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Chapter 0

Review of Math 324

Math 324 is an introduction to mathematical language: that means sets, relations
and functions. It is also an introduction to proof. In the first four sections of this
chapter, we review the language (and general theorems about that language you
should know) that was developed in Math 324; in the last section, we discuss gen-
eral methods to prove statements.

Before we get started, here are some symbols and an abbreviation I use often:

∀means “for all”
∃means “there exists”
∧means “and”
∨means “or”
∼means “not”

s.t. is short for “such that”

0.1 Sets
The fundamental objects of mathematics are called sets. A set is really just a list

of objects (in math, the objects are usually numbers, or vectors, or functions).

Definition 0.1 A set is a definable collection of objects. The objects which comprise
a set are called the set’s elements. If x is an element of set E, we write x ∈ E; if x is
not an element of set E, we write x /∈ E.
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0.1. Sets

Examples of sets (observe that sets are usually denoted by capital letters):

A = {3, 5, 7, 9, 11}
B = {1, 2, 3, 4, 5, 6}
C = {3, 5, 7}

The elements of set C described above are 3, 5 and 7. For the set A above, 3 ∈ A
and 5 ∈ A but 8 /∈ A.

We often define a set without listing the elements (using English language).
For example, the sets A,B and C given above could be described, respectively, by
saying

“let A be the set of odd numbers from 3 to 11”;
“let B be the set of integers from 1 to 6”;
“let C be the set of odd numbers from 3 to 7”.

We also describe sets by using what is called set-builder notation: to describe the
same sets A,B,C as above using set-builder notation, we would write (or say)

A = {x : 3 ≤ x ≤ 11 and x is odd}
B = {x : 1 ≤ x ≤ 6 and x is an integer}
C = {x : 3 ≤ x ≤ 7 and x is odd}.

The first statement above is interpreted as follows: it says that set A is equal
to the set of numbers x such that (the colon means “such that” in mathematics)
3 ≤ x ≤ 11 and x is odd. Notice that this is exactly the set {3, 5, 7, 9, 11}.

To show you a different kind of example: if you were defining some set of
functions (instead of a set of numbers), then instead of x you’d write f , and then
after the colon you’d describe what has to be true about f for the function f to be
in the set. For example, the set D of functions whose derivative at x = 2 is positive
could be described by writing

D = {f : f ′(2) > 0}.

For this set D, it would be valid to say that if g(x) = x3, then g ∈ D (because
g′(2) = 3(22) = 12 > 0) but if h(x) = 3− 4x, then h /∈ D (because h′(2) = −4 ≤ 0).

Definition 0.2 The empty set, denoted ∅, is the set with no elements.

5



0.1. Sets

Definition 0.3 Let E be a set. The power set of E, denoted 2E or P(E), is the set of
all subsets of E.

The elements of a power set are themselves sets.

Example: if E = {1, 2}, then 2E = {∅, {1}, {2}, {1, 2}}.

Venn diagrams

A useful way to think about sets is to draw pictures called Venn diagrams. To
draw a Venn diagram, represent each set you’re thinking about by a circle (or an
oval, or a square, or a rectangle, or some other shape); think of an object as be-
ing an element of the set if and only if it is inside the shape corresponding to
the set. For example, a Venn diagram for the set A described above (recall that
A = {3, 5, 7, 9, 11}) would be given by something like

1

2

3

4

5

6

7

8

9

10

11

12

A

because the box describing A contains exactly the elements of A (nothing more
and nothing less). Similarly, a Venn diagram representing the sets A, B and C
from above at the same time would be something like

1

2

3

4

5

6

7

8

9

10

11

12

C
A

B
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0.1. Sets

Subsets and set equality

Definition 0.4 Let E and F be two sets.

• We say E is a subset of F , and write E ⊆ F , if ∀x, x ∈ E ⇒ x ∈ F .

If E is not a subset of F , we write E 6⊆ F .

If E ⊆ F , we also write F ⊇ E and say that F is a superset of E.

• We say E and F are equal, and write E = F , if E ⊆ F and F ⊆ E.

If E and F are not equal, we write E 6= F .

Example: {0, 1, 2} ⊆ {0, 1, 2, 4, 8} but {0, 1, 2} 6⊆ {0, 2, 4}.

Note the difference between the symbols ∈ and ⊆: the first symbol should be
preceded by an element, but the second symbol should be preceded by a set.

Generally speaking, to say E ⊆ F means “everything in E also is in F” or “E
is inside F”. If you draw a Venn diagram, to say S ⊆ T means that the shape
corresponding to set S is completely inside the shape corresponding to set T .

For example, for the sets A and C given in the preceding section, C ⊆ A since
every element of C is also in A.

To say two sets are equal means that they contain exactly the same elements.

Example: {n ∈ N : n is an even prime} = {n ∈ N : n− 2 = 0} because the only
element in each set is 2.

Operations on sets

Definition 0.5 Let E and F be sets.

• The union of E and F , denoted E ∪ F , is defined as follows:

E ∪ F = {x : x ∈ E or x ∈ F}.

• The intersection of E and F , denoted E ∩ F , is defined as follows:

E ∩ F = {x : x ∈ E and x ∈ F}.
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0.1. Sets

Definition 0.6 Let E and F be sets.

• We say E and F are disjoint if E ∩ F = ∅.

• The complement of E, denoted EC , is the set

EC = {x : x /∈ E}.

• The difference of E and F , denoted E − F and read “E minus F”, is the set
E − F = E ∩ FC .

• The symmetric difference of E and F , denoted E4F , is the set E4F =
(E − F ) ∪ (F − E).

• The (Cartesian) product of E and F , denoted E ×F and read “E cross F”, is
the set

E × F = {(x, y) : x ∈ E and y ∈ F}.

The elements of a Cartesian product are called ordered pairs. We denote E×E
by E2.

• Let E be a set and let n be a positive integer. The nth Cartesian power of E,
denoted En, is the set of ordered n-tuples of elements from E:

En = {(x1, x2, ..., xn) : ∀j, xj ∈ E}.

Concepts:

• ∪ is set language for “or”–the union of a bunch of sets is the set consisting
of elements belonging to at least one of the sets. For example, using the sets
described earlier,

A ∪B = {1, 2, 3, 4, 5, 6, 7, 9, 11}

because all of the numbers listed there either are in A, or in B, or both. In
terms of Venn diagrams, the union is usually thought of as a “MasterCard-
symbol” shaped region that encompasses the sets whose union you are tak-
ing. For example, the union of E and F in the figure below is exactly the
shaded region (throughout these Venn diagrams, the set E is just the circle
on the left; F is the circle on the right):

E F
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0.1. Sets

• ∩ is set language for “and”–the intersection of a bunch of sets is the set con-
sisting of elements which belong to all of the given sets. For example, using
the sets described A and B above,

A ∩B = {3, 5}

because the only numbers lying in bothA andB are 3 and 5. In terms of Venn
diagrams, the intersection of two sets is the overlap of the shapes represent-
ing the sets (below, the shaded region is E ∩ F ):

E F

• Sets are disjoint if there are no objects which are both elements of S and ele-
ments of T . If you drew a Venn diagram with sets S and T where S and T are
disjoint, then the shapes corresponding to S and T should not overlap: the
Venn diagram would look like this:

E F

• Complement is set language for “not”. In terms of Venn diagrams, the com-
plement ofE is the set of things outside the shape representingE (the shaded
region in the picture below):

E

Complements have to be taken with respect to a universe of discourse U ,
which is usually understood without being stated.
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0.1. Sets

• Difference means “in the first, but not the second”. In this Venn diagram,
E − F is shaded:

E F

• Symmetric difference means “in one or the other, but not both”. In this Venn
diagram, E4F is shaded:

E F

• The Cartesian product of two sets is the set of ordered pairs, where the first
element comes from the first set and the second element comes from the sec-
ond set. If (a, b) and (x, y) be ordered pairs. To say (a, b) = (x, y) means
a = x and b = y. This means in particular that (unless a = b), (a, b) 6= (b, a).
Similarly, unless E = F , E × F is not equal to F × E.

