth-death chain is irreducible if and only if no px nor qx is 0 (other
than q0 or pd). If a birth-death chain is not irreducible, then the communicating
classes of the chain are themselves birth-death chains (after perhaps relabeling the
state space).

Analysis of hitting times for birth-death chains

Question: Under what circumstances is an irreducible birth-death chain recurrent?
When is such a chain transient?

Partial answer: If S = {0, 1, 2, ..., d}, then since S is finite, the chain is recurrent.

Refined Question: Under what circumstances is an irreducible birth-death
chain with S = {0, 1, 2, 3, ...} recurrent? When is such a chain transient?

We will approach this question similar to how we approached the question for
random walks (by analyzing hitting times to sets consisting of two points a and b).

Lemma 5.2 Let {Xt} be an irreducible birth-death chain. Let A = {a, b} ⊆ S and
suppose X0 = x where a < x < b. Then P (TA <∞) = 1.

PROOF This proof is essentially the same as the proof of the similar statement
given for random walk. Let p = min{pa, pa+1, ..., pb}. Since {Xt} is irreducible,
p > 0. Now let Gn be the event that between times (n− 1)(b−a) and n(b−a), there
are only births in the birth-death chain. Note that P (Gn) ≥ pb−a > 0, so by repeat-
ing the rest of the proof given for random walk, we see that P (TA = ∞) ≤ P (no
Gn occurs) = 0. �

Question: Px(Ta < Tb) = ?

We solved this question for random walks using the OST, by setting up an ap-
propriate martingale related to the random walk (the key idea was that for a ran-

dom walk, the process
{(

q
p

)Xt}
was a martingale). You can do something similar

for birth-death chains, but you need a more complicated definition of the martin-
gale:
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5.1. Birth-death Markov chains

Lemma 5.3 Let {Xt} be an irreducible birth-death chain. Then define γ0 = 1 and for
each y > 0, set

γy = qyqy−1qy−2 · · · q2q1

pypy−1py−1 · · · p2p1
.

Define the function γ̃ : S → R by setting γ̃(0) = 1, γ̃(1) = 1 and for y ≥ 2, setting

γ̃(y) = 1 + q1

p1
+ q2q1

p2p1
+ ...+ qy−1qy−2 · · · q2q1

py−1py−2 · · · p2p1

= γ0 + γ1 + γ2 + ...+ γy−1

=
y−1∑
j=0

γj.

Then the stochastic process {Yt} is a martingale, where Yt = γ̃(Xt).

PROOF HW

Theorem 5.4 (Escape probabilities for birth-death chains) Let {Xt} be an irre-
ducible birth-death chain with infinite state space. Then if a < x < b,

Px(Ta < Tb) =

b−1∑
y=x

γy

b−1∑
y=a

γy

and Px(Tb < Ta) =

x−1∑
y=a

γy

b−1∑
y=a

γy

where γ0 = 1 and for all y > 0,

γy = qyqy−1qy−2 · · · q2q1

pypy−1py−1 · · · p2p1
.

PROOF Let {Yt} = {γ̃(Xt)} be as in the preceding lemma; we see

Y0 = γ̃(X0) = γ̃(x).
Let T = min(Ta, Tb) = T{a,b}; T is a finite stopping time and {Xt} is bounded

(by a and b) until T occurs, so the tweaked version of the OST applies to give

γ̃(x) = E[Y0] = E[YT ] = γ̃(a)P (XT = a) + γ̃(b)P (Xt = b)
= γ̃(a)Px(Ta < Tb) + γ̃(b)[1− Px(Ta < Tb)]
= γ̃(b) + [γ̃(a)− γ̃(b)]Px(Ta < Tb).

Solve for Px(Ta < Tb) to get

Px(Ta < Tb) = γ̃(b)− γ̃(x)
γ̃(b)− γ̃(a) =

b−1∑
y=0

γy−
x−1∑
y=0

γy

b−1∑
y=0

γy−
a−1∑
y=0

γy

=

b−1∑
y=x

γy

b−1∑
y=a

γy

.
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5.1. Birth-death Markov chains

The other result follows from the complement rule. �

Using this theorem, we can determine under which circumstances an irreducible
birth-death chain on an infinite state space is recurrent:

Lemma 5.5 Let {Xt} be an irreducible birth-death chain with infinite state space.
Then {Xt} is recurrent if and only if f1,0 = 1.

PROOF {Xt} is irreducible, so {Xt} is recurrent ⇐⇒ 0 is recurrent ⇐⇒ f0,0 = 1.
Now

f0,0 = P0(T0 <∞)
= P0(T0 = 1) + P0(T0 ∈ [2,∞))
=

Theorem 5.6 (Recurrence/transience of birth-death chains) Let {Xt} be an ir-
reducible birth-death chain with infinite state space. Then defining γy as in the previ-
ous theorem,

{Xt} is recurrent ⇐⇒
∞∑
y=0

γy =∞.

PROOF Suppose X0 = 1. Since {Xt} is a birth-death chain,

1 ≤ T2 < T3 < T4 < ... < Tn < ...

so
(T0 < T2) ⊆ (T0 < T3) ⊆ (T0 < T4) ⊆ ...
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5.1. Birth-death Markov chains

and consequently

f1,0 = P1(T0 <∞)

= P1

( ∞⋃
n=2

(T0 < Tn)
)

= lim
n→∞

P1(T0 < Tn) by monotonocity (chapter 1 of Math 414)

= lim
n→∞


n−1∑
y=1

γy

n−1∑
y=0

γy

 by Theorem 5.4 with x = 1, a = 0, b = n

= lim
n→∞


n−1∑
y=0

γy − γ0

n−1∑
y=0

γy



= lim
n→∞


n−1∑
y=0

γy − 1
n−1∑
y=0

γy



= lim
n→∞

1− 1
n−1∑
y=0

γy



=


By the preceding lemma, {Xt} is recurrent if and only if f1,0 = 1, so this proves the
theorem. �
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5.1. Birth-death Markov chains

Example: Let {Xt} be a birth-death chain on S = {0, 1, 2, 3, ...} such that

px = x+ 2
2(x+ 1) and qx = x

2(x+ 1) .

Is this chain recurrent or transient?
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5.1. Birth-death Markov chains

Stationary distributions of irreducible birth-death chains

Let the state space be S = {0, 1, 2, 3, ..., d} or S = {0, 1, 2, 3, ...} (in the second situa-
tion, d =∞ in what follows).

