Markov Chains and
Martingales

David M. McClendon

Department of Mathematics
Ferris State University

2021 edition
©2021 David M. McClendon



Contents

Contents

1 Markov chains

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

WhatisaMarkovchain? . . .. ... ... ... ... . L.
Basic examples of Markov chains . . . . ... ... ... ... .. ..
Matrix theory applied to Markov chains . . . . ... ... ... ....
The Fundamental Theorem of Markov chains . . . .. ... ... ...
Stationary distributions . . . . ... ... oL o o000
Class structure and periodicity . . . ... .. ... ........ ...
Recurrence and transience . . . . .. ... ... ... ..........
Positive and null recurrence . . . . . .. ... ... .o 0L
Proving the Fundamental Theorem . . . . . ... ... .. ... ....

1.10 Example computations . . . . . ... ... ... Lo oo

2 Martingales

21
2.2
2.3

Motivation: betting on fair coin flips . . . . ... ... ... ... ...
Filtrations. . . . . .. .. .. ... ... ..
Conditional expectation with respect to a o-algebra . . . . . ... ..

2.4 Martingales and optional stopping . . . . . ... ... ... ... ...
25 RandomwalkonZ ... ... ... ... ... ... . ... . ... ...
2.6 Birthand deathchains . ... ... ... .. ... ... ... ....
2.7 Random walk in higher dimensions . . . . . ... ... ... .....
3 Continuous-time Markov chains
31 Motivation . . .. ... ...
3.2 More matrix theory: CTMCs with finite state space . . . . . ... ...
3.3 General theoryof CTMCs . . . ... .. ... ... .........
3.4 C(lass structure, recurrence and transience of CTMCs . . . . . . . . ..

3.5

Birth and death CTMCs . . . . . . . . . . . .



Contents

3.6 Continuous-time branching processes . . . . .. .. ... ....... 158
3.7 Theinfiniteserverqueue . . . . . . . ... ... ... . L 160
Brownian motion 164
4.1 Definition and construction . . . ... ... .. ... ..o L. 164
4.2 Markov properties of Brownian motion . . . ... ... ... ... .. 170
4.3 Martingales associated to Brownian motion . . . ... ... ... ... 174
4.4 Gaussian Processes . . . . . . ..o e 181
4.5 Symmetries and scalinglaws . . ... ... ... . 000 oL 185
4.6 Zero sets of Brownianmotion . . . ... ... 00 000 188
4.7 Brownian motion in higher dimensions . . . .. ... ... ... ... 190
Homework exercises 195
51 Exercises from Chapter1 . . . . . ... ... ... ... ........ 195
52 Exercises from Chapter2 . . .. .. .......... .. .. ...... 205
53 Exercises from Chapter3 . . . ... ... ... ... .. ... ..., 209
5.4 Exercises from Chapter4 . . . . . ... .................. 215
Tables 220
A.1 Charts of properties of common random variables . . . . .. ... .. 220
A.2 Useful sum and integral formulas . . . . ... .............. 223
A.3 Table of values for the cdf of the standard normal . . . . . . ... ... 224



Chapter 1

Markov chains

1.1 What is a Markov chain?

In MATH 416, our primary goal is to describe probabilistic models which simu-
late real-world phenomena. As with all modeling problems, there is a “Goldilocks”
issue:

o If the model is too simple,

o if the model is too complex,

In applied probability, we want to model phenomena which evolve randomly.
The mathematical object which describes such a situation is a “stochastic process”:

Definition 1.1 A stochastic process {X; : ¢t € Z} is a collection of random vari-
ables indexed by t. The set T of values of t is called the index set of the stochastic
process, and members of L are called times. We assume that each X, has the same
range, and we denote this common range by S. S is called the state space of the
process, and elements of S are called states.

Remark: {X;} refers to the entire process (i.e. at all times ¢), whereas X; is a
single random variable (i.e. refers to the state of the process at a fixed time ?).

Remark: Think of X, as recording your “ position” or “state” at time t. Ast
changes, you think of “moving” or “changing states”. This process of “moving”
will be random, and modeled using the language and theory of probability we
learned in MATH 414.



1.1. What is a Markov chain?

Almost always, the index set is {0,1,2,3,...} or Z (in which case we call the
stochastic process a discrete-time process), or the index set is [0, c0) or R (in which
case we call the stochastic process a continuous-time process). The first chapter of
these notes focuses on discrete-time processes; Chapter 2 contains ideas useful in
both settings, and Chapters 3 and 4 center on continuous-time processes.

In MATH 414, we encountered the three most basic examples of stochastic pro-
cesses:

1. The Bernoulli process, a discrete-time process {X;} with state space N where
X is the number of successes in the first ¢ trials of a Bernoulli experiment.
Probabilities associated to a Bernoulli process are completely determined by
a number p € (0, 1) which gives the probability of success on any one trial.

2. The Poisson process, a continuous-time process {X;} with state space N
where X, is the number of successes in the first ¢ units of time. Probabili-
ties associated to a Poisson process are completely determined by a number
A > 0 called the rate of the process.

3. i.i.d. processes are discrete-time processes { X;} where each X, has the same
density and all the X, are mutually independent. Sums and averages of ran-
dom variables from these processes are approximately normal by the Central
Limit Theorem.

We now define a class of processes which encompasses the three examples
above and much more:

Definition 1.2 Let {X;} be a stochastic process with state space S. {X;} is said
to have the Markov property if for any times t, < t, < ... < t, and any states
X1y Ty €S,

P(th = Tp ’ th = xl,Xt2 = .172, ""th—l = ,fll'n_]_) = P(th = Tn | th—l = .’En_]_).

A Markov chain is a discrete-time stochastic process with finite or countable state
space that has the Markov property.

To understand this definition, think of time ¢,, as the “present” and the times
t1 < ... < t,—; as being times in the “past”. If a process has the Markov property,
then given some values of the process in the past, the probability of the present
value of the process depends only on the most recent given information, i.e. on
X, ..



1.1. What is a Markov chain?

Note: Bernoulli processes, Poisson processes and i.i.d. processes all have the
Markov property.

The three ingredients of a Markov chain

Question: What are the “ingredients” of a Markov chain? In other words, what
makes one Markov chain different from another one?

Answer:

1. The state space S of the Markov chain
(Usually S is labelled {1, ...,d} or {0,1} or {0,1,2,...} or N or Z, etc.)

2. The initial distribution of the r.v. X, denoted :

mo(z) = P(Xg=x) forallz € §

mo(x) is the probability the chain starts in state x.
3. Transition probabilities, denoted P(x,y) or P, , or P,,:

P(x,y) = Poy = Poy = P(Xy = y[ Xio1 = )

P(x,y) is the probability, given that you are in state = at a certain time ¢ — 1,
that you are in state y at the next time (which is time ¢).

Technically, transition probabilities depend not only on = and y but on ¢, but
throughout our study of Markov chains we will assume (often without stat-
ing it) that the transition probabilities do not depend on ¢; that is, that they
have the following property:

Definition 1.3 Let {X;} be a Markov chain. We say the transition probabilities of
{X.} are time homogeneous if for all s,t € S,

P(Xt:y‘thlzx):P(Xs:y‘Xsflzx)a

i.e. that the transition probabilities depend only on x and y (and not on t).

The reason the transition probabilities are sufficient to describe a Markov chain
is that by the Markov property,

P(X;=u | Xo=20,.... Xto1 = 241) = P(Xy = 2 | Xoo1 = 2421) = P(xq, x4).

In other words, conditional probabilities of this type depend only on the most
recent transition and ignore any past behavior in the chain.



1.1. What is a Markov chain?

Simulating a Markov chain

To get used to how Markov chains work, let’s simulate one using a computer. Let’s
suppose:

e the state spaceis S = {1,2,3};

e the initial distribution 7, satisfies 7o(1) = 3, m(2) = § and m(3) = 3. We
shorthand this by writing 7 as

_(1 1 1)
=\ 6 3)"

e the transition probabilities are P(1,1) = 1, P(1,2) = 3, P(1,3) = 1, P(2,1) =
3,P(2,2)=0,P(2,3) =1, P(3,1) =1, P(3,2) = 1, P(3,3) = . A shorthand
way of writing all these is by treating them as entries of a matrix:

1 1 1
4 2 4
P = 3 1
4 0 4
1 1 1
4 4 2

We can capture the state space and the transition probabilities with the follow-
ing picture:

To simulate this Markov chain, we first have to select the state X, in which
we start. This is done using 7m,: we pick state 1 with probability 1, state 2 with
probability ¢, and state 3 with probability 3.

One way to perform this random choice on a computer is to have the computer
generate a “uniformly random” real number in [0, 1] (in Mathematica, you use the
RandomReal[ ] command to do this). If the number is less than 3, let X, = 1; if the
number is between 3 and ; + g, let X, = 2; otherwise X, = 3:



1.2. Basic examples of Markov chains

Suppose we picked X, = 3. Now, since X, = 3, we pick the next state X; using
Row 3 of P. By this,  mean X; = 1 with probability %, X1 = 2 with probability %,
and X; = 3 with probability 3 (if you did this on a computer by selecting a random
real number in [0, 1], then X; would be determined as follows:

Let’s suppose our random choice led to X; = 1. The next thing to do is to pick
the state X, which is done by using Row 1 of P (so X; = 1 with probability %, etc.).
The idea expressed in the Markov property is that so long as we know X, the fact
Xy was 3 is no longer relevant to the computation of X5, i.e. that X, = 3 is “old
news”.

Similarly, once you've figured X, the fact that X; = 1 doesn’t influence how
X3 is generated, etc.

To get the rest of the chain {X;}, you pick each state X, from the previous one
X1 if X1 = j, X is chosen using Row j of P as described above.

1.2 Basic examples of Markov chains

EXAMPLE 1: I.I.D PROCESS (OF DISCRETE R.V.S)

State space: S =

Initial distribution:

Transition probabilities:

P(x,y):P(Xt:y|Xt_1 Zif):



1.2. Basic examples of Markov chains

EXAMPLE 2: BERNOULLI PROCESS

State space: S =N={0,1,2,3,...}

Initial distribution:

Transition probabilities:

P<$ay) :P(Xt:y’Xt—1:$) =

We represent these transition probabilities with the following picture:

The above picture generalizes: Every Markov chain can be thought of as a random
walk on a graph as follows:

Definition 1.4 A directed graph is a finite or countable set of points called nodes,
usually labelled by integers, together with “arrows” from one point to another, such
that given two nodes x and y, there is either zero or one arrow going directly from x to

Y.

EXAMPLES OF DIRECTED GRAPHS




1.2. Basic examples of Markov chains

MORE DIRECTED GRAPHS

1

NOT A DIRECTED GRAPH:

1/\2H3Q
\_/

If one labels the arrow from z to y with a number P(z,y) such that for each
node z, Y P(z,y) = 1, then the directed graph represents the transition probabili-
Y

ties of a Markov chain, where the nodes are the states and the arrows represent the
transitions. If you are in state = at time ¢t — 1 (i.e. if X;_; = ), then to determine
your state X; at time ¢, you follow one of the arrows starting at « (with probabilities
as indicated on the arrows which start at z).

EXAMPLE 3: BASIC URN MODEL
An urn initially holds 2 red and 2 green marbles. Every minute, you choose a
marble uniformly from the urn. If you draw a red marble, you put the red marble
back in the urn, and add two green marbles from the urn. If you draw a green
marble, you leave it out of the urn. Let X; be the number of green marbles in the
jar after ¢ draws.

EXAMPLE 4: GAMBLER’S RUIN
Make a series of $1 bets in a casino, where you are 60% likely to win and 40% likely
to lose each game. Let X; be your bankroll after the ¢ bet.

10



1.3. Matrix theory applied to Markov chains

1.3 Matrix theory applied to Markov chains

Suppose {X,} is a Markov chain with state space S = {1,...,d}. Letm, : S —
0,1] give the initial distribution (i.e. m(z) = P(X, = z)) and let the transition
probabilities be P, , (P, , is the same thing as P(z,y)).

If the state space is finite, the most convenient representation of the chain’s
transition probabilities is in a matrix:

Definition 1.5 Let { X;} be a Markov chain with state space S = {1, ...,d}. The dx d
matrix of transition probabilities

P, Pig -+ Pig
. PQ,I P2,2 e PQ,d
Piw Pio -+ Pag

) dxd

is called the transition matrix of the Markov chain.

Why do we put the transition probabilities in a matrix? We will see that we
can answer almost any question about a finite state space Markov chain by per-
forming some simple matrix algebra associated to the transition matrix P.

A natural question to ask is what matrices can be transition matrices of a Markov
chain. Notice that all the entries of P must be nonnegative, and that the rows of P
must sum to 1, since they represent the probabilities associated to all the places =
can go in 1 unit of time.

Definition 1.6 A d x d matrix of real numbers P is called a stochastic matrix if

1. P has only nonnegative entries, i.e. P,, > 0 forall z,y € {1,...,d}; and

d
2. each row of P sums to 1, i.e. for every x € {1,...,d}, > P,, = 1.
y=1

Theorem 1.7 (Transition matrices are stochastic) A d x d matrix of real numbers
P is the transition matrix of a Markov chain if and only if it is a stochastic matrix.

11



1.3. Matrix theory applied to Markov chains

n-step transition probabilities

Definition 1.8 Let {X,;} be a Markov chain and let x,y € S. Define the n-step
transition probability from x to y by

P”(x,y) = P<Xt+n = ?J|Xt = x)

(Since we are assuming the transition probabilities are time homogeneous, these num-
bers will not depend on t.)

P"(z,y) measures the probability, given that you are in state x, that you are in
state y exactly n units of time from now.

Theorem 1.9 Let { X} be a Markov chain with finite state space S = {1, ..., d}. If P
is the transition matrix of {X,}, then for every x,y € S and every n € {0,1,2,3,...},
we have

Pn($7y> = (Pn)mvlﬂ
the (x,y)—entry of the matrix P™.

PROOF I'm going to prove this only when n = 2 (the proof for general n uses a
proof technique called “induction”, for which n = 2 constitutes the base case). By
time homogeneity,

Pz(ﬁay)zp(xzzy\onx)

Now, recall how matrix multiplication works:

12



1.3. Matrix theory applied to Markov chains

Time n distributions

Definition 1.10 Let {X,} be a Markov chain with state space S. A distribution
on 8 is a probability measure w on (S,2%), i.e. a function 7 : S — [0,1] such that

> w(z) =1

zeS

The coordinates of any distribution must be nonnegative and sum to 1.
We denote distributions as row vectors, i.e. if S = {1,2,...,d} then
7= (r(1),7(2), () = (7(1) 7(2) o owd) )

This is unusual, as normally one would represent a vector in R? as a column matrix,
but this convention makes upcoming formulas easier.

Definition 1.11 Let { X} be a Markov chain. The time n distribution of the Markov
chain, denoted m,, is the distribution 7, defined by

7, (x) gives the probability that at time n, you are in state x.

Theorem 1.12 Let { X,} be a Markov chain with finite state space S = {1, ..., d}. If

Ty = (77()(1); 70(2>7 ) 7T'O(d>>1><d

is the initial distribution of {X,} (written as a row vector), and if P is the transition
matrix of {X,}, then for every x,y € S and every n € I, we have

™ (y) = (mP")y,

the y'h—entry of the (1 x d) row vector o P".

PROOF This is a direct calculation:

Wn(y) = P(Xn = 3/) = Z P<Xn =Y | Xo = x)P(XO = x) (LTP)

z€S
=Y (P"),,m(z) (Theorem 1.9)
z€S
= _mo(z) (P"),,
z€S
= [moP"],  (def'n of matrix multiplication) [

13



1.3. Matrix theory applied to Markov chains

EXAMPLE 5
Consider the Markov chain with state space {0, 1} whose transition matrix is

and whose initial distribution is uniform.
1. Sketch the directed graph representing this Markov chain.
2. Find the distribution of X5.
3. Find P(X5 = 0).
4. Find P(Xg =1| X7 =0).
5. Find P(X; =0| X, =0).

14



1.3. Matrix theory applied to Markov chains

Markov chains with infinite state space

Although the formulas for n—step transitions and time n distributions are moti-
vated by those obtained earlier in this section, the big difference if S is infinite
is that the transitions P(z,y) cannot be expressed in a matrix (since the matrix
would have to have infinitely many rows and columns). The proper notation is to
use functions:

Definition 1.13 Let {X,} be a Markov chain with state space S.
1. The transition function of the Markov chain is the function
P:S8 xS —|0,1] defined by P(z,y) = P(X: =y | Xi—1 = z).
2. The initial distribution of the Markov chain is the function
7o : S — [0, 1] defined by mo(x) = P(Xo = ).

3. The n—step transition function of the Markov chain is the function P" :
S x S — [0, 1] defined by

P"(z,y) = P(Xe4n = y| Xi = 2).

4. The time n distribution of the Markov chain is the function

7 : S — [0, 1] defined by =, (z) = P(X,, = z).

As with finite state spaces, the transition functions must be “stochastic”:

Lemma 1.14 P : S x S — R s the transition function of a Markov chain with state
space S if and only if

1. forevery z,y € S, P(x,y) > 0, and
2. foreveryx € S, Y. P(z,y) =1
yeS

Lemma 1.15 If 7, is the time n distribution of a Markov chain with state space S,
then Y m,(x) = 1.

€S

15



1.4. The Fundamental Theorem of Markov chains

Theorem 1.16 Let {X,} be a Markov chain with transition function P and initial
distribution my. Then:

1. Forall xy,x1,...,2, € S,

P(Xg = Io,Xl = a1, ,Xn = ZL’n) = 7'('0(1’0) H P(Ij_l,Ij)

7j=1
2. Forall x,y € S,

Pn(x7y) = Z P(xvzl)P(ZhZQ) T P(Zn—Qa Zn—l)P(Zn—lyy)

Z4) gooog Zn—1 €S
3. The time n distribution m, satisfies, forall y € S,

Ta(y) = > mo(z) P"(x,y).

€S

1.4 The Fundamental Theorem of Markov chains

Many areas of mathematics have a central result which is key to understanding
the ideas of the subject. These central results are called “Fundamental Theorems”:

Fundamental Theorem of Arithmetic: every integer greater than 1 can be factored
uniquely into a product of prime numbers.

Fundamental Theorem of Algebra: every polynomial whose coefficients are in C
has a root in C.

Fundamental Theorem of Calculus: if f : R — Ris cts and F(z) = [ f(t)dt,
then F'(z) = f(z). (Also, if f : R — R is cts with antiderivative F, then
Ja f(z) dx = F(b) — F(a).)

Fundamental Theorem of Line Integrals: If f = V f is a conservative vector field
on R", then for any piecewise C' curve  with initial point a and terminal

point b, [ f-ds = f(b) — f(a).

Fundamental Theorem of Linear Algebra: If A € M,,,(R), thendim C(A) = dim R(A),
[R(A)]* = N(A) and [C(A)]* = N(AT).

16



1.5. Stationary distributions

This section is about the Fundamental Theorem of Markov Chains (FTMC). To
get an idea of what this theorem is about, we’ll do some experimentation.

What we (almost assuredly) saw in our experiment is that the Markov chain we
invented had a special distribution 7, so that as n — oo, the time n distributions
7, approached this distribution 7, no matter what the initial distribution was. The
FTMC says that for most (not all) Markov chains, this phenomenon holds:

Theorem 1.17 (Fundamental Theorem of Markov Chains (FTMC)) Let { X} be
an irreducible, aperiodic, positive recurrent Markov chain. Then {X,} has a unique
stationary distribution 7, such that w is steady-state, meaning

Jim () = 7(2)

forall x € S, no matter the initial distribution .

To understand this theorem, we need to learn the meaning of its vocabulary:

i s /i i

“irreducible”, “aperiodic”, “positive recurrent”, “stationary”, “steady-state”. Learn-
ing this vocabulary is the goal of the next four sections.

1.5 Stationary distributions

Recall: A Markov chain is determined by two things:

From this, you get time n distributions 7,, which give the probability of each state
at time n:

m(y) = P(Xp =y) = Y mua(2)P(z,y) = D mo(z) P"(x,y)
€S €S
(i.e. m, = moP" if S is finite and P is the transition matrix)

We are investigating the FTMC, which says that if {X;} is “irreducible”, “aperi-
odic” and “positive recurrent”, then there is a “stationary, steady-state” distribu-
tion 7 such that 7, (z) approaches 7(x) for all € S. This means that for large n,
m,(x) can be approximated by 7 (x).

Question: What do “stationary” and “steady-state” mean?

17



1.5. Stationary distributions

Stationary distributions

Let { X;} be a Markov chain with state space S. Suppose 7 is a distribution on S so
that, if the initial distribution 7 is 7, the time 1 distribution ; is also 7. Then 7 is
called “stationary” (because it didn’t change as time passed). More precisely:

Definition 1.18 Let {X;} be a Markov chain. A distribution m on S is called sta-
tionary (with respect to { X, }) if forall y € S,

Y w(@)P(z,y) = 7(y).
€S
If S is finite (say S = {1, 2,3, ..., d}, to say 7 is stationary means (in matrix multipli-
cation terminology)
TP=m

ifwewriter = (7(1) w(2) -+ w(d) ) .

Lemma 1.19 Let {X;} be a Markov chain with state space S. If 7 is a stationary
distribution, then for all n > 0 and all y € S, we have

m(y) = Y w(x)P"(z,y).

€S

(So if S is finite, this means 1 = 7 P" for all n.)

PROOF Definition of “stationary” + induction on n.

Lemma 1.20 Let {X;} be a Markov chain with state space S. An initial distribution
o is stationary if and only if the time n distributions are the same for every n.

PROOF (=) Assume 7 is stationary. Then

(<) Assume the time n distributions are the same for every n. Then

Put another way, this lemma says that stationary distributions are those which do
not change as time passes.

18



1.5. Stationary distributions

Steady-state distributions

A steady-state distribution for a Markov chain is like the special one in our ex-
periment: if 7 is steady-state for {X;}, then no matter the initial distribution m,

ma(x) = 7(z) as n — oo, so for large n, m,(x) ~ m(x). More precisely:

Definition 1.21 Let {X;} be a Markov chain with state space S. A distribution  on
S is called steady-state (with respect to {X,}) if

lim P"(x,y) =7(y) forallz,y € S.

n—oo

Theorem 1.22 Let { X, } be a Markov chain with state space S. Suppose 7 is a steady-
state distribution for { X;}. Then for any initial distribution ,,

lim 7,(y) = lim P(X, =y) =n(y)Vy € S.

n—o0 n—oo

PROOF By Theorem 1.16 (3), we get the top equation below. Then take the limit of
both sides as n — oc:

Tn(y) = P(X, =vy) ZES mo(x) P"(z,y)
Jim . (y) > mo(x)7(y)
reS

So steady-state distributions are those which “attract” the time n distribution as n
increases, no matter the initial distribution.

19



1.5. Stationary distributions

EXAMPLE 6
Let p, ¢ € (0,1) (there is no relationship between p and ¢). Consider a Markov chain
with § = {0, 1} whose transition matrix is

p=(t"P P )
qg 1—gq

Find all stationary distributions of this Markov chain (there might not be any).

In general, you find stationary distributions for finite state-space Markov chains
by solving a system of linear equations corresponding to 7 P = 7 as above.

20



1.5. Stationary distributions

EXAMPLE 7
Find all stationary distributions of { X,}, if { X;} has transition matrix

14 2
7T 7

5 2
0 7 7
3 1 3
777

EXAMPLE 8
Let {X,} be simple, unbiased random walk on Z (this means S = Z, and for every
€S8, P(x,x+1)=P(x,x — 1) = ). Find all stationary distributions of {X,}.

N|=
=
=
=
1=
=
=

D=

2 2 2 2 2 2
- P N P N
- e Y M A M R
~N_ ~__ N > X > >
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

21



1.5. Stationary distributions

Uniqueness of stationary and steady-state distributions

Big picture questions: Given Markov chain { X, }:

1. Does {X,} have a stationary distribution?

2. If so, how many stationary distributions does it have?

3. Does { X;} have a steady-state distribution?

4. If so, how many steady-state distributions does it have?

In the rest of this section, we are going to run through some theorems address-
ing these questions. We’ll start with ideas related to Question 2 above.

Definition 1.23 Suppose 7, ma, s, ... are all distributions on a set S (there could be
finitely or countably many distributions). A convex combination of these distribu-
tions is another distribution of the form

>_ oy
J

where the o; are nonnegative numbers satisfying - a; = 1.
J

EXAMPLE
Let m = (.1,.5,.4), m = (0,1,0) and w3 = (.7,.2,.1). The distribution
51+ .3+ .21 = 5(.1,.5,.4) +.3(0,1,0) + .2(.7, .2.1)
= (.05,.25,.2) + (0,.3,0) + (.14, .04, .02)
= (.19, .59, .22)

is a convex combination of 7, Ty and w3 with a; = .5, = .3 and a3 = .2.

22



1.5. Stationary distributions

Lemma 1.24 A convex combination of distributions is a distribution.

PrOOF If

= Zajﬂ-jv
J

then

Zﬂ(x) = ZZO@@(&:) = Z&j Zﬂj(x) = Za]- -1=1.

€S zeS j €S

Since all the «; are nonnegative, then 7 (x) > 0 for all z as well, so 7 is a distribution.
UJ

Special case: A convex combination of two distributions 7; and 7 is a distri-
bution of the form
am + (1 — a)my

where a € [0, 1].

Theorem 1.25 (Convex combinations of stationary distributions are stationary)
Suppose w1y, ma, s, ... are all stationary distributions for a Markov chain {X,}. Then
any convex combination of the m; is also a stationary distribution for {X,}.

PROOF HW (you have to check that the stationarity equation 7(y) = > m(x)P(z,y)
zeS

holds for the convex combination)

Corollary 1.26 (Number of stationary distributions) A Markov chain must have
either zero, one, or infinitely many stationary distributions.

PROOF Suppose the Markov chain has two different stationary distributions, say
71 and 7. Then for any « € [0, 1],

am + (1 — a)my

is also a stationary distribution. Since there are infinitely many choices for «, the
Markov chain will have infinitely many stationary distributions. O
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1.5. Stationary distributions

Now we turn to Question 4 from earlier (how many steady-state distributions
can a Markov chain have?).

To handle this, we first need to introduce a theorem that we won't prove but
will use frequently; this theorem comes from a branch of mathematics called real
analysis:

Theorem 1.27 (Bounded Convergence Theorem for Sums (BCT)) Let a(z) be non
negative numbers such that 3~ a(z) < oco. Fix B > 0 and let b,(z) be numbers such

that |b,(z)| < B forall z and n and

lim b,(z) = b(z) for all z.

n—oo

Then

in other words

JLIQOZa(z)bn(x) = Znh_{go a(2)ba(2) =Y _a(z) lim b,(2).

n—oo
z

Why this theorem isn’t obvious: Suppose z € {1,2,3,..}, b,(z) = fb—z and
a(z) = . Then b(z) = lim b,(2) = 0s0

— &1 (22 | :
TLILIEOZa(z)bn(Z) = T}LIIC}OZ - <nz> = r}gngoz — = lim oo = o0

=1 —1 z —1 n n—oo

but ) 1 o 1 oo
X al2) Jim ba(2) = 3 5b(z) = 3 5(0) = 1 0=

z=1 z=1 z=1 z=1

Observe that the b,(z) in this example don’t work in the BCT, since they are not
bounded by any B.

Moral: You cannot interchange an infinite sum over z (or over z or y) and a
limit as n — oo without the BCT (or some other theorem).

(However, if there are only finitely many zs in the sum, then you can always
interchange the limit with the sum.)
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1.5. Stationary distributions

Theorem 1.28 (Uniqueness of steady-state distributions) Let { X;} be a Markov
chain with state space S. If the Markov chain has a steady-state distribution m, then

1.  is stationary for { X;}; and

2. m is the only stationary distribution for { X;}.

PROOF Let’s start with statement (1). Suppose 7 is steady-state. Lety € S.

7(y) = lim P"(x,y)

n—o0

= lim P "tl(x,y) (def'n of steady-state)
= lim > P"(x,2)P(z,y) (LTP)

z€S

=3 lim P"(2,2)P(z,y)

z€S

=Y w(z)P(z,y) (def'n of steady-state).

zeS

Since 7(y) =Y m(z)P(z,y), 7 is stationary by definition.
z€S

Now for statement (2). Suppose 7y # 7 is stationary. Since m, # 7, there is
y € S such that mo(y) # 7(y).

Use 7 as the initial distribution; then the time n distribution of state y is 7, (y) =
7o(y) by stationarity. Thus

lim 7,(y) = lirglo mo(y) = mo(y) # 7(y);

this contradicts the preceding proposition since 7 is steady-state. []
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1.5. Stationary distributions

EXAMPLE 6, REVISITED
For the Markov chain whose state space is S = {0, 1} and whose transition matrix

. 1— . I
is P = ( . p . g . ), we saw that the stationary distribution was
Is this distribution steady-state?

Solution: m is steady-state if lim P*(xz,y) =n(y) forallz,y € S, i.e.

p+q ptq

9 _pP_
lim P* = pte »pta |
n—=oo g P

Q: How might we compute powers P" of the matrix P?

A:

If you did all that for this matrix P, you'd find
A=1+(1,1) A=1-p—q< (=pq)

(1 0 (1 —p
o) s

and therefore (after some calculation)

SO

P" = SAMSTh= | Pra P
q _ _P o — n _m n
ptqe  pta (1 p q) ptq + ptq <1 p q)

44 P (1 _p_g)* P _ 4 (]_p—qg)"
+50-p—q" -0 -p—q)
P
a4 p

Since -1 <1—-p—¢q<1, lim P"= ( pra. pid >, so lim P"(x,y) = w(y) and
= (p—jqu, ﬁ) is indeed steady-state.

Remark: There will be a better way of showing = is steady-state, based on
theory we will develop in this chapter.
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1.6. Class structure and periodicity

1.6 Class structure and periodicity

What this section is about: The FTMC says that if { X} is irreducible, aperiodic
and positive recurrent, then it has a steady-state distribution. In this section, we
discuss what is meant by “irreducible” and “aperiodic”.

To get started, we need to establish some notation that we’ll use frequently.

Definition 1.29 Let {X,} be a Markov chain with state space S.

1. Given an event E, define P,(E) = P(E| Xy = x). This is the probability of
event E, given that you start at x.

2. Givenarv. Z,define E.(Z) = E(Z | Xy = x). This is the expected value of Z,
given that you start at x.

Definition 1.30 Let {X,} be a Markov chain with state space S.
1. Givenaset A C S, let Ty be the r.v. defined by
Ty=min{t >1: X, € A}.