Cartesian products are usually pictured like this (E is the line across the bot-
tom, F is the line up the left-hand side, and E × F is the set of points in the
square):

E

F
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0.1. Sets

Sums of sets; multiples of sets

Suppose you have two sets (say S and T ) where the elements of these objects are
objects that can be added to one another and multiplied by constants, like numbers
or vectors.

Define a new set, called the sum of S and T and denoted S + T , to be the set
of all objects which are the sum of some element of S and some element of T . In
set-builder notation, this means

S + T = {s+ t : s ∈ S, t ∈ T}.

Also define the set S − T to be the set of all objects which can be written as some
element of S minus some element of T . In set-builder notation, this means

S − T = {s− t : s ∈ S, t ∈ T}.

If x is an element, we write S + x and S − x when we mean S + {x} and S − {x},
respectively.

Given set S and real number c, define the set cS to be the set of all objects which
are c times something in S.

Here are some examples, where E is given as {0, 2, 4} and F is given as {0, 15}:

5E = {0, 10, 20} (obtained by multiplying each element in E by 5)
E + F = {0, 2, 4, 15, 17, 19} (obtained by adding each element in E to

each element of F )
−F = {0,−15} (obtained by multiplying each element in F

by −1)
E + 3 = {3, 5, 7} (obtained by adding 3 to each element in E).

As a further example, we denote the integers {...,−3,−2,−1, 0, 1, 2, 3, ...} by Z.
Therefore 7Z = {7n : n ∈ Z} = {...,−21,−14,−7, 0, 7, 14, 21, ...}.
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0.2. Relations

0.2 Relations
A relation is a subset of a Cartesian product space:

Definition 0.7 Let E be a set. A relation on E is a subset R of E2. If (x, y) ∈ E2 is
such that (x, y) ∈ R, we write xR y (and say “x is related to y”).

There are two fundamentally important examples of relations: ≤ and =. For-
mally, the relation ≤ is the set {(x, y) : x ≤ y} (which can be thought of as a subset
of N2 or R2, etc.), and the relation = is the set {(x, x)} (which can be thought of as
a subset of E2 for any set E). These two relations generalize, respectively, to order
relations and equivalence relations.

Order relations

Definition 0.8 Let R be a relation on a set E. We say R is a partial order on E if R
has the following three properties:

Reflexivity: ∀x ∈ E, (x, x) ∈ R.

Antisymmetry: if x, y ∈ E are such that (x, y) ∈ R and (y, x) ∈ R, then x = y.

Transitivity: if x, y ∈ E are such that (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

A pair (E,R), where R is a partial order on E, is called a partially ordered set, or
poset for short.

If, in addition to being a partial ordering, the relation R has the property that for
any x, y ∈ E, either xRy or yRx, then we say R is a total ordering on E.

The prototype example of a total ordering is ≤ (on the real numbers), which
is reflexive because x ≤ x; it is antisymmetric because x ≤ y and y ≤ x certainly
implies that x = y; it is transitive because x ≤ y and y ≤ z certainly implies x ≤ z;
and for any two real numbers x and y, either x ≤ y or y ≤ x.

Definition 0.9 Let R be a total ordering on E. We say R is a well ordering (or
that E is well ordered (by R)) if every nonempty subset A ⊆ E contains a smallest
element, i.e.

∃x ∈ A s.t. (y ∈ A⇒ xRy)
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0.2. Relations

Equivalence relations

Definition 0.10 Let R be a relation on E.

• R is called reflexive if ∀x ∈ E, xRx.

• R is called symmetric if ∀x, y ∈ E, xR y implies y Rx.

• R is called transitive if ∀x, y, z ∈ E, (xR y and y R z) implies xR z.

If R is reflexive, symmetric and transitive, then R is called an equivalence relation
(on E).

Here is a fundamental axiom of mathematics (recall that an axiom is a statement
that we accept without proof):

Axiom 0.11 (Axiom of equality) Let E be any set. Then equality on E is an equiv-
alence relation.

Definition 0.12 Suppose R is an equivalence relation on E. For each x ∈ E, define
the set

[x] = [x]R = {y ∈ E : xR y}.

This set is called the R-equivalence class of x (or just the equivalence class of x).
Any subset of E which is of the form [x]R for some x ∈ E is called an equivalence
class (of R).

As another example of an equivalence relation, let E = R2 and decree two
points in E to be equivalent if they have the same x-coordinate. Then the equiva-
lence class of a point (x0, y0) ∈ E is the vertical line x = x0 (this line is the set of all
points which are equivalent to (x0, y0).

Theorem 0.13 If R is an equivalence relation on E, then the R-equivalence classes
form a partition of E (i.e. the union of the equivalence classes is all of E, and any two
different equivalence classes are disjoint).
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0.3. Functions

0.3 Functions
In Math 324, we learn the following technical definition of a function which

makes precise the idea of a “function” that you first encounter in high-school alge-
bra or precalculus (generally speaking, this technical definition isn’t useful):

Definition 0.14 Let A and B be sets. A function, a.k.a. map f from A to B is a
subset of A×B with the following property:

if (x, y) ∈ f and (x, z) ∈ f, then y = z.

If x ∈ A is such that ∃ y ∈ B with (x, y) ∈ f , then by the above hypothesis, this is
the only y such that (x, y) ∈ f . In this situation, we write y = f(x) (or just y = f x)
and we say that y is the value of f at x, or the image of x under f . The notation
f : A→ B means that f is a function from A to B.

If y = f(x), we think of x as being an input and y the corresponding output of
the function, and f being a “procedure” that produces the y from the x. Thus if
f : A → B, A is the set of possible inputs to f , and B is the set of possible outputs
to f . Values of a function are actual outputs of the function.

Definition 0.15 Let f : A→ B.
• The domain of f , defined Dom(f), is the set of inputs at which f has a value:

Dom(f) = {x ∈ A : ∃y ∈ B s.t. (x, y) ∈ f}.

• The codomain of f is B.
• The range of f , a.k.a. image of f , denoted Range(f) or Im(f), is the set of the

function’s values:

Range(f) = Im(f) = {y ∈ B : ∃x ∈ A s.t. f(x) = y}.

• A rule for f is a procedure or a formula which specifies how to determine f(x)
from each x ∈ Dom(f).

Example: Let f : R→ R be f(x) = x2. Then:
• the domain of f is R;
• the codomain of f is R;
• the range of f is [0,∞).

Example: Let f : R→ R be f(x) = 1
x
. Then:

• the domain of f is R− {0};
• the codomain of f is R;
• the range of f is R− {0}.

14



0.3. Functions

Definition 0.16 (Equality of functions) To say two functions f : A → B and
g : C → D are equal (denoted f = g) means that Dom(f) = Dom(g) and for all
x ∈ Dom(f), f(x) = g(x).

Definition 0.17 Let f : A→ B.

• Given E ⊆ A, the image of E under f , denoted f(E), is the set

f(E) = {y ∈ B : ∃x ∈ E s.t. y = f(x).}

• Given E ⊆ B, the preimage (of E under f ), also called the inverse image
(of E under f ), denoted f−1(E), is the set

f−1(E) = {x ∈ A : f(x) ∈ E}.