π stationary⇒
d∑

x=0
π(x)P (x, y) = π(y) and

∑
y∈S

π(y) = 1

⇒


π(0)r0 + π(1)q1 = π(0) (y = 0)
π(y − 1)py−1 + π(y)ry + π(y + 1)qy+1 = π(y) (y > 0)
d∑
y=0

π(y) = 1

Since py +qy = 1−ry for all y, these equations yield (after some significant algebra)

π(y + 1) = py
qy+1

π(y)∀ y ≥ 0

⇒ π(y) = p0p1p2 · · · py−1

q1q2 · · · qy
π(0)∀ y ≥ 1

Define

ζy =
{ p0p1···py−1

q1q2···qy if y > 0
1 if y = 0

Then π(y) = ζyπ(0) for all y ∈ S.
This means

1 =
∑
y∈S

π(y) =
∑
y∈S

ζyπ(0);

this can only be true if∑
y∈S

ζy converges (this is always true if d <∞).

in which case

π(0) ·
∑
y∈S

ζy = 1⇒ π(0) =
∑
y∈S

ζy

−1

.

We have essentially proven:
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5.1. Birth-death Markov chains

Theorem 5.7 (Stationary distribution for irred. birth-death chains) Let {Xt} be
an irreducible birth-death chain. Define ζ0 = 1 and for each y > 0 in S, define
ζy = p0p1···py−1

q1q2···qy . Then:

1. If
∑
y∈S

ζy converges, then {Xt} is positive recurrent and has one stationary dis-

tribution π defined by

π(x) = ζx∑
y∈S

ζy
.

(This includes all situations where S is finite.)

2. If
∑
y∈S

ζy diverges, then {Xt} has no stationary distributions (so it is either null

recurrent or transient).

Example: Let {Xt} be a birth-death chain on {0, 1, 2, 3, ...}with p0 = 1; px = 1
x+1

for all x ≥ 1; qx = x
x+1 for all x ≥ 1. Find the stationary distribution of {Xt}, if one

exists.
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5.2 Birth-death CTMCs
A birth-death CTMC is a CTMC where all the jumps are of size ±1. More for-

mally:

Definition 5.8 A birth-death CTMC is a CTMC {Xt} whose state space is either
S = {0, 1, ..., d} or S = {0, 1, 2, ...} or S = Z, such that qx,y = 0 whenever |x− y| >
1. The numbers λx = qx,x+1 are called the birth rates of the process and the numbers
µx = qx,x−1 are called the death rates. A birth-death CTMC is called a pure birth
process if µx = 0 for all x, and is called a pure death process if λx = 0 for all x.

In a birth-death CTMC, we have

Observe: An irreducible birth-death CTMC on S = {0, 1, ..., d} or S = {0, 1, 2, ...}
is transient if and only if its embedded jump chain is transient.

This jump chain is a (discrete-time) birth-death chain with transition function
πx,y, i.e.

“px” = λx
qx

and “qx” = µx
qx

:
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5.2. Birth-death CTMCs

Recall from Packet 416-2 that the jump chain (and hence the birth-death CTMC)
is transient if and only if

∞∑
x=1

γx <∞

We have proven:

Theorem 5.9 An irreducible birth-death CTMC on S = {0, ..., d} or S = {0, 1, ..., }
is transient if and only if ∑

x∈S

µ1 · · ·µx
λ1 · · ·λx

<∞.

Similarly, one can show:

Theorem 5.10 An irreducible birth-death CTMC on S = {0, ..., d} or S = {0, 1, ..., }
is positive recurrent if and only if

∑
x∈S

λ0 · · ·λx−1

µ1 · · ·µx
<∞,

in which case the stationary distribution π satisfies

π(x) = φx∑
x∈S

φx

where φ0 = 1 and for all y > 0,

φy = λ0 · · ·λy−1

µ1 · · ·µy
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5.2. Birth-death CTMCs

Example: (Pure birth process) Consider a birth-death CTMC on S = {0, 1, 2, 3, ...}
with µx = 0 for all x.
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5.2. Birth-death CTMCs

.

133



5.2. Birth-death CTMCs

Example: (Two-state birth-death CTMC) Consider a birth-death CTMC on S =
{0, 1} = {OFF, ON}.
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5.2. Birth-death CTMCs

Example: A Poisson process is a pure birth process on S = {0, 1, 2, ...} with
λx = λ for all x.
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5.3. Galton-Watson chain (branching in discrete time)

5.3 Galton-Watson chain (branching in discrete time)
Setup: Consider lifeforms that reproduce asexually. Each organism has N

offspring, where N : Ω → {0, 1, 2, 3, ...} is a r.v. with density f = fN (so that
fN(n) = P (N = n), the probability that any parent has exactly n offspring). Let
Xt be the number of organisms in the tth generation for t = 0, 1, 2, 3, .... {Xt} is a
Markov chain called a branching chain or a Galton-Watson chain.

Note: If f(1) = 1, then P (N = 1) = 1 so the number of organisms is constant
from generation to generation. In this setting, every state is absorbing, and the
branching chain is called “trivial”.

In a nontrivial branching chain, the transition function is

P (x, y) =

Associated picture:

Theorem 5.11 Let {Xt} be a nontrivial branching chain. Then 0 is absorbing (hence
recurrent), but all other states are transient.

PROOF Earlier (group presentations).

In a branching chain, we are most interested in “extinction probabilities”, i.e.
the probability that you eventually hit 0:

Set η = f1,0 = P1(T0 <∞). Then fx,0 = ηx for all x ≥ 1.

136



5.4. Continuous-time branching processes

Theorem 5.12 Let {Xt} be a nontrivial branching chain and let η = f1,0 (η is called
the extinction probability of the chain). Then η = f1,0 is the solution of the equation
t = GN(t), where GN is the pgf of the number of offspring N . (Of course this solution
has to be in [0, 1] for this to make sense.)

PROOF Earlier (group presentations).

Corollary 5.13 Let {Xt} be a nontrivial branching chain and let η = f1,0. Then, if
N is the number of offspring,

1. EN ≤ 1 ⇐⇒ η = 1.

2. EN > 1 ⇐⇒ η < 1.

PROOF First, if f(0) = 0, then Xt+1 ≥ Xt for all t, so η = 0; in this case EN ≥ 1
since the branching chain is nontrivial.

Henceforth assume that f(0) > 0. In this setting, from facts about pgfs in Math
414, the equationGN(t) = t has a solution in (0, 1) if and only if EN > 1. The result
then follows from Theorem 5.12. �

5.4 Continuous-time branching processes
Setup: Suppose that you start at time t = 0 with a population of X0 particles

(X0 is a random variable taking values in {0, 1, 2, ...}). Each particle does nothing
for time A (A : Ω→ [0,∞) is a cts r.v.) and the either splits into two particles (with
probability p) or dies (with probability 1− p). For t ∈ [0,∞), let Xt be the number
of particles at time t. {Xt} is called a branching process.
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5.4. Continuous-time branching processes

“population picture” process {Xt}

Theorem 5.14 (Minimum of ⊥ exponential r.v.s is exponential) Let A1, ..., Ad
be ⊥ exponential r.v.s with respective parameters λ1, ..., λd. Then min(A1, ..., Ad) is

exponential with parameter
d∑
j=1

λj .