(Ty = 00 if Xy ¢ Aforallt.) T, is called the hitting time or first passage
time fo A.

2. Given a state a € S, denote by T, the r.v. T{.

Note: Ts : Q — NU{oo}, 50 > P(Ty=n)=1— P(T4 = c0) < 1.
n=1

Class structure

Definition 1.31 Let {X;} be a Markov chain with state space S.
1. Foreach x,y € S, define
foy = Pu(T, < 00).
This is the probability you get from x to y in some finite (positive) time.

2. We say z leads to y (and write x — y) if f,, > 0. This means that if you start
at x, there is some positive probability that you will eventually hit y.

3. We say x and y communicate (and write x <> y) if v — yand y — .
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1.6. Class structure and periodicity

Definition 1.32 Let { X;} be a Markov chain with state space S, and let C be a subset
of S.

1. C'is called closed if for every x € C, if v — y, then y must also be in C.

2. C'is called a communicating class if C' is closed and all members of C' com-
municate.

3. {X.} is called irreducible if S is a communicating class.

e closed sets are those which are like the Hotel California: “you can never
leave”.

e A set is a communicating class if you never leave, and you can get from
anywhere to anywhere within the class.

e A Markov chain is irreducible if you can get from any state to any other state.

Remark: whether or not a Markov chain is irreducible depends only on its tran-
sition probabilities, and not on its initial distribution.

Lemma 1.33 Let {X;} be a Markov chain with state space S. Then

r—y <= P"(z,y) > 0forsomen > 1.

PROOF (=) Assume x — y, i.e. f,, = P,(T, < c0) > 0.
Notice

o

PT<oo Z

so if this sum is > 0, there must be at least one N such that P, (7, = N) > 0.
Since PN (z,y) > P,(T, = N), we can conclude PV (z,y) > 0 as wanted.

(<) Suppose PY(x,y) > 0 for one or more N. Take the smallest such N; for this
N, we have
P.(T, = N) = P"(z,y) > 0.

Therefore
foy = Pu(T, < 00) > P,(T, = N) >0,

so r — y as wanted. [

Lemma 1.34 Let {X;} be a Markov chain with state space S. Then

(x wyandy — z) = = — 2.
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1.6. Class structure and periodicity

PROOF Apply Lemma 1.33 twice:
r — y = 3ny such that P (z,y) > 0.

y — z = dng such that P"*(y, z) > 0.

Thus
P2 (g 2) > P (z,y)P™ (y,2) > 0,

soby Lemma 1.33 z — 2. [
EXAMPLE 9

Let { X, } be a Markov chain with state space {1, 2, 3,4, 5, 6} whose transition matrix
is

1 0 0 0 00

1 1 1

A
_ 2 4
P= 0002%2

000103

0004101

Find all closed sets and all communicating classes of {X;}.

Remark: To solve Example 9, the only thing relevant is whether the entries of P
are zero or nonzero. So long as an entry is nonzero, whether it is ; or 1 or whatever
doesn’t affect the closed sets and communicating classes of {X;}.

EXAMPLE 10
Each matrix below is the transition matrix of a Markov chain with state space
{1,2,3,4}. The “+” in the matrices represent arbitrary positive numbers. For each
Markov chain, find all its communicating classes and determine if the chain is ir-
reducible.

+

+ oo+
o+ + o
o+ + +
+ + oo
+ o+ o
o+ + +
+ o o o

0
+
+
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1.6. Class structure and periodicity

Recall: One of the necessary ingredients in the FTMC is that the chain is irre-
ducible. In the next example, we see why irreducibility is important to ensuring
the existence of a steady-state distribution.

EXAMPLE 11
Suppose {X;} is a Markov chain with state space {0, 1} whose transition matrix is
the 2 x 2 identity matrix (P = I).

1. Sketch the directed graph of this Markov chain, and find its communicating
classes. Is { X;} irreducible?

2. Find all stationary distributions of this Markov chain.

3. Does { X} have a steady-state distribution? Explain.
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Periodicity

To explain the concept of periodicity, let’s start with this simple example, which
illustrates why “aperiodicity” is important in the FTMC:

EXAMPLE 12
Suppose { X} is a Markov chain with state space {0, 1} whose transition matrix is

o (00)

1. Sketch the directed graph of this Markov chain, and find its communicating
classes. Is { X;} irreducible?

2. Find all stationary distributions of this Markov chain.
3. Suppose my = (1,0). Compute m, for every n. Does lim m, exist?

4. Does { X} have a steady-state distribution? Explain.

The problem with the Markov chain in Example 12 (i.e. what causes its sta-
tionary distribution to not be steady-state) is that it is “periodic”... if you start in a
certain state, you can only return to that state at times that are a multiple of 2. This
means the chain has period 2. More generally:

Definition 1.35 Let a and b be integers. We say a divides b (and write a|b) if bis a
multiple of a. The greatest common divisor of a set E of integers, denoted gcd E, is
the largest integer dividing every number in that set.

EXAMPLES

642 5 [42 31180
ged{12,36} = 12 gcd{18,27,15} = 3 ged{8,17} =1
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1.6. Class structure and periodicity

Definition 1.36 Let {X;} be a Markov chain with state space S. Let x € S be such
that f, > 0 (equivalently, P"(x,x) > 0 for some n > 1; equivalently, x — x). The
period of x, denoted by d,, is the largest integer which divides every n for which
P"(z,z) > 0. More formally,

d, = ged{n : P"(z,z) > 0}.

Note: If P(z,x) > 0, then d,|1,so d, = 1.

EXAMPLE 13
Let {X,} be simple, unbiased random walk on Z (this means S = Z, and for every

re€S, Plx,x+1) =Pz, z—1) = 3).

=
=
=
=
=
=

[SIES
SIS

2 2 2 2 2 2
- P N P N
- e Y M A M- R
~N_ ~___— N > X > T
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

Find the period of each state.

Theorem 1.37 (Communicating states have the same period) Suppose {X,} is
a Markov chain with state space S. Let x,y € S be such that x <+ y. Then d, = d,,.

PROOF

r —y = 3dnys.t. P"(z,y) >0
y — x = Jngs.t. P"*(y,z) > 0.

Therefore
P (g, w) = P (2, y) P (y,0) > 0 = dy | (m1 + ng).

Let n be such that P*(y,y) > 0. Then
Pt (pox) > P (2, y) P (y, y) P (y, 1) > 0 = d, | (ny +n + ny).

Now if d, divides both n; + n, and n; + n + ns, then d, divides the difference, so
d, | n.

A symmetric argument shows d, < d,, so d, = d, as wanted. [
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1.6. Class structure and periodicity

Theorem 1.37 shows that period is a class property, meaning that it is a prop-
erty shared by all members of a communicating class. This implies:

Corollary 1.38 If {X,} is an irreducible Markov chain, all states have the same pe-
riod.

Definition 1.39 An irreducible Markov chain with state space S is called aperiodic
ifd, = 1forall x € S and is called periodic with period d if d, = d > 1 for all
r €S

EXAMPLE 14
Find the period of each Markov chain whose directed graph is given below.

SN N

1<—2 3 1<72<73

NN Zg

One important consequence of aperiodicity is that in an irreducible, aperiodic
Markov chain, for every pair of states you can get from one to the other in any
sufficiently large amount of time. This is made precise in Theorem 1.40:

Theorem 1.40 Suppose {X,} is an irreducible, aperiodic Markov chain. Then, for
every x,y € S, there is a number N such that P"(x,y) > 0 for alln > N.

PROOF Let I C N be defined by I = {n : P*(z,y) > 0}, I is the set of times that
you can get from state x to state y. We know 1 = d = ged I.

Claim: There is a number n; such thatn; € T andn; +1 € I.

Proof of claim: Suppose not; then there is an integer £ > 2 which is the smallest
gap between two consecutive numbers in /. Since {X,} is aperiodic, k is not the
period of {X,} so k cannot divide some number in /. Let n; € I be such that
ni + k € I. Now let m; € I be a number which is not divisible by k. Write
my = mk + r wherer € {1,2,....k — 1}. We know

(m+1)(ni+k)el and my+(m+1)n el
but the difference of these numbers is

mk+k—my=k—re{l,2,.. k—1}.
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1.7. Recurrence and transience

This contradicts the definition of k, so k = 1, proving the claim (as the smallest gap
between two consecutive numbers in [ is 1).

Now, we know there is an n; such that n; € I, n; + 1 € I. Let N = n?. Then if
n > N, we can divide n — N by n; and write
n—n?=n—N=mn, +r
where m € Nand r € {0, 1, ...,ny — 1}. Rewriting this, we get
n=mny+r+ n%
Rewriting this again, we get
n=rn+1)+ (n —r+m)n
whichisin I sincen; +1€ landn; € I. [

1.7 Recurrence and transience

What this section is about: We are going to divide the states of a Markov chain
into different “types”. There will be general laws which govern the behavior of
each “type” of state, and the types of states of the chain gives you information
about whether the chain has stationary distributions and/or a steady-state distri-
bution.

Definition 1.41 Let {X,} be a Markov chain with state space S.
1. Foreach x € S, set f, = fr, = Pu(T,; < 00).

2. Astate x € S is called recurrent if f, = 1. The set of recurrent states of the
Markov chain is denoted Sg. The Markov chain {X,} is called recurrent if
Sr = S, i.e. all of its states are recurrent.

3. A state x € S is called transient if f, < 1. The set of transient states of the
Markov chain is denoted Sy. The Markov chain {X,} is called transient if all
its states are transient.

Recurrent and transient states are two of the “types” of states referred to earlier.

e a recurrent state (by definition) is “a state to which you must return” (with
probability 1)

e a transient state is (by definition) “a state to which you might not return”.
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1.7. Recurrence and transience

Elementary properties of recurrent and transient states

The rest of this section is devoted to developing properties of recurrent and tran-
sient states. The key to deriving these properties is to introduce random variables
which count the number of times a Markov chain “visits” each state.

Definition 1.42 Let {X;} be a Markov chain with state space S. For each y € S,
define
V, = # of times t > 1 such that X, = y.

Vy is a r.v. called the number of visits fo y.
For each x € S and each N € {1,2,3, ...}, define

Vyn =F#of timest € {1,2, ..., N} such that X, = y.

Vy,n is a r.v. called the number of visits fo y up to time N.

Note: V, : Q — {0,1,2,3,..} U{oc}, but V, v : @ — {0,1,2,3,..., N — 1}.

Lemma 1.43 (Formula for expected number of visits) Let {X;} bea Markov chain
with state space S. Then, for any x,y € S, we have

B(V) =3 P'ey) and Ei(Vyx) = 3 P'a,y).

PROOF Let f: S — {0, 1} be defined by

o ={y e

else

Then, the first equation follows as a direct calculation (the second statement is
proved the same way, with an NV in place of the oo):

£ = B[S )

- i EL(/(X,)
:2[1-30{” =) +0-Po(X, £ )]
— Ti P.(X, =v)
_ nipn(g;,y).m
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Theorem 1.44 (Properties of recurrent and transient states) Let { X, } be a Markoz
chain with state space S. Then:

1. Ify € Sy, then forall x € S,

PV, <o0)=1 and E,(V,) =

2. Ify € Sg, then
Pp(Vy = 00) = P(Ty < 00) = [y

(in particular P,(V, = co) = 1) and

(a) if fr, =0, then E,(V,) =0;
() if fry > 0, then E,(V,) = oc.

What this theorem says in English:

1. If y is transient, then no matter where you start, you only visit y a finite
number of times (and the expected number of times you visit is lfj}?y )-

2. If y is recurrent, then

e it may be possible that you never hit y, but
e if you hit y, then you must visit y infinitely many times.

PROOF First, observe that V, > 1 <= T, < oo, because both statements corre-
spond to hitting y in a finite amount of time.

Therefore P,(V, > 1) = P,(T,, < 00) = fo4.
Now P, (V, > 2) =

Similarly P,(V,, > n) =

Therefore, for all n > 1 we have P,(V, =n) =

First situation: y is transient (i.e. f, = f,, < 1). Then

Po(Vy = 00) = lim Po(Vy 2 0) = Jim frfy ™ =0
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1.7. Recurrence and transience

so P,(V, < 0o) = 1 as wanted. Also,
E,(Vy) = anr(vy:n)
n=0
= Z n- Py(Vy =n)
n=1

= i nfx,yf;_l(l —fy) (from above)
n=1

o0

= fay(L = fy) Z nfgil
n=1
= fx’y(l — fy)(l—lf>2 (plnk Sheet)
Y
fr— fm’y
1—f,

Second situation: y is recurrent (i.e. f, = f,, = 1). Then

Soif f,, > 0, then E,(V},) = oo, since P,(V, = o0) = f,, > 0.
If f,, =0, then P"(x,y) = 0forall n > 1, so by Lemma 1.43,

B (V) =S P'(a,y) = 520=0.00
n=1 n=1

The theorem we just proved leads to these criteria, which can be useful in some
situations to determine if a state is recurrent or transient:

Corollary 1.45 (Recurrence criterion I) Let {X;} be a Markov chain with state
space S. Let x € S. Then

r € Sgp <= E,(V,) =00,

Corollary 1.46 (Recurrence criterion II) Let {X;} be a Markov chain with state
space S. Let x € S. Then

x € Sp < Y P"(z,z)diverges.

n=1

PROOF -
1€8p < E,(V,) =00 < > P"(z,z) =o00.0

n=1
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Corollary 1.47 (Recurrence criterion III) Let {X,} be a Markov chain with state
space S. If y € Sy, then forall x € S,

lim P"(x,y) = 0.

n—o0

The reason this is called a “recurrence criterion” is that the contrapositive says
that if P"(z, y) does not converge to 0, then y is recurrent.

PROOF y being transient implies E,(V,) < oo which implies % P"(z,y) < co. By
n=1

the n'*-term Test for infinite series (Calculus II), that means nlggo P"(z,y)=0. O

EXAMPLE 15
Consider a Markov chain with state space {1, 2,3} and transition matrix

0 1 0
P=11 0 0
0O 1—p p

where p € (0,1).
1. Which states are recurrent? Which states are transient?

2. Find f,, forallz,y € S.

3. Find the expected number of visits to each state, given that you start in any
of the states.

38



1.7. Recurrence and transience

Our next result shows that recurrence and transience are class properties:

Theorem 1.48 (Recurrent states lead only to recurrent states) Suppose that {X,}
is a Markov chain. If x € S is recurrent and x — y, then

1. y is recurrent;

PROOF If y = z, this follows from the definition of “recurrent”, so assume y # .
We are given © — y, so P"(z,y) > 0 for some n > 1. Let N be the smallest n > 1
such that P"(z,y) > 0. Then we have a picture like this:

First, we prove statement (3). Suppose not, i.e. that f, , < 1. Then

1 — fo > P(x,y1) P(y1,y2) P(y2,y3) - - P(yn—1,yn) [1 = fya] >0
sol— f; >0,s0 f, <1, contradicting € Sg. Therefore f,, = 1, proving (3).

Next, we prove (1). Since f,, = 1, y — x so there exists a number N’ so that
PN'(y,x) > 0.

So for every n > 0, PN N (y y) > PN'(y, z) P"(x, x) PN (2, y).

o0

We'll prove y is recurrent by showing £, (V)

E,(V,) = i_o: P(y,y) > i P (y,y) > i PN'(y, ) P"(x,z) PN (2,y)

n=N'+N+1

= PN'(y, x) PN (x,y) i P*(z,x)...

n=1
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From the previous page,

E,(V,) > PV (g.2) PV (2.9) 3 P (. 2)

n=1
= P (y,z) PN (z,y)E,(V,) (Formula for expected number of visits)

=00 (Recurrence criterion I).

Therefore by recurrence criterion I, y € Sg, proving (1).

Finally, as y € Sgpand y — =z, f,, = 1 by (3) of this theorem, which we already
proved. This proves (2). [

Corollary 1.49 (Finite state space Markov chains are not transient) Let { X;} be
a Markov chain with finite state space S. Then the Markov chain is not transient (i.e.
there is at least one recurrent state).

PROOF Suppose not, i.e. all states are transient. Then by the third recurrence
criterion,

Ozy}i_}nolOP"(x,y) Vz,ye S
= 0= ZJLIQOP"(x,y)

yeS

= 0= lim » P"(z,y)
yeS

= 0= lim 1.

n—oo

This is a contradiction! Therefore there must be at least one recurrent state. [

Theorem 1.50 (Decomposition Theorem) Let {X;} be a Markov chain with state
space S. If S # 0, then we can write

Se=JC;
J

where the C; are disjoint communicating classes (the union is either finite or count-
able).

PROOF Sgp # 0 = letx € Sp. Define C(z) ={y € S: z — y}.
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1.7. Recurrence and transience

Observe that x € C(x) since z is recurrent. Thus C(z) # 0.

Claim: C(x) is closed.

Claim: C(z) is a communicating class.

This shows Sg = U C(z). It is left to show the C(x) are disjoint or coincide
TESR

for different .

To verify this, suppose z € C(z) N C(y).
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To summarize, we have:

Theorem 1.51 (Main Recurrence and Transience Theorem) Let { X, } be a Markot
chain with state space S.

1. If C C S is a communicating class, then every state in C is recurrent (i.e.
C' C Sg), or every state in C'is transient (i.e. C C Sp).

2. If C C S is a communicating class of recurrent states, then f,, = 1 for all
z,y € C.

3. If C C S is a finite communicating class, then C C Sp.
4. If {X,} is irreducible, then {X,} is either recurrent or transient.

5. If {X.} is irreducible and S is finite, then { X} is recurrent.

State space decomposition of a Markov chain

Given a Markov chain with state space S, we can write S as a disjoint
union

§=SalUsr = (V) Usr
J
where the C} are recurrent communicating classes (there might be commu-

nicating classes in Sy, but we don’t care so much about those).

1. If you start in one of the C;, you will stay in that C; forever and visit
every state in that C; infinitely often.

2. If you start in Sy, you either

a) stay in Sy forever (but hit each state in Sy only finitely many
times), or

b) eventually enter a Cj, in which case you subsequently stay in
that C; forever and visit every state in that C; infinitely often.

Situation 2 (a) above is only possible if Sy is infinite.

One catch: in this block of facts, the phrase “you will” really means “the prob-
ability that you will is 1”.
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Absorption probabilities

Question: Suppose you have a Markov chain with state space decomposition as
described above. Suppose you start at + € Sp. What is the probability that you
eventually enter recurrent communicating class C;?

Definition 1.52 Let { X} be a Markov chain with state space S. Let x € Sy and let
C; be a communicating class of recurrent states. The probability = is absorbed by
C}, denoted fz,0; 18

fac,C’j = Px(TCj < OO)

Lemma 1.53 Let {X;} be a Markov chain with state space S. Let x € Sy and let C
be a communicating class of recurrent states. Then for any y € C, fi.c; = foy-

In the situation where Sy is finite, we can solve for these probabilities by solv-
ing a system of linear equations. Here is the method:

Suppose St = {x1, ...,z }.
Since Sy is finite, each z; must eventually be absorbed by a C}, so we have
> fo;c = 1forall j.
Fix one of the C;; then

fCE]',C»L' = ij (TC7, = 1) + ij (TCz > 1)
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1.7. Recurrence and transience

If you write this equation for each z; € Sy, you get a system of n equations in
the n unknowns f., ¢,, fu..ci» fus,650 -5 fon,c;- This can be solved for the absorption
probabilities for C;; repeating this procedure for each i yields all the absorption
probabilities of the Markov chain.

EXAMPLE 16
Consider a Markov chain with transition matrix

10000

1 1 1

3 33 00
P=lo il

00l

00 0 01

Determine which states of the chain are recurrent and which states are transient.
For every x € Sy, compute f, ;.
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EXAMPLE 17
Let { X, } be a Markov chain with state space {1, 2, 3,4, 5, 6} whose transition matrix
and associated directed graph are

100000
1 1 1
3 26 000 T
05§ 803 XRFYOE:
pP= 36?3? 1(1=—228—"+4"25
00035 5 5 3(1)% éﬁy
b 1 5
0007350 32 3w
000202 O
3
7

Determine which states of the chain are recurrent and which states are transient.
For each 7,y € S, compute f, .
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(repeated for convenience)
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1.8 Positive and null recurrence

The crux of this section deals with big picture question (1) from earlier: when
does a Markov chain have a stationary distribution?

We begin with a couple of results telling us when there is no stationary distri-
bution:

Theorem 1.54 Let 7 be a stationary distribution of Markov chain {X,}. If y € Sy,
then 7(y) = 0.

PROOF By stationarity, for all n > 1,

> w(z) Pz, y) = 7(y).

zeS

Take limits on both sides as n — oo. By the third recurrence criterion, since y € Sy,
lim P"(z,y) = 0, so the equation above becomes 0 = 7 (y). O

n—oo

Corollary 1.55 If an irreducible Markov chain has a stationary (or steady-state) dis-
tribution, then the chain is recurrent.

We’d like the converse of this corollary to be true (it would be great if every
irreducible, recurrent Markov chain had a stationary distribution). Unfortunately,
it isn’t. To see, why, consider this example, which we’ve seen before:

EXAMPLE OF RECURRENT MARKOV CHAIN WITH NO STATIONARY DISTRIBUTION
Let { X;} be simple, unbiased random walk on Z:

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
- - P P U e N
- -3 9 1 0 1 P 37 4.
~_ ~_ N " > 7 >

1
2

[N

1
2

[N
[N
[N
[N
[N

Earlier, we saw that {X;} has no stationary distribution (because such a distri-
bution would have to be uniform on Z, and no such distribution exists).

Now, let’s show that this chain is recurrent. Since {X,} is irreducible, it is suf-
ficient to show that state 0 is recurrent. To do this, we’ll use the second recurrence

criterion, and show that ioj P"(0,0) diverges.
n=1
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To show § P™(0,0) diverges, notice first that

n=1
if n is odd
P"(0,0) =
if n = 2k is even

By a HW problem from MATH 414 (that used Stirling’s Formula), (2,5) ~ 4h\/ 7k
for large k. So

This series diverges by the so by the sec-
ond recurrence criterion 0 € Sg, and by irreducibility the entire chain is recurrent.

Punchline: Simple unbiased random walk is an example of a Markov chain
which is recurrent, but has no stationary distribution.

What's “wrong” in this example? Simple, unbiased random walk is recurrent,
meaning that every state eventually returns to itself with probability 1. But it’s
only “barely” recurrent, because the expected amount of time it takes to return to
your initial value is infinite. The technical term for this kind of recurrence is “null
recurrence”.

To have a stationary distribution, not only does an irreducible Markov chain
need to be recurrent (meaning every state returns to itself with probability 1),
but the expected amount of time it takes to return to each state must be finite. The
term for this is “positive recurrence”, and this is the last ingredient in the FTMC.
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1.8. Positive and null recurrence

Detour: a new type of convergence
Recall: A sequence {a,} is said to converge to limit L if lim a, = L. (We write

a, — L to represent this.)

EXAMPLES

e The sequence {0,1,2,0,1,2,0,1,2,0,1,2,...} does not converge. However,
this sequence does have some regular behavior:

Definition 1.56 Let {a,} be a sequence of real numbers. The sequence of Cesaro
averages of {a,} is the sequence {b,} defined by setting

n
> a
k=1

S|

b, =

for all n. We say {a,} converges in the Cesaro sense to L if the Cesiro averages
converge to L, i.e. if

. 1
nh_)rglO b, = lim —Zak = L.

n—o0
N

We write a,, <3 L to represent this.

EXAMPLE 18
Verify that the sequence {a,} = {0, 1,2,0, 1,2, ...} converges in the Cesaro sense to

1.
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EXAMPLE 19
The Strong Law of Large Numbers (MATH 414) says

Facts about Cesaro convergence:

. c
a, — L in the usual sense = a,, — L

c
a, —» L and {a,} converges = a, — L

“Cesaro convergence is weaker than usual convergence”

Application to Markov chains: For any Markov chain, we will see that al-
though lim P"(z,y) may not exist, the sequence P"(z, y) converges in the Cesaro

sense for any z,y € S (and the value to which the Cesaro averages converge has a
lot to do with stationary and steady-state distributions, and with positive and null
recurrence).

Recall: 3 Pk(x,y) =
k=1
Therefore, the Cesaro averages of the sequence { P"(x,y)} are actually

L Xn:P’“(af,y) =

n,=4
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Positive and null recurrence

Definition 1.57 Let {X;} be a Markov chain with state space S and transition func-
tion P.

1. Given y € Sg, define m, = E,(T,). m, is a number (possibly oo) called the
mean return time to y.

2. Arecurrent state y is called null recurrent if m,, = co. The set of null recurrent
states of { X, } is denoted Sy. If all the states of { X, } are null recurrent, {X,} is
called null recurrent.

3. A recurrent state y is called positive recurrent if m, < oco. The set of positive
recurrent states of {X,} is denoted Sp. If all the states of {X,} are positive
recurrent, { X, } is called positive recurrent.

Note: The mean return times of a transient state is trivially oo, becauseif y € Sy,

P,(T, = c0) > 0 = E,(T,) = oo automatically.

Theorem 1.58 Let { X,} be a Markov chain with state space S. Let y € S.
o o o o . Vy,n . L
1. IfT, < oo (i.e. if the chain hits y), lim == = —=.

gy

2. If T,, = oo (i.e. the chain never hits y), then nh_>nolo % = 0.

(These limits hold with probability 1.)

PROOF Statement (2) is obvious. To prove (1), assume WLOG that you start in
state y (since by hypothesis you must hit y at some point). Define the following
random variables:

o T =min{n >1:V,, =r} = time of 7" return to y
1_ 1

° Wy _Ty

° Wyj :Tg—Tyjflforallj > 9

Notice that the W] are i.i.d., each with mean m,. So by the Strong Law of Large
Numbers, W) Cesy m, with probability 1. This means
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1.8. Positive and null recurrence

1

P(Ji%njgwy]:my) =1

.1y
:>P<hmy:my>:1 (%)

n—oo n,
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1.8. Positive and null recurrence

Theorem 1.59 Let {X,} be a Markov chain with state space S. Let z,y € S.

1. lim Z=Gun) _ fou
" nSoo n my °
Ces  fa,
2. Pn(x,y) — mij

(These limits hold with probability 1.)

PROOF From the previous discussion, (1) implies (2), so it is sufficient to prove (1).
To do this, note

E
lim M = lim FE, F/;,n}

n—o0 n n—o0 n

Corollary 1.60 Let {X;} be a Markov chain with state space S.
1. Let C C S be a communicating class of recurrent states. Then for all x,y € C,

E
lim 733(%”) = L
n—oo n my

Furthermore, if P(X, € C) = 1, then Jim % = m%, Vy e C.

2. Ify € St USy, then forall z € S, P™(x,y) Les .

3. Ify € Sp, then P"(y,y) <5 L.

my

PROOF (1) follows immediately from Theorem 1.59.

For (2), notice that if y € Sy U Sy, my, = 0o so P"(z,y) Ces fow - Jow

My 0

. . c
For (3), since y is recurrent, f, = f,, = 1so P"(y,y) — fé—; = m%,

O
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Note: Corollary 1.60 provides a new distinction between positive recurrent and

null recurrent states. If y € S is null recurrent (or transient), then P"(y,y) e

but if y € S is positive recurrent, then P"(y, y) <3 e > 0.

Theorem 1.61 (Positive recurrent states lead only to positive recurrent states)
Let { X} be a Markov chain with state space S. If x € Sp and © — y, then y € Sp.

PROOF « is recurrent, so by previous result, y — x. Thus there are n; and n, such
that P"(x,y) > 0 and P"(y,x) > 0. Therefore

PO (y,y) > P (2, y) P (2, 2) P™ (y, @) forallm >0
1

1 n
= — Z protmInz(y gy > —P" (2, y) P (y, @ ) > P™(x
m=1

nml

Corollary 1.62 (Null recurrent states lead only to null recurrent states) Let {X,|}
be a Markov chain with state space S. If v € Sy and x — y, then y € Sn.

PROOF z is recurrent, so by previous result, y is recurrent and y — x. If y is positive

recurrent, then by the above theorem x is positive recurrent, a contradiction. Thus
y must be null recurrent. [
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Corollary 1.63 Let {X;} be a Markov chain with state space S. If C' C S is a com-
municating class, then (every x € C'is transient) or (every x € C'is null recurrent)
or (every x € C'is positive recurrent).

Theorem 1.64 Let {X;} be a Markov chain with state space S. If C C S is a finite
communicating class, then every x € C'is positive recurrent.

PROOF For every z € C'and k € {1,2,3, ...}, we have 3. P*(z,y) =1.So
yeC

Therefore there must be some y € C such that m, < oo, i.e. y € Sp. Since
positive recurrence is a class property, every x € C'is positive recurrent. [J

Corollary 1.65 Any irreducible Markov chain with a finite state space is positive
recurrent.
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Existence and uniqueness of stationary distributions

We begin by showing that for an irreducible Markov chain, values of any of its
stationary distributions are determined by mean return times:

Theorem 1.66 Let {X,} be a Markov chain with state space S.

1. If x € Siseither transient or null recurrent, then for any stationary distribution
7, m(z) = 0.

2. If{X:} isirreducible, then for any stationary distribution w of { X, }, 7(z) = m%

PROOF Suppose 7 is stationary. Then, forall £ € {1,2,3,...} and all z € S, we have

Z m(2) P (2, 2) = 7(z).

z€S
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Corollary 1.67 (Nonexistence of stationary distributions) .
1. A transient Markov chain has no stationary distributions.

2. A null recurrent Markov chain has no stationary distributions.

PROOF By the preceding theorem, a stationary distribution 7 for such a Markov

chain would have to satisfy 7(z) = 0 forall z € S. But then > w(z) =0# lson
reS

would not be a distribution. O

Theorem 1.68 (Existence/uniqueness of stationary distributions) Let {X,} be
an irreducible Markov chain with state space S. {X,} has a stationary distribution if
and only if {X,} is positive recurrent, in which case the Markov chain has a unique
stationary distribution 7 defined by m(x) = - forall v € S.

PROOF What's left to show is that for an irreducible, positive recurrent Markov
chain {X;}, the formula n(z) = m% defines a stationary distribution.