• Given y ∈ B, the preimage (of y under f ), also called the inverse image (of
y under f ), denoted f−1(y), is the set defined by

f−1(y) = f−1({y}) = {x ∈ A : f(x) = y}.

To emphasize, the preimage of a point is a set. As an example, let f : R→ R be
f(x) = x2. Then f−1(25) = {−5, 5} since both 5 and −5 map to 25 under f .

Theorem 0.18 Let f : A→ B be a function. Then:

• For any set E ⊆ A, f−1(f(E)) ⊇ E.

WARNING: in general, f−1(f(E)) 6= E.

• For any set E ⊆ B, f(f−1(E)) = E ∩ Im(f).

WARNING: in general, f(f−1(E)) 6= E..

Definition 0.19 Given any setE, the identity function IE : E → E is the function
defined by IE(x) = x.
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0.3. Functions

Compositions

Definition 0.20 Let g : A → B and let f : B → C. Define the composition of f
with g, denoted f ◦ g, to be the function from A to C defined by the rule

(f ◦ g)(x) = f(g(x)).

Example: If f : R2 → R is f(x, y) = x2−y and g : R→ R2 is g(t) = (t−2, 4t+3),
then f ◦ g : R→ R has rule

(f ◦ g)(t) = f(g(t)) = f(t− 2, 4t+ 3) = (t− 2)2 − (4t+ 3).

Theorem 0.21 (Properties of compositions) Let h : A → B, g : B → C and
f : C → D. Then:

1. Domain of a composition: Dom(f ◦ g) = g−1(Dom(f));

2. Preimages under composition: for any E ⊆ D, (f ◦ g)−1(E) = g−1(f−1(E)).

3. Composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h).

4. Composition with identity function: f ◦ IC = f and ID ◦ f = f .

Injectivity

An injection (a.k.a. a 1 − 1 function) is a function which takes different inputs to
different outputs. More precisely:

Definition 0.22 A function f : A→ B is called injective, a.k.a. one-to-one, a.k.a.
1− 1, if for every x, y ∈ A, f(x) = f(y) implies x = y. If f : A→ B is injective, we
write f : A ↪→ B.

Equivalent characterizations of injectivity:
1. f(x) = f(y) implies x = y.
2. x 6= y implies f(x) 6= f(y).
3. Different inputs go to different outputs.
4. f passes the Horizontal Line Test (in the situation where f : R→ R).

Example: f : R→ R where f(x) = x2 is not injective because f(1) = f(−1) = 1.

Example: f : [0,∞) → R given by f(x) = x2 is injective because for any y ∈ R,
there is at most one x in [0,∞) such that f(x) = x2 = y.
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0.3. Functions

Theorem 0.23 Let f : B → C and g : A→ B be functions.

• If f and g are both injective, then f ◦ g is injective.

• If f ◦ g is injective, then g is injective.

Surjectivity

An surjection (a.k.a. an onto function) is a function which “hits” every point in its
codomain. More precisely:

Definition 0.24 A function f : A → B is called surjective, a.k.a. onto, if f(A) =
B. If f is surjective, we write f : A� B.

The noun form of “surjective” is surjection.

Equivalent characterizations of surjectivity:
1. Im(f) = f(A) = B.
2. B ⊆ Im(f).
3. Every potential output of f is an actual output.
4. For every y ∈ B, there is an x ∈ A such that f(x) = y.

Example: f : R→ R where f(x) = x2 is not onto, since −1 /∈ f(R).

Example: f : R→ [0,∞) where f(x) = x2 is onto, because for every y ∈ [0,∞),
we can let x = √y. Then f(x) = y.

Theorem 0.25 Let f : B → C and g : A→ B be functions.

• If f and g are both surjective, then f ◦ g is surjective.

• If f ◦ g is surjective, then f is surjective.

Bijectivity and inverse functions

A function which is both 1− 1 and onto is called a bijection:

Definition 0.26 A function f : A → B is called bijective if f is both injective and
surjective. In this situation, you can write f : A ↔ B, but keep in mind that this
notation means that f is a bijective function from the left-hand set to the right-hand
set.
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0.3. Functions

Equivalent characterizations of bijectivity:
1. f is both surjective and injective.
2. For every y ∈ B, there is one and only one x ∈ A such that f(x) = y.
3. Every point in the codomain has a unique preimage.

Theorem 0.27 If f : B → C and g : A→ B are bijections, then f ◦ g is a bijection.

The main reason we care about bijections is that bijections are exactly the func-
tions that have inverses which are also functions:

Definition 0.28 Let f : A → B be a function (with Dom(f) = A). If there is
another function f−1 : B → A (with Dom(f−1) = B) such that

∀x ∈ A, f−1(f(x)) = x and ∀y ∈ B, f(f−1(y)) = y

then we say f is invertible and that f−1 is an inverse (function) of f .

Example: Let f : R → (0,∞) be f(x) = ex. Then f−1 : (0,∞) → R is f−1(x) =
ln x. These are inverses because

f−1(f(x)) = ln ex = x and f(f−1(x)) = elnx = x.

Theorem 0.29 (Properties of inverse functions) Let f : A→ B and g : B → C.

1. f is invertible if and only if f is bijective.

2. If f is invertible, then f has only one inverse function.

3. If f is invertible, then f−1 is invertible, and (f−1)−1 = f .

4. If f and g are invertible, then f ◦ g is invertible, and (f ◦ g)−1 = g−1 ◦ f−1.

Warnings on the notation “f−1”: the symbol f−1 is used for preimage and
inverse function. Unless you know (or have proved) that the function f is invert-
ible, f−1 means preimage, and is not actually referring to a function named “f−1”.
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0.4 Cardinality
Loosely speaking, the cardinality of a set is its size. For example, the cardinality

of E = {7, 17, 25, 32, 58} is 5 (the count of the number of elements in the set). We
write this as “#(E) = 5”. To define this more rigorously, we need some technical
ideas:

Theorem 0.30 Two sets A and B are said to be equinumerous (denoted A 1−1←→ B

or A↔ B or A ≈ B) if there is a bijection f : A→ B. 1−1←→ is an equivalence relation
on the set of definable sets, and the equivalence classes under this relation are called
cardinalities. The cardinality of a set E is denoted #(E).

First, sets can be divided into two types: finite and infinite.

Definition 0.31 (Finiteness vs. infiniteness) Let E be a set.

1. E is called finite if either:

• E is empty, in which we write #(E) = 0, or
• E

1−1←→ {1, 2, 3, ..., n} for some positive integer n, in which case we write
#(E) = n.

2. E is called infinite if E is not finite.

The prototypical example of an infinite set is the set N of natural numbers.

Theorem 0.32 (Characterization of finite sets) Let E be a set. TFAE (this means
“the following are equivalent”):

1. E is finite;
2. for some finite set A, there is an injection f̂ : E ↪→ A;
3. for some finite set A, there is a surjection ĝ : A ↪→ E;

Lemma 0.33 (Finite unions and Cartesian products of finite sets are finite) Let
{Aj}nj=1 be a finite collection of finite sets. Then, the following sets are all finite:

1. A1 ∪ A2 (and in this case, #(A1 ∪ A2) = #(A1) + #(A2)−#(A1 ∩ A2));
2.

n⋃
j=1

Aj ;

3. A1 × A2;
4. An1 for any n ∈ N .
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Lemma 0.34 (Characterization of infinite sets) Let E be a nonempty set. TFAE:
1. E is infinite;
2. for any e ∈ E, E − {e} is infinite;
3. there is an infinite set A and an injection f̂ : A ↪→ E;
4. there is an infinite set A and a a surjection ĝ : E � A.