PROOF HW (as a hint, start by computing the distribution function of min(A1, ..., Ad)).
�

Corollary 5.15 Let {Xt} be a branching process with the waiting timeA exponential.
Then {Xt} is a CTMC (in fact, it is a birth-death process).

(Henceforth, all branching processes are assumed to have A exponential, and λ
is the parameter of the exponential waiting time.)

Recall that a birth-death process is determined by birth and death rates. In a
branching process, we have
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5.4. Continuous-time branching processes

Observations: In a branching process,

1. 0 is absorbing;

2. Every nonzero state in S is transient.

(Proofs are similar to the discrete-time case.)

Theorem 5.16 Let {Xt} be a branching process. Then the extinction probability η =
f1,0 satisfies

Note: As with a branching chain, fx,0 = ηx for all x ∈ {0, 1, 2, ...}.

PROOF Notice that f1,0 in the branching process is the same as f1,0 in the associated
jump chain. Now use the formulas from earlier:
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5.5. Discrete-time queuing chains

5.5 Discrete-time queuing chains
Setup: Consider a line at a supermarket checkout counter where one person is

checked out per unit of time. Take a r.v. Z : Ω→ {0, 1, 2, 3...} with density fZ , and
assume in the jth unit of time, Zj people get in line, where Z1, Z2, ... are i.i.d. r.v.s,
each having the density of Z. Let X0 be the number of customers initially in line,
and letXt be the number of customers in line after the tth unit of time (where t ∈ N).

This is a Markov chain called a queuing chain with S = {0, 1, 2, ...} and transi-
tion function

Theorem 5.17 A queuing chain is irreducible if and only if (fZ(0) > 0 and fZ(0) +
fZ(1) < 1).

PROOF Earlier (group presentations).

Theorem 5.18 (Recurrence/transience of queuing chains) Let {Xt} be a queu-
ing chain with Z customers arriving in each unit of time. Then:

1. If EZ > 1, then {Xt} is transient.

2. If EZ = 1 and {Xt} is irreducible, then {Xt} is null recurrent.

3. If EZ < 1 and {Xt} is irreducible, then {Xt} is positive recurrent, and the
mean return time to state 0 is m0 = (1− EZ)−1.

PROOF The transience/recurrence was earlier (group presentations). The proof of
the positive recurrence/null recurrence issues are omitted.
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5.6. The infinite server queue

5.6 The infinite server queue
Setup: Let Xt denote the number of people in line for some service (including

those being served). Assume that the people arrive at rate λ (i.e. that the number
of arrivals in line follows a Poisson process with rate λ) and that the time it takes
each customer to be served is exponential with parameter µ. Assume that there are
an infinite number of servers (so no one has to wait in line before being served).
The resulting CTMC {Xt} is called the infinite server queue.

The infinite server queue is also called the M/M/∞ queue.

Observe: {Xt} is a birth-death process with birth and death rates
λx =

µx =

Question: What is the time t transition function for the infinite server queue?

Answer: LetCt = # of customers arriving in [0, t]. Suppose for now thatCt = c.
The first thing we want to know is how the arrival times of these c customers are
distributed. To determine this, choose a partition 0 = t0 < t1 < ... < tm = t of [0, t].

Then let Vj = # of customers arriving in (tj−1, tj].

Now

P (Vj = xj ∀j |Ct = x1 + ...+ xm) =

so the times when customers arrive (given a fixed total number of arriving cus-
tomers in an interval of length t) are i.i.d. uniform on [0, t].
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5.6. The infinite server queue

Notice that if a customer arrives at time s ∈ (0, t], the probability he is still being
served at time t is

So if a customer arrives at a uniformly chosen time in (0, t], we have

pt = P (customer is still being served at time t) =

Let Xnew
t = # of customers arriving in (0, t] still being served at time t.

P (Xnew
t = n |Ct = k) =
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5.6. The infinite server queue

Therefore

P (Xnew
t = n) =

∞∑
k=0

P (Xnew
t = n and Ct = k)

=
∞∑
k=n

P (Xnew
t = n and Ct = k) (since Xnew

t ≤ Ct)

=
∞∑
k=n

P (Xnew
t = n |Ct = k)P (Ct = k)

=
∞∑
k=n

[(
k
n

)
pnt (1− pt)k−n

]
(λt)k
k! e−λt

= pnt e
−λt

n!

∞∑
k=n

(1− pt)k−n(λt)k
(k − n)!

= (λtpt)ne−λt
n!

∞∑
k=n

[λt(1− pt)]k−n
[k − n]!

Now change indices in the series by setting s = k − n:

= (λtpt)ne−λt
n!

∞∑
s=0

[λt(1− pt)]s
s!

= (λtpt)ne−λt
n! eλt(1−pt)

= (λtpt)ne−λtpt
n!

This proves that Xnew
t is Poisson with parameter λtpt.

Now let Xorig
t = # of customers present initially that are still being served at

time t.

Xorig
t is with parameters


Since Xt = Xnew

t +Xorig
t , we have

Px,y(t) = Px(Xt = y)

=
min(x,y)∑
k=0

Px(Xorig
t = k)Px(Xnew

t = y − k)

=
min(x,y)∑
k=0

[( x
k

)
e−µkt(1− e−µt)x−k

] 
[
λ
µ
(1− e−µt)

]y−k
(y − k)! exp

(
−λ
µ

(1− e−µt)
)
 .

This is a miserable formula, but it can be used to find the steady-state distribution:
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5.6. The infinite server queue

lim
t→∞

Px,y(t) = lim
t→∞

(k = 0 term of the above sum)

= lim
t→∞

(
x
0

)
e−0

(
1− e−µt

)x 
[
λ
µ

(1− e−µt)
]y

y! exp
(
−λ
µ

(
1− e−µt

))
= (1)1(1)x


[
λ
µ
(1)
]y

y! exp
(
−λ
µ

(1)
)

=

(
λ
µ

)y
y! e−(λ/µ).

We have proven:

Theorem 5.19 (Steady-state distribution of the infinite server queue) The steady-
state distribution of the infinite server queue where the customers arrive exponentially
with parameter λ and are served exponentially with parameter µ is Poisson with pa-
rameter λ

µ
.

Note: The existence of a steady-state distribution means that the infinite server
queue is positive recurrent (this could also be derived using the facts from earlier
in this chapter about birth-death CTMCs).
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Chapter 6

Brownian motion

6.1 Definition and construction
Goal: Develop a model for “continuous random movement”, i.e. a continuous

version of simple, unbiased random walk. This stochastic process will be called
{Wt}.