Case 1: S is finite. In this situation,

> P™zx)=1 Vze S, Vm >0

zeS
= = Zzpmzx lz:lzl
mleS n o=
lim — P"(z,z)=1
n%oonnlzlxgs
hmz Zszx ) =1

th—Zszx—l (BCT)

n—oo
€S no

zeS$S mx

so 7(x) = .- defines a distribution.
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1.8. Positive and null recurrence

We're still in case 1 (S is finite); what’s left is to show that the distribution
defined by m(z) = - is in fact stationary (we have to verify that > 7(z)P(z,y) =
i z€S

m(y)):
P (z,y) = > P™(2,2)P(z,y)

:EES
;ZP’““zy ZZszx ,Y)
k=1 = zes

Case 2: S is infinite. In this situation, let S’ C S be an arbitrary finite subset of
S. Repeating Case 1 with &’ instead of S, we get

> P™(z,x)P(x,y) < P (x,y)

zeS’

= Z ) < m(y).

eSS’

Since &' is arbitrary, it must be that, setting 7(z) = m% for every x, we have

> w(z)P(x,y) < w(y).

€S

If ¥ n(z)P(z,y) < n(y), then

z€S
1=> 7(y) > > Y 7w(@)P(z,y)=>> w(z)P(z,y

yeS yeS €S zeS yesS
=Y n(z) ) Plx,y)
€S yES
= Z -1=1
z€S

which is a contradiction. Therefore, >~ w(x)P(x,y) = m(y) so some multiple of 7,
€S

say M, is stationary, but by Theorem 1.66 M must be 1, so 7 is stationary. [J
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Corollary 1.69 Any irreducible Markov chain on a finite state space has a unique
stationary distribution.

Theorem 1.70 (Ergodic Theorem for Markov chains) Let { X;} be an irreducible,
positive recurrent Markov chain with state space S and let 7 be its unique stationary
distribution. Then for all x € S,

P(lim Von _ W(.I‘)) = 1.

PROOF We've seen that 7(z) = m% ; the result follows from Theorem 1.59. [

A picture to explain the ergodic theorem:

EXAMPLE 20
Suppose { X} is a Markov chain with S = {1, 2, 3, 4} whose stationary distribution

is (5.2, 4, %) Suppose X, = 1. Estimate the number of times ¢ in the interval
[1,900] such that X; = 2. (P.S. What is my?)
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Stationary distributions for non-irreducible Markov chains

Definition 1.71 A distribution w on S is supported or concentrated on a subset
CCSifr(x)=0forallx ¢ C.

EXAMPLE 21
If S ={1,2,3,4} and m = (3,0, 5,0), we say  is supported on {1, 3}.

To summarize:

Existence and uniqueness of
stationary distributions for Markov chains

Consider a Markov chain {X;} with state space S. We can write
S=38rUSr=5rJ(SvUSp) (disjoint union)

e If Sp = (), then { X;} has no stationary distribution.

e If Sp # () consists of one communicating class, then { X; } has a unique
stationary distribution 7 defined by

=Y 0 else

e If Sp # () consists of more than one communicating class, then for
each communicating class C' C Sp there is a unique stationary distri-
bution supported on that class (call it 7¢) defined by

% ifzeC
me() = Om else

Convex combinations of these 7¢ are also stationary, so {X,} has in-
finitely many stationary distributions. (All stationary distributions
are convex combinations of these 7¢.)
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EXAMPLE 22
Find all stationary distributions of the Markov chain with transition matrix

000 320
11 1 1 1
s 2 5 8 8 0
002001
205300
100040
0000?32
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EXAMPLE 23
Let {X;} be the Markov chain with state space S = {0,1,2,3,...} and transition
function P defined by

_J) 1 Hy=x+
0 else

Show that {X,} is positive recurrent, and find 7 (0), 7(1), 7(2) and =(3) for the
stationary distribution 7 of {X}}.

62



1.9. Proving the Fundamental Theorem

1.9 Proving the Fundamental Theorem

Theorem 1.72 (FTMC) Let {X,} be an irreducible, aperiodic, pos. recurrent Markov
chain. Then the unique stationary distribution of this chain, defined by m(x) = m% is
steady-state, meaning

lim () = 7(2)

forall x € S, no matter the initial distribution .

PROOF Let {Y;} be a Markov chain, independent of { X, }, with the same state space
and transition function as { X;}, where the initial distribution of {Y;} is the station-
ary distribution 7.

Pick b € S arbitrarily and set 7’ = min{t > 1 : X; =Y, = b} (if there is no such ¢,
set T' = 00). T is called the coupling time in this argument.

Claim: P(T < o0) = 1.

Proof of Claim: HW (this requires aperiodicity of {X;}, because it uses Theo-
rem 1.40 which says that for any two states, it is possible to get from one to the
other in all times greater than or equal to some N).

Hint: Consider a Markov chain with state space S x S where the first coordinate
is X; and the second coordinate is Y;. Explain why this Markov chain is irreducible
and positive recurrent; it follows that P(T' < oco) = 1 (why?).

Now, define for each ¢, r.v.s Z, by

7 _ X, ift<T
Tl Y, ift>T
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{Z;} is a Markov chain with the same initial distribution as { X;} and the same
transition function as { X;}, therefore {Z;} = {X;}. Therefore

[P(Xi =y) —n(y)| = [P(Z =y) - P(Yi =y
=|P(Xy=yandt<T)+PY,=yandt>T)— P(Y; =y)|
=|P(X;=yandt<T)—P(Y;=yandt <T)|
< P(t<T)— 0ast— ooby the Claim above.

Therefore |P(X; = y) — w(y)| — 0 as t — oo, so

lim m(y) = lim > _ mo(x) P'(x,y) = 7(y)

t—o00
€S

for all  and y. By choosing 7, to be

1 ifx=2z2
mo(x) = 0 else ’

we see that
. + o
lim P*(z,y) = 7(y)
for all z € S; thus 7 is steady-state. [J

What if the Markov chain is periodic?

Theorem 1.73 Let { X;} be an irreducible, positive recurrent Markov chain with state
space S, whose period is d > 2. Let m denote its unique stationary distribution. Then:

1. P*"(z,y) = 0 unless n = md + r for some m € N (i.e. unlessn =r mod d)

2. lim P™*r(z y) =d - w(y).

m—r0o0

PROOF Let m, be the mean return time of each state = with respect to the Markov
chain { X;}. Now consider the Markov chain { X;} with the same initial distribution
as { X} whose transition function is P, i.e. let

P(X; =z) = P(Xg4 = x).
Note that the mean return time for each state with respect to {X,}is e
{X,} is not irreducible; it has d disjoint, positive recurrent communicating classes.

Restricting the Markov chain { X} to each of these classes gives an aperiodic, pos-
itive recurrent, irreducible chain to which we can apply the FTMC; this gives

1 d
: Pd m _ _
nl,l—wo( ) (iL’,.T) le/d Hlm’

64



1.9. Proving the Fundamental Theorem

le.
lim P™(x, x) = dr(z).

m—o0

More generally, if z € S is such that Pi(z,x) > 0, then z and x belong to the same
communicating class of {X}}, so

lim P™(z,z) = dn(x).

m— 00

Now let z,y € S. If r is such that P"(x,y) > 0, then

lim P™"(x,y) = Jim_ S P(2,2) P (z,y) =Y P'(x,2)dn(y) = dr(y)-1 = dr(y)

m—00
zZES zZES

as desired. [J

A picture to explain the periodic case

{Xi} 4 {Xi} = {Xu} 4
| )
O
! 2 o f Ci——/——=20) (560
{)
7 7
y
8

Coo

So, for instance, P"(3,2) looks like

0[1]2]3]4]5]
0

n 1 6
P"(3,2)[0[0|0] [0]0]|O]
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1.10 Example computations

DIRECTIONS
For each given Markov chain in Examples 24-27:

1. Classify the states as transient, positive recurrent or null recurrent.

2. Find all communicating classes of the Markov chain.

3. Find the period of each state.

4. Find all stationary distribution(s) of the Markov chain (if any exist) and de-
termine which (if any) of these distributions are steady-state. (If you can’t
compute the entire stationary distribution, find as many values of the sta-
tionary distribution as you can.)

5. Find the mean return time to state 2.

EXAMPLE 24
The Ehrenfest chain with d = 4.
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EXAMPLE 25

The Markov chain whose transition matrix is

1 1 1

r 2 20000
0100000
1000000
0010300
00035 3 20
00000O0O01
0000O0T1OQ0
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EXAMPLE 26
Let {X;} be a Markov chain with S = {0,1,2,3,4,5,6} such that P(0,y) = ; for all
y#0; P(z,0)=1ifz #0; P(z,z+1) =5 ifx € {1,2,3,4,5};and P(6,1) = 3.
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EXAMPLE 27

Let {X;} be a Markov chain with state space S = {0, 1,2, 3, ...} whose transition
function is

500 0 ifyisoddory =0
(0.) = (%)yﬂ if y > 2is even

P 0 if y=1oryiseven
) = -1)/2 . .
(L.y) (%)(y / if y > 3is odd
% ify=0
r>2= Pz,y)=1¢ 5 ify=1
0 else
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Alternate solution:
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Chapter 2

Martingales

2.1 Motivation: betting on fair coin flips

Let’s suppose you are playing a game with your friend where you bet $1 on
each flip of a fair coin (fair means the coin flips heads with probability 5 and tails
with probability 1). If the coin flips heads, you win, and if the coin flips tails, you
lose (mathematically, this is the same as “calling” the flip and winning if your call
was correct).

Suppose you come to this game with $10. What will happen after four plays of
this game?

To set up some notation, we will let X; be your bankroll after playing the game
t times; this gives a stochastic process { X; }1en. We know X, = 10, for example.
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Sequence of flips | Probability of | X, = bankroll
(in order) that sequence | after four flips
HHHH % 14
HHHT L 12
HHTH L 12
HHTT + 10
HTHH % 12
HTHT % 10
HTTH L 10

HTTT + 8
THHH % 12
THHT % 10
THTH L 10
THTT = 8
TTHH % 10
TTHT % 8
TTTH L

TTTT = 6

To summarize, your bankroll after four flips, i.e. X}, has the following density:

Notice that your expected bankroll is

| 4 6 4 1
EX, = 2 (6) 4+ 2(8)+ 2 (10) + 2 (12) + — (14
1= 17500 + 158 + 7510 + 75(12) + 76(14)
632+ 60 + 48 + 14
N 16
100
16
_ 10.

Notice that the expected amount you have after 4 rolls is the amount you started
with:
EX, = X,.
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The major question: can you beat a fair game?

Suppose that instead of betting $1 on each flip, that you varied your bets from one
flip to the next. Suppose you think of a method of betting as a “strategy”. Here are
some things you might try:

Strategy 1: Bet $1 on each flip.
Strategy 2: Alternate between betting $1 and betting $2.

Strategy 3: Start by betting $1 on the first flip. After that, bet $2 if you lost the
previous flip, and bet $1 if you won the previous flip.

Strategy 4: Bet $1 on the first flip. If you lose, double your bet after each flip
you lose until you win once. Then go back to betting $1 and repeat the procedure.

Is there a strategy (especially one with bounded bet sizes) you can implement
such that your expected bankroll after the 20" flip is greater than your initial
bankroll X,? If so, what is it? If not, what about if you flip 100 times? Or 1000
times? Or any finite number of times?

Furthermore, suppose that instead of planning beforehand to flip a fixed num-
ber of times, decide that you will stop at a random time depending on the results
of the flips. For instance, you might stop when you win five straight bets. Or you
might stop when you are ahead $3.

The big picture question: All told, what we want to know is whether or not
there is a betting strategy and a time you can plan to stop so that if you implement
that strategy and stop when you plan to, you will expect to have a greater bankroll
than what you start with (even though you are playing a fair game).
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The idea of a martingale

Let’s return to the setup of the previous section, where you were wagering $1 on
each flip of a fair coin. We saw that in this setting, F[X,] = X.

What happens if we condition on some additional information? For example,
suppose that the first flip is heads (so that you win your first bet, so that X; = 11).
Given this, what is £[X4|? In other words, what is E[X, | X; = 11]?

Repeating the argument from the previous section, we see

Sequence of flips | Probability of | Resulting bankroll
(in order) that sequence after four flips
HHHH 3 14
HHHT 5 12
HHTH 5 12
HHTT L 10
HTHH L 12
HTHT 3 10
HTTH 5 10
HTTT % 8

Therefore X, | X; = 11 has conditional density

. e]s|0]12]

P(Xi=a|X;=11) 0| 1] 2| ¢ |}

and 1.3 3 1
E[X4]| X, =11] = 0(6) + §(8) + §<10> + §(12) + §(14) =11.

A similar calculation would show that if the first flip was tails, then we would
have
E[X,|X;=9]=0.

From the previous two statements, we can conclude:

In fact, something more general holds. For this Markov chain {X;}, we have
for any s <t that
E[X:| X,] = Xs.
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To see why, let’s define another sequence of random variables coming from the
process {X;}. Foreacht € {1,2,3,...}, define

+1 if the ¢ flip is H (i.e. you win $1 on the ¢" game)

S = Xo = X = { —1 if the ¢ flip is T (i.e. you lose $1 on the ¢ game).

Note that E[S;] = 3(1) + 2(—1) = 0, and also note that

Xt - XO + (X1 - X0> -+ (X2 - Xl) + ...+ (Xt - Xt—l)
::)Q)+-Sl%—“.+—S}

t
= Xo+2_5;
j=1
so therefore
t t
EXy=E |Xo+)Y_S;| = E[Xo]+ > E[S;] = E[Xo] + 0 = EX,.
j=1 j=1

If we are given the value of X, (and we usually are, given that X, represents the
initial bankroll), we have
E[Xt | X()] - Xo.

More generally, for any s < ¢, we have

t
Xi =X+ S+ Sepn+ .+ S =X+ D S
Jj=s+1

so by a similar calculation as above, we have £ X, = EX,. Therefore, if we know
the value of X, we obtain
E[X;| X,] = X,.

What we have proven is that the process {X;} defined by this game is some-
thing called a “martingale”. Informally, a process is a martingale if, given the
state(s) of the process up to and including some time s (you think of time s as the
“present time”), the expected state of the process at a time ¢ > s (think of ¢ as a
“future time”) is equal to X.

Unfortunately, to define this formally in a way that is useful for deriving for-
mulas, proving theorems, etc., we need quite a bit of additional machinery.
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2.2 Filtrations

o-algebras

Goal: define what is meant in general by a “strategy”, and what is meant in gen-
eral by a “stopping time”.

Recall the following definition from Math 414:

Definition 2.1 Let ) be a set. A nonempty collection F of subsets of 2 is called a
o—algebra (a.k.a. o—field) if

1. F is “closed under complements”, i.e. whenever £/ € F, E¢ e F.

2. Fis “closed under finite and countable unions and intersections”, i.e. whenever
Ey, By, Es, ... € F,bothJ A;j and (| A; belong to F as well.
J j

Theorem 2.2 Let F be a o—algebra on set Q. Then ) € F and Q € F.

(In Math 414, I used A rather than F to denote a o-algebra.)

EXAMPLES OF 0-ALGEBRAS

1. Let Q be any set. Let F = {0, Q}. This is called the trivial o-algebra of (2.

2. Let Q be any set. Let F = 2% be the set of all subsets of ). This is called the
power set of (2.

3. Let 2 be any set and let P = { P, P, ..., P, } be any partition of Q2 (that is, that
P,NP; =0foralli# jand U; P; = Q). Then let F be the collection of all sets
which are unions of some number of the P;. This F is called the o-algebra
generated by P.
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2.2. Filtrations

4. LetQ = [0,1] x [0, 1].

e Let F be the trivial o-algebra of (2.

e Let F; be the collection of all subsets of €2 of the form A x [0, 1] where
A cC0,1].
o Let F; be the power set of 2.

Suppose w = (z,y) € Q.

1. If you know all the sets in F; to which w belongs, what do you know about
w?

2. If you know all the sets in F; to which w belongs, what do you know about
w?

3. If you know all the sets in F; to which w belongs, what do you know about
w?
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Measurability

Definition 2.3 Let 2 be a set and let F be a o-algebra on Q). A subset E of () is called
F—measurable (or just measurable) if E' € F. A function (i.e. a random variable)
X : Q — Ris called F-measurable if for any open interval (a,b) C R, the set

X Ya,b)={weQ: X(w) € (a,b)}

is F-measurable.

EXAMPLE
Let Q = [0, 1] and let F be the o-algebra generated by the partition

P ={[0,1/3),[1/3,1/2),[1/2,1]}.

Determine whether each of these functions X is F-measurable:

1. X : Q — R defined by X (w) = 2w.
2. X :Q — R defined by X (w) = 2.

1 ifx<%

3. X :Q — R defined by X (w) = { 0 else

More generally, if F is generated by a partition P, a r.v. X is measurable if and
only if it is constant on each of the partition elements; in other words, if X (w) de-
pends not on w but only on which partition element w belongs to.

This idea illustrates the point of measurability in general: think of a o-algebra F
as revealing some partial information about an w (i.e. it tells you which sets in F to
which w belongs, but not necessarily exactly what w is); to say that a function X is
F-measurable means that the evaluation of X (w) depends only on the information
contained in F.
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Throughout this chart, let Q = [0,1] x [0,1], sow € Q > w = (z,y).

o-algebra
f

information F
reveals about w

description of
F-measurable functions

trivial o-algebra

nothing

F, = sets of form

A x [0,1]
the z-coordinate
of w
F, = sets of form
0,1] x A
power set everything
F =29 (xr and y)
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Filtrations

Definition 2.4 Let 2 be a set and let T C [0,00). A filtration {F;}icr on Q isa
sequence of o-algebras indexed by elements of T which is increasing, i.e. if s,t € Z,
then

s<t=F; CF.

Idea: for any filtration {¥;}, when s < ¢, each F,-measurable set is also F;-
measurable, so as t increases, there are more F;-measurable sets. Put another way, as ¢
increases you get more information about the points in €.

Definition 2.5 Let {X;}cz be a stochastic process with index set . The natural
filtration of { X} is described by setting

F: = {events which are characterized only by the values of X, for 0 < s < t}.

Every natural filtration is clearly a filtration. To interpret this in the context of
gambling, think of points in 2 as a list which records the outcome of every bet you
make. F; is the o-algebra that gives you the result of the first ¢ bets; as ¢ increases,
you get more information about what happens.

EXAMPLE
Flip a fair coin twice, start with $10 and bet $1 on the first flip and $3 on the second
flip. Let X, be your bankroll after the ¢ flip (where ¢ € Z = {0, 1,2}). Describe the
filtration { Fo, F1, Fa}.
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Strategies

Definition 2.6 Let {X,}icr be a stochastic process and let {F;} be its natural fil-
tration. A predictable sequence (a.k.a. strategy) for {X,} is another stochastic
process { B;} such that for all s < t, By is Fs-measurable.

Idea: Suppose you are betting on repeated coin flips and you decide to imple-
ment a strategy where B, is the amount you are going to bet on the " flip.

e If you own a time machine, you would just go forward in time to see what
the coin flips to, bet on that, and win.

e But if you don’t own a time machine, the amount B, you bet on the tth flip
is only allowed to depend on information coming from flips before the '
flip, i.e. B, is only allowed to depend on information coming from X, for
s < t,i.e. B, must be F;-measurable for all s < ¢.

Remark: If the index set Z is discrete, then a process { B;} is a strategy for { X;}
if for every ¢, B; is F,_;-measurable.

EXAMPLES OF STRATEGIES
Suppose you are betting on repeated coin flips. Throughout these examples, let’s
use the following notation to keep track of whether you win or lose each game:

Xy = your initial bankroll
X — X, 1 +1 if you win the t'" game
t X,-1 —1 if you lose the t"* game

1 if you win the t"" game

Sp=Xi — Xp1 = { —1 if you lose the ¢ game

So {X,} would measure your bankroll after ¢t games, if you are betting $1 on each
game. However, you may want to bet more or less than $1 on each game (varying
your bets according to some “strategy”). The idea is that B; will be the amount
you bet on the t'" game.

Strategy 1: Bet $1 on each flip.

Strategy 2: Alternate between betting $1 and betting $2.
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Strategy 3: Start by betting $1 on the first flip. After that, bet $2 if you lost the
previous flip, and bet $1 if you won the previous flip.

Strategy 4: Bet $1 on the first flip. If you lose, double your bet after each flip
you lose until you win once. Then go back to betting $1 and repeat the procedure.

“Strategy” 5: Bet $5 on the n'" flip if you are going to win the n’" flip, and bet
$1 otherwise.

Suppose we implement arbitrary strategy { B;} when playing this game. Then
our bankroll after t games isn’t measured by {X;} any longer; it is
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Definition 2.7 Let { X, }.cz be a discrete-time stochastic process; let Sy = X; — X4
for all t. Given a strategy {B,;} for {X,}, the transform of {X;} by {B,} is the
stochastic process denoted {(B - X ) }+en defined by

t
(B-X); = Xo+ BiSi + BoSo + ... + BiSy = Xo + >_ B;S;.

=1

The point: If you use strategy { B;} to play game { X,}, then your bankroll after
t games is (B - X);.

Note: (B : X)O = Xo.

EXAMPLE
Suppose you implement Strategy 4 as described above. If your initial bankroll is
$50, and the results of the first eight flipsare HT THT T T H, give the values of
By, Xy, Syand (B - X), for 0 <t < 8.

result of | bankroll using
time | bet size | “W-L” record | the t"* game | strategy {B;}
t B, X, S, (B-X),
0 DNE 50 DNE 20

1
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Stopping times

Definition 2.8 Let { X}z be a stochastic process with standard filtration {F;}. A
ro. T : Q — RU{oo} is called a stopping time (for { X.}) if for every a € R, the
set of sample functions satisfying T' < a is F,-measurable.

In other words, 7' is a stopping time if you can determine whether ornot 7" < a
solely by looking at the values of X, for ¢t < a.

In the context of playing a game over and over, think of 7" as a “trigger” which
causes you to stop playing the game. Thus you would walk away from the table
with winnings given by X (or, if you are employing strategy { B, }, your winnings
would be (B - X)r).

EXAMPLES

Y T:Ty:mln{tZOXt:y}

X,

o I'=min{t > 0: X, = Xo}

X
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NON-EXAMPLE

o I'=min{t >0: X; =max{X;:0<s<100}}

Xi

Recall our big picture question: is there a strategy under which you can beat
a fair game?

Restated in mathematical terms: Suppose stochastic process { X} represents a
fair game (i.e. E[X;|X;] = X for all s < t). Is there a predictable sequence { B, } for
this process, and a stopping time 7" for this process such that E[(B - X)| > X? (If
so, what { B;} and what 7" maximizes F[(B - X)r|?)
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2.3 Conditional expectation with respect to a o-algebra

Recall from Math 414: Conditional expectation of one r.v. given another:

Here is a useful theorem that follows from this definition:

Theorem 2.9 Given any bounded, continuous function ¢ : R — R,

EXo(Y)] = E[E(X|Y)¢(Y)].

PROOF (when X, Y continuous):

://xqb(y)fx,y(xay)dA

://W ) fxiy (z]y) fy (y) dA
N //fo|Y z[y)é(y) fr (y) d dy

= [ ([ erxwtoly) dx) oy) v (4) dy

_ /E X|Y)(y) o(y) fr(y) dy
= E[E(X|Y)o(Y)].

The proof when X, Y are discrete is similar, but has sums instead of integrals. [

To define the conditional expectation of a random variable given a o-algebra,
we use Theorem 2.9 to motivate a definition:

Definition 2.10 Let (2, F, P) be a probability space. Let X : Q@ — R be a F-
measurable r.v. and let G C F be a sub o-algebra. The conditional expectation
of X given G is a function E(X|G) : Q — R with the following two properties:

1. E(X|G) is G-measurable, and

2. for any bounded, G-measurable rv. Z : Q) — R, E[XZ] = E [E(X|G) Z].

Facts about conditional expectation given a o-algebra:
1. Conditional expectations always exist.
2. Conditional expectations are unique up to sets of probability zero.

3. By setting Z = 1, we see that E[X]| = E[E[X|G]]. This gives you the idea
behind this type of conditional expectation: E[X|G] is a G-mble r.v. with the
same expected value(s) as the original r.v. X.
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EXAMPLE 1
Let Q = {A, B,C, D}; let F = 2%; let P be the uniform distribution on . Let G be
the o-algebra generated by P = {{A, B},{C,D}}. Let X : Q@ — R be defined by
X(A) =2, X(B) =6, X(C) =3;, X(D) =1. Compute E[X|G].
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EXAMPLE 2
Let Q = {A,B,C,D,E}; let F = 2% let P(A) = ; P(B) = P(C) = P(E) = 3;
P(D) = £. Let G be generated by the partition P = {{A, B},{C,D},{E}}. Let
X(A)=X(B)=X(D)=2;,X(C)=0;, X(E) =1. Compute E[X|G].

EXAMPLE 3
Let Q = [0,1] x [0,1]; let F = 2%; let P be the uniform distribution. Let G be
the o-algebra of vertical sets (i.e. sets of the form A x [0,1]). Let X : @ — R be
X(z,y) = z +y. Compute E[X|G].
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The following properties of conditional expectation are widely used (their proofs
are beyond the scope of this class):

Theorem 2.11 (Properties of conditional expectation) Let (€2, F, P) be a proba-
bility space. Suppose X,Y : Q — R are F-measurable r.v.s. Let a,b, c be arbitrary
real constants. Then:

1. Positivity: If X > ¢, then E(X|G) > c.

2. Linearity: E[aX + 0Y|G] = aE[X|G] + DE[Y|G].

3. Stability: If X is G-measurable, then E[X|G] = X and E[XY|G] = X E[Y|G].
4

. Independence: If X is independent of any G-measurable r.v. (we write X L G
to represent this), then E[X|G] = EX.

5. Tower property: If H C G then E[E(X|G)|H] = E[X|H].
6. Law of total expectation: E[E(X|G)] = EX.
7. Constants: F[a|G] = a.

(These statements hold with probability one.)
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2.4 Martingales and optional stopping

A “martingale” is a mathematical formulation of a fair game:

Definition 2.12 Let { X} }:cz be a stochastic process with natural filtration {F}.

e The process { X;} is called a martingale if for every s < tinZ,

E[X|F] = Xs.

e The process { X;} is called a submartingale if for every s < tinZ,

E[X,|F.)] > X..

e The process { X;} is called a supermartingale if for every s < tinZ,

E[X|Fs] < X,.

Theorem 2.13 (Characterization of discrete-time martingales) A discrete-time
process { X; }ien is a martingale if and only if E[X;1|F:] = X, for every t € N.

PROOF We use the tower property of conditional expectation. Let s < ¢. Then
BIXi|Fs| = BIE[- - EIE[E[X | Fia]|Fial| Fios] - [Fon] [T

= E[E]--- E[E[X, 1| Fio||Fis] -+ | Fossa]| Fs]

= E[E[- - B[X;o|Fi 3] - -+ [ Fea]| Fs]

= E[Xerl“Fs]
= X,.

By definition, {X;} is a martingale. [J
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Theorem 2.14 (Properties of discrete-time martingales) Suppose that the stochas-
tic process { X }ien s a martingale whose natural filtration is {F;}. Define S; =
X — Xy_1 forall t. Then, for all t:

t
1 X;=Xo+ X Sy
j=1

2. S; is Fy-measurable;
3. E[Si1|F] =0;

4. E[S]=0;
5

- BlXy] = E[Xo].

PROOF First, statement (1):

Xi=Xo+ (X1 —Xo)+ (Xo—Xq) + . + (Xt — X31)
:XO—I—Sl—O——i—St
t
= XO"’ZS]'
j=1

Statement (2) is obvious, since both X; and X;_; are F;-measurable.

Next, statement (3):

E[Sin|F] = E[Xi — X F]
= E[Xyn|F] — E[X|F]
= X; — E[Xy|F] (since {X;} is a martingale)
= X, — X, (by stability)
=0.

(4): By the law of total expectation and part (3), E[S;] = E[E[S;|Fi-1]] = E[0] =
0.

(5) follows from (1) and (4). [

Theorem 2.15 (Transforms of martingales are martingales) Let { X, }icn bea mar:
tingale and suppose that { B} is a strategy for {X;}. Then the transform {(B - X):}
is also a martingale.
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PROOF
t+1
E[(B-X)m|F]=E |Xo+ > B;Sj|F;| (by the definition of (B - X))
=1

t

= E[X0|]:t] + Z E[B]SJLFt] + E[Bt+15t+1|Ft] (by linearity)

J=1

t
= Xo+ Y BjS; + B E[S;1|F]  (by stability)

=1

t
= Xo+ Y_B;S; + Bi410  (by (3) of Thm 2.14)

=1

t
= Xo+ Y_ B;S;

Jj=1

= (B X).
By Theorem 2.13, {(B - X);} is a discrete-time martingale. [J

Theorem 2.16 (Optional Stopping Theorem (OST)) Let {X;} be a martingale.
Let T be a bounded stopping time for {X;}. (To say T is bounded means there is a
constant n such that P(T < n) = 1.) Then

E[X7] = E[Xq].

1 ifT>t

PROOF Let B, = { 0 else

T is a stopping time = G ={T <t—1}={B, =0} is F,_;-measurable V¢
= GY={T >t} ={B,=1}is F;_;-measurable Vt
= each B, is F;_;-measurable
= {B,} is a predictable sequence for {X,}.

Now, we are assuming 7 is bounded; let n be such that P(T" < n) = 1. Now for
any t > n, we have

t
(B - X), :XO+ZBtSt

j=1

t
=Xo+ Y Bi(X; — Xi—1)

j=1
=Xo+ (X1 —Xo)+1(Xo— X1) + ... + 1( X7 — X71_1)
+ 0( X741 — Xo) + 0(Xppo — Xpg) + ...
= Xr.

92



2.4. Martingales and optional stopping

Finally,

EXr = E[(B-X)/]
=E[(B-X)o| (since{(B-X),}isamartingale)
= FEXy. U

Note: The OST is also called the Optional Sampling Theorem because of its
applications in statistics.

We will need the following “tweaked version” of the OST, which requires a
little less about 7' (it only has to be finite rather than bounded) but a little more
about { X} (the values of X; have to be bounded until T hits):

Theorem 2.17 (OST (tweaked version)) Let {X,} be a martingale. Let T be a
stopping time for {X,} which is finite with probability one. If there is a fixed con-
stant C' such that for sufficiently large n, T > n implies | X,,| < C, then

E[Xr] = E[Xo).

PROOF Choose a sufficiently large n and let T = min(7,n). T is a stopping time
which is bounded by n, so the original OST applies to 7, i.e.