We give two results which are central to the theory of cardinality here; I’m not
sure if we will need these in Math 420:

Theorem 0.35 (Pigeonhole principle) Let A and B be finite sets with #(A) <
#(B). Then:

1. there is no injection g : B ↪→ A; and
2. there is no surjection f : A� B.

Theorem 0.36 (Cantor-Bernstein Theorem) Let A and B be two sets. Suppose
there are two injections f : A ↪→ B and g : B ↪→ A. Then there is a bijection
h : A↔ B.

Countability

Definition 0.37 A setE is called countable if eitherE is empty, or one of these three
equivalent conditions hold:

1. there is a surjective function g : N � E;
2. there is an injective function f : E ↪→ N;
3. either E is finite or in 1− 1 correspondence with N.

A set E is called countably infinite if it is countable, but not finite (equivalently, if
E

1−1←→ N). An uncountable set is one which is not countable.

NOTE: In order to list the elements of a set (as {x1, x2, x3, ...}, for example), the
set must be countable.

Theorem 0.38 (Classes of countable sets) Let E be a countable set. Then:
• All of the following sets are countable:

1. any set A with E 1−1←→ A;
2. any set f(E), where f is any function;
3. any subset of E.

• Any union of finitely or countably many countable sets is countable.
• If A and B are countable, then A×B is countable.

The natural numbers, the integers and the rational numbers are all countable.
But any interval of real numbers is uncountable (including R itself).
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0.5 Summary of proof techniques
Having zoomed through mathematical language in the previous four sections,

now we give some guidelines on how to write typical classes of proofs. First, some
general suggestions:

McCLENDON’S LAWS OF WRITING PROOFS

THE FIRST LAW: Work on scratch paper before writing your proof.

THE SECOND LAW: When in doubt, start by classifying the type of state-
ment you are being asked to prove, and breaking down the logical structure
of the statement to be proved.

This means identifying quantifiers, variables, conditionals, etc. The logical
structure of the statement often suggests what your proof should “look like”.

THE THIRD LAW: Keep in mind what you are always allowed to do in a
proof.

• At any time, you can always state a hypothesis of the result you are to
prove, state or use an axiom, state or apply a definition, and/or state or
apply a previously proved result.

• At any time, you can state a sentence whose symbolic translation is a
tautology.

• At any time, you can apply a rule of inference.
– Most importantly, you can apply modus ponens. If you know P is

true and you know P ⇒ Q, then you can state Q is true.
• At any time, you can change a statement into a logically equivalent form.

THE FOURTH LAW: Be willing to try something, even if you aren’t sure it
will work.

If you go through a line of reasoning that doesn’t end where you want, that
doesn’t mean you are dumb. Try something else, and learn from what didn’t
work.

THE FIFTH LAW: The beginning and end of a proof should be easy to find.
Start a proof by writing PROOF, and end a proof by writing � or Q.E.D. or #
or some other symbol you use consistently.
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General techniques for each type of logical structure

• To prove “If P , then Q”:

Direct proof: Suppose P . ... ... ... ... Therefore Q. �
Proof by contraposition: Suppose ∼ Q. ... ... ... ... Therefore ∼ P . �
Proof by contradiction: Suppose P and ∼ Q. ... ... ... Therefore R. ... ... ... ...

Therefore ∼ R. Contradiction! �
Proof by cases: Suppose P . Case 1: ... ... Therefore Q. Case 2: ... ... Therefore

Q. ... ... In all cases, Q. �

• To prove “P if and only if Q”:

Biconditional proof: (⇒) Suppose P . ... ... Therefore Q.
(⇐) Suppose Q. ... ... Therefore P . �

Shortcut biconditional proof: P iff ... iff ... iff ... ... ... ... iff Q. �.

• To prove “TFAE: 1; 2; 3; ...”

Circle of implications proof: Prove (1⇒ 2), then (2⇒ 3), then (3⇒ 1), etc.

• To prove “∀x ∈ U, P (x)”:

Generic particular argument: Let x ∈ U . ... ... ... Therefore P (x). �

• To disprove “∀x ∈ U, P (x)”:

Disproof by counterexample: Let x =. ... ... ... Therefore ∼ P (x). �

• To prove “∃x ∈ U : P (x)”:

Constructive proof: Let x =. ... ... ... Therefore P (x). �
Non-constructive proof: ... ... ... ... ... ... Therefore x exists by (some theo-

rem). ... ... Therefore P (x). �

• To disprove “∃x ∈ U, P (x)”, prove the denial “∀x ∈ U,∼ P (x)”.

• To prove “∃!x ∈ U : P (x)”.

Existence/uniqueness proof: First, prove ∃x ∈ U : P (x).
Then, suppose P (x) and P (y). ... ... ... Therefore x = y. �

• To disprove “∃!x ∈ U : P (x)”, do one of two things:

1. Disprove “∃x ∈ U, P (x)” by proving the denial “∀x ∈ U,∼ P (x)”, or
2. Disprove uniqueness by writing down specific x and y (with x 6= y) such

that P (x) and P (y).
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0.6 Outlines for common types of proofs
Proofs of conditionals

Most theorems that you are to prove are conditionals (i.e. “if [hypothesis], then
[conclusion]”). The first approach one usually tries to prove such a statement is
called a direct proof. Such a proof has the following structure:

DIRECT PROOF of P ⇒ Q:

Assume P .
......
(some logical argument)
.......

Therefore, Q. �

Sometimes a statement that you want to prove is of the form (P1 or P2) ⇒ Q
(or is equivalent to this form). To do this, we use the following rule of inference
(called “proof by cases” in the previous chapter):

[(P1 ⇒ Q) and (P2 ⇒ Q)]⇒ (P1 or P2)⇒ Q.

A proof that uses this rule of inference is called a proof by exhaustion or a proof
by cases:

PROOF BY CASES of (P1 or P2 or ... or Pn)⇒ Q:

We consider n cases:

Case 1: Assume P1 ...... (some logical argument) ....... Thus, Q.

Case 2: Assume P2 ...... (some logical argument) ....... Thus, Q.

...... (more cases if necessary) ......

Case n: Assume Pn ...... (some logical argument) ....... Thus, Q.

In all cases, Q. �

The phrase “WLOG” (which stands for “without loss of generality”) is used
when you are doing a proof by cases, and all the cases have basically the same
proof. What “WLOG” signals is that you are going to prove one of several possible
cases, and the other cases are identical (or their structure can be easily discerned
from the proof of the case you give). For its use to be appropriate, either
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(a) it must be totally obvious that the argument you give can be applied to any
other cases; or

(b) any other cases should have some other totally obvious proof; or

(b) directions must be given to “reduce” other cases to the case you prove.

A typical application is when proving results about two integers (or real numbers)
a and b. Assuming the roles of a and b are the same in the statement to be proven,
you can assume WLOG that a ≤ b. Do not overuse the phrase WLOG. It is not a
“catch-all” that allows you to assume anything under the sun.

Any conditional P ⇒ Q is logically equivalent to its contrapositive ∼ Q⇒∼ P
(∼ means “not”, so to assume ∼ Q means to assume that Q is false). This means
that we can prove conditional statements by giving a direct proof of their contra-
positive:

PROOF BY CONTRAPOSITION of P ⇒ Q:

Assume ∼ Q ...... (some logical argument) ....... Thus, ∼ P .

By contraposition, we are done. �

Recall also the rule of inference reductio ad absurdum, which says

[∼ P ⇒ (Q and ∼ Q)]⇒ P.

A proof of statement P that applies this rule of inference is called a proof by con-
tradiction:

PROOF BY CONTRADICTION of P :

Suppose not. (This is “math lingo” for “Assume ∼ P .”)

...... (some logical argument) .......