First Question: What properties should such a process have?
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6.1. Definition and construction

PROPERTY RANDOM WALK {Wt}
index set I Z ∩ [0,∞)

(times)
state space S Z
(positions)

initial X0 = 0
distribution
independent ∀ 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ∈ Z,
increments Xt2 −Xt1 , Xt3 −Xt2 , ..., Xtn −Xtn−1

mutually ⊥

stationarity The distribution of Xt −Xs (for
property 0 ≤ s ≤ t) depends only on t− s

(time (and not on Xs, s or t) and is
homogeneity) binomial b(t− s, 1

2).

continuity trivial (or none)
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6.1. Definition and construction

Definition 6.1 A stochastic process {Wt : t ∈ [0,∞)} taking values in R (or Rd) is
called a Brownian motion (BM) or a Weiner process with parameter σ2 if

1. W0 = 0;

2. For all 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ∈ R, the random variables Wt2 −Wt1 ,Wt3 −
Wt2 , ...,Wtn −Wtn−1 are mutually ⊥;

3. For any 0 ≤ t1 ≤ t2 in R, Wt2 −Wt1 is n(0, σ2(t2 − t1)); and

4. with probability 1, the functions t 7→ Wt are continuous in t.

If σ2 = 1, then Wt is called a standard Brownian motion. A Brownian motion
starting at x is a process satisfying 2,3 and 4 above but having X0 = x.

Theorem 6.2 (Weiner’s Theorem) There is a process which is a Brownian motion.

PROOF (really just a sketch of the proof)

For each n ∈ N, let Dn be the dyadic rationals of order n, i.e.

Dn =
{
m

2n : m ∈ N
}

=
{

0, 1
2n ,

2
2n ,

3
2n , ...

}
.

For n ≥ 1, let Dnew
n = Dn − Dn−1. These are the numbers which are expressible as

an integer over 2n, but not expressible as an integer over 2n−1; equivalently these
are numbers which are an odd integer divided by 2n.

Quick observations about the dyadic rationals of order n:

• D0 = N = {0, 1, 2, 3, ...}

• D0 ⊆ D1 ⊆ D2 ⊆ D3 ⊆ ...

•
∞⋃
n=0

Dn is countable and dense in [0,∞)

Notation: For all t ∈ Dnew
n , set t+ = min{s ∈ Dn−1 : s > t} and set t− = max{s ∈

Dn−1 : s < t}.
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6.1. Definition and construction

Step 0: For each t ∈ D0 = Z, let Yt be a n(0, 1) r.v. independent of the other Yts.
Let {B0(t)}t∈N be a discrete-time stochastic process defined by setting

B0(t) =
t∑

j=1
Yj.

Then let {B̂0(t)}t∈[0,∞) be the continuous-time stochastic process obtained by inter-
polating linearly between the points of {B0(t)}:

Step 1: For each t ∈ Dnew
1 , let Yt be a n(0, 1

2) r.v. independent of the Yts defined
either here or earlier. Let {B1(t)}t∈D1 be a discrete-time stochastic process defined
by setting

B1(t) =
{

B0(t) if t ∈ D0
1
2 (B0(t−) +B0(t+)) + Yt if t ∈ Dnew

1
.

Then let {B̂1(t)}t∈[0,∞) be the continuous-time stochastic process obtained by inter-
polating linearly between the points of {B1(t)}:
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6.1. Definition and construction

StepN+1: Suppose the processes {BN(t)} and {B̂N(t)} have been constructed.
Here is how we define {BN+1(t)}: for each t ∈ Dnew

N+1, let Yt be a n(0, 1
2N+1 ) r.v. inde-

pendent of the Yts defined either here or earlier. Let {BN+1(t)}t∈DN+1 be a discrete-
time stochastic process defined by setting

BN+1(t) =
{

BN(t) if t ∈ DN
1
2 (BN(t−) +BN(t+)) + Yt if t ∈ Dnew

N+1
.

Then let {B̂N+1(t)}t∈[0,∞) be the continuous-time stochastic process obtained by
interpolating linearly between the points of {BN+1(t)}:

Now defineWt = lim
n→∞

B̂N(t). One can show that {Wt} satisfies all the properties
necessary to be a Brownian motion (details are on pages 161-163 of Norris). �

Brownian motion arises commonly in real-world situations:

1. Movements of particles suspended in a liquid

2. Fluctuations in the stock market

3. Quantum mechanics (path-integral formulation)

4. Option pricing models (Black-Scholes) (quackery according to some)

5. Cosmology models
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6.1. Definition and construction

Why is BM so prevalent? Because it arises as a “limit of rescaled random
walks”:

Brownian motions approximate random walks with small but frequent jumps
(so long as the size of the jump is proportional to the square root of the time be-
tween jumps).

What do we know about Brownian motion so far?

Example: Suppose {Wt} is a BM with parameter σ2 = 9.

1. Describe the random variable W3.

2. Describe the random variable W8 −W2.

3. Find the probability that W8 > 1.

4. Find the probability that W7 −W5 ≤ 2.

5. Find the probability that W8 −W7 < 1 and W14 −W12 > −3.
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6.2. Markov properties of Brownian motion

6.2 Markov properties of Brownian motion
Let {Wt} be a BM. The discrete version of the Markov property would say

something like this:

P (Wt = y |Wt1 = x1,Wt2 = x2, ...,Wtn = xn) = P (Wt = y |Wtn = xn)

∀ 0 ≤ t1 ≤ t2 ≤ t3 ≤ ... ≤ tn ≤ t,∀x1, ..., xn, y ∈ R

A better formulation of the same idea in this setting is this:

This holds because of the independent increment property in the definition of BM.

Definition 6.3 Let {Wt} be a BM. Given x, y ∈ R and t ≥ 0, the time t transition
density for the BM is

px,y(t) = fWt|W0(y|x) (= fWs+t|Ws(y|x)∀ s by time homogeneity).

Theorem 6.4 (Markov property for Brownian motion) Let {Wt} be a BM with
parameter σ2. Then the time t transition densities are n(x, σ2t).

In other words, if Ws = x, then Ws+t is a continuous r.v. with density function

f(y) = 1
σ
√

2πt
exp

[
−(y − x)2

2σ2t

]
.

Theorem 6.5 (Strong Markov property) Let {Wt} be a BM and let T be a stopping
time for {Wt}. Define Yt = WT+t −WT . Then Yt is a BM, independent of {Wt : t ≤
T}.

PROOF Hard analysis.

Note: This property also holds for Markov chains and CTMCs; for a proof, read
p. 19-20 and p. 223-228 of Norris.
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6.2. Markov properties of Brownian motion

Theorem 6.6 (Reflection Principle) Let {Wt} be a BM with parameter σ2. Fix
b > 0 and let Tb = min{t ≥ 0 : Wt = b}. Then

FTb(t) = P (Tb ≤ t) = 2− 2Φ
(

b

σ
√
t

)
.