EX7 = EX.
Now

|EXy — EXy| = |EXy — EX~|

Recall: Our big picture question is whether one can beat a fair game by varying
their strategy and/or stopping time. The OST implies that the answer is NO:
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Corollary 2.18 (You can’t beat a fair game) Let {X;} be a martingale. Let T be a
finite stopping time for { X} and let { B} be any bounded strategy for { X;}. Then

E(B-X)r = EX,.

PROOF If {X,} is a martingale, so is (B - X);. Therefore by the tweaked OST,
E(B-X)r=E(B-X)=EXy. O

Catch: If you are willing to play forever, and/or you are willing to lose a pos-
sibly unbounded amount of money first, the OST doesn’t apply, and you can beat
a fair game using Strategy 4 described several pages ago. But this isn’t realistic if
you are a human with a finite lifespan and finite wealth.

Application: Suppose a gambler has $50 and chooses to play a fair game re-
peatedly until either the gambler’s bankroll is up to $100, or until the gambler is
broke.

If the gambler bets all $50 on one game, then the probability he leaves a winner
is 7. What if the gambler bets in some other way?

The results of this section also apply to sub- and supermartingales:

Corollary 2.19 Suppose that { X }ien is a submartingale and that { B;} is a strategy
for {X;}. Then:

1. The transform {(B - X))} is also a submartingale.

2. If T is a bounded stopping time for {X;}. Then E[Xr| > E[X,| (and E[(B -
X)r] > E[Xo)).

3. If T is a finite stopping time for {X,} and there is a fixed constant C' such that
for sufficiently large n, T > n implies |X,,| < C, then E[Xy| > E[X,] (and
E[(B - X)r] > E[Xo]).
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Corollary 2.20 Suppose that {X,}en is a supermartingale and that { B, } is a strat-
eqy for { X, }. Then:

1. The transform {(B - X ).} is also a supermartingale.

2. If T is a bounded stopping time for {X;}. Then E[Xr| < E[X,] (and E[(B -
X)7] < E[Xo)).

3. If T is a finite stopping time for {X;} and there is a fixed constant C' such that
for sufficiently large n, T > n implies |X,,| < C, then E[X7| < E[X,] (and
E[(B- X)r] < E[Xo)).

2.5 Random walk on Z

Definition 2.21 A discrete-time stochastic process { X, } with state space Z is called
a random walk (on Z) if there exist

1. iid. rv.s Sy, Sa, Ss, ... taking values in 7, (S; is called the j™ step or j'* incre-
ment of the random walk), and

2. arv. X, taking values in Z which is independent of all the S;,

t
such that for all t, X, = Xo+ > S;.
j=1

In this setting:
e X is your starting position;
o S; = X; — X,_, is the amount you walk between times j — 1 and j;
e and X, is your position at time ¢.
Note: A random walk on Z is a Markov chain:
e State space: S = 7
e [nitial distribution: X,

e Transition function: P(x,y) = P(S; =y — x).
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Note: Random walk models a gambling problem where you make the same bet on
the same game over and over. The amount you win/lose on the j** game is S;.

EXAMPLE
Make a series of bets (each bet is of of size B) which you win with probability p
and lose with probability 1 — p. Then:

Definition 2.22 A random walk on 7Z is called simple if the steps S; take values only
in {—1,0, 1}. For a simple random walk, we define

p=P(S; =1) q= P(S; = -1) r=P(S; =0).
For a simple random walk, we let

pw=EFES; and o°=Var(S;).

A simple random walk models a repeated game where you bet $1 on each play;
simple random walk is a Markov chain which has the following directed graph:

T 7 T T T 7 T

RO EEDEEOERDE: v () 2 () » () »
-l 0 1 2 < w—1_ cal a4l e
q q q q q q q q q

Lemma 2.23 For a simple random walk, 1 = ES; = p — q. If the simple random
walk is unbiased, then = 0 and o* = Var(S;) = p+q.

PrROOF HW
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Definition 2.24 A simple random walk on Z is called unbiased if p = ¢ and is
called biased if p # q. A biased random walk is called positively biased if p > ¢
and negatively biased if p < ¢.

Note: A simple random walk is irreducible if and only if p > 0 and ¢ > 0.

Theorem 2.25 Let {X;} be a random walk. Then:
1. {X:} is a martingale if ES; = 0;
2. {X.} is a submartingale if ES; > 0;

3. {X:} is a supermartingale if £.S; < 0.

PROOF Applying properties of conditional expectation, we see
EXin|F] = E[Xi + S| F] = E[X|F] + B[S |F] = Xo + E[Si]-

If £S; = 0, then this reduces to X; + 0 = X, so the process is a martingale by
Theorem 2.13. If ES; > 0, then the last expression above is > X, so the process
is a submartingale, and if £S; < 0, then the expression is < X; so the process is a
supermartingale. [

As a special case of this, unbiased simple random walks are martingales; pos-
itively biased simple random walks are submartingales; negatively biased simple
random walks are supermartingales.

Analysis of hitting times for simple random walk

Question: Under what circumstances is a simple random walk recurrent? When
is it transient?

To approach this question, we are going to solve a class of problems related to
hitting times. Recall that foraset A C S, T4 = min{t > 1: X, € A}. T, is called
the hitting time to A.

First, for a simple random walk, if a,b € Aand a < x < bbut AN(a,b) = 0,
then if you start at z, then Ty = T{,;), because you cannot hit A at any point other
than a or b (that would require “jumping over” a or b). So we will restrict to hitting
times for sets consisting of two points: A = {a, b}.

First, we start with a result which says that if your initial state in a simple
random walk between two numbers a and b, you will definitely hit a or b (or both)

in the future:

97



2.5. Random walk on Z

Lemma 2.26 Let {X,} be an irreducible simple random walk. Let A = {a,b} C Z
and suppose Xy = x where a < x < b. Then P(T4 < o0) = 1.

PROOF Since {X;} is irreducible, p > 0. Now let G,, be the event that between
times (n — 1)(b — a) and n(b — a), the chain always steps in the positive direction.
In precise math notation,

G,={S;=1Vje{(n—1)b—a)+1,(n—1)(b—a)+2,...,n(b—a)}}.
Note that
1. P(G,) > p* > 0.

2. since Gj and G, refer to disjoint blocks of time in the chain, G; L Gj.

o)
) n

= [[ P(GS) (since the G,s are 1)
n=1

Thus

3

P(no G, occurs) = P (

n

N
= lim [ P(GY)
N—oo -1
I I _ b—a\N
= A=)

=0 (sincel—p"™ € (0,1))

Therefore with probability 1, at least one G, occurs. This means that with prob-
ability 1, at some time in the future there will be b — a consecutive steps in the
positive direction, and that means that unless 7, has already occurred, after those
b — a consecutive steps, X; will be > b. Thus either T, or 7 is finite, and therefore
P(Ty <o0)=1.0

At this point, we know that in an irreducible, simple random walk, if you start
at v and a < = < b, you will hit at least one of a or b in the future (with probability
one).

Question: what is the probability that you will hit a before b (as opposed to
hitting b before a)?

Po(T, <Tp) =7

Probabilities like P, (T, < T}) are called escape probabilities or first passage-time
probabilities.
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2.5. Random walk on Z

To compute escape probabilities, we will use martingales and the Optional
Stopping Theorem.

Lemma 2.27 Let {X;} be an irreducible simple random walk. Then the following
three processes are martingales:

o {Y.}, whereY, = X; — tu;
o {Z,}, where Z, = (X; — tp)* —to%;

Xy

o {U,}, where Uy = (ﬂ) )

p

06X

m (here the 0 can be any arbitrary constant).
J

o {Vi}, whereV, =

PROOF Throughout this proof, {F;} is the natural filtration of {X;} (thus also the
natural filtration of {Y;}, {Z;} and {V;} since they are formulas of {X;}). First, let
Y; = X; — tp. Since the index set is discrete, to show {Y;} is a martingale, we need
to show E[Y;.1|F;] = Y;. Then

EYia|F] = E[Xi1 — (t+ Dl F]
= B[X; + Sp1 — (E+ DplF]
= X; + E[Si1|F) — (t+ 1)p  (since X, is Fi-measurable)
=X+ B[S = (t+ Dp (Seta L F)
=Xy +p—tp—p
=Xy —tu
—Y,

By Theorem 2.13, {Y;} is a martingale.

Xy . .
Next, let U, = (%) . Here is the calculation:

]—"t]
i p
i Xt+St41
—E <q> ]—"t]
i p
i Xt St41
NN
i p p

Xt St41
= (q) E (q) Fi (stability)
p p

i q Xit1
U1 = E ()
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2.5. Random walk on Z

From the previous page,

ElU|F] =

SRS

Xt i Sty
=1
p

(since S;y1 L Fp)

=
=
VN
SRS
~
R
£

SRS

I
/N -/ N /N

T TIR

N — N
>

SRS
~_
2

y

By Theorem 2.13, {U;} is a martingale.

0t
Vs, O

Next, let V, =

[ efXttr
= E B S —
E[V;Hrll«/t;f] i [MS]' (9)]t+1
P i ee(Xt"FStJrl) 1
=\ b 00|
[ oPXe 0511 1
= E B ——
(Vs @
_ B [0S
= M, (B)]7 g
e@Xf,

N WE [eest“} (independence)
Sj

]-"t] (stability)

eGXt

- WMst+1 (#) (def'n of MGF)
o
= M5 O (since {5;}ii.d.)

:-‘/;.

By Theorem 2.13, {V,} is a martingale.

The proof for {Z,} is left as a homework exercise. [J

i 1 0 —1
<q> p+ (‘-’) r+ <q> q] (LOTUS)
p p p
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2.5. Random walk on Z

Theorem 2.28 (Escape probabilities for random walk) Let { X;} be an irreducible,
simple random walk on Z. Let a < x < b be integers. Then:

o if p = q (i.e the random walk is unbiased), then

o

—X

1. Py(T, < Tp)
2. Px(Tb < Ta)

8 o
Q °

b—

S|

o if p # q (i.e. the random walk is biased), then

(S
8

1. P(T, < Tp)

8
5]

~— [— ~— [—
S S
| |
—_ — [—
Q

| |
Bk Sk Tk Sk
B sk VIR VIR

2. Py(Ty < To)

~—
Q

Idea of the proof: To prove formulas like these, you follow this procedure:

1. Cleverly choose some martingale associated to the process {X;}. Let’s call
that martingale {1, }.

2. Let T'=min(7,,T;) = min{t : X; € {a,b}}. T is a finite stopping time, and
(b T <T,
XT_{ a T, <T,

Work out E[My] based on this information. You should get an expression
which contains the probability you want to compute.

3. By the (tweaked version of the) OST E[Mr] = E[My]. Set your formula from
step (3) equal to the value of E[M;] (which is usually known), and solve for
the probability you want.

Now for the details.

PROOF Case 1: Suppose the random walk is unbiased. That means {X,} is a mar-
tingale. Let 7" = min(7,,7,) = min{t : X; € {a,b}}. T is a finite stopping time,

and
_ b MT,<T,
XT_{a T, <T,

That means that
EXy =bP(Xr =b)+aP(Xy =a)
—bP,(Ty < T,) + a Py(T, < T)
=b[l — P(T, <T)] +aP.(T, < Tp)
=b+ (a—b)P(T, < Tp).
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2.5. Random walk on Z

By the “tweaked version” of the OST, we have
r=FEXo=FEXr=b+(a—b)P.(T, <Tp).
Solve for P, (T, < T3) to get

az—b_b—:c

Px(Ta<Tb):a—b_b—a

as desired (P,(T, < T,) =1 — ’g:—JC = =2 by the complement rule).

a

Case 2: Suppose the random walk is biased. Now {X;} is no longer a martin-

gale, but from the preceding lemma, {U;} is a martingale, where U, = (%)Xt. Note
(9)" T <1,

(g>“ €T, < T, . Therefore
p

first that EU, = (%)m and note second that Uy = {

EUy = ( )be(Tb <T,)+ (g)apx(Ta <T)

b
= ( ) [1—P.(T, <Tp)] + (2) P (To < Ty)
b a b
=) G- C)
p p
Again, let 7' = min(7,,7;) = min{t : X; € {a,b}}; by the OST we have

(o) == G |G -C)

Solving for P, (T, < T}), we get

P(T, < T)) = (5) () (i)z )
GE)

SR

a

SRS

P.(T, < Tp).

SRS

Po(T, < Tp).

a b
() - ()
The last statement follows from the complement rule. [J

Note: P,(T, < Ty) + P.(T, < T,) = 1 (so you really only need to remember
formulas for one of these two quantities).
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2.5. Random walk on Z

EXAMPLE 4

I'have $20 and you have $15. We each make a series of $1 bets until one of us goes
broke.

1. If we are equally likely to win each bet, what is the probability that you go
broke? What amount of money should I expect to end up with?

2. Suppose you are twice as likely as me to win each bet (assume no ties are
possible). In this setting, what is the probability you go broke?

A new kind of question: In the previous example, how long will it take for one
of us to go broke?

Theorem 2.29 (Wald’s First Identity) Let {X,} be an irreducible, simple random
walk. Let a < x < b be integers and suppose Xo = x. Let T' = min{T,, T} = Tyq ).
Then

EXr|=x+4+ uET =z + (p— q)ET.
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2.5. Random walk on Z

PROOF By Lemma 2.27, we know that {Y;} is a martingale, where Y; = X; —tu. By
the Optional Stopping Theorem,

v = E[X,] = E[Xo — 0] = EYy = EYy = E[X7 — Ty| = EXy — pET.
Solve for E Xy to get the result. [J

Usefulness of Wald’s First Identity: From the escape probability theorem, we
know that if the walk is biased,

P(Xr=a)=P,(T, <Ty) = (Z>b B (;)a
() =)
PXr=0)=P,(T, <T,) = (Z)b _ (Z)a
) - ()
SO
E[X7] =
and therefore, since EXy =z + (p — q)ET,
pr— Bl —o
pP—q

EXAMPLE 4, CONTINUED
Recall that I have $20 and you have $15; we each make a series of $1 bets until one
of us goes broke.) How long will it take one of us to go broke, if you are twice as
likely as I am to win each bet?

Solution: We previously showed that the amount of money I expect to end up
with is E[X7] = 35 (1=% ) & .001. Thus

1—235

Follow-up question: What if we are equally likely to win each bet?

Repeating the same logic doesn’t work:

So in this setting, we need another fact to answer the question:
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2.5. Random walk on Z

Theorem 2.30 (Wald’s Second Identity) Let {X;} bea simple, irreducible unbiased
random walk. Let a < x < b be integers and suppose Xo = x. Let T' = min{T,, T, } =
T{a,b}- Then

Var(Xy) = Var(S;) - ET = o°ET.

PROOF By Wald’s First Identity, we have EXp = x + uET = x + OET = x. There-
fore by the variance formula we see
Var(Xr) = E[X3] — (EXr)? = E[X7] — 27,
and therefore
r* = E[X2] — Var(Xy). (2.1)
By Lemma 2.27, we know that {Z,} is a martingale, where
Zy = (X; — tp)? —to® = X} — to’.
Observe that EZy = E[(X — 0u)? — 00?] = E[XZ] = 2*. Therefore, applying the
OST, we have
v*=EZy= EZp = B[ X2 — To?] (2.2)
= E[X}] — oc*ET. (2.3)
In Equations (2.1) and (2.3) above we have found z? two different ways. This
means

E[XZ] — Var(Xr) = 2° = E[X3] — c*ET.
Subtract E£[X7%] from both sides and multiply through by (—1) to obtain Wald’s
Second Identity. [

Usefulness of Wald’s Second Identity: Suppose {X;} is a simple, unbiased,
random walk with r # 1. From the escape probability theorems, we know

h— _
P(Xp =a) = Py(T, < T}) = b_x P(Xp =b) = Py(T, < T,) = gg_z
SO
EXr] =
E[X7] =

Var(Xr) = E[X7] — (B[X7])? =
Also,
Var(S;) = E[S}] — E[S;] = E[S}] =

and therefore

Var(Xr)
BT = 22021
Var(S;)
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2.5. Random walk on Z

Theorem 2.31 (Wald’s Third Identity) Let {X;} be an irreducible, simple random
walk. Let a < x < b be integers and suppose Xy = 0. Let T' = min{T,, Ty} = Tyq ).

Then oxr
s l [MM -

PROOF HW (this follows the same pattern as all the proofs we have been doing,
but with a different choice of martingale).

Changing gears, we are now in a position to derive formulas for f,, when
{X.} is arandom walk. These formulas are rather famous and known by the name
“Gambler’s Ruin”:

Theorem 2.32 (Gambler’s Ruin) Let {X,} be an irreducible, simple random walk
on Z. Let a and x be distinct integers. Then

e if p = q (i.e. the walk is unbiased), then f, , = P,(T, < c0) = 1.
e if p > g (i.e. the walk is positively biased), then
PT 1 ifa>ux
fa:,a— m( a<OO)— (1%):0—(1 ifa<x
o if p < q(i.e. the walk is negatively biased),, then

1 ifa <z

fa:,a:Px(Ta<OO): { (5)(171 ifa>:c

Why is this called “Gambler’s Ruin”? Suppose a gambler brings $50 to a
casino and makes a series of $1 bets in a game where he has a 50% chance of win-
ning each bet, and a 50% chance of losing each bet. The Gambler’s Ruin Theorem
says

PROOF Case 1: Suppose that a > z. To say that X; = a for some ¢ means that there
must be some number n (n is probably very, very negative) so that the walk hits a
before n. That means
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2.5. Random walk on Z

nggloo 2_2 lfp - q
fra=Pu(T, < o0)= lim P,(T,<T,) = (1)~ (2)" .
n——00 lim 2—24  if
M Gy 7
1 ifp=gq
_ %%I Ly if p>q
].im E ai E w if <
neo (4)=(2)" TP
{ 1 ifp>q
- lim (%)a_ if p <
nbo (2) =4
1 ifp>q
L it

ifp>gq

ifp<gq

Case 2: Now suppose that a < x. This is similar (HW problem). [

Theorem 2.33 (Recurrence/transience of random walk on Z) Let {X;} bean ir-
reducible, simple random walk on Z. Then { X,} is recurrent if and only if the random

walk is unbiased.

PROOF Since {X;} is irreducible, {X;} is irreducible if and only if 0 is recurrent,

i.e. if and only if f, = 1. By direct calculation,

fo = P()(TO < OO) = P0<T0 < OO‘Xl = —1)P0(X1 = —1)

+ Py(Ty < o0 | Xy =0)FPy(X1 =0) (Law of Total Prob.)
+P0<T0<OO|X1:1)P0(X1:]_>
:Pl(TQ<OO)q+]_'T+P1(TQ<OO)p
l-q +r +(%)p ifp>gq
=¢1l-q +r +1-p ifp=gq (Gambler’s Ruin)
(%)q +r +1-p ifp<gq
2q+r ifp>gq
=<1 ifp=gq
2p+r ifp<gq

Therefore 0 is recurrent iff fy, = 1iff p = ¢. O
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2.6. Birth and death chains

2.6 Birth and death chains

‘"__ 77

If we start with a random walk, but relax the requirement that the “p”s and “¢”s

of the chain are the same at every state, then we get a class of Markov chams Called
“birth-death” chains:

Definition 2.34 A Markov chain with state space S = {0, 1,2, ...} or§ ={0,1,2,...,d
is called a birth-death chain if for every x € S, there are three nonnegative numbers
D, Gz and r, such that

1. Forallx € S, p, + ¢ + 1. = 1;
2. qo=0;
3. If § ={0,1,...,d}, then p; = 0; and

P(z,xz+1) =p,
4. Forallz € S,{ P(x,x)=r,
P(z,z—1)=q,

Examples of birth-death chains include: gambler’s ruin, Ehrenfest chain.

Every birth-death chain has a directed graph that looks like

70 71 9 Te—1 Tx41

OO n ) w pumm@prmw
e N T s T

0 1 2. .- SRS B S

q1 q2 q3 qr—1 qx qz+1 qz+2
iftS={0,1,2,..}, or
Td—2 Td—1
mpommm P1sm Pa-2 mpdlﬂ
0~ 1~ T2 ... d—lNd
~—— \—/ -~
q1 q2 q3 dd—2 (Idfl qd

ifS = {0,1,...,d}.

First observation: A birth-death chain is irreducible if and only if no p, nor g,
is 0 (other than ¢y or p,). If a birth-death chain is not irreducible, then the com-
municating classes of the chain are themselves birth-death chains (after perhaps
relabeling the state space).
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2.6. Birth and death chains

Analysis of hitting times for birth-death chains

Big picture question: Under what circumstances is an irreducible birth-death
chain recurrent? When is such a chain transient?

Partial answer: If S = {0, 1,2, ..., d}, then since S is finite, the chain is recurrent.

Refined question: Under what circumstances is an irreducible birth-death chain
with § = {0, 1,2, 3, ...} recurrent? When is such a chain transient?

We will approach this question similar to how we approached the question for
random walks (by analyzing hitting times to sets consisting of two points a and b).

Lemma 2.35 Let {X;} be an irreducible birth-death chain. Let A = {a,b} C S and
suppose Xo = x where a < x < b. Then P(Ty < o0) = 1.

PROOF This proof is essentially the same as the proof of the similar statement
given for random walk. Let p = min{p,, pa+1,...,pp}. Since {X,} is irreducible,
p > 0. Now let G, be the event that between times (n —1)(b—a) and n(b— a), there
are only births in the birth-death chain. Note that P(G,,) > p*~* > 0, so by repeat-
ing the rest of the proof given for random walk, we see that P(T4 = o0) < P(no
G, occurs) = 0. J

Important intermediate question: P, (7, < T},) =7

X,

t

We solved this question for random walks using the OST, by setting up an ap-
propriate martingale related to the random walk (the key idea was that for an
unbiased random walk, {X;} is a martingale, and for biased random walk, the

process {(;’))Xt} is a martingale). You can do something similar for birth-death

chains, but you need a more complicated martingale:

109



2.6. Birth and death chains

Lemma 2.36 Let {X,} be an irreducible birth-death chain. Then define v, = 1 and

for each y > 0, set
_ QyQy—1Gy—2 - " 4241

 PyPyDy-1 DD
Define the function 5 : S — R by setting 5(0) = 1, 5(1) = 1 and for y > 2, setting

Y

F(y) =1+ w20, %2R0
p1 P2P1 Py—1Py—2 " - P2P1

=%+t +Y2 Tt Yy

y—1
=2 %
j=0

Then the stochastic process {Y;} is a martingale, where Y; = 7(X3).

PROOF HW

Theorem 2.37 (Escape probabilities for birth-death chains) Let {X;} be an ir-
reducible birth-death chain with infinite state space. Then if a < x < b,

b—1 z—1

2 Yy 2 Yy
Po(T. < Ty) = 1= and  P(T, < T,) = .=

y;a ’Yy y;a /Yy

where the vy, are as defined in Lemma 2.36.

PROOF Let {Y;} = {7(X}:)} be as in the preceding lemma; we see
Yo =7(Xo) =7(z).
Let ' = min(7,,T;) = T(ep; T is a finite stopping time and {X;} is bounded
(by a and b) until T" occurs, so the tweaked version of the OST applies to give
7(x) = EYo] = E[Y7] = 3(a) P(Xr = a) +7(0) P(X; = b)
= ﬁ(a)Pm(Ta < Tb) + 7(@[1 - PJ:(Ta < Tb)]
7(b) + [(a) = 7(0)| Pe(Te < T).

Solve for P, (T, < T3) to get

bil i1 b—1
() ~A) S s BT
b—1
> Yy
y=0

P(T, <T)) = - = ==
— 2 W 2 Yy
y=0 y=a

The other result follows from the complement rule. [

110



2.6. Birth and death chains

Using this theorem, we can determine under which circumstances an irreducible
birth-death chain on an infinite state space is recurrent:

Lemma 2.38 Let {X,;} be an irreducible birth-death chain with infinite state space.
Then { X} is recurrent if and only if f = 1.

PROOF {X,} isirreducible, so {X,} is recurrent <= 0 is recurrent <= foo = 1.
Now

foo = Py(Ty < o0)
= P()(TO = 1) + P()(T[) S [27 OO))

Theorem 2.39 (Recurrence/transience of birth-death chains) Let { X} bean ir-
reducible birth-death chain with S = {0, 1,2, ...}. Then defining -, as in the previous
theorem,

{X:} is recurrent <= > v, = .
y=0

PROOF Suppose X, = 1. Since {X,} is a birth-death chain,
1<y <Ty<Ty<...<T, <..

SO
(To < TQ) - (TO < Tg) - (T() < T4) C ..
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2.6. Birth and death chains

and consequently

f1’0 = Pl(TO < OO)

=P (G (T < Tn)>

n=2

= lim P(Ty <T,) by monotonocity (chapter 1 of Math 414)

n—1
Z W
= lim | = by Theorem 2.37 withz = 1,a = 0,b =n
yzz:o T
n—1
2 Yy — 0
= lim | £ i
n—o00 'ﬂi
y=0 W
n—1
Z, ]
= lim | £ 1
n— 00 ”i
y=0 W
1
= lim [1-— i
n—o00 n—
> Wy
y=0
B 1
yz=:0 W

if § 7y diverges
y=0

if 3~ ~, converges to C
y=0

By the preceding lemma, { X;} is recurrent if and only if f; y = 1, so this proves the
theorem. [J
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2.6. Birth and death chains

EXAMPLE 5
Let { X;} be a birth-death chain on § = {0, 1,2, 3, ...} such that

B x+ 2 and B T
Pe =5 1) LA

Is this chain recurrent or transient?
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2.6. Birth and death chains

Stationary distributions of irreducible birth-death chains

Let the state spacebe S = {0,1,2,3,...,d} or § = {0, 1,2, 3, ...} (in the second situa-
tion, d = oo in what follows).

d
7 stationary = Y w(z)P(z,y) =7(y) and > w(y) =
x=0 yeS
m(0)ro + m(1)g1 = 7(0) (y = 0)
)y - 1)py L+ 7Yy + 7y + Vg =7(y) (y>0)
d
$ rly) =

Since p, +¢q, = 1 —r, for all y, these equations yield (after some significant algebra)

w(y+1) = 2n(y)Vy >0

Qy+1
N w(y) _ Pbopip2 - - .pyflﬂ(O)‘v’y > 1
41492 - Gy

Define
Pop1-Py—1 lfy > 0

_ q12--qy :
Sy { 1 ify=0"

think of ¢, as “the product of all the ps to the left of y over the product of all the ¢s
to the left of y in the directed graph:

T0 1 T2 Ty—1 Ty
m Ppo m p1 m p2 Pl/ 2 O Py—1 O Py m Perl
- _y-1_ Syl Ty+l_

q1 q2 q3 (11, 1 qy qd qy+2

Then 7(y) = ¢,7(0) forally € S.

This means

1_2 ZCy

yeS yeS

this can only be true if

> ¢, converges (this is always true if d < 0o).
yeS

in which case

o»zgzhwwﬁ{z@].

yeS yeS

We have essentially proven:
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2.6. Birth and death chains

Theorem 2.40 (Stationary distribution for irred. birth-death chains) Let {X,}
be an irreducible birth-death chain. Define (, = 1 and for each y > 0 in S, define

C — boP1-Py—1 Then'
v q192-qy ° :

1. If ¥ ¢, converges, then {X,} is positive recurrent and has one stationary dis-
yeS

tribution 7 defined by
Ca

TG

yeS

m(x)

(This includes all situations where S is finite.)

2. If ¥° ¢, diverges, then {X,} has no stationary distributions (so it is either null
yeS

recurrent or transient).

EXAMPLE 6
Let { X, } be a birth-death chain on {0, 1,2, 3, ...} with py = 1, p, = x%rl forall x > 1;
¢z = ;17 forall x > 1. Find the stationary distribution of {X;}, if one exists.

Solution: First, compute the (,: (y = 1 and fory > 1,
__ Pop1 - Py—1
G=—T-—-——

142 - " qy

Then apply Theorem 2.40:

Zgy:ZCy:
y=0

yeS

So the stationary distribution 7 satisfies

r(z) = Ca :&:w—l—l
>yl 20 2ex!
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2.7 Random walk in higher dimensions

Notation: The vector e; € R? is the vector (0,0,0,...,0,1,0,...,0) which has a 1
in the j* place and zeros everywhere else. (Thus —e; is (0,0, ...,0,—1,0, ..., 0).)

In this section we consider simple, unbiased random walks in Z?. This means
that we assume {X,} is a Markov chain taking values in Z? with

o Xy =(0,0,...,0) = 0;

L ifx —y = +e, for some j

* Pxy) :{ 20d else

In other words, you start at the origin and at each step, you move one unit in one
of the coordinate directions, choosing the direction you move in uniformly.

These random walks are all irreducible and have period 2.
EXAMPLE: SIMPLE RANDOM WALK ON Z

When d = 1, this is a description of simple, unbiased random walk on Z with
p=q= % This Markov chain is

EXAMPLE: DRUNKARD’S WALK (RANDOM WALK ON Z?)

EXAMPLE: DRUNK BIRD’S FLIGHT (RANDOM WALK ON Z?)
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2.7. Random walk in higher dimensions

Main question: Will the drunk person ever make it home? Will they make it
back to the bar? What about the inebriated bird? In other words, is unbiased
random walk on Z¢ recurrent or transient?

Recall the recurrence criterion from Chapter 1: A state x € S in any Markov

chain is recurrent if and only if Y>> P"(z,z) diverges. So to determine whether a
n=0

random walk as set up above is recurrent, it is sufficient to check whether or not

f P"(0,0) converges or diverges.
n=0

Dimension 2: unbiased random walk on 72

Here, the probability of moving in any particular direction on any one step is ;.
Now
k! (1\%F . .
> ETE (Z) if n = 2k is even

0 if n is odd

Therefore (P.S. you may have had to do this computation in an activity)

S PM0,0) =3 P*(0,0) =3 Al ()
n=0 k=0 k=0 [=0 l (k - l) 4
>~ 1 F e (k)
EaER ()
= 167 = (k!)? [
< 1 (2% (kN
Sl 1))
k:Ole k =0 l
2
< 1 [ 2
£5(%)
=165\ K
> 1 (4
%216’6.(\/_]{;)
k=0 ™
o L
_k:Oﬂ'k

which diverges. Hence unbiased simple random walk in dimension 2 is recurrent.
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2.7. Random walk in higher dimensions

Dimension 3: unbiased random walk on 73

Here the picture looks like

If you did the same kind of stuff as was done in dimensions 1 and 2 (and you
have to or had to do this in an activity), you'd get

00 . 00 1
T;)P (07 0) ~ I;) (7Tk)3/2

which converges. Hence unbiased simple random walk in dimension 3 is transient.