Therefore, Q.

....... (more logical argument) .......

Therefore, ∼ Q.

Contradiction! Therefore, P . �
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Sometimes, the contradiction needs to be explained (if it’s not clear what the
contradiction is).

Conditionals can be proven by contradiction with the following template:

PROOF BY CONTRADICTION of P ⇒ Q:

Assume P and ∼ Q. (because this is logically equivalent to ∼ (P ⇒
Q))

...... (some logical argument) .......

Therefore, R.

....... (more logical argument) .......

Therefore, ∼ R.

Contradiction! Therefore, P ⇒ Q. �

Proofs of biconditionals

Recall that a biconditional is a statement of the form “P ⇔ Q”, i.e. “P if and only
if Q”.

To prove a biconditional, there are two methods. The standard method is to
rely on the fact that P ⇔ Q is logically equivalent to (P ⇒ Q) ∧ (Q⇒ P ):

BICONDITIONAL PROOF of P ⇔ Q:

(⇒) Prove P ⇒ Q by some argument.

(⇐) Prove Q⇒ P by some argument. �

Sometimes you don’t actually have to prove each direction of a biconditional:

SHORTCUT BICONDITIONAL PROOF of P ⇔ Q:

P iff .......
iff ......
iff .......

iff Q. �
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The acronym TFAE stands for “the following are (logically) equivalent". When
you see a proposition of the form

“TFAE:
1. something
2. something else
3. another something else
4. one last thing”

that is the same thing as the proposition “1 ⇔ 2 ⇔ 3 ⇔ 4”. To prove such a
proposition, you need to prove a “circle” of conditionals. For example, to prove

1⇔ 2⇔ 3⇔ 4,

it is sufficient to prove 1⇒ 2, 2⇒ 3, 3⇒ 4 and 4⇒ 1.

Proofs of quantified statements

Mathematics contains many quantified statements. These statements are one of these
three types:

1. ∀x, P (x) (which means “for all x, the statement P (x) is true”);

2. ∃x : P (x) (which means “there exists x such that P (x) is true”);

3. ∃!x : P (x) (which means “exists a unique x such that P (x) is true”) (i.e. that
there is exactly one x which makes P (x) a true statement).

Here is how you prove (or disprove) each of these types of statements:

PROVING ∀x, P (x) via GENERIC PARTICULAR ARGUMENT:

Write down a generic particular x and verify that P (x) is true. �

The word “generic” is used because we assume nothing about x other than what
is specified in the hypothesis of the result. The word “particular” is used because
x is a particular element for which the open sentence P (x) is checked.

Disproving ∀x, P (x) via COUNTEREXAMPLE:

Write down a specific x, and show that for that x, P (x) is false. �
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CONSTRUCTIVE PROOF of ∃x : P (x):

Write down a specific x, and show that for that x, P (x) is true. �

NON-CONSTRUCTIVE PROOF of ∃x : P (x):

Start with the assumptions of the proposition, and somehow, some-
way, show that there has to be an x for which P (x) is true (usually
by appealing to some other existence theorem which you already
know). �

To disprove an existentially quantified sentence like ∃x : P (x), there are two
usual methods.

1. First, you can prove the denial ∀x,∼ P (x) (usually by generic particular ar-
gument).

2. Disprove the statement by contradiction.

EXISTENCE/UNIQUENESS PROOF of ∃!x : P (x):

First, give an existence proof of ∃x : P (x) (as above)

Second, suppose P (x) and P (y) are true.

...... (logical argument) ......

Therefore x = y.

Therefore, ∃!x : P (x). �

Subset and set equality proofs

Recall that the subset relationship E ⊆ F can be restated as the conditional ∀x, x ∈
E ⇒ x ∈ F . This suggests a direct method for proving one set is a subset of
another, called the generic particular argument:
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GENERIC PARTICULAR ARGUMENT TO PROVE E ⊆ F :

Suppose x ∈ E ...... (some logical argument) ....... Thus, x ∈ F .

Thus E ⊆ F .

Recall that two sets E and F are equal iff E ⊆ F and F ⊆ E. This gives us a
method of proving two sets are equal: you perform the generic particular argu-
ment twice, once to prove E ⊆ F and again to prove F ⊆ E. This method should
remind you of the method of proving a biconditional:

SET EQUALITY PROOF of E = F :

(⊆) Suppose x ∈ E ...... (some logical argument) ....... Thus, x ∈ F .

(⊇) Suppose x ∈ F ...... (some logical argument) ....... Thus, x ∈ E.

Since E and F are subsets of each other, E = F . �

As with biconditionals, there is a shortcut method which is sometimes avail-
able:

SHORTCUT SET EQUALITY PROOF of E = F :

x ∈ E iff ...... iff ...... iff ...... iff x ∈ F .

Thus E = F . �

A shorthand version of this might be E = ... = ... = ... = F .

Proving a function surjective, injective, or bijective

PROVING that f : A→ B is surjective:

Let y ∈ B.
Write a formula for some x ∈ A (that comes from some scratch work).
Show that for the x you wrote down, f(x) = y.

Conclude that f is onto. �
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DISPROVING that f : A→ B is surjective:

Find a specific y ∈ B.
Prove that ∼ ∃x ∈ A s.t. f(x) = y.

Conclude that f is not onto. �

PROVING that f : A→ B is injective:

Suppose x, y ∈ A are such that f(x) = f(y).
......
Therefore, x = y.

Therefore f is 1− 1. �

DISPROVING that f : A→ B is injective:

Let x = and y = (choose specific x, y ∈ A).
......
Therefore, f(x) = f(y).

Therefore f is not 1− 1. �

PROVING that f : A→ B is a bijection:

1. Prove f is surjective.
2. Prove f is injective.

Therefore, f is a bijection. �

PROVING that f : A→ B is a bijection
(by constructing an inverse function of f )

Write down a formula for f−1 : B → A
Show that for any x ∈ A, f−1(f(x)) = x.
Show that for any y ∈ B, f(f−1(y)) = y.

Conclude that f is invertible, hence f is a bijection. �
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DISPROVING that f : A→ B is a bijection:

Either prove f is not surjective, or prove that f is not injective.

Therefore, f is not a bijection. �

Proofs by induction

Mathematical induction can be used to prove statements which are universally
quantified over the natural numbers, i.e. statements that look like

“∀n ∈ N, blah blah blah.′′

PROOF BY INDUCTION of ∀n ∈ N, P (n):

We proceed by induction (on n).
Base case: Verify P (0).

Inductive step: Assume P (k)

...... (logical argument) ....... Therefore, P (k + 1).

Therefore, by the PMI, P (n) is true for all n ∈ N. �

PROOF BY STRONG INDUCTION of ∀n ∈ N, P (n):

We proceed by induction (on n).
Base case(s): Verify P (0) (sometimes it is necessary to verify P (1) or

P (2) (maybe more), depending on how the inductive step
works).

Inductive step: Assume that for all j ≤ k, P (j) is true.

...... (logical argument) ....... Therefore, P (k + 1).

Therefore, by the strong form of PMI, P (n) is true for all n ∈ N. �
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Proofs involving cardinality

Methods of proving a set E is finite

1. Show E is a subset of a finite set.
2. Show E is the union of finitely many finite sets.
3. Show E is the product of finitely many finite sets.
4. Show there is an injection from E to another finite set (such as
{1, ..., n}).

5. Show E is the image of a finite set under some function.

Methods of proving a set E is infinite

1. Show E is in 1 − 1 correspondence with one of its proper sub-
sets.

2. Show E has a subset which is infinite.
3. Show E is the Cartesian product of some sets, of which at least

one is infinite.
4. Show there is an injection from an infinite set (such as N) to E.
5. Show there is a surjection from E to an infinite set (such as N).