PROOF
P (Wt ≥ b) = P (Wt ≥ b |Tb ≤ t)P (Tb ≤ t)

⇒ FTb(t) = P (Tb ≤ t) = P (Wt ≥ b)
P (Wt ≥ b |Tb ≤ t)
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6.2. Markov properties of Brownian motion

Corollary 6.7 Let {Wt} be a BM with parameter σ2. Fix b > 0 and let Tb = min{t ≥
0 : Wt = b}. Then Tb has density

fTb(t) = b

σ
√

2πt3
exp

[
−b2

2tσ2

]

(where Φ is the cdf of the standard normal).

PROOF Differentiate FTb with respect to t. �

Corollary 6.8 Let {Wt} be a BM with parameter σ2. Then {Wt} is irreducible, i.e.
for any b ∈ R,

P (Wt = b for some t ≥ 0) = 1.
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6.2. Markov properties of Brownian motion

Theorem 6.9 (Recurrence of BM) Brownian motion (in dimension 1, starting at
any value) is recurrent (i.e. with probability 1, there is an unbounded set of times t
such that Wt = W0).

PROOF It is sufficient to show P0(Ws = 0 for some s ≥ 1) = 1. We have

P0(Ws = 0 for some s ≥ 1) = lim
t→∞

P0(Ws = 0 for some s ∈ [1, t])

= lim
t→∞

∫ ∞
−∞

fW1(b)P0(Ws = 0 for some s ∈ [1, t] |W1 = b) db

= lim
t→∞

∫ ∞
−∞

1
σ
√

2π
exp

(
−b2

2σ2

)[
2− 2Φ

(
b

σ
√
t− 1

)]
db

= lim
t→∞

2
σ
√

2π

∫ ∞
−∞

exp
(
−b2

2σ2

)∫ ∞
b

σ
√
t−1

1√
2π

exp
(
−x2

2

)
dx db
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6.2. Markov properties of Brownian motion

From the previous page, we have

P0(Ws = 0 for some s ≥ 1) = lim
t→∞

2
σ
√

2π

∫ ∞
−∞

exp
(
−b2

2σ2

)∫ ∞
b√
t−1

1
σ
√

2π
exp

(
−u2

2σ2

)
du db

= 1
πσ2

∫ ∞
−∞

∫ ∞
0

exp
(
−(u2 + b2)

2σ2

)
du db

= 1
πσ2

∫ ∞
r=0

∫ π

0
exp

(
−r2

2σ2

)
r dθ dr

= 1
σ2

∫ ∞
0

e−r
2/2σ2

r dr

Let v = −r2/2σ2 so that dv = − r

σ2dr, i.e. −σ2 dv = r dr;

= 1
σ2 (−σ2)

∫ −∞
0

ev dv

=
∫ 0

−∞
ev dv = e0 − e−∞ = 1.
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6.3. Martingales associated to Brownian motion

6.3 Martingales associated to Brownian motion
Theorem 6.10 Let {Wt} be a standard Brownian motion. Then each of these is a
martingale:

• {Wt}

• {W 2
t − t}

•
{

exp
(
θWt − θ2t

2

)}
(for any constant θ ∈ R)

PROOF We start with the proof that {Wt} is a martingale. Let {Ft} be the natural
filtration of {Wt}, and let 0 < s < t:

E[Wt | Fs] = E[Ws + (Wt −Ws) | Fs]
= E[Ws | Fs] + E[Wt −Ws | Fs]
= Ws + E[Wt −Ws | Fs] (since Ws is Fs-mble)
= Ws + E[Wt −Ws] (since Wt −Ws ⊥ Fs)
= Ws + 0 (since Wt −Ws is n(0, σ2(t− s)))
= Ws.

Thus {Wt} is a martingale by definition.
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6.3. Martingales associated to Brownian motion

.
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6.3. Martingales associated to Brownian motion

Theorem 6.11 Let {Wt} be a standard Brownian motion. Then for any stopping time
T for which the OST holds, we have the following:

• (Wald’s First Identity for BM) EWT = EW0;

• (Wald’s Second Identity for BM) E[W 2
T ] = ET ;

• (Wald’s Third Identity for BM) E
[
exp

(
θWT − θ2T

2

)]
= 1.

PROOF First, we prove Wald’s First Identity. From the previous theorem, we know
that {Wt} is a martingale. By the OST, this means that EWT = EW0.

For the second identity, we know from the previous theorem that {W 2
t − t} is a

martingale. By the OST, this means

0 = E[W 2
0 − 0] = E[W 2

T − T ]
= E[W 2

T ]− ET.

Add ET to both sides to get Wald’s Second Identity.

For the last identity, we know from the previous theorem that
{

exp
(
θWt − θ2t

2

)}
is a martingale, so by the OST we have

1 = E

[
exp

(
θW0 −

θ2 · 0
2

)]
= E

[
exp

(
θWT −

θ2T

2

)]
. �

Theorem 6.12 Let {Wt} be a standard Brownian motion starting at x. Let a, b ∈ R
with a < x < b and let T = min(Ta, Tb) = Ta,b. Then

Px(Ta < Tb) = b− x
b− a

and
ET = bx+ ax− ab.

PROOF By Theorem 6.8, P (T <∞) = 1, so Px(Tb < Ta) = 1− Px(Ta < Tb).
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6.3. Martingales associated to Brownian motion

.

159



6.3. Martingales associated to Brownian motion

Brownian motion with drift

Idea: Unbiased simple random walk : BM :: Biased simple random walk : ?

Definition 6.13 A Brownian motion with drift is a stochastic process {Xt}t≥0
satisfying Xt = Wt + µt, where µ ∈ R is a constant and {Wt} is a BM. µ is called the
drift parameter of {Xt}.

Theorem 6.14 (Properties of BM with drift) Suppose {Xt} is a BM with drift.
Then:

1. For each t, Xt is n(µt, σ2t).

2. (Independent increment property) if t1 < t2 < t3 < t4, then Xt2 − Xt1 ⊥
Xt4 −Xt3 .

3. (Time homogeneity) For all s < t, Xt −Xs is n(µ(t− s), σ2(t− s)).

4. (Strong Markov property) If T is any stopping time, then {XT+t −XT} is a
BM with drift (with the same parameters as {Xt}), independent of {Xt}t≤T .

PROOF
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6.3. Martingales associated to Brownian motion

.
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6.3. Martingales associated to Brownian motion

Theorem 6.15 Suppose {Xt} is a BM with drift. Then the process {Mt} defined by

Mt = exp
(−2µ
σ2 Xt

)
is a martingale.