To summarize, we have the following characterization of simple, unbiased ran-
dom walk as recurrent or transient:

Theorem 2.41 (P6lya’s Theorem) Let {X;} be simple, unbiased random walk on
Z.% as described in this section. Then:

1. Ifd = 1or 2, then {X,} is (null) recurrent.
2. Ifd > 2, then { X} is transient.

Mathematician Shizuo Kakutani famously described this theorem by saying “A
drunk man will find his way home, but a drunk bird may be lost forever.”
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Chapter 3

Continuous-time Markov chains

3.1 Motivation

Our goal in this chapter is to study analogues of Markov chains (including ran-
dom walk) where time is measured continuously rather than discretely. (The state
space will still be finite or countable.)

First Question: What “should” a continuous-time Markov chain look like?

CTMC
ﬁfgﬁg{fg;ﬁﬂ (CONTINUOUS-TIME
MARKOV CHAIN)
finite or countable; usually finite or countable:
state S=1{0,1,....,d} or usually S C 7 !
space & S§={0,1,2,...} or (sa}rlne)_
S="7.
index X; = state at time ¢ X, = state at time ¢
setZ te{0,1,2,...}ort € Z te[0,00)orteR
T : S — [0, 1];
S — [0,1]; 0277(@[—1]
Siamsial > m(x) =1 =
1stribution zes aolx) = P(Xn =
Wo(f) = P(XO = :L’) 0( ) (sarr(le)o )

(continued on next page)
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3.1. Motivation

MARKOV CHAIN

CTMC

we specify time 1 transitions:
P:8xS—10,1]
> P(z,y)=1Vx e S

yeS
P(r,y) = P(Xt11 = y|X; = 7)
(we assume these are | of t)

If S is finite, write P as a matrix:
P(x,y) <> P,y = Py,

From the time 1 transitions, we
calculate transition probabilities

transition for any time n:
probabilities P"(x,y) = P(Xi1n = y| Xt = )
= Z P(:L’,Z)Pnil(z,y)
z€S
If S finite, P™(x,y) = (P")y4y.
Markov P(Xt :xt|X0 :'%‘U)"‘vXt—l :xt—1>
= P(Xt = $t|Xt—1 = $t—1)

property

= P(l’t—biﬂt)

120



3.1. Motivation

Definition 3.1 A jump process {X, : t € T} is a stochastic process with index set
Z = [0, 00) or R and finite or countable state space S such that with probability 1, the
functions t — X, (these functions are called sample functions of the process) are
right-continuous and piecewise constant.

That is, there exist times J; < J; < J; < ... (these are r.v.s, not constants) and
states xg, r1, T2, ... € S such that

Xo 1f0§t<J1
X, = X1 ifJ1§t<J2
T ifJ2§t<J3

{

The assumption that the sample functions are right-continuous is necessary for
technical reasons (we’ll see one of these reasons later).

Definition 3.2 A continuous-time Markov chain (CTMC) {X,} is a jump pro-
cess satisfying the Markov property .
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3.2. More matrix theory: CTMCs with finite state space

3.2 More matrix theory: CTMCs with finite state space

Throughout this section, S is assumed finite; we will write S = {1, 2, ..., d}.

Definition 3.3 Let {X,} be a CTMC with finite state space. For each t, set P,,(t) =
P(Xsyt = y| Xs = x) (we assume that {X,} is time homogeneous so that these
probabilities do not depend on s). Then let

Pii(t) -+ Pt
P(t) = T
Pu(t) -+ Pult)
P(t) is called the time ¢ transition function or time ¢ transition matrix of the

CTMC.

Theorem 3.4 (Properties of transition matrices) Let {X,} be a CTMC with in-
dex set T and finite state space S, and let P(t) be the transition matrices of this CTMC.
Then:

1. Every transition matrix is stochastic (it has nonnegative entries and the rows
sumto 1), ie. forallt € T,

Pyy(t) € [0,1] and Y P, (t) =1forallz € S.

yeS
2. P(0) = I, the d x d identity matrix;
3. The Chapman-Kolmogorov (C-K) equation holds: forall s,t € Z,

P(s)P(t) = P(s +1).

PROOF (1) and (2) are obvious; (3) is essentially the Law of Total Probability (see
the chart two pages ago). [

Question: Which families P(t) of matrices satisfy the four conditions of the
preceding theorem?

Related question: Suppose f : [0,00) — R satisfies the analogue of (2) and (3)

above, i.e. f(0) =1and f(s)f(t) = f(s+1t) forall s,t > 0. If fis continuous, what
function (or functions) can f be?
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3.2. More matrix theory: CTMCs with finite state space

Answer to the related question: Let ¢ > 0;

=15 ket )= Q)

so f (L) =[]
Therefore if f(t) = 0 forany ¢ > 0, f(;;) = 0 forallnso f(0) =lim f (%) =0as

well, contradicting the hypothesis that f(0) = 1. Thus f(¢) > 0 for all ¢.

Now let C' = f(1) > 0. Then for any m € N,
fm)=fA+1+...+1)=[fQ)"=C"
and for any 7 € Q,

£ (%) = e = .

n
By continuity, it must be that f(t) = C* = e'"¢ = ¢% for all t > 0. We have proven:

Lemma 3.5 If f : [0,00) — R is a continuous function satisfying f(0) = 1 and
f(s8)f(t) = f(s+t)forall s,t >0, then f(t) = e for some constant q.

Back to matrices: the idea is that
(P(s+t)=P(s)P(t)Vs,tand P(0) =1) =

where () is some matrix. This makes sense because

Potential problem: What does ¢?' = exp(Qt) mean? What is e? = exp(Q) for a
matrix ?

(This is not a problem if you remember your MATH 322 and /or MATH 330.)
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3.2. More matrix theory: CTMCs with finite state space

Exponentiation of matrices

Recall the Taylor series of e':

. 00 41 t? 3
=3~ =14t+_++
7;)”' 2! 3!

This series converges for all ¢ (by the Ratio Test), so we can use this formula as
a definition of the function e’. In fact, e’ can also be obtained in a second, useful
way:

Lemma 3.6 Foranyt c R,

t n
et = lim (1 + ) .
n—oo n

PROOF HW (use L'Hopital’s Rule on the limit).

Definition 3.7 Given a square matrix A, define the matrix exponential of A to be
the matrix e (also denoted exp(A)) defined by

> ] 1 1
eA:exp(A):ZEA”:I+A+§A2+§A3+...

n=0 """

_ lim (I+1A> .
n

n—oo

There’s an issue here with what it means for an infinite series of matrices to
converge. Take my word for it: this series converges for all square matrices A, to a
matrix e = exp(A) which is the same size as A.

Like the function ¢!, we can also define matrix exponentials by a limit:
p y

Lemma 3.8 For any square matrix A,

1 n
e = lim (I+ A) )
n—oo n
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3.2. More matrix theory: CTMCs with finite state space

PROOF We can use the binomial theorem to multiply out the expression (I + %A) "

to get
(1 + 1A) - (1A + 1)
n n
" (n\ 1
— 7Ak:[n—k
> (1)

“ n! 1
=N Ak
2 kl(n — k)! nk
n

k=0
“ (n—l)(n—Q)---(n—k—i—l)lAk
- ,;) nk k!
" [n* +lower power termsof n| 1 ,
- kZ:% [ nk HA

3 1
= Z [1 + some negative power terms of n] ] AF

As n — o0, each of the terms inside the square brackets goes to 1, so

) 1 n | "
lim <I—|—A> :I;)EAk:e .0

n—oo n

3 4

1 2
WARNING: If A — < L2 ),eA;A ( “ )

Observe: if A is a square matrix, then for any ¢ € R, we have

> 1 A2 A3,
etA = 6At = Z H(At)k = [ + At + 7752 + yts 4 ...
o K !
and
t n
et = e = lim (I + A)
n—oo n
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3.2. More matrix theory: CTMCs with finite state space

Theorem 3.9 (Properties of matrix exponentials) Let A, B and S be square ma-
trices of the same size, where S is invertible. Let n € {0,1,2,3, ...}. Then:

A 0 eM 0
1. If Ais diagonal (i.e. A = ( )), then e = ( )
0 Ad 0 eMd

If AB = BA, then exp(A + B) = exp(A) exp(B).
If B = exp(A), then B"™ = exp(An).
For any matrix A, (ed)" = eA" = enA,

exp(zero matrix) = I.

S R

exp(SAS™1) = SeAS—L.

PROOF MATH 322 or MATH 330. [

Importance: Property (6) above suggests a method to compute the exponential
of a matrix A. Diagonalize A (this means write A = SAS~! where the columns of S
are eigenvectors of A and the entries of the diagonal matrix A are the correspond-
ing eigenvalues); then e = Se®S~1.

Theorem 3.10 Let P(t) be a family of square matrices, indexed by t. Then, the fol-
lowing are equivalent:

1. P(0)=1Iand P(s+t)= P(s)P(t) forall s,t > 0.

2. P(t) = e = exp(Qt) for some square matrix Q.
3. LP(t) = P(t) Q and P(0) = I.
4. 4P(t) = Q P(t) and P(0) = I;

5L P<t)’t:0 = Q" forall k;

Note: In the theorem above, 4 P(¢) means differentiate each entry of P(t) with

respect to ¢, i.e.
df ¢ 2\ (2t 0},
dt \ sint t )\ cost 1)’

PROOF (1) = (2) begins with an as-yet unproven lemma: which says that (1) im-
plies that each P(¢) is a continuous and differentiable function of ¢ (we’ll prove this
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3.2. More matrix theory: CTMCs with finite state space

lemma later).

Assuming this lemma, let 2 > 0 be small, and define () = P’(0). From calculus
1, we know we can approximate any differentiable function near + = a by its linear
approximation (a.k.a. tangent line) L:

f(a) = L(z) = f(a) + f'(a)(x — a).
In this context, since P is differentiable, we can approximate P(h) for i near 0 by
P(h) =~ P(0) 4+ hP'(0) =1+ Qh

So for any ¢t > 0,

(2) = (3), (4): suppose P(t) = 9 = > Q" Clearly

n=0

P(0) = ¥’ = exp(zero matrix) = I.

Also,
d o d g dE&Q, & Q.
ARG TD S L B ey T
Q(E %) =0 =QPr)
_ OOn:On
> 4)Q=c"Q=P1HQ
n=0
(2) = (5):
dk B dk 00 an B 00 Qn - B .
D Pl i DY s L A

(3) = (2); (4) = (2) follow from the Existence-Uniqueness Theorem of differential
equations (MATH 330), which says that a system of (ordinary) differential equa-
tions with given initial condition has a unique solution (under natural hypotheses
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3.2. More matrix theory: CTMCs with finite state space

that hold here). Since €% is a solution of P'(t) = QP(t); P(0) = I, it must be the
only solution.

(5) = (1) by writing the Taylor series of P(¢):
PO =3 | b0

k=0

] th = i Q—ktk = exp(Qt). O
t=0

|
=0 K!

Definition 3.11 Let {X,} be a CTMC with finite state space. Then, by the preceding
theorem, the time t transition function P(t) satisfies both of these differential equa-
tions:

1. the forward equation

2. the backward equation

Corollary 3.12 If P(t) is the time t transition function for a CTMC with finite state
space, then P(t) = exp(Qt) for some matrix Q) (and () must be equal to P’(0)).

Q-matrices

Next question: What matrices are possible for the ), if P(t) = exp(Qt) are the
transition matrices of a CTMC?

gui - Qud
Definition 3.13 A square matrix Q = | : .. i | iscalled a Q-matrix if

qd1 *° qdd

1. gi; <0 for all i; that is, the diagonal entries are nonpositive;

2. qi; > O forall i # j; that is, the off-diagonal entries are nonnegative; and

d
3. Y qij = 0 for all i; that is, the rows sum to zero.
j=1
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3.2. More matrix theory: CTMCs with finite state space

EXAMPLE OF A Q-MATRIX

-3 2 1
Q=| 4 -6 2
0o 7 -7

Theorem 3.14 A square matrix Q) is a Q-matrix if and only if for every t, P(t) =
exp(Qt) is a stochastic matrix.

PROOF We'll prove this by establishing two claims.
Claim 1: ¢,, < O0and ¢, >0V #y <= P, (t) € [0,1]Vz,y € S,t> 0.
Claim2: ) ¢,, =0 < Y P, (t)=1V2zeS,t>0.

yeS yeS

Proof of Claim 1: For small i, P(h) = P(0) + P'(0)(h — 0) = I + Qh.

Proof of Claim 2: (=) Assume ) ¢,, = 0 and let P(t) = exp(Qt).
yeS

Now let qg(c’;) denote the zy-entry of the matrix Q™.
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3.2. More matrix theory: CTMCs with finite state space

Having shown this, we see that for fixed x € Sand ¢ > 0,

3 Poy(t) =Y [exp(Q1)],,

yeS yeS

-y 5. @“tn] )

yeS nO

- ZIM!—'—Z |qﬂcy

yeS
=140=1.

(<) Assume Y FP,,(t) =1. Then

yeS

Corollary 3.15 If { X;} isa CTMC with finite state space S, then the time t transition
matrices must satisfy P(t) = exp(Qt) for some Q-matrix (). Conversely, every Q-
matrix ) defines a CTMC by setting P(t) = exp(Qt) for all t.

Definition 3.16 Let {X;} be a CTMC with finite state space S. Then the matrix () =
P'(0) is called the infinitesimal matrix or the generating matrix of the CTMC.

Consequence: A CTMC with finite state space is completely determined by its
infinitesimal matrix () (and its initial distribution).

Question: Do the entries of ) have any significance?
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3.2. More matrix theory: CTMCs with finite state space

Waiting times

Definition 3.17 Let {X,;} be a CTMC with finite state space S. Given each state
x € S, define the waiting time W, to be the smallest t > 0 such that X, # z, given
that X() = T.

X;

t

Note: One of the reasons we assume that the sample functions in a jump pro-
cess are right-continuous is to make sure that W, is well-defined. We don’t want,
for example

Xi

Theorem 3.18 (Waiting times in a CTMC are exponential) Let {X;} bea CTMC
with finite state space S and Q-matrix Q). Then for each state x € S, the waiting time
W, is exponential with parameter q, = —q,, = —(the x, v-entry of Q).

PROOF So let’s compute P(W, > t).
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3.2. More matrix theory: CTMCs with finite state space

P(W, > 1) = P(X, = 2V s € [0,4] | X =
—limP( —J:VSE{ lg m}|X0—x>
n'n’

n—o0

Xi

Recall from calculus that for a differentiable function f, if n is large, then % is
small so f(%) is approximately equal to L(%) where L is the tangent line to f at 0,
ie. L(z) = f(0) 4+ f/(0)z. Thus f(1) ~ f(0) + f'(0)1. Applying this where f = P,,,
we see that since P, (0) = ¢,,, we have

P(W, > ) = lim [Pm (i)]m

n—oo

1 tn
= lim {[m —|—qm}
n—oo n

t
= {lim <1+qm> ]
n—oo n

— e‘hxt'
Therefore
Fy,(t) = P(W, <t)=1— e
so W, is exponential with parameter ¢, = —g,, as desired. J
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3.2. More matrix theory: CTMCs with finite state space

Definition 3.19 Let {X,} be a CTMC with finite state space S. For each x € S,
define the holding rate of x to be the nonnegative number q, satisfying all of the
following:

® 4y = _Pg/cr<0)/
® (, = —(Qu,; Where q, is the (x, x)—entry of the Q-matrix of the CTMC;
o ¢, = parameter of the waiting time W,

1

o - = E[W,| = expected amount of time you stay in state x before leaving/jumping.

This theory tells you that in a CTMC, your position (state) as time passes is

Xi

Jump probabilities

Definition 3.20 Let {X;} be a CTMC with finite state space S and initial distribu-
tion my. For each x,y € S, define the jump probability from x to y to be

Tay = Ty = P(Xw, = y| Xo = 2).

The jump matrix of the CTMC is the matrix 11 whose entries are the jump probabili-
ties, i.e.
m™a1 *° T1d
Il =
Td1 - Tdd

The jump chain of {X,} is the discrete-time Markov chain with initial distribution
o and transition matrix I1.
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3.2. More matrix theory: CTMCs with finite state space

X

Theorem 3.21 (Formula for jump probabilities) Let {X;} bea CTMC with finite
state space S whose infinitesimal matrix is (). Then forall z,y € S,

0 if v =
7-[_:01/:{ lfl‘ Y

Gy — Z9m f g Ly

qz qzx

PROOF Later

EXAMPLE 1
Suppose the infinitesimal matrix of some CTMC {X,} is

3 2 1
Q=] 4 -6 2 |.
0o 7 -7

1. Describe the waiting times for each state. In which state, on the average,
would you expect to stay for the longest times before jumping?

2. Compute the jump matrix of the CTMC.
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3.2. More matrix theory: CTMCs with finite state space

EXAMPLE 2
Consider a CTMC with state space {1, 2, 3} and infinitesimal matrix

1. Compute the jump matrix of this CTMC.

2. Suppose you start in state 1. What is the probability you stay in state 1 for at
least three units of time before jumping?

3. What is the probability that the first three jumps are from state 1 to state 3,
then state 3 to state 2, then state 2 to state 3 (given that you start in state 1)?
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3.2. More matrix theory: CTMCs with finite state space

-2 1 1
4. Recall from the previous page that ) = ( 1 -5 4 ) . Compute P(t).
2 1 =3

(To verify your work, you can check that P(0) = I, P’(0) = @, the rows sum
to 1, all entries are always at least 0, and the constant terms are the same in
each entry of a fixed column.)
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3.3. General theory of CTMCs

5. Recall from the previous page that

|
=N

1,6, 5,4 1_1 3.1 5
21 — 12¢ T 3g€ 6 6€ s T 1€ g€
P(t) = 11 5,6 __7,-4 1 5,6 3 _ 5,6 7,—4
() a1 T 13¢ g€ ¢ T 5¢ g —a1¢ T ge
1 1 .-6 3,~4 1 __1,-6 3 1 3,4
24 — 12€ g€ 6  6f s T3¢ *+ 3¢

Compute P(X3/4 = 0] Xy =1).

6. If the initial distribution is my = (3, 1, 1), find the distribution at time ¢ = In 2.

3.3 General theory of CTMCs

Henceforth we are no longer assuming that the state space S is finite.

Recall that a CTMC is a jump process that satisfies the Markov property. As
before, we can define a time ¢ transition function, i.e. for every x,y € S and every
t €7, set

Ppy(t) = P(Xspe = y| X5 = 1)

and assume that these numbers do not depend on s (i.e that the process is time
homogeneous).

As with discrete-time Markov chains, the difference if S is infinite is that one
cannot think of these transition functions as matrices.

However, one can still derive the C-K equation for a general CTMC:
Poy(s+1t) =) P,.(

zZES
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3.3. General theory of CTMCs

and from the Markov property, one can deduce that the waiting times W, must
be memoryless, hence exponential. For each z € S, we can define ¢, to be the
parameter of the waiting time W,, and then we can define jump probabilities as
before: for every x #y € S,

oy = P(Xw, =y | Xo = 2).
(Ifx =y, wesetm,, =0.)

What we don’t know (that we knew in the finite state space case) is that ¢, =
—g¢zx = —P,,(0); in fact, we haven’t even proved yet that P,, is a differentiable
function of t. We’ll address that issue first.

Throughout this chapter, let 6, , = d,, be the Kronecker delta, i.e.

B N A
5’7’?’_6”_{ 0 else

Theorem 3.22 (Integral Equation) Let {X;} be a CTMC. Then for all t > 0,

t
Py (t) = 6, 6% +/0 gpe %° [Z T, Py (t — s)] ds.

zES
PROOF
Px,y(OZPx(Xt:y):Px(Xt:y N Ww>t)+Pa:<Xt:y N Wzst)

=P Xy =y|W,>t)P(W, >t)+ P.(Xy =y N W, <t)
t
= G+ [ P(X = y | Wa = 5)fus (5) ds
0
(Law of Total Probability, continuous version)

Thus

t
Py y(t) =6, 6% +/0 fw.(s)Y_ P(Xs=2nN X, =y| W, =s)ds

zZE€S

t
= 0y e T + /0 gze ° Z Ty Py y(t — 5)ds. O

zES

138



3.3. General theory of CTMCs

Theorem 3.23 (Continuity of transition probabilities) Let { X;} bea CTMC. Then
forany x,y € S, the function t — P, ,(t) is a continuous function of t.

PROOF In the integral equation, set u = ¢ — s so that du = —ds. Then

0
Pa(t) = e+ = 7 grer [Z m,sz,yw)] "

z€S

"t
= Opye " + qze_q”t/o ed=v [Z 7rx7ZPZ7y(u)] du (%)

z€S

Theorem 3.24 (Differentiability of transition probabilities) Let { X;} bea CTM(.
Then for any x,y € S, the function t — P, ,(t) is a differentiable function of t, and

Pa/c,y () = —quPry(t) + ¢ Z T, 5 Pry (2)-

z€S

PROOF By Theorem 3.23, the integrand of the integral in (%) is continuous. There-
fore
t
P,y (t) = 0" + qxe_qzt/ et [Z 7rx7ZPZ7y(u)] du
0

z€S

Therefore P, ,(t) is differentiable. (By the way, this proves the “As-yet un-
proven lemma” from earlier in this chapter.) Now

d ¢
P (t) = — |0me ™ + qﬁe*qzt/ e |y Pey(u)| du
Y dt 0 ZES 7 7
t
= —(x [eqzt <5a:y + Qx/ et [Z Wx,zpz,y(u)] du)] + e %l g et Z Wx,sz,y(t)
0 2€8 2€8
= =@ Pry(t) + qo ) T Puy(t). O

zZ€S

Corollary 3.25 Let {X,} bea CTMC. Then for any z,y € S,

P;;,y(o) = _q_’t(smy + QrTa,y-
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3.3. General theory of CTMCs

PROOF From Theorem 3.24,

Pai“,y(o) = —¢:Pry(0) + ¢ Z T2 P2 4(0)

z€S
= —Qu0y + @ [O0+0+ .. +0+7m,-1+0+...+0]
= _qgn(sxy + QeTay

Definition 3.26 Let {X;} be a CTMC. For any z,y € S, define the infinitesimal
parameters q,, = ¢, to be ¢, = P, ,(0).

From Corollary 3.25 we immediately see

Theorem 3.27 (Formula for infinitesimal parameters) Let { X;} bea CTMC whose
infinitesimal parameters are q,,.. Then

—q, ifx=

q:vﬂ-:c,y lfl' 7é Yy

Note: ¢,, <0 for all z, and if x # y then ¢,,, > 0.

Note: If S is finite, then these are the entries of the Q-matrix (a.k.a. infinitesimal
matrix) of the CTMC.

Why are they called infinitesimal parameters? If ¢ is very small (i.e. infinitesi-
mally small), then by linear approximation we have

Pﬂﬁvy(t) ~ Px,y(o) + Pa/c,y(())t = 6z,y + wat-

The next theorem says that the property of rows of a Q-matrix summing to zero
generalizes, even when the state space is infinite:

Theorem 3.28 Let {X;} bea CTMC and let x € S. Then

quy = 0.

yeS
PROOF
Z%&y Zsz+ZQxy - _Qx_l'zqg&ﬂ-x,y = _Qx+QxZ7Tx,y = _Qx_l'qgc =0.0
yeS y#x y#x y#x
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3.3. General theory of CTMCs

Theorem 3.29 (Backward equation) Let {X,} bea CTMC. Then forall z.y € S,

P, ,(t) =) Gu:P.y(t) and P, ,(0) = 0y

z€S

Note: If S is finite, this is equivalent to P'(t) = Q P(t); P(0) = I.

PROOF By Theorem 3.24,

P:z/:,y(t> = —q:Pry(t) + ¢ Z T2 Psy (1)
ZES

= qw:ch,y (t) + Gz Z Wx,zpz,y(t)
z#c€eS

= Z Qx,zpz,y(t)- [

zeS

The transition functions of a CTMC also satisfy the forward equation given in
Theorem 3.31. Deriving this equation follows the same line of argument as what
we just went through, but instead of conditioning on the first jump in the process,
you condition on the last jump before time ¢. To make this argument go through,
we first need this lemma:

Lemma 3.30 (Time reversal identity) Let {X;} be a CTMC. Then

qwnP(Jn <t< Jn+1 | XO = Io,le = Il,XJ2 = T2, ...,XJn = .73”)
= QIQP (']n <t< Jn+1 ’XO - :ErmXJl - 'I.TL717XJ2 = Tp—2, "'7XJn - IE()) .

What this lemma says: Here’s a picture when n = 2:

X X

! !
PROOF The event J,, <t < J,41 corresponds exactly to
Iy =Wao + W, + e + W+ W, >t

i.e.
Wy, >t =Wy =Wy, — . =W, .
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3.3. General theory of CTMCs

Since W,,, ~ Exp(q,, ), given values so, ..., s,—1 of Wy, ..., W, _,, the probability of
this is B
e den(t=s0—=81—.=8n-1) _ o=Gan (t—zzzo Sk).

So by the continuous LTP, the conditional probability of J, <t < J,,;1 given X, =
x; for j € {1,...,n} is therefore

and since W, ..., W, are independent, this is

/ . /A e ("X %) fi (s0) fwa (51) -+ fw,(5n1) AV

and since W,, ~ Exp(q,, ), this is

n—1

. —Qan, (t—zn;l sk) —Gz Sk J/ 3.1
where A is the set of (s1, ..., s,,) € R" with s; > 0.

In this last integral, perform a change of variables (with Jacobians) from the
variables (so, ..., $p—1) to (4, ..., up—1) by setting up = t—sp— 81 —... = Sp_1, U1 = Sp_1,
Ug = Sp—2, U3 = Sp_3, ..., Un—1 = 51 in the integral above to rewrite it as

n—1
/ / e 40" T g, _ e %n-r"* dV; (3.2)
A k=0

this gives the conditional probability in the second expression in the lemma. Notice
that in (4.1), the integral has ¢, ..., ¢,,,_, butin (4.2), the integral has ¢,,,, ..., ¢;,,. So
multiplying (4.1) by ¢, is equal to what you get when you multiply (4.2) by ¢,,
proving the lemma. [

Theorem 3.31 (Forward equation) Let {X;} be a CTMC. Then forall x,y € S,

Pyt = > Prz(t)zy and Py y(0) = 0y

zeS

Note: If S is finite, this is equivalent to P'(t) = P(t) Q; P(0) = I.

PROOF HW (maybe)
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3.4. Class structure, recurrence and transience of CTMCs

3.4 Class structure, recurrence and transience of CTMCs

Definition 3.32 Let {X;} be a CTMC and let y € S. Define the hitting time to y
to be
T, =min{t > J; : X; = y}.

(Recall that J, is the time of the first jump.)

Definition 3.33 Let {X;} bea CTMC and let x,y € S.
e Define f,, = P,(T, < o0). Wesay x — y if f,, > 0.

x is called recurrent if f, , = 1 and transient otherwise.

x is called positive recurrent if = is recurrent m, = E,(1,) < oo.

x is called null recurrent if « is recurrent and m, = E,(T,) = oo.

{X:} is irreducible if v — y forall z,y € S.

Definition 3.34 Let {X;} be a CTMC with state space S. The embedded chain
or jump chain of the CTMC is the (discrete-time) Markov chain whose transition
probabilities are P(x,y) = Ty,

Notice that f, , for the embedded chain is the same as f, , for the CTMC; so a
CTMC is recurrent, transient, etc. if and only if its embedded chain is recurrent,
transient, etc., respectively.

Furthermore, irreducible CTMCs are either positive recurrent, null recurrent,
or transient (and must be positive recurrent if their state space is finite). All the
same theorems regarding class structure for discrete-time Markov chains hold for
CTMCs.

Definition 3.35 Let {X;} be a CTMC with state space S. A distribution = on S is
called stationary if for all y € S and all t > 0,

> (@) Puy(t) = m(y).

€S

Note: If S is finite, this means 7 P(t) = 7 in matrix multiplication language.
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3.4. Class structure, recurrence and transience of CTMCs

Theorem 3.36 (Stationarity equation for CTMCs) Let { X;} be a CTMC with state
space S. A distribution m on S is stationary if and only if

> m(x)gey =0forally € S.

€S

Note: If S is finite, this means 7() = 0 in matrix multiplication language. This
gives you a good way to find stationary distributions of CTMCs.

PROOF HW

Theorem 3.37 (Stationarity and jump probabilities) Let {X,;} be a CTMC with
state space S.

1. Suppose 7 is a stationary distribution for { X, }. For each x € S, set Tjymp(z) =
7(x)qy. Then

Z T jurmp(T) ey = Tjump(Y)-
zeS

2. Suppose Tjymy : S — [0, 00) is a function such that

Z T jurnp(Z) Ty = Tjump(Y)-
zeS

Then if we set, for eachy € S, 7 (y) = %;(y), then forall y € S,

PROOF HW

WARNING: The 7, defined in this theorem may not be a distribution on S
(because its values may not sum to 1. But it satisfies the “stationarity equation” for
the jump probabilities, which in matrix language would be

WjumpH = Wjump-

However, if 3. mjumy(y) = C, then by setting 7' (y) = &7 jump(y) forally € S we
yeS

get a stationary distribution 7’ for the jump chain. That means that if irreducible
CTMC {X,} has a stationary distribution, so does its jump chain, so the jump chain
is positive recurrent, so the original CTMC is positive recurrent.

Similarly, the 7* obtained in (2) must be a multiple of a stationary distribution
for {X,}.
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3.4. Class structure, recurrence and transience of CTMCs

Theorem 3.38 (Steady-state distribution of CTMCs) Let { X} be an irreducible,
positive recurrent CITMC with a stationary distribution 7. Then the stationary distri-
bution is steady-state, i.e.

e lim P, (t) =mn(y) forall z,y € S; and

t—00

o lim P(X;, =y)=mn(y) forally € S, regardless of the initial distribution.

t—o00

Why is the stationary distribution always steady-state? The short answer is

PROOF Fix h > 0 and consider the discrete-time Markov chain {Z,} = {X},,} for
n € {0,1,2,...}. {Z,} has transition functions P(z,y) = P, ,(h), and since these
functions are always positive for h > 0, {Z,,} is irreducible and aperiodic. So the
FTMC applied to {Z,,} gives a stationary distribution = for {Z,} (which must be
the stationary distribution for { X;}) which is steady-state for {Z, }, i.e.

lim P"(z,y) = lim Py, (hn) = m(y)
for all z,y € S. So for ¢ that are multiples of h, P, ,(t) — 7(y). Since h can be

chosen arbitarily small and since ¢ — P, ,(t) is (uniformly) continuous, it follows
(by a MATH 430 argument) that Jim P,,(t)=mn(y). O

Corollary 3.39 An irreducible, positive recurrent CTMC cannot have more than one
stationary distribution.