Methods of proving a set E is countable

1. Show E is finite.
2. Show E is a subset of a countable set.
3. Show E is the image of a countable set under some function.
4. Show there is an injective function from E to some other count-

able set.
5. Show E is a finite or countable union of countable sets.
6. Show E is the product of finitely many countable sets.
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Methods of proving a set E is uncountable

1. Use a proof by contradiction.
2. Show there is an surjective function from E to some other un-

countable set.
3. Show there is an injective function from some uncountable set

to E.
4. Show E has a subset which is uncountable.
5. Show E is the product of some sets, at least one of which is

uncountable.
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Chapter 1

Major problems of abstract
algebra

1.1 Straightedge and compass constructions
Geometric constructions with a straightedge (not a ruler) and a compass go back
to the ancient Greeks.

Things you can do with a straightedge and compass

1. Construct congruent segments

2. Construct congruent angles
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3. Bisect angles

4. Construct perpendicular bisectors

5. Construct perpendiculars through a point

6. Construct parallels

Wait a minute: This seems like geometry. Isn’t this course “abstract algebra”?
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Turning geometry into algebra

Definition 1.1 To construct a point (x, y) ∈ R2 means to obtain that point as the
intersection of markings made with a straightedge and/or compass (i.e. lines and/or
circles), given the locations of points (0, 0) and (1, 0). A point (x, y) is called con-
structible if you can construct it.

Lemma 1.2 Let x and y be real numbers. If (x, y) is constructible, then so is (y, x).

PROOF Suppose (x, y) is constructible. Construct a parallel to the y-axis through
(x, y); this gives you length x which you can mark on the y-axis. Similarly, con-
struct a parallel to the x-axis through (x, y); this gives you length y which you
can mark on the x-axis. Construct appropriate perpendiculars; where they meet is
(y, x). �

Picture to explain:

(x,y)

Definition 1.3 A real number is called constructible if it is either the x-coordinate
or the y-coordinate of a constructible point.

Question: What real numbers are constructible?
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Activity: What points (and therefore what numbers) can you construct? DO
NOT LOOK AHEAD.

.

(0,0) (1,0)
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Lemma 1 If a and b are constructible, then a + b and a − b are constructible. (As a
consequence, this means every integer is constructible.)

PROOF Suppose a and b are constructible. We construct a± b as follows:

Lemma 2 If a and b are constructible, then ab is constructible, and so long as b 6= 0, a
b

is
constructible. (As a consequence, this means every rational number is constructible.)

PROOF Suppose a and b are constructible, with b 6= 0. Here is how to construct ab
and a

b
:

Lemma 3 Suppose a ≥ 0 is constructible. Then
√
a is constructible.

PROOF Suppose a is constructible. Construct this diagram:

a 1
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Definition 1.4 A real number is called surd if it can be obtained from the integers
by operations +, −, ·, ÷ and √ (each of these operations may have to be done several
times, but only finitely many operations are allowed). The set of surd numbers is called
the real quadratic closure of Q.

Example: 5
2 − 6

√
3 +

√
7
13 + 5

√
3+
√

7
2 is surd.

Example: 4
√

15 is surd. (Why?)

Example: 3
√

2 is not surd. (Or is it?)

Example: π

Together, the three lemmas we proved on the previous page proves the follow-
ing theorem:

Theorem 1.5 Every surd number is constructible.

PROOF Let x be a surd number. x can be obtained from integers by a finite num-
ber of operations +, −, ·, ÷ and √ . By the lemmas on the previous page, any
sum, difference, product, quotient and/or square root of constructible numbers is
constructible, so x is constructible. �

Question: Are there any constructible numbers which are not surd?
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Theorem 1.6 Every constructible number is surd.

PROOF First, some setup work. Suppose the two points (x0, y0) and (x1, y1) have
surd coefficients. Then:

• The line passing through these points is

y = y0 + y1 − y0

x1 − x0
(x− x0);

this equation can be rewritten as

(x1 − x0)y + (y1 − y0)x = y0(x1 − x0)− x0(y1 − y0)

In particular, this is a line of the form Ax + By = C where A,B and C are
surd numbers.

• The circle with center (x0, y0) passing through (x1, y1) has a radius

r =
√

(x1 − x0)2 + (y1 − y0)2

which is surd, so its equation is

(x− x0)2 + (y − y0)2 = r2

where x0, y0 and r are surd.

Now for the main part of the proof. Every constructible number is obtained as
the coordinate of a point constructed from (0, 0) and (1, 0) by a finite sequence of
constructions. We prove the theorem by induction on the number of constructions
it takes to actually construct the number.

Base case: Suppose it takes zero constructions to construct the number. Then the
number is either 0 or 1; both of these are surd by definition.

Induction step: Suppose that every number/point which can be built from n
constructions is surd. Let x be a constructible number built form n + 1 construc-
tions. Since the only things you can make with a straightedge and compass are
lines and circles, that means that x is a coordinate of one (or more) of these three
things:

1. The intersection of two non-parallel lines passing through points with surd
coefficients;
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2. The intersection of a line passing through two points with surd coefficients
and a circle whose center has surd coordinates and whose radius is surd;

3. The intersection of two circles, both of whom have center with surd coordi-
nates and surd radius.

We will prove the theorem by showing that in each of these cases, the intersection
has surd coordinates:

Case 1: Consider two lines with surd coefficients; call them

Ax+By = C and Dx+ Ey = F

where A, ...F are constructible. Solving these equations together (I’m leaving out
the algebra) gives

x = CE − FB
AE −BD

and y = AF −BD
AE −BD

so x and y are surd.

Case 2: Consider a lineAx+By = C and a circle (x−x0)2 +(y−y0)2 = r2, where
A,B, x0, y0 and r are surd. Solving for y in the first equation and plugging into the
second gives

(x− x0)2 +
(
C − Ax
B

− y0

)2
= r2,

a quadratic equation in x. By applying the quadratic formula (or doing other alge-
bra), x can be obtained by +, −, ·, ÷ and √ from surd numbers, so x is surd.

Case 3: Consider two circles where (x−x0)2 + (y− y0)2 = r2 and (x−x1)2 + (y−
y1)2 = s2 where x0, y0, x1, y1, r and s are surd. If you solve these two equations for
x (HW), you end up with a formula in terms of surd numbers with only +, −, ·, ÷
and √ in it, so x is surd.

In every case, every constructible number is surd as wanted. �

Example: 5
2 − 6

√
3 +

√
7
13 + 5

√
3+
√

7
2 is constructible.

Example: 8
√

13 is constructible.

Example: 3
√

2 is not constructible. (Or is it?)
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1.1. Straightedge and compass constructions

Other construction problems

I. Construction of regular polygons

Definition 1.7 A regular polygon is a polygon where all the sides have the same
length and all the angles have the same measure.

Examples: equilateral triangles, squares, etc.

Question: for what n can a regular polygon with n sides be constructed?

Equivalent formulation of construction problem I: Given n ∈ N, is cos 2π
n

a con-
structible number?

Theorem 1.8 (Construction of regular polygons (preliminary cases)) Let n ∈
N. Then:

• if the regular polygon with n sides is constructible, so is the regular polygon
with 2n sides.

• if n ∈ {3, 4, 5}, then the regular polygon with n sides is constructible.

PROOF For the first statement, assume the regular n-gon is constructible. That
means an angle of 2π

n
can be constructed. Bisecting this angle gives an angle of

measure 2π
2n , which can be used to construct a regular 2n−gon.