PROOF HW

Corollary 6.16 (Escape probabilities for BM with drift) Suppose {Xt} is a BM
with drift (starting at 0). Then for all a < 0 and b > 0,

P (Tb < Ta) =
1− exp

(
−2µa
σ2

)
exp

(
−2µb
σ2

)
− exp

(
−2µa
σ2

)
and

P (Ta < Tb) =
exp

(
−2µb
σ2

)
− 1

exp
(
−2µb
σ2

)
− exp

(
−2µa
σ2

)
PROOF HW

Application: Suppose the price of a stock is currently $70. If the price is mod-
eled with a BM with drift with µ = 1

2 and σ2 = 8, what is the probability the price
of the stock hits $80 before it hits $60?
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6.4. Gaussian processes

6.4 Gaussian processes
Definition 6.17 A stochastic process {Xt : t ∈ I} is called Gaussian if for any
t1, ..., tn ∈ I, the collection of random variables

X = (Xt1 , ..., Xtn)

has a joint normal distribution (i.e. every finite linear combination of the Xj is nor-
mal).
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6.4. Gaussian processes

Recall from Math 414: Joint normal distributions are determined by a mean
vector −→µ and a covariance matrix Σ (see Math 414). Therefore, we see that a Gaus-
sian process is completely determined if you know the mean of Xt for each t and
the covariances between s and t for all s and t. Toward that end, we make the
following definitions:

Definition 6.18 Let {Xt} be a stochastic process where EX2
t <∞ for all t ∈ I. The

mean function of {Xt} is the function µX : I → R is defined by

µX(t) = E[Xt].

The covariance function of {Xt} is the function rX : I × I → R is defined by

rX(s, t) = Cov(Xs, Xt).

Theorem 6.19 A Gaussian process is determined completely by its mean and covari-
ance functions, i.e. if two Gaussian processes have the same mean and covariance
functions, then they are the same process.

Example 1: Let Z1 and Z2 be i.i.d. n(0, σ2) r.v.s and let λ > 0. Define, for each
t ∈ [0,∞), Xt by Xt = Z1 cosλt+ Z2 sin λt.

1. Prove that {Xt} is Gaussian.

2. Find the mean and covariance functions of {Xt}.

3. Find the variance of X3.
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6.4. Gaussian processes

.

Example 2: Let {Xt} be a Poisson process with rate λ. Find the mean and
covariance functions of {Xt}. Is {Xt} Gaussian?
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6.4. Gaussian processes

Theorem 6.20 Brownian motion is a Gaussian process with µW (t) = 0 and rW (s, t) =
σ2 min(s, t).

PROOF First, we show that {Wt} is Gaussian: let b1, ..., bn ∈ R and let t1, ..., tn ∈
[0,∞); without loss of generality t1 < t2 < ... < tn. Let t0 = 0 (for notational
purposes only). Then

n∑
j=1

bjWtj = b1Wt1 + b2Wt2 + ...+ bnWtn

= b1Wt1 + b2 [Wt1 + (Wt2 −Wt1)] + b3 [Wt1 + (Wt2 −Wt1) + (Wt3 −Wt2)] + ...

= (b1 + ...+ bn)Wt1 + (b2 + ...+ bn)(Wt2 −Wt1) + (b3 + ...+ bn)(Wt3 −Wt2) + ...

=
 n∑
j=1

bj

Wtj +
 n∑
j=2

bj

 (Wt2 −Wt1) +
 n∑
j=3

 (Wt3 −Wt2) + ...

=
n∑
i=1

 n∑
j=i

bj

 (Wti −Wti−1).

All the terms inside the parentheses are normal (by the Markov property) and
independent (by the independent increment property). Therefore any linear com-
bination of them is normal, so

∑n
j=1 bjWtj is normal, so {Wt} is Gaussian by defini-

tion.

Now for the mean function:

µW (t) = E[Wt] = E[n(0, σ2t) = 0.

Finally, the covariance function: suppose first that s ≤ t. Then

rW (s, t) = Cov(Ws,Wt) = Cov(Ws,Ws + (Wt −Ws))
= Cov(Ws,Ws) + Cov(Ws,Wt −Ws)
= V ar(Ws)
= σ2s.

If t ≤ s, a symmetric computation gives rW (s, t) = σ2t, so in general rW (s, t) =
σ2 min(s, t) as desired. �
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6.5. Symmetries and scaling laws

Theorem 6.21 BM with drift is a Gaussian process with µX(t) = µt and rW (s, t) =
σ2 min(s, t).

PROOF HW

Theorem 6.22 Let {Xt} be a Gaussian process, and let f and g be functions from R
to R. Then, if for each t we set Yt = f(t)Xg(t), {Yt} is a Gaussian process whose mean
and covariance functions are

µY (t) = f(t)µX(g(t))

rY (s, t) = f(s)f(T )rX(g(s), g(t))

PROOF First, we will prove {Yt} is Gaussian. Let t1, ..., tn ∈ I and let b1, ..., bn ∈ R.
Then

n∑
j=1

bjYtj =
n∑
j=1

bjf(tj)Xg(tj) =
n∑
j=1

(bjf(tj))Xg(tj)

Since {Xt} is assumed Gaussian, the linear combination above is therefore normal
so {Yt} is Gaussian. Now for the mean function:

µY (t) = E[Yt] = E[f(t)Xg(t)] = f(t)E[Xg(t)] = f(t)µX(g(t)).

Finally, the covariance function:

rY (s, t) = Cov(Ys, Yt) = Cov(f(s)Xg(s), f(t)Xg(t)) = f(s)f(t)Cov(Xg(s), Xg(t))
= f(s)f(t)rX(g(s), g(t)).

This completes the proof. �

6.5 Symmetries and scaling laws
The upshot of the preceding theorem is that you take some process of the form

f(t)Wg(t), where {Wt} is a BM, then you know that {Xt} is Gaussian and you can
work out the mean and covariance functions of {Xt} using these formulas. It turns
out that sometimes these mean and covariance functions are of the form µX(t) = 0
and rX(s, t) = σ2 min(s, t), in which case you can conclude that {Xt} is the same as
{Wt}!
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6.5. Symmetries and scaling laws

Theorem 6.23 Let {Wt} be a standard BM. Then each of the following processes are
also standard BMs:

• −Wt

• Wt+s −Ws (for any s ≥ 0)

• tW1/t

• aWt/a2 (for any a > 0)

The fact that aWt/a2 is also a BM is called the universal scaling law of BM.

PROOF The idea behind the proof is that we can show these processes are Gaus-
sian, and if we compute their mean and covariance functions and observe that
those are the same as the mean and covariance functions of a BM, then we can
conclude that they must be BMs.

The last two are left as homework exercises.
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6.5. Symmetries and scaling laws

Corollary 6.24 (Nondifferentiability of paths) Let {Wt} be a BM, and fix t0 ≥ 0.
With probability 1, the “Brownian path” t 7→ Wt is not differentiable at t0.

PROOF WLOG t0 = 0; otherwise apply the second bullet of the previous theorem.
Now

d

dt
Wt

∣∣∣∣∣
t=0

exists ⇐⇒ lim
h→0

Wh −W0

h
exists

⇐⇒ lim
h→0

Wh

h
exists

⇒ Wh

h
< A for some fixed constant A ∀h ∈ (0, ε)

⇐⇒ Wh < Ah ∀h ∈ (0, ε).