PROOF If m and 7’ are both stationary, then they would both be steady-state for
{Z,} as described in the previous theorem. This is impossible. (]

Definition 3.40 Let E be an event. The symbol 1y refers to what is called the in-
dicator function or characteristic function of E. This is a function that takes the
value 1 if E holds, and takes the value 0 if E does not hold.
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3.4. Class structure, recurrence and transience of CTMCs

Theorem 3.41 (Stationary distributions of CTMCs) Let {X;} be an irreducible
CTMC with state space S.

1. If {X.} is transient or null recurrent, then it has no stationary distributions.

2. If {X.} is positive recurrent, then it has one stationary distribution m given by
m(z) = - forallz € S.

Why should 7(z) = -—-? Some motivation:

X;

PROOF The only thing left to prove is the formula for the stationary distribution
in the positive recurrent case. Suppose {X,} is irreducible and positive recurrent,
and fix x € S. For each y € S, define

Tz
(y) = E, l /O Tix.=y) dS] ;

this is the expected amount of time the chain spends in state y before it first returns
to x. Notice

> 7a(y) = Exo(Te) = ma,

yeS

so by setting 7, (y) = 7. (y), we get a distribution 7, on S.

mg

Now let {Y},} denote the jump chain associated to { X;} and let 77" be the first
return time to = in {Y,,} (this is the number of jumps it takes z to return to itself in
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3.4. Class structure, recurrence and transience of CTMCs

the CTMC). We have

1 [ oo
e 7E$ Z H{Yn:y7n<T£1me}]

qy Ln=0
L [ ]

=—E | Y lw=y
qy n=0

Define

Tg’ump_l
Z ]]'{Yny}] ?
n=0
so that 7,.(y) = —y%(y).
Claim: “~, Il = ~,”, i.e.

> %) Ty, 2) = 7 (2).

yeS

Proof of claim: Since the jump chain is positive recurrent, 77" < co) with
probability 1, so

7x<2) = E;

rgvme
Z:l ]l{yn:z}]

[
&

00

> Liy—s and nergems
‘ nw=zand n<T} }

n—=

I
NE
Iy

z [H{Yn:z and n<T,‘Z“mP}}

S
I
—

I
hE

P(Y,, = zand n < T7""P)

i
I

I
M2

P(Y, =2Y, 1 =yandn < T7""P)

<
m
(V)
3
Il
—

m(y,2) Y P(Y,_1 =yand n < T7*™)
n=1

<
m
(V)

ﬂ-(y’ Z)Ex Z H{Ym:y and n<T3“™P_1}
m=0

<
m
V)
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3.4. Class structure, recurrence and transience of CTMCs

From the previous page,

’V:B(Z) = Z ﬂ-(yVZ)Em Z ]l{Ym:y and n<T£”mP—1}‘|

yeS Lm=0

[Tdump _1
= Z 7T(Z/> Z)Ex Z:O ﬂ{Ym:y}]

yeS L

=> 7y, 2)%).

yeS

Having proven the claim, by (2) of Theorem 3.37, 7, is a multiple of a stationary
distribution of { X, }. But the only multiple of 7, which is a distribution is the 7, we

defined earlier, i.e.
1 1

Wx(?J) = mex(?D = Mg
x xYy

Ve (Y)-

So for each = € §, this 7, must be stationary, and since there is at most one station-
ary distribution, we know 7, = 7 for all z € S. In particular,

1 1 1
7o) = 7o) = o) = o) = E

- L

Mz(x

1
= 0J

Mz

T
2 ﬂ{Yn=x}]
n=0

Corollary 3.42 Let {X,} be an irreducible, positive recurrent CTMC and let x,y €
S. If we define 7,(y) to be the expected amount of time spent in state y before the first
return to x, given that X, = x, then

72(y) = mam(y).

1

mg

PROOF From above, @ =7y (y) = m(y) =
SO

7= (y), it must be that 1, (y) = 7=,

1 My
T.(Y) = —Y(y) = =m,7(y). U
() =, 2el0) = o = ()
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3.4. Class structure, recurrence and transience of CTMCs

We finish this section with a theorem that says the proportion of time spent in
state x in a CTMC converges to the value that the stationary distribution gives .

Theorem 3.43 (Ergodic theorem for CTMCs) Let { X;} be an irreducible, positive
recurrent CTMC, and let 7 be the stationary distribution of { X;}. Then forall y € S,

1 t
0

t—00

A picture to explain:

PROOF (Really just a sketch of the proof) Let z = X,. The expected length of each
block of time in [0, {] between successive returns to z is m,, so by the Strong Law of
Large Numbers, the average length of the blocks approaches m, with probability 1.
In each block, the expected amount of time spent in state y is 7,.(y) = m,7(y), so by
the SLLN the average time spent in y in each block approaches m,(y) with proba-
bility 1. Therefore the proportion of time spent in state y in each block approaches
memly) — (y) with probability 1. The result follows. [

my
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3.5. Birth and death CTMCs

3.5 Birth and death CTMCs

A birth-death CTMC is a CTMC where all the jumps are of size £1. More for-
mally:

Definition 3.44 A birth and death CTMC (or birth-death CTMC) is a CTMC
{ X} whose state space is either S = {0,1,...,d} or S ={0,1,2,...} or S = Z, such
that q,, = 0 whenever |v — y| > 1. The numbers X\, = ¢, ,+1 are called the birth
rates of the process and the numbers ji, = g, ,—1 are called the death rates. A birth-
death CTMC is called a pure birth process if ji, = 0 for all z, and is called a pure
death process if \, = 0 for all x.

In a birth-death CTMC, we have:

_ birth rates A\, = ¢z211
Given:
death rates 1, = ¢y 01

So the directed graph of a birth-death CTMC looks like:

A1 A2 A3
1 A1tpg Ag+pg A3+H3
— E— e — —
0 -~ - - -
251 H2 K3 Ha
A1+ 1 Ao+po ) A3+p3 1\344@(14

Observe: Anirreducible birth-death CTMCon S = {0,1,...,d}orS = {0,1,2, ...}
is transient if and only if its embedded jump chain is transient.

This jump chain is a (discrete-time) birth-death chain with transition function
gy, 1.€.
ALE x
llpm/l - and lqull — Mi :
4z qx
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3.5. Birth and death CTMCs

Recall from Chapter 2 that the jump chain (and hence the birth-death CTMC)
is transient if and only if

o0
> Y <00
r=1
which happens if and only if
o0 Ilqlll Ilq2ll ... Iqull
Z Hu__ o “ ” < o0
o=1 D1 b2 - Pz
: q1 q2 gz
1.e. Y S < 0
z=1 q q 4z
oo
) 1Mo - -
je, S M2 o
=

We have proven:

Theorem 3.45 An irreducible birth-death CTMC with state space S = {0, 1, ..., } is
transient if and only if

Similarly, one can classify birth-death CTMCs as positive recurrent or not, and
compute their stationary distribution, using the following machinery:

Definition 3.46 Let {X,} be an irreducible birth-death CTMC. Define
oA

y—1

¢o=1 and ¢, =
pa ey

foreveryy > 0in S.

Think of ¢, as “the product of all the As to the left of y over the product of all
the us to the left of y”.
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3.5. Birth and death CTMCs

Theorem 3.47 An irreducible birth-death CTMC on S = {0,1, ..., } is positive re-
current if and only if
Z Py < 0.

yeS

Theorem 3.48 The stationary distribution of an irreducible, positive recurrent birth-
death CTMC is given by

m(x) = ZQbmgb :

yeS

EXAMPLE 3
Show that the birth-death CTMC {X,} with A, = 1 and pu, = 2 for all z is positive
recurrent.

Solution: Compute ¢, for each y. ¢9 = 1 and for y > 1, we have

¢ = — E—
YT ey 222
Since . .
Z st = Z ﬁ = 2 < oo,
y=0 y=0

{X:} is positive recurrent. The stationary distribution is therefore given by

Gr _ Po 1

W(x) - Zy¢y T 9 T gz+l”

(In other words, ™ = (%, i, é, 1—16, ))
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3.5. Birth and death CTMCs

EXAMPLE 4: PURE BIRTH PROCESS
Let {X;} be a pure birth process, meaning that {X,} is a birth-death CTMC on
§=10,1,2,3,...} with p, = 0 for all x.

1. Sketch the directed graph of {X;}.
2. Compute P, ,(t) if y < .

3. Compute P, ,(?).
4

. Use the forward equation to derive a recursive formula for P, ,.;(¢) in terms
of P, ,(1).

5. Compute P, ,1+1(%).
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3.5. Birth and death CTMCs

EXAMPLE 5: TWO-STATE (BIRTH-DEATH) CTMC
Let { X;} be a birth-death CTMC on § = {0, 1} = {OFF, ON}.

1. Sketch the directed graph of { X,}.
2. Compute the infinitesimal matrix of {X;}.
3. Compute the stationary distribution of {X,}.

4. Compute the transition matrices P, ,(t).
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3.5. Birth and death CTMCs

EXAMPLE 6: POISSON PROCESS
A Poisson process is a pure birth process on S = {0, 1,2, ...} with A, = A for all x.
A is called the rate of the Poisson process.

In Example 4, we derived the following recursive formula for P, ,.;(¢) in terms
of P, ,(t), which holds for any pure birth process:

Py yai(t) = et / AR, (t) dt.

Use this recursive formula to compute P, ,11(t), Pe.42(t) and P, . 3(t) for a Pois-
son process with rate A, and use your answers to conjecture a general formula for
P, 11a(t) for a > 0.
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3.6. Continuous-time branching processes

3.6 Continuous-time branching processes

Setup: Suppose that you start at time ¢ = 0 with a population of X, particles
(Xo is a random variable taking values in {0, 1,2, ...}). Each particle does nothing
for time A (A : Q — [0, 00) is a cts r.v.) and the either splits into two particles (with
probability p) or dies (with probability 1 — p). For ¢ € [0, 00), let X, be the number
of particles at time ¢. {X}} is called a branching process.

“population picture” process {X;}

Xi

Theorem 3.49 (Minimum of | exponential r.v.s is exponential) Let A, ..., Ay
be L exponential r.v.s with respective parameters Ay, ..., \g. Then min(Ay, ..., Ay) is

d
exponential with parameter Y- ;.
j=1

PROOF HW (as a hint, let M = min(4,,...,A;)). Compute the cdf of M using
transformation methods from MATH 414). [

Corollary 3.50 Let { X;} be a branching process with the waiting time A exponential.
Then {X,} is a CTMC (in fact, it is a birth-death CTMC).

(Henceforth, all branching processes are assumed to have A exponential, and A
is the parameter of the exponential waiting time.)

Recall that a birth-death process is determined by birth and death rates. In a
branching process, we have
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3.6. Continuous-time branching processes

Observations: In a branching process,
1. 01is absorbing (meaning that P ((t) = 1 for every ¢ > 0); and

2. every nonzero state in S is transient (because that state leads to 0 with posi-
tive probability);

3. the jump chain of a branching process is a
with

Theorem 3.51 Let {X;} be a branching process. Then the extinction probability n =

f1,0 satisfies
1-p 4
1 ifp<

N =D —=

Note: As with a Galton-Watson branching chain, f, o = n* forallz € {0,1,2,...}.

n
1.0f

0.8
0.6
0.4

0.2

>
0.0 0.2 0.4 06 0.8 10"

PROOF Notice that » = fi in the branching process is the same as = fi( in
the associated jump chain. Now use the formulas derived in the proof of Theorem
2.39. First,vp = land ify > 0,

_aeg _ (1-p)d-p)--(1-p) _ (1—p>y
o)

Y
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3.7. The infinite server queue

SO

1
1 1-
=[] e
1 — [oo]™! else
_fi-i-t2] iy
1 else
_ 1%;; if p > ;
1 else

3.7 The infinite server queue

Setup: Let X, denote the number of people in line for some service (including
those being served). Assume that the people arrive at rate A (i.e. that the number
of arrivals in line follows a Poisson process with rate \) and that the time it takes
each customer to be served is exponential with parameter ;. Assume that there are
an infinite number of servers (so no one has to wait in line before being served).
The resulting CTMC { X, } is called the infinite server queue.

The infinite server queue is also called the M /M /oo queue.
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3.7. The infinite server queue

Observe: {X,} is a birth-death CTMC with birth and death rates

Ao =

My =

Question 1: What is the time ¢ transition function for the infinite server queue?

Answer: Let C; = # of customers arriving in [0, t|. Suppose for now that C; = c.
The first thing we want to know is how the arrival times of these c customers are
distributed. To determine this, choose a partition 0 =ty < t; < ... < t,, =t of [0, 1].

Then let V; = # of customers arriving in (¢;_1, t;].

Now
P(V,=x;Vj|Cr=21+ ...+ 2p) =

so the times when customers arrive (given a fixed total number of arriving cus-
tomers in an interval of length ¢) are i.i.d. uniform on [0, ¢|.

Notice that if a customer arrives at time s € (0, ¢], the probability he is still being
served at time ¢ is

So if a customer arrives at a uniformly chosen time in (0, ], we have

p: = P(customer is still being served at time ¢) =
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3.7. The infinite server queue

Let X** = # of customers arriving in (0, t] still being served at time t.
PX( =n|C,=k) =

Therefore

P(X" =n) =) P(X;* =nandC; = k)
=Y P(X;* =nand C, =k) (since X;*" < C})

:ZP(thewzn\Ct:k)P(Ct:k)

ko | QD
— <n>pt(1_pt)k ](k' €>\t
n,—At 00 (1 _pt>k—n<)\t)k
= (k—n)!
_ (Atp;)re M i [(At(1 —py)
n! =  [k—n]
Now change indices in the series by setting s = k& — n:
~ (Mtpy)re™ i A1 — py)]?
B n! =

(Atpg)re M(1—pe)
n!
(Atpy) e P
n!
This proves that X" ~ Pois(Atp;).

]kfn
!

s!

Now let X" = # of customers present initially that are still being served at
time ¢.

X7 s with parameters {

Since X; = X" + X "9 we have
Px,y(t) = Pac(Xt = y)
min(z,y) '
= Y PX = R P(X] =y — )
k=0

sy ([( )i vty [ e (G- m)] ) |




3.7. The infinite server queue

On the previous page, we showed

A

U (5 )erma-em] el exp (=21 o)

prs (y —k)!

Question 2: Is the infinite server queue positive recurrent, null recurrent or
transient?

Answer: We could use the standard formulas for classifying birth-death CTMCs

discussed earlier, but instead, let’s use our formula for P, ,(t) and see what hap-
pens when ¢t — oo. It turns out that this will give us a steady-state distribution,
which will tell us that the infinite server queue is positive recurrent:

lim P, ,(t) = lim (k = 0 term of the above sum)
t—oo 7 t—o0

S (3) 0[BT g ()

_ (?L')lje—u/ux
y!

We have proven:

Theorem 3.52 (Steady-state distribution of the infinite server queue) The stead
state distribution of the infinite server queue where the customers arrive exponentially
with parameter \ and are served exponentially with parameter 1 is Poisson with pa-
rameter .
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Chapter 4

Brownian motion

4.1 Definition and construction

Goal: Develop a model for “continuous random movement”, i.e. a continuous
version of simple, unbiased random walk. This stochastic process will be called
{Wi}.

First Question: What properties should such a process have?
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4.1. Definition and construction

(SIMPLE, UNBIASED
PROPERTY RANDOM WALK i}
index set Z
(times) Zn10,00)
state space S 7
(positions)
initial
distribution X0 =0
Vo<t <t <...<t, €7,
ther.v.is Xy, — Xy,
Xig — Xigy ooy Xy, — Xt
are mutually L
independent X W,
increment
property
stationarit The distribution of X; — X
ropert y (for 0 < s < t) depends only
p(ti}zney ont — s (and not on Xg, s
homoegenity) or t) and is binomial
b(t —s,3).
continuity trivial (or none)
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4.1. Definition and construction

Definition 4.1 A stochastic process {W, : t € [0,00)} taking values in R (or R?) is
called a Brownian motion (BM) or 2 Weiner process with parameter o2 if

1. W():O,'

2. Forall0 < t; <ty <..<t, €R, the random variables W, — Wy, , W, —
Wiy ooy We,, — Wh,,, are mutually L;

3. Forany 0 < t; < tyin R, Wy, — Wy, is n(0, 0*(t2 — t1)); and
4. with probability 1, the functions t — W, are continuous in t.

If 0* = 1, then W, is called a standard Brownian motion. A Brownian motion
starting at x is a process satisfying 2,3 and 4 above but having X, = .

Theorem 4.2 (Weiner’s Theorem) There is a process which is a Brownian motion.

PROOF (really just a sketch of the proof)

For each n € N, let D,, be the dyadic rationals of order n, i.e.

m 1 2 3
D, =<{—: N =<0, —, —, —,...¢.
{2n me } {0 on’ gn’ n }
Forn > 1,let D}** = D,, — ,,_;. These are the numbers which are expressible as

an integer over 2", but not expressible as an integer over 2"!; equivalently these
are numbers which are an odd integer divided by 2".

Quick observations about the dyadic rationals of order n:
eDy=N=1{0,1,2,3,.}

e Dy CD, CD, CD3 C ...

° OLj D, is countable and dense in [0, c0)
n=0

Next, for all t € D'*", set
t" =min{s €D, ;:s>1t}

and
t” =max{seD,_;:s <t}
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4.1. Definition and construction

As an example of this notation,

=]
=

Il
—
“O

—
N o

N
Do | Ot

R

=

[\

|

~=

=
et i
NN

= w

[a—

W= | Ot

S
o3
a

S

|
—

\
=] w
=] Ot
(.

So, for example,
3\~ 1 3\ T
(7) =g and (3) =

Step 0: For each t € Dy = Z, let Y; be a n(0, 1) r.v. independent of the other ¥;s.
Let { By(t) }+en be a discrete-time stochastic process defined by setting

Then let {B\o(t)}te[o,oo) be the continuous-time stochastic process obtained by inter-
polating linearly between the points of { By(t)}:

W,

Y3~n(0,1)

Y>,~n(0,1)

) TY4“”(071)
: t

| ) N '

® By()
— Bo(?)

Step 1: For each t € D", let Y; be a n(0, 5) r.v. independent of the Y;’s defined
either here or earlier. Let { B;(¢) }+ep, be a discrete-time stochastic process defined
by setting
By(t) if t € Dy

Bl(t):{ $(Bo(t™) + Bo(th)) + Y, ift e Dyew -

Then let { B, (t) }c(0,00) be the continuous-time stochastic process obtained by inter-
polating linearly between the points of {B;(t)}:
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4.1. Definition and construction

® By
— Bi(9)

Step N + 1: Suppose the processes { By (t)} and { By(t)} have been constructed.
Here is how we define {By.1(f)}: for each ¢t € Dy, let Y; be a n(0, 55) I.v.
independent of the Y;’s defined either here or earlier. Let {By1(t)}icny,, be a
discrete-time stochastic process defined by setting

Byar(f) = By () ift € Dy
ML 3 (Ba () + Ba(th) + Y, ift e Dy

Then let {Em(t)}te[o,oo) be the continuous-time stochastic process obtained by
interpolating linearly between the points of { By () }:

Wi

L L L L /\ L L [
I 2 3 W 6
A
— Bn(0)
A
— Bn+1(2)

Now define IW; = lim By (t). One can show that {1, } satisfies all the properties
necessary to be a Brownian motion (I'm omitting the details). [
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4.1. Definition and construction

Brownian motion arises commonly in real-world situations, including move-
ments of particles suspended in a liquid, fluctuations in the stock market, the path-
integral formulation of quantum mechanics, option pricing models (the Black-
Scholes equations) and cosmology models.

Why is BM so prevalent? Because it arises as a “limit of rescaled random
walks”:

Brownian motions approximate random walks with small but frequent jumps
(so long as the size of the jump is proportional to the square root of the time be-
tween jumps).

What do we know about Brownian motion so far?

EXAMPLE 1
Suppose {IV;} is a BM with parameter ¢ = 9.

1. Describe the random variable Wj.

2. Describe the random variable Wy — Wj.

3. Find the probability that W > 1.

4. Find the probability that W; — W5 < 2.

5. Find the probability that W5 — W7 < 1 and Wy, — Wip > —3.
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4.2. Markov properties of Brownian motion

4.2  Markov properties of Brownian motion
Let {IW;} be a BM. The discrete version of the Markov property would say
something like this:
P(Wt =Y | th = Il,WtQ = T2, ...,th = SCn) = P(Wt =Y ’ th = .flfn)
V0 S tl S tg S t3 S S tn S t,Vxl,...,xn,y eR

But since W, is continuous, a better formulation of the same idea in this setting is
in terms of conditional densities:

This holds because of the independent increment property in the definition of BM.

Definition 4.3 Let {W,} be a BM. Given x,y € Rand t > 0, the time ¢ transition
density for the BM is

Pey(t) = Jwawao (ylr) (= TWere W, (y|x) V s by time homogeneity).

Theorem 4.4 (Markov property for Brownian motion) Let {W,} be a BM with
parameter o%. Then for any s, t > 0, W, — W, is independent of Wy and W, — Wy ~
n(0, a%t).

In other words, if W, = z, then W, is a continuous r.v. with density function

) = ——exp [‘@‘x)Q] |

 o2rt 202t

A stronger version of the Markov property is this result, whose proof is beyond
the scope of this class:

Theorem 4.5 (Strong Markov property) Let {WW,;} bea BM and let T be a stopping
time for {W,}. Define Y; = Wry, — Wr. Then Y, is a BM, independent of {W, : t <
T}.

Note: The strong Markov property also holds for Markov chains and CTMCs.
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4.2. Markov properties of Brownian motion

Now we come to an important result, which gives the distribution function for
the hitting time to state b in a BM:

Theorem 4.6 (Reflection Principle) Let {W,} be a BM with parameter o2. Fix
b > 0and let T, = min{t > 0: W, = b}. Then

b
Fr,(t) = P(Ty < t) =2 — 20 <M> .

PROOF
P(W, > b) = P(W, > b| Ty < t)P(T}, < )
P(W; > )
P(W, > b|T) < t)

= FTb<t> = P(Tb < t) =

Corollary 4.7 Let {W,} be a BM with parameter 0. Fix b > 0 and let Tj, = min{t >
0 : Wy = b}. Then T, has density

b

b2
0= = | e |

PROOF Differentiate Fr, with respecttot. [

171



4.2. Markov properties of Brownian motion

Corollary 4.8 Let {W,} be a BM with parameter o. Then {W;} is irreducible, i.e.
forany b € R,
P(W, = bforsomet > 0) = 1.

PROOF This can be calculated using the Reflection Principle:

P(W, =bforsomet > 0) = P(T, < c0)
= th%m P(Tb < t)

Theorem 4.9 (Recurrence of BM) Brownian motion (in dimension 1, starting at
any value) is recurrent (i.e. with probability 1, there is an unbounded set of times t
such that W, = Wj).

PROOF It is sufficient to show Py(W; = 0 for some s > 1) = 1. We have
Py(Ws =0 forsome s > 1) = Jim Py(W5 =0 for some s € [1,])

= lim /oo fw, (b)Py(Ws = 0 for some s € [1,t]| Wy =b) db

t—o00

© ] —b? b
= li 2-20 db
5% ) o g2 T (202> [ (O’\/t — 1)]
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4.2. Markov properties of Brownian motion

From the previous page,

00 1 —b2 b
PO(Ws:Oforsome521):t1Lr§O T 2wexp<202> l2_2q’ (a\/t——lﬂ db

= lim

i YL —\ deay
t=00 g\/2m <2o2>/a*;1 \/27reXp (2) v

_tli%loa\/%/ (202>/oj

1 2,2
exp ) dudp
s o127 207

_71'02/ / exp< “+b2)> du db

(change to polar coordinates)

:7TO'2/TO/ exp( 2)7‘d9d7"

.2
= 67/2‘77’d7’

02 0
(let v = —1?/20* so that dv = —%dr, ie. —o%dv=rdr)
o

. 2 I v
—ﬁ(—a)/o e’ dv

0
:/ edv=e—e > =1.0

173



4.3. Martingales associated to Brownian motion

4.3 Martingales associated to Brownian motion

Theorem 4.10 Let {W,;} be a standard Brownian motion. Then each of these is a
martingale:

o {Wi}
O {Wt2 — &}

o {exp (HWt — 97%)} (for any constant 0 € R)

PROOF We start with the proof that {W;} is a martingale. Let {F;} be the natural
filtration of {W;}, and let 0 < s < t:

E[Wt|]:s] = E[Ws + (Wt - Ws) |}—s]
= E[W, | F,] + E[W, — W, | F]
=Ws+ E[W, — W, | F] (since W;is Fs-mble)
=W+ E[W, — W,] (since W, — W, L Fy)
=W,+0 (since W, — W, is n(0,0%(t — s)))
= Wi,.

Thus {WV,} is a martingale by definition.
The proof that {W? — t} is a martingale is a HW problem.

To prove {exp (GWt - %%)} is a martingale, let U; = exp <0Wt - %Qt), again let
{F:} be the natural filtration of {IV;},and let 0 < s < ¢

1
ElU | F| =F [exp <9Wt — 29215) |]:S]
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4.3. Martingales associated to Brownian motion
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4.3. Martingales associated to Brownian motion

Theorem 4.11 Let {W,} be a standard Brownian motion. Then for any stopping time
T for which the OST holds, we have the following:

e (Wald’s First Identity for BM) EW, = EW,;
e (Wald’s Second Identity for BM) E[W2] = ET;

e (Wald’s Third Identity for BM) £ [exp (HW — HQTT)] =1

PROOF First, we prove Wald’s First Identity. From the previous theorem, we know
that {W,} is a martingale. By the OST, this means that EW; = EW,,.

For the second identity, we know from the previous theorem that {W? —t} is a
martingale. By the OST, this means

0=E[WZ—0]=E[W;—T]
= E[W2] — ET.

Add ET to both sides to get Wald’s Second Identity.

For the last identity, we know from the previous theorem that {exp (GWt — %Qt) }
is a martingale, so by the OST we have

2 2
1:Elexp<9W0—920>] :Elexp<6WT—82T>].D

Theorem 4.12 Let {W;} be a standard Brownian motion starting at x. Let a,b € R
witha < x < band let T = min(T,,T},) = T, . Then

b—=x

PoT, < Ty) = 7—

and
ET = bx + ax — ab.

PROOF By Theorem 4.8, P(T' < 00) = 1,50 P,(Ty, < T,) =1 — P,(T, <Tj).
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4.3. Martingales associated to Brownian motion

EXAMPLE 2
Suppose the price of a stock is modeled by a standard BM. If the price of the stock
is initially 40, what is the probability that the stock price hits 60 before it hits 30?
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4.3. Martingales associated to Brownian motion

Brownian motion with drift

Q: Unbiased simple random walk : BM :: Biased simple random walk : ?

Definition 4.13 A Brownian motion with drift is a stochastic process {X:}+>o

satisfying X, = Wy + ut, where yn € R is a constant and {W,} is a BM. y is called the
drift parameter of { X;}.

X

Theorem 4.14 (Properties of BM with drift) Suppose {X;} is a BM with drift.
Then:

1. Foreacht, X, is n(ut, ot).

2. (Independent increment property) if t; < to < t3 < t4, then X;, — X;, L
X, — Xy,

3. (Time homogeneity) Forall s < t, X, — X, is n(u(t — s),0%(t — s)).

4. (Strong Markov property) If T' is any stopping time, then { Xy — X7} isa
BM with drift (with the same parameters as {X,}), independent of { X }i<r.

PROOF For statement (1),
Xy = W+ py ~n(0,0%t) + pt = n(ut, o*t).
For statement (2),

Xt2 - th = (VVt2 + MtQ) - (th + :utl)
= (Wtz - th) + N(tQ - tl)

and similarly,

Xt4 - th —

178



4.3. Martingales associated to Brownian motion

Since {W;} has the independent increment property,

For statement (3),

For statement (4),
Xrye — Xp = Wryy + (T +t) = (Wp — pT) = Wy — Wr + pt.

Since {W;} has the strong Markov property, Wy, — Wr is a BM, independent of
Wr. So Xpy — Xrp is a BM with drift, independent of W (hence independent of
X7). O
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4.3. Martingales associated to Brownian motion

Theorem 4.15 Suppose { X,} is a BM with drift. Then the process {M,} defined by

—2
M; = exp ( MXt>

o2

is a martingale.

PROOF HW

Corollary 4.16 (Escape probabilities for BM with drift) Suppose {X,} is a BM
with drift (starting at 0). Then for all a < 0 and b > 0,

1 —exp (%)

PT,<T, = exp (_ggb) ~ exp <%)
and I exp(%gb)_l
T () - ()
PROOF HW
EXAMPLE 2

Suppose the price of a stock is currently $70. If the price is modeled with a BM
with drift with 4 = § and 02 = 8, what is the probability the price of the stock hits

$80 before it hits $60?
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4.4. Gaussian processes

4.4  Gaussian processes

Definition 4.17 A stochastic process {X; : t € 1} is called Gaussian if for any
t1,...,tn € Z, the collection of random variables

X = (th, ...,th)

has a joint normal distribution (i.e. every finite linear combination of the X; is nor-
mal).

Recall from Math 414: Joint normal distributions are determined by a mean
vector 7/ and a covariance matrix ¥ (see Math 414). Therefore, we see that a Gaus-
sian process is completely determined if you know the mean of X, for each ¢ and
the covariances between s and ¢ for all s and ¢. Toward that end, we make the
following definitions:

Definition 4.18 Let {X,} be a stochastic process where EX}? < oo forall t € Z. The
mean function of { X, } is the function ux : T — R is defined by

px(t) = E[Xy].
The covariance function of { X, } is the function rx : T x T — R is defined by

rx(s,t) = Cov(Xs, Xy).

Theorem 4.19 A Gaussian process is determined completely by its mean and covari-
ance functions, i.e. if two Gaussian processes have the same mean and covariance
functions, then they are the same process.

EXAMPLE 3
Let Z; and Z, be i.i.d. n(0,0?) r.v.s and let A > 0. Define, for each ¢ € [0, 00), X, by
X = Z1cos At + Zysin \t.