We verified the second statement above for n = 3 and n = 4. For n = 5, consider
the picture on the next page:
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1.1. Straightedge and compass constructions

II. Doubling the cube

Given a cube of volume 1, construct a cube of volume 2.

Equivalent formulation of II: Is 3
√

2 a constructible number?

42



1.1. Straightedge and compass constructions

III. Trisection of a generic angle

Given an angle which you can construct, divide the angle into three equal parts.

Definition 1.9 An angle θ is called constructible if cos θ is a constructible number.

Remark: An angle θ is constructible if and only if sin θ is constructible, since
cos2 θ + sin2 θ = 1.

Equivalent formulation of III: If cos θ is a constructible number, must cos θ
3 also be

a constructible number?

Remark: At least some of the time, this answer is yes: if θ = π
2 , then cos θ

3 =
cos π

6 =
√

3
2 which is surd, hence constructible.

IV. Squaring the circle

Given a circle of radius 1, construct a square of the same area.

Equivalent formulation of IV: Is π a constructible number?

These construction problems baffled the ancient Greeks (for good reason, as we
will see). One reason the Greeks got stuck is that they didn’t have good language
for turning geometry problems into algebra (they had no symbol for √ and no
concept of variables or equations as we know them).

43



1.2. Polynomial equations

1.2 Polynomial equations
Definition 1.10 A polynomial (in the one variable x) is any expression p of the
form

p(x) = a0 + a1x+ a2x
2 + ...+ anx

n

where a0, a1, ..., an ∈ R and an 6= 0. n is called the degree of the polynomial (we
write n = deg(p) for this) ; the numbers a0, a1, ..., an are called the coefficients of
the polynomial. an, the coefficient on the highest power of x, is called the leading
coefficient of the polynomial. A polynomial is called monic if its leading coefficient
is 1.

Example: p(x) = 3x2 + 5
3x −

√
17π is a polynomial of degree 2 whose leading

coefficient is 3.

Example: p(x) = x9 − 17x+ 4 is a monic polynomial of degree 9.

Example: p(x) = sin x is not a polynomial (or is it?)

Theorem 1.11 Let p : R → R. p is a polynomial if and only if there exists an n ∈ N
such that p(n)(x), the nth derivative of p, is everywhere 0.

PROOF HW

Theorem 1.12 Let p and q be polynomials. Then pq is also a polynomial and deg(pq) =
deg(p) + deg(q).

PROOF Let m = deg(p) and n = deg(q) so that

p(x) = a0 + ...+ amx
m and q(x) = b0 + ...+ bnx

n

for a0, ..., am, b0, ..., bn ∈ R with am 6= 0, bn 6= 0. Then

pq(x) = (a0 + a1x+ ...+ amx
m)(b0 + b1x+ ...+ bnx

n)
= a0b0 + (a1b0 + a0b1)x+ (something)x2 + ...+ ambnx

n

so pq is a polynomial, and since ambn 6= 0, deg(pq) = m+ n as wanted. �

Classical problem: Solve polynomial equations p(x) = 0 in terms of the coeffi-
cients of p.
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1.2. Polynomial equations

Remark: Every equation involving only polynomial stuff can be rewritten as
p(x) = 0 by moving all the terms to one side.

We will study this classical problem (at first) by divvying up polynomial equa-
tions p(x) = 0 according to their degree.

Linear equations (deg(p) = 1)

Definition 1.13 A linear equation is an equation of the form p(x) = 0 where p is a
polynomial of degree 1.

Every linear equation is therefore of the form

where a 6= 0. The solution of such an equation has been known to mankind for at
least 4000 years (evidence from ancient Babylonian societies):

Remarks on linear equations:

• Every linear equation ax+ b = 0 has exactly one real solution.

• To solve a linear equation, you need only the operations +, −, × and ÷.

Quadratic equations (deg(p) = 2)

Definition 1.14 A quadratic equation is an equation of the form p(x) = 0 where p
is a polynomial of degree 2.

Every quadratic equation is therefore of the form

ax2 + bx+ c = 0

where a 6= 0. If you are in this course, I hope you know the formula which gives
the roots of this equation (which has been known to humanity since at least 400
BC). What you might not know (before today) is how to derive this formula:
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1.2. Polynomial equations

Theorem 1.15 (Quadratic Formula) The solutions of the quadratic equation

ax2 + bx+ c = 0

(where a 6= 0) are given by

x = −b±
√
b2 − 4ac

2a .

PROOF Divide through the equation ax2 + bx+ c = 0 by a to get

x2 + b

a
x+ c

a
= 0

i.e. x2 + b

a
x = −c

a
.

Now, “complete the square” by thinking of the problem geometrically:

Therefore, if we add
(
b

2a

)2
to the left-hand side, we will end up with

(
x+ b

2a

)2
. So

let’s add
(
b

2a

)2
= b2

4a2 to both sides to get:

x2 + b

a
x+ b2

4a2 = b2

4a2 −
c

a(
x+ b

2a

)2

= b2 − 4ac
4a2

x+ b

2a = ±
√
b2 − 4ac

4a2

x+ b

2a = ±
√
b2 − 4ac
2a

x = −b2a ±
√
b2 − 4ac

2a = −b±
√
b2 − 4ac

2a

as wanted. �
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1.2. Polynomial equations

Historical footnote: The word “algebra” comes from the Arabic “al-jabr” which
means “the reunion of broken parts”. This nomenclature comes from the idea of
completing the square (since you are “reuniting” the corner of the square that was
missing. The Persian mathematician al-Khwarizmi was the first to write down the
quadratic formula in algebraic language (i.e. variables, arithmetic symbols, etc.)

SECOND VERSION OF THE SAME PROOF As before, divide through the equation
ax2 + bx+ c = 0 by a to get

x2 + b

a
x+ c

a
= 0 Note: this contains x2 and x terms (1.1)

Now, instead of completing the square, think of the substitution y = x + b
2a . This

means that

y2 = x2 + b

a
x+ b2

4ac
so by substituting into (1.1), we get

y2 − b2

4a2 + c

a
= 0

y2 − b2 − 4ac
4a2 = 0 Note: this has y2, but no y term

y2 = b2 − 4ac
4a2

y = ±
√
b2 − 4ac
2a

Last, since y = x+ b
2a , we conclude that

x = −b2a + y = −b2a ±
√
b2 − 4ac

2a
which is the usual quadratic formula. �

Question: Geometrically, what happened when we did the substitution y =
x+ b

2a?
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1.2. Polynomial equations

Definition 1.16 The discriminant of a quadratic equation is the number

∆ = b2 − 4ac.

Remarks on quadratic equations:

• A quadratic equation ax2 + bx+ c = 0 could have 0, 1 or 2 real solutions.

– If ∆ = b2 − 4ac > 0, the equation has two real solutions.

– If ∆ = b2 − 4ac = 0, the equation has one real solution.

– If ∆ = b2 − 4ac < 0, the equation has no real solution.

• To solve a quadratic equation, you need only the operations +, −, ×, ÷
and √ . So every real solution of a quadratic equation is a surd number.

Question: Do you really need√ ?

Thinking about the number of solutions of a quadratic using calculus:

Let p(x) = ax2 +bx+c. Then p′(x) = 2ax+b, so the vertex of the parabola which
is the graph of p is where p′(x) = 0, i.e. x = −b

2a . The corresponding y-coordinate of
the vertex is

p

(
−b
2a

)
= a

(
−b
2a

)2

+ b

(
−b
2a

)
+ c = 4ac− b2

4a = −∆
4a .