But by the Reflection Principle,

P (Wh < Ah) = 1−
(

2− 2Φ
(
Ah√
h

))
= 2Φ(A

√
h)− 1

which goes to zero as h→ 0. Therefore

P

(
d

dt
Wt

∣∣∣∣∣
t=0

exists
)

= 0. �

In fact, something stronger holds:

Theorem 6.25 (Nondifferentiability of paths) Let {Wt} be a BM. With probabil-
ity 1, a Brownian path is nowhere differentiable (i.e. not differentiable at any time
t).

What this means is that with probability 1, the trajectory of a Brownian motion
is “infinitely jagged”, i.e. it is nowhere smooth. Furthermore, the universal scaling
law tells us that if we take a trajectory of a BM, and zoom in on part of it (zooming
in faster horizontally than we do vertically), we will see the same thing no matter
how much we zoom in, i.e. the trajectories are “self-similar”. Thus the trajectories
in a BM are objects called fractals.
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6.6. Zero sets of Brownian motion

6.6 Zero sets of Brownian motion
Definition 6.26 Let {Wt} be a standard BM. The set Z = {t : Wt = 0} (this is a
subset of R, not a r.v.) is called the zero set of {Wt}.

Theorem 6.27 (Properties of zero sets) Let {Wt} be a standard BM. With proba-
bility one, the zero set Z has these properties:

1. Z is unbounded.

2. Z is closed, i.e. if z1, ..., zn ∈ Z, then lim
n→∞

zn ∈ Z.

3. Z is totally disconnected (i.e. Z does not contain an interval of positive
length).

4. Z is perfect (i.e. for all y ∈ Z, there are points z1, z2, ... ∈ Z with zj 6= y for all
j but lim

n→∞
zj = y)

5. Z ∩ (0, ε) is infinite for any ε > 0.

Therefore Z is infinite, closed, perfect and totally disconnected. This makes
Z something called a Cantor set. What do Cantor sets “look like”? A classical
example of a Cantor set is the middle-thirds Cantor set:
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6.6. Zero sets of Brownian motion

PROOF Statement (1) follows from the fact that {Wt} is recurrent.

Statement (2) follows from the fact that the sample functions t → Wt are con-
tinuous, hence preserve limits.

(3): Note that if Wt = 0 for all t ∈ [0, ε), then an infinite number of normal ran-
dom variables would all have to be zero. The probability of this is zero (because
among other things, normal r.v.s are cts so they take any individual value with
probability zero).

(5): From Theorem 6.15, we see that {Xt} defined byXt = tW1/t is also a BM. By
the recurrence of BM, there is an unbounded set of times t1, t2, ... such that Xt = 0.
But that means W1/t1 ,W1/t2 , ... must also all be zero. Now given any ε > 0, there
will be infinitely many of the times 1

t1
, 1
t2
, ... in the interval [0, ε) (since the tj are

unbounded), so {Wt}will have infinitely many zeros in [0, ε).

(4): Case 1: There is an increasing sequence of numbers {zn} in Z such that
zn → y.

Case 2: There is not an increasing sequence of numbers in Z which converge to
y.
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6.7. Brownian motion in higher dimensions

6.7 Brownian motion in higher dimensions

Definition 6.28 A stochastic process taking values in Rd is called standard d-dim’l
Brownian motion if each coordinate of the process is a standard BM, and the coordi-
nates are independent.

Let {Wt} be a standard d−dim’l BM and fix 0 < R1 < R2 <∞.

Let A1 = {x ∈ Rd : ||x|| = R1};
let A2 = {x ∈ Rd : ||x|| = R2};
let A = {x ∈ Rd : ||x|| ∈ (R1, R2)};

let T1 = min{t ≥ 0 : Wt ∈ A1};
let T2 = min{t ≥ 0 : Wt ∈ A2};
let T = min{T1, T2}.

Finally, for x ∈ A, define f(x) = Px(T2 < T1) and set f(x) = 0 if x ∈ A1 and set
f(x) = 1 if x ∈ A2.

By symmetry, f(x) = g(||x||) for some function g : R→ R.
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6.7. Brownian motion in higher dimensions

In dimension 2:

P (Wt never returns to within ε of 0, once it goes a distance > ε from 0)

=

P (Wt returns to 0 before going distance > R2 from 0)

=

Conclusion:

In dimension ≥ 3:

P (Wt returns to within ε of 0, once it goes a distance > ε from 0)

=

Conclusion:

We have shown the following set of facts:

Theorem 6.29 Let {Wt} be a standard, d-dim’l BM.

1. If d = 1, then {Wt} is point recurrent.

2. If d = 2, then {Wt} is point transient, but neighborhood recurrent.

3. If d ≥ 3, then {Wt} is transient.
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6.7. Brownian motion in higher dimensions

The results of this section can be used to solve some hitting time problems for
Brownian motion:

Example: Suppose the price of a stock is modeled by a standard BM. If the price
of the stock is initially 40, what is the probability that the stock price hits 60 before
it hits 30?

Example: Suppose a 3-dimensional BM starts at the point (1, 1, 1). What is the
probability that the point strikes the sphere of radius 1 centered at the origin before
it strikes the sphere of radius 2 centered at the origin?
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Appendix A

Tables

A.1 Charts of properties of common random variables
The next page has a chart listing relevant properties of the common discrete

random variables.

The following page has a chart listing relevant properties of the common con-
tinuous random variables.
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A.1. Charts of properties of common random variables
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A.1. Charts of properties of common random variables
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A.2. Useful sum and integral formulas

A.2 Useful sum and integral formulas
Triangular Number Formula: For all n ∈ {1, 2, 3, ...},

1 + 2 + 3 + ...+ n =
n∑
j=0

j = n(n+ 1)
2 .

Finite Geometric Series Formula: for all r ∈ R,
N∑
n=0

rn = 1− rN+1

1− r .

Infinite Geometric Series Formulas: for all r ∈ R such that |r| < 1,
∞∑
n=0

rn = 1
1− r

∞∑
n=N

rn = rN

1− r .

Derivative of the Geometric Series Formula: for all r ∈ R such that |r| < 1,
∞∑
n=0

nrn = r

(1− r)2 .

Exponential Series Formula: for all r ∈ R,
∞∑
n=0

rn

n! = er.

Binomial Theorem: for all n ∈ N, and all x, y ∈ R,
n∑
k=0

(
n
k

)
xkyn−k = (x+ y)n.

Vandermonde Identity: for all n, k, r ∈ N,
n∑
x=0

(
r
x

)(
n− r
k − x

)
=
(
n
k

)
.

Gamma Integral Formula: for all r > 0, λ > 0,∫ ∞
0

xr−1e−λx dx = Γ(r)
λr

.

Normal Integral Formula: for all µ ∈ R and all σ > 0,∫ ∞
−∞

exp
(
−(x− µ)2

2σ2

)
dx = σ

√
2π.