1. Prove that { X} is Gaussian.
2. Find the mean and covariance functions of { X;}.
3. Find the variance of Xs;.

Solution: (1) To prove {X,} is Gaussian, we have to prove that any finite lin-
ear combination of the {X;} is normal. To do this, let ¢y,....¢, € [0,00) and let
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4.4. Gaussian processes

a,...,a, € R. Then

aJXtJ i (Zy cos Atj + Zysin At;)

a] cos At;) 2y + Z a;sin A\t;)Zs
7=1

Y

NE ||M: ||M:

(a; cos At;)n(0, 1)

<.
Il
—

;sin At;)n (0, 1)
-1

~nl0, (zn: a; cos At; ) )-i—n ( (a;jsin At; )))
~T (0, (zn: a;j cos At;) ) ( (a;sin Xt; )) )

since Z; ~n(0,1), Zy ~n(0,1) and Z; L Z,.
Since this arbitrary linear combination is normal, {X,} is Gaussian.

(2) The mean function is
px(t) = E[Xy] = E[Z; cos A\t + Zy sin \t] =
The covariance function is

rx(s,t) = Cov(Xs, Xi) = Cov (Zy cos As + Zysin As, Z; cos At + Zs sin At)
= Cov (Zy cos As, Zy cos At) + Cov (Z; cos As, Zy sin At)

+ Cov (Zysin s, Zy cos At) + Cov (Zy sin As, Zy sin At)
= cos As cos \tCov(Zy, Z1) + 04 0 + sin As sin \tCov(Zy, Zs)
= cos As cos AtV ar(Zy) + sin Assin MtV ar(Zs)
= cOs AS COoS At + sin Assin At (since Z;, Zs ~ n(0,1)).

B) Var(X;) = Cov(Xs, X;) = rx(t,t) =
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4.4. Gaussian processes

EXAMPLE 4

Let { X;} be a Poisson process with rate A\. Find the mean and covariance functions
of {X;}. Is {X;} Gaussian?

Solution: The mean function is
px(t) = E[X] = E| | =
For the covariance function, assume first that s < ¢t. Then

rx(s,t) = Cov(Xs, X¢) = Cov(Xs, Xs + (Xi — X5))
= Cov(Xs, Xs) + Cov(Xs, Xy — X5)

By the same argument with s and ¢ reversed, if ¢t < s then rx(s,t) =
So in general, rx(s,t) = Amin(s, t).

Last, notice that X; ~ Pois(\).

183



4.4. Gaussian processes

Theorem 4.20 Brownian motion is a Gaussian process with py (t) = 0and ry (s, t) =

o2 min(s, t).

PROOF First, we show that {WW;} is Gaussian: let by,...,b, € R and let ¢y, ...,t, €
[0, 00); without loss of generality t; < ¢, < ... < t,. Lett;, = 0 (for notational
purposes only). Then

Z bthJ — b1Wt1 + bQVVtQ + + antn
j=1

= letl + by [Wh + (Wtz - th)] + b3 [Wh + (Wtz - I/Vh) + (Wts - Wt2)] + ..
=1+ .. + 0 )Wy, + (a4 . + b)) Wiy — Wi )+ (b3 + ... + b)) (Wi, — Way) + ..

[zn: bj zn: bj] (Wtz - th) +

J=1 Jj=2

n

D

Jj=3

Wi, + (Wiy — Wiy) + ...

i [Z:L: b]] (Wtz - Wtiﬂ)'

)

All the terms inside the parentheses are normal (by the Markov property) and
independent (by the independent increment property). Therefore any linear com-
bination of them is normal, so >>%/_, b;W;; is normal, so {W,;} is Gaussian by defini-
tion.

Now for the mean function:
ww (t) = E[W,] = E[n(0,0°t) = 0.
Finally, the covariance function: suppose first that s < ¢. Then

w (s, t) = Cov(Ws, W) = Cov(Wy, Wy + (W, — Wy))
= Cov(Ws, W) + Cov(Ws, W, — W)
= Var(Ws)

= 0'28.

If t < s, a symmetric computation gives ry (s, t) = o2, so in general ry(s,t) =

o min(s, t) as desired. [J

184



4.5. Symmetries and scaling laws

Theorem 4.21 BM with drift is a Gaussian process with jix (t) = pt and ry (s, t) =

o2 min(s, t).

PROOF HW

Theorem 4.22 Let {X,} be a Gaussian process, and let f and g be functions from R
to R. Then, if for each t we set Y; = f(t) Xy), {Yz} is a Gaussian process whose mean
and covariance functions are

py (t) = f(t)px(g(t))
ry(s,t) = f(s)f(t)rx(g(s), g(t))

PROOF First, we will prove {Y;} is Gaussian. Let ¢4, ..., ¢, € Z and let b4, ..., b, € R.
Then

n

DobYe =D i f(t) Xgwy) = D (0 f(t5)) Xoiry)
st s

=1

Since { X} is assumed Gaussian, the linear combination above is therefore normal
so {Y;} is Gaussian. Now for the mean function:

py (t) = B[V} = E[f ()Xo = F(OE[Xg] = f(&)nx(g(?))-
Finally, the covariance function:

ry(s,t) = Cov(Ys,Y;) = Cov(f(5) Xy, f(t) X)) = f(5) f(1)Cov(Xges), Xgr))
= f(s)f(t)rx(g(s),9(t)).

This completes the proof. [J

45 Symmetries and scaling laws

The upshot of the preceding theorem (Theorem 4.22) is that you take some pro-
cess of the form f(t)Wy), where {W;} is a BM, then you know that { X;} is Gaus-
sian and you can work out the mean and covariance functions of { X;} using these
formulas. It turns out that sometimes these mean and covariance functions are of
the form px () = 0 and rx(s,t) = o? min(s, t), in which case you can conclude that
{X.} is the same as {IW;}!
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4.5. Symmetries and scaling laws

Theorem 4.23 Let {W,;} be a standard BM. Then each of the following processes are
also standard BMs:

o —IV;
o Wiy — W (for any s > 0)
o tWi,
o aWyq2 (for any a > 0)
The fact that aW, 2 is also a BM is called the universal scaling law of BM.

PROOF The idea behind the proof is that we can show these processes are Gaus-
sian, and if we compute their mean and covariance functions and observe that
those are the same as the mean and covariance functions of a BM, then we can
conclude that they must be BMs.

First, let Y; = —W, = f(t)Wy«) where f(t) = —1and g(t) = t.

The middle two are left as homework exercises (but be warned, Theorem 4.22
doesn’t apply to the second process).

For the last one, let Y; = aW, .2 = f(t)Wy«) where f(t) = aand g(t) = 5.

a
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4.5. Symmetries and scaling laws

Corollary 4.24 (Nondifferentiability of paths) Let {W,} bea BM, and fix t, > 0.
With probability 1, the “Brownian path” t — W, is not differentiable at t,.

PROOF WLOG ¢, = 0; otherwise apply the second bullet of the previous theorem.
Now

d Wi, — W,
— W, exists <= lim —" 0 exists
dt h—0

t=0
. Wy
<= lim — exists
h—0 h
= I/Zh < A for some fixed constant A Vh € (0, ¢)
< Wy < AhVh € (0,¢).

But by the Reflection Principle,

P(W, < Ah) =1 — (2 — 20 (’j%)) = 20(AVh) — 1

which goes to zero as h — 0. Therefore

d
P =W
(dt !

exists > =0.0
t=0

In fact, something stronger holds:

Theorem 4.25 (Nondifferentiability of paths) Let {IV,} be a BM. With probabil-
ity 1, a Brownian path is nowhere differentiable (i.e. not differentiable at any time

t).

What this means is that with probability 1, the trajectory of a Brownian motion
is “infinitely jagged”, i.e. it is nowhere smooth. Furthermore, the universal scaling
law tells us that if we take a trajectory of a BM, and zoom in on part of it (zooming
in faster horizontally than we do vertically), we will see the same thing no matter
how much we zoom in, i.e. the trajectories are “self-similar”. Thus the trajectories
in a BM are objects called fractals.
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4.6. Zero sets of Brownian motion

4.6 Zero sets of Brownian motion

Definition 4.26 Let {W;} be a standard BM. The set Z = {t : W, = 0} (this is a
subset of R, not a r.v.) is called the zero set of {IV,}.

Theorem 4.27 (Properties of zero sets) Let {W;} be a standard BM. With proba-
bility one, the zero set Z has these properties:

1. Z is unbounded.
2. Zisclosed, i.e. if z1, ..., z, € Z, then nlggo zZn € 4.

3. Z is totally disconnected (i.e. Z does not contain an interval of positive
length).

4. Z is perfect (i.e. for all y € Z, there are points 21, 2o, ... € Z with z; # y for all
j but nhj& zi =1y)

5. Z N (0,€) is infinite for any € > 0.

Therefore Z is infinite, closed, perfect and totally disconnected. This makes
Z something called a Cantor set. What do Cantor sets “look like”? A classical
example of a Cantor set is the middle-thirds Cantor set:

188



4.6. Zero sets of Brownian motion

PROOF Statement (1) follows from the fact that {W;} is recurrent.

Statement (2) follows from the fact that the sample functions ¢ — W, are con-
tinuous, hence preserve limits.

(3): Note that if W, = 0 for all ¢ € [0, ¢), then an infinite number of normal ran-
dom variables would all have to be zero. The probability of this is zero (because
among other things, normal r.v.s are cts so they take any individual value with
probability zero).

(5): From Theorem 6.15, we see that { X, } defined by X, = tWV;, is also a BM. By
the recurrence of BM, there is an unbounded set of times ¢, 5, ... such that X; = 0.
But that means W, Wi, ... must also all be zero. Now given any ¢ > 0, there
will be infinitely many of the times ;-, ;-, ... in the interval [0, ¢) (since the ¢; are
unbounded), so {WW;} will have infinitely many zeros in [0, ¢).

(4): Case 1: There is an increasing sequence of numbers {z,} in Z such that
Zp = Y.

Case 2: There is not an increasing sequence of numbers in Z which converge to
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4.7. Brownian motion in higher dimensions

4.7 Brownian motion in higher dimensions

Definition 4.28 A stochastic process taking values in R? is called standard d-dim’l
Brownian motion if each coordinate of the process is a standard BM, and the coordi-
nates are independent.

Let {WV;} be a standard d—dim’l BM and fix 0 < r < R < oc.

Define the sets

A, ={xeR: ||x|| =1}
Ar={x¢€ RY ||Ix|| = R};
A={xecR":|x|| € (r,R)};

and also let

Ty =min{t >0: W; € A,};
Ty = min{t > 0: W; € Ar};
T = min{Tl,Tg}.

Finally, for x € A, define f(x) = Px(Ta, < T4,) and set f(x) = 0if x € A, and
set f(x) =1if x € Ag.

By symmetry, f(x) = g(||x||) for some function g : R — R such that g(r) = 0
and g(R) = 1.

/ has another important property: the value of f at x is equal to the average
value of f along any circle of small radius centered at x:
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4.7. Brownian motion in higher dimensions

Therefore f : A — R is what is called a harmonic function, meaning it satisfies
the following equation, which is called the heat equation (Google the “Dirichlet
problem” or “heat equation” for more on this):

2

d
Z )=0 forallx € A.

\3[\')

To analyze this equation, first observe that for any z;, we can use the Chain
Rule to obtain

2wl = 8( e +a:2>— ! PP R
Oz, Oz; o 2\/x3 + ...+ 22 ’ N 41
Therefore
d 82
0=Af(x)=) =5f(x)
j=1 L
2
=Y —g(l|x]])
;8%?
—ialgm |>"”J]
io 0 |||

(using the Chain Rule with the above computation)

=3 |0 Uity - e+ 9/l ol |'|'X|2"" ]

(Product and Quotient Rules)

_ o [Ee D ) g'<||x||>x3-]

[l [Ix[] 1] [?

_ ,,<||X||)+dg’(IIX|I) _ gl
[1x[] [1x[]

d
(since Y a7 = [|x[[).
j=1

Multiply through by ||x|| to obtain

0 = [Ix[lg"(I[x[) + (d = 1)g'([[xI])-

Thinking of ||x|| as “t”, this is the second-order ODE

0= tg"(t) + (d — 1)g'(t).
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4.7. Brownian motion in higher dimensions

which has no ¢ in it (only ¢, ¢’ and ¢”); therefore it can be solved with MATH 330

methods:

Integrate ¢'(t) = Ct'~ to get

ifd=2
g(t) =
ifd>3

If you plug in the known values of ¢ (i.e. g(r) = 0 and g(R) = 1) and solve for the
constants (HW), you will obtain:

Theorem 4.29 (Annular hitting times for higher-dimensional BM) Let {W;} be
a standard, d-dimensional BM. Suppose X, = x where r < ||x|| < R. Then, if A,
and A, are the spheres of radius r and R centered at the origin, we have

R ifd=1
BTa <Ta) =y Wiy =2

PP e s 3

r2—d_R2—d

In all cases, Px(Ta, < Ta,) =1— Px(Ta, <Ta,).




4.7. Brownian motion in higher dimensions

What does this have to do with recurrence and/or transience?
Dimension 3 (or higher):

Suppose r > 0 is the radius of a small sphere centered at the origin. If a 3-
dimensional BM travels to x with ||x|| > r, then

PX(TAT < OO) = }%1_{210 PX(TAT < TAR)
=1— lim Py(Ta, < T4,)

R—o00

negative number

= (something bigger than 1)
<1

So there is a chance that the BM never comes back to within r of the origin. Thus
we say that in dimension 3 or higher, BM is transient.
Dimension 2:

(more interesting) Repeating the above calculation when d = 2, we get

Px(TAT < OO) = lim Px(TAr < TAR)

R—o0

This time, it is assured that the BM will return to within r of the origin, so in dimen-
sion 2, BM is “neighborhood recurrent”, because it returns to any “neighborhood”
(i.e. within any positive distance) of where it was.
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4.7. Brownian motion in higher dimensions

BUT: does a 2-dim’l BM get back exactly to where it was? Suppose a 2-dim’l
BM starts at 0 and then travels distance ||x|| away. The probability that it returns
to0is

Pe(Ta, < 00) = lim Py(T, < Tay,)
rT—r
= 1—lim P(Ta, < Ta,)

. In||x||—1Inr
=1-lim ——
70 IR —Inr

Therefore, with probability 1, 2-dim’l BMs do not return to where they start, so
2-dim’l BM is “point transient”.

Dimension 1:

We already proved 1-dim’l BM is point recurrent in Theorem 4.9.

Putting this together, we have shown the following set of facts:

Theorem 4.30 Let {W,} be a standard, d-dim’l BM.
1. Ifd = 1, then {W,} is point recurrent.
2. Ifd = 2, then {W,} is point transient, but neighborhood recurrent.
3. Ifd > 3, then {W,} is transient.

EXAMPLE 6
Suppose a 3-dimensional BM starts at the point (1,1,1). What is the probability
that the point strikes the sphere of radius 1 centered at the origin before it strikes
the sphere of radius 2 centered at the origin?
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Chapter 5

Homework exercises

5.1 Exercises from Chapter 1

Exercises from Section 1.3

1. Consider a Markov chain with state space S = {0, 1}, where p = P(0,1) and
q = P(1,0); compute the following in terms of p and ¢:

a) P(X,=0| X, =1)
b) P(X3;=0]|X,=0)
Q) P(Xy=1|Xy=0)
d) P(X;=0]Xy= X, =0)

2. Continuing with the Markov chain described in Problem 1, suppose the ini-
tial distribution is (7(0), mo(1). In terms of the entries of 7, p and ¢, compute
P(Xo=0]|X;=0).

3. The weather in a city is always one of two types: rainy or dry. If it rains on a
given day, then it is 25% likely to rain again on the next day. If it is dry on a
given day, then it is 10% likely to rain the next day. If it rains today, what is
the probability it rains the day after tomorrow?

4. Suppose we have two boxes and 2d marbles, of which d are black and d are
red. Initially, d of the balls are placed in Box 1, and the remainder are placed
in Box 2. At each trial, a ball is chosen uniformly from each of the boxes;
these two balls are put back in the opposite boxes. Let X, denote the number
of black balls initially in Box 1, and let X; denote the number of black balls
in Box 1 after the ¢'" trial. Find the transition function of the Markov chain

{X:}.
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5.1. Exercises from Chapter 1

5. A Markov chain on the state space S = {1, 2, 3,4, 5} has transition matrix

(@) O =
(@]

O NI

(e

=) (e

S O =
(@] O bw

O kW
O R N
(@n) O N

N =

1
2
and initial uniform distribution on S.
a) Sketch the directed graph associated to this Markov chain.
b) Find the distribution of X5.
c) Find P(X3=5|X, =4).
d) Find P(X, = 2| X, = 3).
e) Find P(Xy =5,X3=2,X; =1).
f) Find P(Xg =3| X; =1and Xy = 5)
6. A dysfunctional family has six members (named Al, Bal, Cal, Dal, Eal, and
Fal) who have trouble passing the salt at the dinner table. The family sits

around a circular table in clockwise alphabetical order. This family has the
following quirks:

e Alis twice as likely to pass the salt to his left than his right.
e Cal and Dal alway pass the salt to their left.

o All other family members pass the salt to their left half the time and to
their right half the time.

a) Sketch the directed graph associated to this Markov chain.

b) If Al has the salt now, what is the probability Bal has the salt 3 passes
from now?

c) If Al has the salt now, what is the probability that the first time he gets
it back is on the 4th pass?

d) If Bal has the salt now, what is the probability that Eal can get it in at
most 4 passes?

7. Consider the Markov chain with § = {1, 2, 3} whose transition matrix is

0 10
P=11-p 0 p |,
0 10

where p € (0, 1) is a constant.
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5.1. Exercises from Chapter 1

a) Find P2

b) Show P* = P2

¢) Find P" foralln > 1.

d) If the initial distribution is (
e) If the initial distribution is (

), find the time 200 distribution.

2 2 1
57575
2,2 1), find the time 111111 distribution.

8. Consider a Markov chain with state space {1, 2, 3,4, 5} and transition matrix

01000
20200
P=l0 3010
003 0 2
00010

a) Compute P? and P>.

b) If the initial distribution is uniform, find the distributions at times 1,2
and 3.

9. For the Markov chain given in Problem 8, find a distribution 7 on S with the
property that if the initial distribution is 7, then the time 1 distribution is also
.

10. Consider Markov chain with § = {0, 1,2, ...}, where for all z € S, P(x,z +
1) =5 and P(z,0) =1 — 5.

a) Compute P(Xg = 9| X7 = 8).
b) Compute P(X, = 7| X, =4).
¢) Compute P(Xy = 7| X, =5).
d) Compute P(X¢ =4|X, =2)

e) If the initial distribution m, is uniform on {0, 1}, compute 7.

Exercises from Section 1.5
11. Consider a Markov chain with state space {1, 2, 3} whose transition matrix is

4 4 2
3 4 3.
2 4 4

Find all stationary distributions of this Markov chain.
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5.1. Exercises from Chapter 1

12. Let {X;} be a Markov chain that has a stationary distribution 7. Prove that if
m(x) > 0and x — y, then 7w(y) > 0.

13. Find all stationary distributions of the Markov chain with transition function

1/9 0 4/9 4/9 0
0 0 0 0 1
P=|2/9 2/9 2/9 1/3
0 0 1/9 8/9
0 0 7/9 2/9

o o O

9

Hint: The answer is m = (ﬁ,

something, something, something, %)

14. Compute all stationary distributions of the Markov chain described in Prob-
lem 4, in the situation where d = 4.

15. a) Show that the Markov chain introduced in Problem 7 has a unique sta-
tionary distribution (and compute this stationary distribution, in terms

of p).
b) Is this stationary distribution steady-state? Why or why not?
Hint: The work you did in Problem 7 should be useful in answering this.

16. A transition matrix of a Markov chain is called doubly stochastic if its columns
add to 1 (recall that for any transition matrix, the rows must add to 1). Find
a stationary distribution of a finite state-space Markov chain with a doubly
stochastic transition matrix (the way you do this is by “guessing” the answer,
and then showing your guess is stationary).

Note: It is useful to remember the fact you prove in this question.
17. Prove Theorem 1.25 from the notes, which goes like this: let 7y, 7, ..., be a
finite or countable list of stationary distributions for a Markov chain {X;}.

Let a1, ay, ... be nonnegative numbers whose sum is 1, and let 7 = 3=, a;m;.
Prove that the distribution 7 is stationary for {X,}.

18. Show that for any d x d stochastic matrix P, 1 is an eigenvalue of P corre-
sponding to eigenvector (1,1,1,...,1) € R¢,

Hint: the crux of this question is to get you to remember what eigenvalues
and eigenvectors are (you learned about these creatures in MATH 322).
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5.1. Exercises from Chapter 1

19.

20.

21.

22.

Let
11 1
2 4 4
P=l1g
L1 1
41 2

a) Find the eigenvalues of P by solving det(P — A\I) = 0.

b) For each eigenvalue you found in part (a), find a corresponding eigen-
vector (by finding v # 0 such that Pv = \v).

c) Diagonalize P (i.e. write P = SAS~! where A is a diagonal matrix whose
entries are eigenvalues of P, and S is a matrix whose columns are corre-
sponding eigenvectors of P).

d) Compute P" (by multiplying out the formula P" = SA"S™1).

e) Compute lim P".

Let { X;} be a Markov chain with state space {1, 2, 3} whose transition matrix

is the matrix P given in Problem 19. Based on your work in Problem 19, what
do you know about stationary and/or steady-state distributions of {X;}?

Let { X} be a Markov chain with state space {1, 2, 3,4} whose transition ma-
trix is

15 00
S| E 0o
0 0 + %
0o 0 22

a) Find all stationary distributions of {X}}.
b) Does {X,} have a steady-state distribution? Explain.

Exercises from Section 1.6

Consider a Markov chain with state space S = {0, 1}, where p = P(0, 1) and
q = P(1,0). (Assume that neither p nor ¢ are either 0 or 1.) Compute, for each
n, the following in terms of p and ¢:

a) Py(Ty =n)

Hint: There are two cases: one for n = 1, and one for n > 1.
b) P (To = n)
C) Po(T1 = TL)
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5.1. Exercises from Chapter 1

d) Pl(Tl = TL)

23. For the same Markov chain described in Problem 22, compute these quanti-
ties (in terms of p and ¢):

a) for
Hint: Recall that f;; = Py(11 < 00). There are two ways to do this: first,
you can add up the values of Fy(7} = n) from n = 1 to oo; second, you
can compute Fy(7; = co) and use the complement rule.

b) fio
¢) fo (this means f; )
d) fi (this means f; ;)

24. For the Markov chain in Problem 8:

a) Foreach z € S, compute P, (T = 1).
b) For each z € S, compute P, (T = 2).
¢) Foreach z € S, compute P, (T, = 3).

25. Consider a Markov chain whose state space is S = {1,2,3,4,5,6,7} and
whose transition matrix is

JO G400
0010000
0001000
0100000
00004 0 3
000031210
00000131

a) Find all closed subsets of S.
b) Find all communicating classes.

c) Find the period of each state that belongs to a communicating class.

26. Let p € (0,1) be a constant. Consider a Markov chain with state space S =
{0,1,2,3,...} such that P(z,x +1) = pforallz € Sand P(z,0) = 1 — p for all
x € S. Explain why this chain is irreducible by showing, for arbitrary states
x and y, a sequence of steps which could be followed to get from z to y.
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5.1. Exercises from Chapter 1

27.
28.

29.

30.

31.

32.

Problems from Section 1.7

For the Markov chain introduced in Problem 1, compute Ey(V; 3).
For the Markov chain given in Problem 25:

a) Determine which states are recurrent and which states are transient.
b) Compute f,, forallz,y € S.
c) Compute £y (V7).

Determine whether the Markov chain given in Problem 26 is recurrent or
transient.

Consider a Markov chain with state space S = {0, 1,2,3,...} and transition
function defined by

3 ifx =y
1 ifr>0andy=2-1
P(l’,y): 12y+1 . :
(§> ifr=0andy >0

0 otherwise

a) Explain why this Markov chain is irreducible.
b) Is this chain recurrent or transient?
Consider a Markov chain with state space S = {0,1,2,3,...} and transition
function defined by
ify=0
ifye{x+2,z+4,2+6} .
otherwise

o =

P(z,y) =

e}

Classify the states of this Markov chain as recurrent or transient, and find all
communicating classes (if any).

Consider a Markov chain with state space S = {1,2, 3,4, 5,6} whose transi-
tion matrix is

1L o000
1 2

120000
004 0Z%0
1100 ¢ 1
0030110
1 1 1 2
0505 35 3
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5.1. Exercises from Chapter 1

33.

34.

35.

36.
37.

38.

39.

40.

41.

a) Determine which states are recurrent and which states are transient.
b) Find f,, forallz € S.
¢) Compute £,(V,) forall z,y € Sy.

a) What is the period of the Ehrenfest chain?
b) What is the period of the Markov chain introduced in Problem 4?

Compute the stationary distribution of the Ehrenfest chain (introduced in one
of the group presentations), in the situation where d = 5.

Let {X;} be the Wright-Fisher chain (introduced in one of the group presen-
tations) with d = 3. Compute f,, forallz € S.

Let { X;} be the Wright-Fisher chain with d = 4. Compute E; (1%).

Let { X} be a Galton-Watson branching chain where each individual has ei-
ther 0 or 3 offspring, each with probability . Compute the extinction proba-
bility 7.

Let {X;} be a Galton-Watson branching chain where the number of offspring
of each individual is Geom(p). Compute the extinction probability 7.

Hint: There are two cases, depending on p.

Let X, denote the number of people waiting for service at a fast-food restau-
rant at time ¢. Assume {X,} is modeled by a discrete queuing chain where

with probability Z, two customers enter the queue in each time period, and
with probability , no customers enter the queue in each time period.

a) If there is initially 1 person being served, what is the probability that at
some point in the future, there will be no one in line?

b) If there are initially 4 people in the queue, what is the probability that
the queue never empties?

Exercises from Section 1.8

Find the Cesaro limit of the sequence of numbers {0,1,0,1,0,1,...} (justify
your answer).

Compute (directly, without appealing to any stationary distribution), in terms
of p and ¢, the mean return time to each state for the Markov chain given in
Problem 1.
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5.1. Exercises from Chapter 1

Exercises from Section 1.9

42. (%) Complete the proof of Theorem 1.72 by explaining why P(T" < oco0) = 1.

Exercises from Section 1.10

43. Consider the irreducible Markov chain with state space S = {1,2,3,4,5}
whose transition matrix is

05 200
000 %3
000 %1
10000
10000

a) Compute the period of this Markov chain.
b) Compute the stationary distribution. Is this distribution steady-state?

c) Describe P" for n large (there is more than one answer depending on
the relationship n and the period d).

d) Suppose the initial distribution is uniform on S. Estimate the time n
distribution for large n (there are cases depending on the value of n).

e) Find lim 1 S Pk,
f) Find m; and ms.

44. Fix nonnegative constants pg,pi,... such that > p, = 1 and let X, be a
y=0

Markov chainon § = {0, 1,2, - - - } with transition function P defined by

py ifx=0
Plz,y)=< 1 ifz>0y=2-1
0 else

a) Show this chain is recurrent.
b) Calculate, in terms of the p,, the mean return time to 0.
¢) Under what conditions on the p, is the chain positive recurrent?

d) Suppose this chain is positive recurrent. Find 7(0), the value that sta-
tionary distribution assigns to state 0.
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5.1. Exercises from Chapter 1

e) Suppose this chain is positive recurrent. Find the value the stationary
distribution 7 assigns to an arbitrary state .

45. Let {X;} be the Ehrenfest chain with d = 4 and X, = 0 (i.e. there are no
particles in the left-hand chamber).
a) Estimate the distribution of X; when ¢ is large and even.
b) Estimate the distribution of X; when ¢ is large and odd.
c) Compute the expected amount of time until there are again no particles
in the left-hand chamber.

46. Consider a Markov chain on § = {0, 1, 2, 3} with transition matrix

e}
e}

O Wi
O wIlv

O o=
[@nREGIEN

(S
S W=
(SN
O wiv

a) Compute the Cesaro limit of P".

b) Compute m, and mo.
47. Consider a Markov chain {X;} on § = {0, 1, 2, ...} with transition function

2791 ifx <3
P(z,y) = 1/4 ifx>3andy <3
0 ifr>3andy >3

a) Show the chain is positive recurrent.
Hint: Consider a Markov chain {Y;} defined by ¥; = X, if X; < 3 and
Y; = 4if X; > 4. Show {Y;} is positive recurrent; why does this imply
{X.} is positive recurrent?

b) Find all stationary distributions of {X;}.
Hint: The stationary distribution of Y; (from part (a)) tells you something
about the stationary distribution of X;.

c) Suppose you start in state 2. How long would you expect it to take for
you to return to state 2 for the fifth time?

48. (%) Suppose a fair die is thrown repeatedly. Let S,, represent the sum of the
tirst n throws. Compute

lim P(S, is a multiple of 13),

n—o0

justifying your reasoning.
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5.2. Exercises from Chapter 2

49. () Your professor owns 3 umbrellas, which at any time may be in his office
or at his home. If it is raining when he travels between his home and office,
he carries an umbrella (if possible) to keep him from getting wet.

a) If on every one of his trips, the probability that it is raining is p, what is
the long-term proportion of journeys on which he gets wet?

b) What p as in part (a) causes the professor to get wet most often?

¢) In the worst-case scenario described in part (b), on what fraction of his
trips will he get wet?

50. (x) A knight is placed in one corner of a chess board. At each step, the knight
chooses a square uniformly from the squares that the knight can legally move
to (i.e. two squares in one direction, and one to the side). Compute the ex-
pected number of moves the knight will make before returning to its starting
position.

5.2 Exercises from Chapter 2

Exercises from Section 2.2

51. In each part of this problem, you are given a set (2, a o-algebra F, and a r.v.
X : Q — R. Determine if the given r.v. X is F-measurable.

a) Q = {1,2,3,4}; F is generated by the partition of €2 into even and odd

numbers; X (w) = w?.

b) © = {1,2,3,4}, F is generated by the partition of 2 into even and odd
numbers; X (w) = jw* — 10w? 4 30w.
1

) Q 0,1] x [0, 1]; F is the oc—algebra of vertical sets (i.e. sets of the form
< [0,1]); X (2, ) = ay.
d) Q=10,1] x [0,1]; Fis the o—algebra of vertical sets (i.e. sets of the form
A x [071])/)((3; y) —3/ _y+3
e) 1 =[0,1] x [0, 1]; F is the c—algebra of vertical sets (i.e. sets of the form
Ax[0,1); X(z,y) =2* —z.

52. Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and that you implement Strategy 3 as described in
the notes (bet $1 on the first flip; afterwards, bet $2 if you lost the previous
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5.2. Exercises from Chapter 2

53.

54.

55.

56.

57.

flip and $1 if you won the previous flip). If the first eight flipsare HTTH T
T H H, compute the amount you have won or lost in the first eight flips.

Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and that you implement Strategy 4 as described in
the notes. If your initial bankroll is $100, compute the expected amount of
your bankroll after 3 flips.

Suppose you are betting on fair coin flips (as usual, you win if you flip heads,
and lose if you flip tails), and you implement a strategy described as follows:
on the first flip, bet 1. On even numbered flips (the second, fourth, sixth, etc.),
bet 3 if you won the previous flip, and bet 1 if you lost the previous flip. On
odd numbered flips (other than the first flip), bet 2 if the preceding two flips
were the same, and bet 1 if the preceding two flips were different.

a) Let B, be the size of your bet on the ™" flip. Define B; using mathemati-
cal notation.

b) Suppose the results of the first ten flipsare HTTHHTHHHT.
Assuming X, = 0, compute (B - X), for 0 <t < 10.

Exercises from Section 2.3

Let Q = {1,2,3,4,5,6} have the uniform distribution and suppose F is the
o—algebra generated by the partition {{1,2},{3,4,5}, {6} of 2. Let X be the
random variable defined by X (1) = 5, X(2) = X(3) = X(4) = 1, X(5) =
X (6) = 9. Compute E[X|F].

Let Q = [0,1] x [0, 1] have the uniform distribution, and let X : Q@ — R be
X(x,y) = 2*y + x. Compute E[X|F], where F is the o-algebra of horizontal
sets (i.e. sets of the form [0, 1] x B).

Suppose {X;}icq0,1,2,...1 is a stochastic process in which you flip a coin that
flips heads with probability § and tails with probability 2. Let {F;} be the
natural filtration of {X,}. Let X be a random variable defined by setting

0  if the first three flips are heads
10  if the first two flips are heads but the third is tails
4 if the first flip is heads but the second flip is tails
X = —7 if the first flip is tails but the second and third flips are heads
—1  if the first flip is tails and the second and third flips have
opposite results
3 if the first three flips are tails

Compute E[X|F;| and E[X|F,).
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58.

59.

60.

61.

62.

63.
64.
65.

66.

Exercises from Section 2.4

Let {X;} be the Wright-Fisher chain (introduced in a group presentation).
Prove that { X, } is a martingale.

Let {X,} be the Pélya urn model. For each ¢, let M, be the fraction of balls in
the urn which are red. Prove that {}/,} is a martingale.

(*) Modify the Pélya urn model so that you add ¢ > 2 balls of the color you
most recently drew to the urn after each draw (instead of adding one marble
of the color you drew). Is the { M;} described in Problem 59 still a martingale?

Exercises from Section 2.5

Prove Lemma 2.23 from the notes, which says that for a simple, unbiased
random walk, = 0 and 0% = p + q.

(x) Prove the second part of Lemma 2.27 from the notes, which says that if
{X,} is an irreducible, simple random walk and Z; = (X; — tu)? — to?, then
{Z:} is a martingale.

(x) Prove Wald’s Third Identity (this is Theorem 2.31 in the notes).
(x) Finish the proof of Gambler’s Ruin by writing out the case where a < x.

A gambler makes a series of independent $1 bets. He decides to quit betting
as soon as his net winnings reach $25 or his net losses reach $50. Suppose the
probabilities of his winning and losing each bet are each equal to 3.

a) Find the probability that when he quits, he will have lost $50.

b) Find the expected amount he wins or loses.

c) Find the expected number of bets he will make before quitting.
A typical roulette wheel has 38 numbered spaces, of which 18 are black, 18
are red, and 2 are green. A gambler makes a series of independent $1 bets,
betting on red each time (such a bet pays him $1 if the ball in the roulette
wheel ends up on a red number). He decides to quit betting as soon as his
net winnings reach $25 or his net losses reach $50.

a) Find the probability that when he quits, he will have lost $50.

b) Find the expected amount he wins or loses.

¢) Find the expected number of bets he will make before quitting.
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5.2. Exercises from Chapter 2

67. Suppose two friends, George the Genius and Ichabod the Idiot, play a game

68.

69.
70.

that has some elements of skill and luck in it. Because George is better at the
game than Ichabod, George wins 55% of the games they play and Ichabod
wins the other 45% (the result of each game is independent of each other
game). Suppose George and Ichabod both bring $100 to bet with, and they
agree to play until one of them is broke.

a) Suppose George and Ichabod wager $1 on each game. What is the prob-
ability that George ends up with all the money?

b) Suppose George and Ichabod wager $5 on each game. What is the prob-
ability that George ends up with all the money?

c) Suppose George and Ichabod wager $25 on each game. What is the
probability that George ends up with all the money?

d) Suppose George and Ichabod wager $100 on each game. What is the
probability that George ends up with all the money?

e) Based on the answers to parts (a),(b) and (c), determine which of the
following statements is true:

Statement I: The more skilled player benefits when the amount wa-
gered on each game increases.

Statement II: The more skilled player is harmed when the amount wa-
gered on each game increases.

f) Suppose you had $1000 and needed $2000 right away, and you therefore
decided to go to a casino and turn your $1000 into $2000 by gambling
on roulette. In light of your answer to the previous question, which
of these strategies gives you the highest probability of ending up with
$2000: betting $1000 on red on one spin of the wheel, or betting $1 on red
repeatedly, trying to work your way up to $2000 without going broke
tirst?

Consider an irreducible, simple random walk X; starting at zero, where r =
0.

a) Find the probability that X; = —2 for some ¢ > 0.
b) Find p such that P(X, = 4 for some ¢t > 0) = 3.

Exercises from Section 2.6

Prove Lemma 2.36 from the notes.

Let {X;} be an irreducible birth-death chain with § = {0,1,2,3,...}. Show
that if for all z > 1, p, < q,, then the chain is recurrent.
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5.3. Exercises from Chapter 3

71. Let {X,} be an irreducible birth-death chain with S = {0, 1,2, 3, ...} such that
2
qm:( I ) forall x > 1.
Da r+1

a) Is this chain recurrent or transient?

b) Compute f,, for all z > 1. Hint: § 2= %2.

n=1
72. Consider a birth and death chainon § = {0, 1, 2, ...} with
1 1 1
Pa = 5o Vr; ¢ = e Ve >1;, ¢1 = 3

Show this chain is positive recurrent, find the stationary distribution, and
find the mean return time to state 2.

73. Compute the stationary distribution of the Ehrenfest chain, for arbitrary d.

74. Compute all stationary distributions of the Markov chain described in Prob-
lem 4, for arbitrary d.

Hint: You will need the following identity, which can be assumed without

proof: d 2
S(5) =)

5.3 Exercises from Chapter 3

Exercises from Section 3.2

75. Without using the binomial theorem, prove that

t n
lim (1 + ) =
n—o00 n
Hint: Rewrite the expression inside the limit using natural exponentials and
logarithms, then use L'Hopital’s Rule.

76. Consider a continuous-time Markov chain { X;} with with state space {1, 2, 3}

and infinitesimal matrix
-5 3 b
Q= 4 -6 2 |.
2 1 -3
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5.3. Exercises from Chapter 3

where b is a constant.
a) Whatis b?
b) Compute the jump matrix II.
c) Compute the holding rate of state 2.

d) Suppose X, = 2. What is the probability that when the chain jumps, the
next state is 37?

e) Suppose X, = 3. What is the probability that X; = 3 for all ¢ € [0, 4]?

f) Suppose X, = 3. What is the expected amount of time before the first
jump?

77. Let {X,} be the CTMC of Problem 76.

a) Compute the time ¢ transition matrix P(t).
b) Compute the probability that X5 = 2 given that X, = 2.

78. Consider a continuous-time Markov chain { X} with state space S = {1, 2 3}
with holding rates ¢; = ¢, = 1, ¢3 = 3 and jump probabilities 713 = 3, o3 =

4
and 31 = 2

a) Use linear approximation to estimate Ps;(.001) and Py,(.06).
b) What is the probability that X, = 2 for all ¢ < 4, given that X, = 2?

c) What is the probability that your first two jumps are first to state 3 and
then to state 2, given that you start in state 1?

79. Let {X;} be a CTMC with time ¢ transition matrix

12 — 11e7 1342 421 1/2 4 4 11e7134/2 — 15 114/2 b(t)
P(t) - 12 — 336—1315/2 4 216—11t/2 44 336_13t/2 _ 156_11t/2 6 — 66—11t/2
12 + 446—13t/2 _ Ke—llt/Q 4 — 446—13t/2 + 406—1115/2 6 4 166_11t/2

where b(t) is a function and K is a constant.

a) Compute b(t).
b) Compute K.
¢) Compute the infinitesimal matrix ().

d) Compute the jump matrix II.
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5.3. Exercises from Chapter 3

Exercises from Section 3.3

80. Consider the CTMC {X,;} from Problem 76.

a) Write out the system of differential equations which constitute the back-
ward equation of {X,}.

b) Write out the system of differential equations which constitute the for-
ward equation of {X,}.

81. (%) In this problem, we prove Theorem 3.31, which asserts that a CTMC {X,}
satisfies the forward equation.

a) Take a look at this equation (I hope you can convince yourself that this
equation is true):

n=0 z#£y
i. In this equation, describe in English what the n is referring to.
ii. In this equation, describe in English what the z is referring to.
b) Using the time reversal identity proven in Lemma 3.30, prove

PIE(JTL <t < Jn+1 ‘ X']nfl = ZvXJn = y)
t

= qx/ e‘qys%Px(Jn_l <t—s< | X,, ,=2)ds.
0 4z

¢) Use the multiplication principle and substitute in the formula you found
in part (b) to the equation from part (a) to derive the following “forward
integral equation”:

¢
P,,t) = (5xyy6_qﬂ”t + / Z P, .(t —s)qe ™ ds
0
zF#x

d) Perform the u-sub v = t — s in the forward integral equation of part (c)
and simplify what you get to obtain

t
Proy(t) = 8uye™ 4 &7 05 P (w)geye du,
0
z#£T

e) Explain why you know from the formula of part (d) that P, , is a differ-
entiable function of ¢.

f) Differentiate both sides of the equation in (d), and rewrite the equation
you obtain to get the forward equation

P;7y<t) = Z Px,z (t)qu'
zES

Hint: This should resemble the computation done in the proof of Theo-
rems 3.24 and 3.29.
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5.3. Exercises from Chapter 3

82

83
8

=~

85
86

Exercises from Section 3.4

. Consider the CTMC {X;} from Problem 76.

a) Compute the stationary distribution of {X}}.

b) Compute the mean return time to each state.
. Compute the stationary distribution of the CTMC described in Problem 78.

. (%) (In this problem, we prove Theorem 3.36 from the lecture notes.) Sup-
pose {X,} is a continuous-time Markov chain with finite state space S and
infinitesimal matrix Q).

a) Prove that if 7 is stationary (i.e. 7P(t) = « for all ¢ > 0), then 7() = 0.
b) Prove that if 7() = 0, then 7 is stationary.

. Prove Theorem 3.37 from the lecture notes.
. Suppose {X;} is a continuous-time Markov chain with state space {1,2, 3,4}

and time ¢ transition matrix
14+ 6te ™ +8e 3  6—6e 3 2—6te 3t — 2%

1
P(t) = 9 1—3te3t —e™3t 6433 24 3te3t — 273

1+ 6te 3t — 3t 6 — 6e 3t 2 — 6te 3t 4 Te 3t

a) Compute the infinitesimal matrix of this process.

b) What is the probability that X, = 1, given that X, = 1?

c) What is the probability that X; = 1 for all ¢ < 2, given that X, = 1?
d) Compute the steady-state distribution 7.

e) Compute the mean return time to each state.

f) Suppose you let time pass from ¢ = 0 to ¢ = 1,200,000. What is the
expected amount of time in this interval for which X; = 3?

g) Suppose X, = 2. What is the expected amount of time spent in state 3
before the first time the chain returns to state 2?

h) Suppose X, = 2. What is the expected amount of time spent in state 3
before the eleventh time the chain returns to state 2?

87. Consider a continuous-time Markov chain { X;} with with state space {1, 2, 3}

and infinitesimal matrix

—4 1 3
Q=] 0 -1 1
0 2 -2
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5.3. Exercises from Chapter 3

a) Classify the states as recurrent or transient.

b) Are the recurrent states positive recurrent or null recurrent? Explain.

¢) Find all stationary distributions of { X;}. Are any of them steady-state?
88. Consider a CTMC {X,}, whose directed graph is as given below (the fact that

the holding rate of state 4 is 0 means that once you are in state 4, you stay in
state 4 forever):

1
2

@, ©®,

NI
wl—=

@3 @4

wl—=

Compute E;(T}).

Hint: For i = 1,2,3, let k; = E;(T4). Set up a system of equations that will
enable you to solve for all of the ;.

Exercises from Section 3.5

89. (x) Consider a pure death process on {0,1,2,...} (i.e. a birth-death CTMC
with A\, = 0 forall z € S).

a) Write the forward equation of this process.
b) Find P, ,(1).

c) Solve the differential equation from part (a) to obtain a recursive for-
mula for P, ,(t) in terms of P, ,1(?).

d) Find P, ,_1(t).
90. Consider a birth-death process {X;} with S = {0,1,2,3,...} where \, = Az
and p, = px for constants A, u > 0.
a) Write the forward equation of this process.

b) Let ¢.(t) = E.(X:). Use the forward equation to show ¢/ (t) = (A —
11)9a(t)-

c) Based on part (b), derive a formula for g, (?).

d) Compute Ey(Xs).

91. Consider a birth-death process {X:} on {0,1,2,3,...} whose death rates are
givenby p, =z forallz € S.
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5.3. Exercises from Chapter 3

92.

93.

94.

a) Determine whether the process is transient, null recurrent or positive
recurrent, if the birth ratesare \, =z + 1 forallz € S.

b) Determine whether the process is transient, null recurrent or positive
recurrent, if the birth ratesare \, =z + 2 forallz € S.

Suppose A, ..., Aq are independent exponential r.v.s with respective parame-
ters Ay, ..., \q. Prove that M = min(A4,, ..., A,) is exponential with parameter
A+ A

Hint: This is a transformation problem; the first step is to compute Fy,(m) =
P(M < m). Itis easiest to compute this probability by computing the proba-
bility of its complement.

(x) Suppose d particles are distributed into two boxes, A and B. Each particle
in box A remains in that box for a random length of time that is exponen-
tially distributed with parameter ;1 before moving to box B. Each particle in
box B remains in that box for a random length of time that is exponentially
distributed with parameter \ before moving to box A. All particles act inde-
pendently of one another. For each ¢t > 0, let X; be the number of particles in
box A at time ¢. Then {X,} is a birth-death processon S = {0, 1,2, ..., d}.

a) This setup be thought of as a continuous version of what discrete-time
Markov chain?

b) Find the birth and death rates.

c) Find P, 4(t) for all z € S. Hint: Think of each particle as generating its
own CTMC, where state zero corresponds to being in box B and state 1
corresponds to being in box A. This is a two-state CTMC, so its transition
probabilities were derived in class. From these transition probabilities,
you can get the probability that any one fixed particle is in box A at time
t. Multiply these together to get P, 4(t).

d) Find E,(X;). Hint: Write X; = A;+B; where A, is the number of particles
in box A that started in box A and B, is the number of particles in box
A at time t that started in box B. If X, = z, then A, and B, are both
binomial, defined in terms of = and the transition function of the two-
state birth-death process described in the hint for part (c).

e) Compute the steady-state distribution for this process; identify this dis-
tribution as a common r.v. (stating the parameters).

f) Verify that as ¢ — oo, E,(X;) converges to the expected value of the
steady-state distribution.

Exercises from Section 3.6

2

Let { X;} be a continuous-time branching process with p = 3
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5.4. Exercises from Chapter 4

a) Compute the extinction probability 7.
b) Compute f;5 .
95. If {X,} is a continuous-time branching process with extinction probability

n = 3, what is the probability that each particle splits into two “children” (as
opposed to dying)?

96. Suppose customers call a technical support line according to a Poisson pro-
cess with parameter A > 0. They are provided with technical support by N
agents where N is a positive integer (/V is a constant, not a r.v.). Suppose that
the amount of time it takes an agent to solve a customer’s problem is expo-
nentially distributed with parameter 1 (and that these times are independent
of the Poisson process and all independent of one another). Last, assume that
whenever there are more than NV customers calling the technical support line,
the excess customers get placed on hold until one of the N agents is available.
Let X represent the number of people on the phone with technical support
(including those on hold) at time ¢. {X;} is called the N —server queue or the
(M/M/N)—queue.

a) Explain why {X}} is a birth and death process.
b) Find the birth and death rates of {X;}.
c) Show that A < Ny if and only if {X,} is positive recurrent.

d) Show that A > Ny if and only if { X,} is transient.

5.4 Exercises from Chapter 4

Exercises from Section 4.1

95. Suppose {;} is a Brownian motion with parameter o2 = 3.

a) Find P(W, > 1).

b) Find P(Wy — Wy < —2).
c) Find P(W; > W5).

d) Find the variance of W5.
e) Find Couv(Ws, Wy).

f) Find Var(Ws + Wy).

215



5.4. Exercises from Chapter 4

96.

97.

98.

99.

100.

101.

Exercises from Section 4.2

Suppose {W,} is a Brownian motion with parameter 02 = 5. Compute P(Wg <
2 ’ W2 - W1 - 3)

Let {W,} be a Brownian motion with parameter o2 and let M (¢) = max{W; :
0 < s < t}. Show M(t) is a continuous r.v. (this implies M(t) > 0 with
probability one) and find the density function of M (¢).

(x) Let {I¥;} be a standard Brownian motion, and let 0 < ¢y < ¢;. Show

2 t1 —t
P(W, = 0 for some t € (to,11)) = ~ arctan | ——.
m 0

Hint: Condition on the value of W;, and use the result of Problem 97.

Let {W,;} be a standard Brownian motion, and let L be the largest time ¢ €
0, 1] such that W, = 0.

a) Compute the density function of L, and use a computer or graphing
calculator to graph this density function.

Hint: Use the result of Problem 99.

b) Based on the graph you see, describe qualitatively what is true about L
(i.e. which values of L are most likely)?

Exercises from Section 4.3

Let {W,} be a standard Brownian motion. For each t > 0, let X; = W? — t.
Prove {X,} is a martingale.

You own one share of stock whose price is approximated by a Brownian mo-
tion with parameter o> = 10 (time ¢ = 1 here corresponds to the passage of
one day). You bought the stock when its price was $15, but now it is worth
$25.

a) Suppose you decide to sell the stock when the price of the stock next
reaches either $28 or $20:

i. What is the probability you sell the stock for $28?
ii. What is the expected amount you will sell the stock for?

iii. How much longer should you expect to hold the stock before sell-
ing?
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5.4. Exercises from Chapter 4

102.

103.

104.

105.

106.

107.

b) Suppose instead that you decide to sell the stock the next time its price
hits $15 or after ten days, whichever happens first. What is the proba-
bility that when you sell your stock, you will have to sell it for $15?

(x) Prove Theorem 4.15 in the lecture notes, which says that if {X;} is a BM
with drift, then {),} is a martingale, where M, = exp (%“Xt)

(x) Prove Corollary 4.16 in the lecture notes, in which escape probabilities for
BM with drift are derived.

Suppose {X;} is a Brownian motion with parameter 0* = 4 and drift param-
eter u = 5.

a) Find P(X; > 6).

b) Find P(X, — X7 < 3).

C) FmdP(X4>15\X2—7X1 1)

d) Find P(X7 > X5)

e) Find the mean and variance of Xg.

f) Find COU(XH, Xlﬁ).

g) Find Var(X, + X5).
Suppose that you own a collectible item whose value at time ¢ is modeled by
a Brownian motion with drift with 6> = 2 and u = % The item is presently
valued at $30, and you plan to sell the item when the value of the item reaches
$45 or $20, whichever happens first.

a) What is the probability that you sell the item for $45?

b) What is the expected value at which you will sell the item?

Exercises from Section 4.4

Prove Theorem 4.21 in the lecture notes (which says that the mean and covari-
ance functions of a BM with drift are ux (t) = ut and rx(s,t) = o® min(s, t)).

Let {W,} be standard Brownian motion and let X; = (W};)? for all ¢.

a) Is {X,;} a Gaussian process? Explain your answer.

b) Find the mean function of {X;}.

c) Find the joint moment generating function of W, and W;.
d) Use your answer to part (b) to find E[W2W2].

e) Find the covariance function of { X;}.
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5.4. Exercises from Chapter 4

108.

109.

110.

111.

112.

113.

114.

Let {WW;} be a Brownian motion with parameter c?and leta < sand a < t.
Prove that
E[(W, — W) (W, — W,)] = o®min(s — a,t — a).

Exercises from Section 4.5

Let {IV,} be a standard Brownian motion. Let {; = 0 and for each ¢ > 0, let
Vi = tW, ;. Prove that {V}} is a standard Brownian motion.

Fix s > 0 and suppose that {I}} is a standard Brownian motion. For each
t >0,let X; = Wy, s — Wi. Prove that { X;} is a standard Brownian motion.

Prove that if {W,} and {I,} are independent Brownian motions with re-
spective parameters o2 and 52, then for any constants b; and b,, the process
{b;W, + bQWt} is also a Brownian motion. Find its parameter in terms of b,,
by, 0 and o.

Note: The result of this problem generalizes: any linear combination of a finite
number of independent BMs is also a BM (although you don’t have to prove
this).

Exercises from Section 4.7

In the lecture, we saw that for a 2-dimensional Brownian motion, the function
g described in Section 4.7 had the form

g(t)=Clnt+ D

for unknown constants C' and D. Use the fact that g(r) = 0 and g(R) = 1 to
solve for C' and D, and therefore write g in terms of r and R. (You should get
the formula stated in Theorem 4.29.)

In the lecture, we saw that for a d-dimensional Brownian motion where d > 3,
the function g described in Section 4.7 had the form

C
t)=—t"%4+D
glt) =5t +

for unknown constants C' and D. Use the fact that g(r) = 0 and g(R) = 1 to
solve for C' and D, and therefore write g in terms of r and R. (You should get
the formula stated in Theorem 4.29.)

Let {W;} be a standard 2-dimensional Brownian motion with W, = (3,4).

a) What is the probability that W; = (0,0) for some ¢ > 0?
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5.4. Exercises from Chapter 4

115.

116.

117.

118.

119.

b) What is the probability that W, € {(z,y) : 2* + y* < 1} for some ¢ > 0?

c) What is the probability that W, strikes the circle {(z,y) : z* + y* = 4}
before it strikes the circle {(z,y) : 22 + y* = 49}?

Suppose that the position of a particle of pollen suspended in a liquid is mod-
eled by a standard 3-dimensional Brownian motion, and that at time 4, the
pollen is at position (1,2, 3).

a) What is the probability that the pollen particle eventually reaches (0,4, —1)?

b) What is the probability that the pollen particle strikes the sphere of ra-
dius 4 centered at the origin before it strikes the sphere of radius 2 cen-
tered at the origin?

Suppose {W;} is a standard 5-dimensional Brownian motion with
Wo = (1,2,1,-3,1).
What is the probability that ||[W,|| = 2||W|| before ||W;|| = 5||Ws|?

(x) Let {W,} and {W,} be independent, standard Brownian motions and let a
be a positive constant.

a) Prove that P (Wt — aWW, for infinitely many t) =1

b) What is the probability that W, = W, + a for infinitely many ¢? Prove
your answer.

(x) Let {W,}, {W,}, {W,} be independent, standard BMs.
a) IsP (Wt — W, for infinitely many t) = 1? Why or why not?
b) Is P (Wt — W, = W, for infinitely many t) = 1? Why or why not?

() Let {(X;,Y;)} be a standard 2-dimensional Brownian motion. Let 7" =
min{t : X; = 1}. Compute the density function of Y7, and identify Y as a
common random variable.
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Appendix A

Tables

A.1 Charts of properties of common random variables

The next page has a chart listing relevant properties of the common discrete
random variables.

The following page has a chart listing relevant properties of the common con-
tinuous random variables.
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A.1. Charts of properties of common random variables
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A.2. Useful sum and integral formulas

A.2 Useful sum and integral formulas

Triangular Number Formula: Foralln € {1,2,3,...},

"o nn+1
1+2+43+..+n=>Yj _nlntl)
j=0 2
Finite Geometric Series Formula: for allr € R,
N+1

N n 1—17r
nzz‘;)r N

Infinite Geometric Series Formulas: for all € R such that |r| < 1,

00 1 o) N
Z r't = Z e
oy 1—7r o 1—7r

Derivative of the Geometric Series Formula: for all » € R such that || < 1,

nr' = )
= (1—r)2

Exponential Series Formula: forall r € R,

[e.9] n

Zr =e’.

nl
= n!

Binomial Theorem: foralln € N,and all z,y € R,
" n k, n—k n
Z<k>wy = (z+y)"
k=0

Vandermonde Identity: for all n, k,r € N,

Z": r n—ry\_ ([n
=\ z k—x ) \ k|-
Gamma Integral Formula: for all» > 0, A > 0,
o I'(r)
r—1 AT
de = —=.
/o e x v

Normal Integral Formula: forall x € Rand all o > 0,

/oo exp <M> dz = ov/27.

—00 20'2

Beta Integral Formula: forall» >0, A > 0,

L(a)I'(B)

/0 271 —x)? e = Tatd)
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A.3. Table of values for the cdf of the standard normal

A.3 Table of values for the cdf of the standard normal

Entries represent ®(z) = P(n(0,1) < z). The value of z to the first decimal is in
the left column. The second decimal place is given in the top row.

z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4

0.5000
0.5398
0.5793
0.6179
0.6554

0.5040
0.5438
0.5832
0.6217
0.6591

0.5080
0.5478
0.5871
0.6255
0.6628

0.5120
0.5517
0.5910
0.6293
0.6664

0.5160
0.5557
0.5948
0.6331
0.6700

0.5199
0.5596
0.5987
0.6368
0.6736

0.5239
0.5636
0.6026
0.6406
0.6772

0.5279
0.5675
0.6064
0.6443
0.6808

0.5319
0.5714
0.6103
0.6480
0.6844

0.5359
0.5753
0.6141
0.6517
0.6879

0.5
0.6
0.7
0.8
0.9

0.6915
0.7257
0.7580
0.7881
0.8159

0.6950
0.7291
0.7611
0.7910
0.8186

0.6985
0.7324
0.7642
0.7939
0.8212

0.7019
0.7357
0.7673
0.7967
0.8238

0.7054
0.7389
0.7704
0.7995
0.8264

0.7088
0.7422
0.7734
0.8023
0.8289

0.7123
0.7454
0.7764
0.8051
0.8315

0.7157
0.7486
0.7794
0.8078
0.8340

0.7190
0.7517
0.7823
0.8106
0.8365

0.7224
0.7549
0.7852
0.8133
0.8389

1.0
1.1
1.2
1.3
1.4

0.8413
0.8643
0.8849
0.9032
0.9192

0.8436
0.8665
0.8869
0.9049
0.9207

0.8461
0.8686
0.8888
0.9066
0.9222

0.8485
0.8708
0.8907
0.9082
0.9236

0.8508
0.8729
0.8925
0.9099
0.9251

0.8531
0.8749
0.8944
0.9115
0.9265

0.8554
0.8770
0.8962
0.9131
0.9279

0.8577
0.8790
0.8980
0.9147
0.9292

0.8599
0.8810
0.8997
0.9162
0.9306

0.8621
0.8830
0.9015
0.9177
0.9319

1.5
1.6
1.7
1.8
1.9

0.9332
0.9452
0.9554
0.9641
0.9713

0.9345
0.9463
0.9564
0.9649
0.9719

0.9357
0.9474
0.9573
0.9656
0.9726

0.9370
0.9484
0.9582
0.9664
0.9732

0.9382
0.9495
0.9591
0.9671
0.9738

0.9394
0.9505
0.9599
0.9678
0.9744

0.9406
0.9515
0.9608
0.9686
0.9750

0.9418
0.9525
0.9616
0.9693
0.9756

0.9429
0.9535
0.9625
0.9699
0.9761

0.9441
0.9545
0.9633
0.9706
0.9767

2.0
2.1
2.2
23
24

0.9772
0.9821
0.9861
0.9893
0.9918

0.9778
0.9826
0.9864
0.9896
0.9920

0.9783
0.9830
0.9868
0.9898
0.9922

0.9788
0.9834
0.9871
0.9901
0.9925

0.9793
0.9838
0.9875
0.9904
0.9927

0.9798
0.9842
0.9878
0.9906
0.9929

0.9803
0.9846
0.9881
0.9909
0.9931

0.9808
0.9850
0.9884
0.9911
0.9932

0.9812
0.9854
0.9887
0.9913
0.9934

0.9817
0.9857
0.9890
0.9916
0.9936

2.5
2.6
2.7
2.8
29

0.9938
0.9953
0.9965
0.9974
0.9981

0.9940
0.9955
0.9966
0.9975
0.9982

0.9941
0.9956
0.9967
0.9976
0.9982

0.9943
0.9957
0.9968
0.9977
0.9983

0.9945
0.9959
0.9969
0.9977
0.9984

0.9946
0.9960
0.9970
0.9978
0.9984

0.9948
0.9961
0.9971
0.9979
0.9985

0.9949
0.9962
0.9972
0.9979
0.9985

0.9951
0.9963
0.9973
0.9980
0.9986

0.9952
0.9964
0.9974
0.9981
0.9986

3.0
3.1
3.2
3.3
34

0.9987
0.9990
0.9993
0.9995
0.9997

0.9987
0.9991
0.9993
0.9995
0.9997

0.9987
0.9991
0.9994
0.9995
0.9997

0.9988
0.9991
0.9994
0.9996
0.9997

0.9988
0.9992
0.9994
0.9996
0.9997

0.9989
0.9992
0.9994
0.9996
0.9997

0.9989
0.9992
0.9994
0.9996
0.9997

0.9989
0.9992
0.9995
0.9996
0.9997

0.9990
0.9993
0.9995
0.9996
0.9997

0.9990
0.9993
0.9995
0.9997
0.9998

3.5
3.6
3.7
3.8

0.9998
0.9998
0.9999
0.9999

0.9998
0.9998
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999

0.9998
0.9999
0.9999
0.9999
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