Beta Integral Formula: for all r > 0, λ > 0,∫ 1

0
xα−1(1− x)β−1 dx = Γ(α)Γ(β)

Γ(α + β) .
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A.3. Table of values for the cdf of the standard normal

A.3 Table of values for the cdf of the standard normal
Entries represent Φ(z) = P (n(0, 1) ≤ z). The value of z to the first decimal is in

the left column. The second decimal place is given in the top row.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8436 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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Ex(Z), 15
M/M/∞ queue, 141
Px(E), 15
Vx, 17
Vx,n, 75
SN , 75
SP , 75
SR, 16
ST , 16
γy, 124
σ-algebra, 34
σ-field, 34
d-dimensional BM, 172
eA, 103
n-step transition function (of a Markov

chain), 14
n-step transition probabilities, 11
x→ y, 16

aperiodic (Markov chain), 90
as yet unproven lemma, 106, 116

backward equation, 106
Bernoulli process, 5, 7
biased (random walk), 53
birth rates, 130
birth-death chain, 122
birth-death chain, escape probabilities,

124
birth-death chain, stationary distribu-

tion, 129

birth-death chains, recurrence, 125
birth-death CTMC, 130
BM, 147
Bounded Convergence Theorem for Sums,

80
branching chain, 136
branching process, 137
branching process, extinction proba-

bility, 139
Brownian motion, 147
Brownian motion starting at x, 147
Brownian motion, higher dimensions,

172

C-K equation, 101, 114
Cesáro averages, 74
Cesáro convergence, 74
Chapman-Kolmogorov equation, 101,

114
closed (set of states), 24
communicating class, 24
concentrated, 83
conditional expectation, 42
conditional expectation, properties of,

45
Continuity of transition probabilities,

115
continuous-time Markov chain, 100
continuous-time process, 5
converge, 73

180



Index

convergence in the Cesáro sense, 74
convex combination of distributions,

84
convex combination of stationary dis-

tributions, 84
covariance function, 164
CTMC, 100

death rates, 130
Decomposition Theorem, 26
Differentiability of transition probabil-

ities, 116
directed graph, 8
discrete-time process, 5
distribution, 12
divides, 89
drunkard’s walk, 65
dyadic rationals of order n, 147

Ehrenfest chain, 9
embedded chain, 119
Ergodic theorem (CTMCs), 121
Ergodic Theorem for Markov chains,

83
escape probabilities, 55
escape probabilities (for birth-death chains),

124
escape probabilities (for random walk),

57
Existence and uniqueness of station-

ary distributions, 81
existence of steady-state distributions,

91
exponential of a matrix, 103
extinction probability, 136

filtration, 37
filtration, natural, 37
first passage time, 16
forward equation, 106
fractal, 169

Galton-Watson chain, 136
Gambler’s Ruin, 63

Gaussian process, 163
greatest common divisor, 89

hitting time, 16
hitting time (CTMC), 118
holding rate, 110

i.i.d. process, 7
index set, 4
infinite server queue, 141
infinitesimal matrix, 108
infinitesimal parameters, 116
initial distribution (of a Markov chain),

6, 14
Integral Equation, 115
irreducible (CTMC), 119
irreducible (Markov chain), 24

jump chain, 119
jump matrix, 111
jump probability, 111
jump probability, formula for, 111
jump process, 100

Kronecker delta, 115

leads to, 16
linearity (of conditional expectation),

45

Markov chain, 5
Markov chain, continuous-time, 100
Markov property, 5
Markov property (BM), 151
martingale, 46
martingales, properties of, 47
matrix exponential, 103
matrix exponential, properties, 104
mean function, 164
mean return time, 75
measurable (function), 35
measurable (set), 35

natural filtration, 37
negatively biased (random walk), 53
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node (of a directed graph), 8
Nondifferentiability of BM paths, 169
null recurrent, 75
null recurrent (CTMC), 119
number of visits, 17
number of visits up to time n, 75

Optional Sampling Theorem, 48
Optional Sampling Theorem (tweaked

version), 49
Optional Stopping Theorem, 48
Optional Stopping Theorem (tweaked

version), 49

perfect (set), 170
period (of a Markov chain), 90
period (of a state of a Markov chain),

89
Poisson process, 135
Polya’s Theorem, 68
positive recurrent, 75
positively biased (random walk), 53
positve recurrent (CTMC), 119
predictable sequence, 38
preservation of expectation, 45
properties of conditional expectation,

45
properties of martingales, 47
properties of matrix exponential, 104
properties of recurrent and transient

states, 19
properties of transition matrices (CTMCs),

101
pure birth process, 130, 132
pure death process, 130

Q-matrix, 107
queuing chain, 140

random walk (on Z), 51
random walk (on Z2), 66
random walk (on Z3), 67
random walk escape probabilities, 57
Recurrence criterion, 21

recurrence of birth-death chains, 125
Recurrence of BM, 154
recurrence of random walk on Z, 64
recurrence of random walk on Zd, 68
recurrent (Markov chain), 16
recurrent (state in CTMC), 119
recurrent (state), 16
recurrent states, properties of, 19
Reflection Principle, 152

sample functions, 100
simple random walk, 53
stability, 45
standard d-dim’l BM, 172
standard Brownian motion, 147
state space, 4
state space decomposition, 26, 27
states (of a stochastic process), 4
stationary distribution, 69
stationary distribution (CTMC), 119
stationary distribution (of b-d chain),

129
stationary distributions, existence of,

81
stationary distributions, uniqueness, 81
steady-state distribution, 70
steady-state distribution, uniqueness,

71
steady-state distributions, existence of,

91
step (of a random walk), 51
stochastic matrix, 11
stochastic process, 4
stopping time, 41
strategy, 38
Strong Law of Large Numbers, 74
Strong Markov property, 151
submartingale, 46
supermartingale, 46
supported, 83

time n distribution, 12, 14
time t transition matrix, 101

182



Index

time homogeneity (of transition prob-
abilities), 6

time homogeneous, 101
times (of a stochastic process), 4
totally disconnected, 170
tower property, 45
transform (of a stochastic process), 40
transience of birth-death chains, 125
transience of random walk on Zd, 68
transient (Markov chain), 16
transient (state in CTMC), 119
transient (state), 16
transient states, properties of, 19
transition density (of BM), 151
transition function (of a Markov chain),

14
transition matrices, properties of (CTMCs),

101
transition matrix, 10
transition matrix (of a CTMC), 101
transition probabilities (of a Markov

chain), 6
two-state CTMC, 134

unbiased (random walk), 53
uniqueness of steady-state distributions,

71
universal scaling law, 168

waiting time, 109
Wald’s First Identity, 59
Wald’s Second Identity, 61
Wald’s Third Identity, 62
Weiner process, 147
Weiner’s Theorem, 147

zero set, 170
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