∆ > 0 ∆ < 0 ∆ = 0

p(vertex) p(vertex) p(vertex)

a > 0

p(vertex) p(vertex) p(vertex)

a < 0
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1.2. Polynomial equations

Cubic equations (deg(p) = 3)

Definition 1.17 A cubic equation is an equation of the form p(x) = 0 where p is a
polynomial of degree 3, i.e. an equation of the form

ax3 + bx2 + cx+ d = 0

where a, b, c, d ∈ R and a 6= 0.

To solve this, let’s try “completing the cube” to get rid of the x2 term. Let
y = x+ b

3a , so that x = y − b
3a . Then

ax3 + bx2 + cx+ d = 0

a

(
y − b

3a

)3

+ b

(
y − b

3a

)2

+ c

(
y − b

3a

)
+ d = 0

a

(
y3 − 3

(
b

3a

)
y2 + 3y

(
−b
3a

)
− b3

27a3

)
+ b

(
y2 − 2 b

3ay + b2

9a2

)
+ cy − bc

3a + d = 0

ay3 − by2 +−by − b3

27a2 + by2 − 2b2

3a y + b3

9a2 + cy − bc

3a + d = 0

ay3 +
[
−b− 2b2

3a

]
y +

[
−b3

27a2 + b3

9a2 −
bc

3a + d

]
= 0

Now, divide through this last equation by a to get an equation of the form

y3 + py + q = 0

where p and q are constants. Here is the punchline:

Lemma 1.18 Every cubic equation ax3 + bx2 + cx + d = 0 can be transformed into
an equation of the form

y3 + py + q = 0

by first performing the substitution y = x+ b
3a and then dividing through by a.

Question: How do you solve y3 + py + q = 0?

Italian mathematicians del Ferro and Tartaglia (published in a book written by
Cardano) figured out how to solve this in the 16th century. Here is their method:

49



1.2. Polynomial equations

Method of del Ferro and Tartaglia

Step 1: To solve y3 + py + q = 0, let y = u+ v. Then,

y3 = (u+ v)3 = u3 + 3u2v + 3uv2 + v3 = u3 + v3 + 3uv(u+ v).

Substitute into the equation you want to solve:

y3 + py + q = 0

Step 2: Observe that y = u+ v is a solution of the equation if u and v satisfy the
system of equations

Solve this system for u3 and v3 by substitution:

Step 3: Having obtained

{u3, v3} =

−q ±
√
q2 + 4p3

27
2

 =

−q2 ±
√(

q

2

)2
+
(
p

3

)3
 ,

we see that y = u+ v = 3
√
u3 + 3

√
v3, i.e.
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1.2. Polynomial equations

y = 3

√√√√−q
2 +

√
q2

4 + p3

27 + 3

√√√√−q
2 −

√
q2

4 + p3

27 .

Potential problem: this method “fails” if the number q2

4 + p3

27 under the square
roots in the del Ferro / Tartaglia formula is negative.

Question: What is the significance of q2

4 + p3

27?

Thinking about the number of solutions of a cubic using calculus:

Let f(x) = x3 + px+ q. Then f ′(x) = 3x2 + p so the critical points of p are

Notice also that f ′′(x) = 6x so by the Second Derivative Test, f has a local
maximum at x = −

√
−p
3 and a local minimum at x =

√
−p
3 :

Now, suppose f has three real roots. Then the quantity

1
4f

−
√
−p
3

 f
√−p

3


will be negative. If you work this out (HW), you will find that this quantity is
exactly

q2

4 + p3

27 .

In other words, the cubic formula of del Ferro and Tartaglia will fail exactly when
the cubic has three roots.

If f has one root, then

q2

4 + p3

27 = 1
4f

−
√
−p
3

 f
√−p

3


will be positive, so the del Ferro / Tartaglia works to produce this one root.
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1.2. Polynomial equations

If f has two roots, then the graph of p must look like

In this situation, the del Ferro / Tartaglia method works and produces one of
these roots. In the HW, I ask you to figure out which one you get.

Definition 1.19 The discriminant of the cubic equation x3 + px + q = 0 is the
quantity

∆ = −4p3 − 27q2.

(This quantity has the opposite sign as q2

4 + p3

27 .)

Remarks on cubic equations:

• After substitution and division by the leading coefficient, all cubic equa-
tions can be rewritten as

x3 + px+ q = 0.

• Such a cubic equation could have 1, 2 or 3 real solutions.

– If ∆ = −4p3 − 27q2 > 0, the equation has three real solutions, and
the method of del Ferro and Tartaglia fails.

– If ∆ = −4p3− 27q2 = 0, the equation has either one or two real solu-
tions, and the method of del Ferro and Tartaglia gives one solution
as

x = 3

√√√√−q
2 +

√
q2

4 + p3

27 + 3

√√√√−q
2 −

√
q2

4 + p3

27 .

– If ∆ = −4p3 − 27q2 < 0, the equation has one real solution, and the
method of del Ferro and Tartaglia gives that solution by the same
formula as above.

• To solve a cubic equation, you need the operations +,−,×,÷,√ and 3
√ .
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1.2. Polynomial equations

Quartic equations (deg(p) = 4)

In the 1500s Ferrari showed that the ideas of del Ferro and Tartaglia could be used
to solve quartic equations.

Definition 1.20 A quartic equation is an equation of the form p(x) = 0 where p is
a polynomial of degree 4, i.e. an equation of the form

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0

where a0, ..., a4 ∈ R and a4 6= 0.

This time, start with the substitution y = x+ a3
4a4

and then divide by the leading
coefficient. This gets rid of the x3 term and leaves an equation of the form

y4 + py2 + qy + r = 0.

This can be rewritten using methods outlined in Section 1.7 of Stilwell’s textbook,
and solved for y.

Remarks on quartic equations:

• Quartic equations have 0, 1, 2, 3, or 4 real solutions.

• After substitution and division by the leading coefficient, all quartic equa-
tions can be rewritten as

x4 + px2 + qx+ r = 0.

• To solve a quartic equation, you need the operations +, −, ×, ÷, √ and
3
√ .

(Why no 4
√ ?)
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1.2. Polynomial equations

Quintic equations (deg(p) = 5)

The (hi)story so far

• Linear equations: Babylonians (4000 BC or perhaps earlier)
• Quadratic equations: Babylonians and Egyptians (2000 BC)

– algorithms known to solve equations: Babylonians and Chinese (400
BC)

– completing the square: al-Khwarizmi (800 AD)
– quadratic formula first written down: Savasorda (1145 AD)

• Cubic equations: del Ferro and Tartaglia (1530)
• Quartic equations: Ferrari (1540)
• Quintic equations:

Definition 1.21 A quintic equation is an equation of the form p(x) = 0 where p is
a polynomial of degree 5. Every quintic equation is therefore

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = 0

where a0, ..., a5 ∈ R.

What works: The substitution y = x + b
5a gets rid of the fourth-power term.

After dividing through by the leading coefficient, you are left with

x5 + px3 + qx2 + rx+ s = 0.

What doesn’t work: Everything else.

Question: What should be true about quintic equations?
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1.2. Polynomial equations

Definition 1.22 A polynomial equation

0 = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n

(with an 6= 0) is called solvable by radicals if the solutions x are expressible in terms
of a0, a1, ..., an by means of the operations +, −, ×, ÷, and the roots √ , 3

√ , 4
√ , 5
√ ,

etc.

In this section (together with the exposition from Section 1.7 of Stillwell cover-
ing quartics), we have proven:

Theorem 1.23 If p is a polynomial of degree less than or equal to 4, then the equation
p(x) = 0 is solvable by radicals.

Question: Is an arbitrary quintic equation solvable by radicals?
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1.3. Summary: the major questions we want to tackle

1.3 Summary: the major questions we want to tackle
Abstract algebra, at its heart, is about what you can and cannot do. Here are

some questions we’ve seen that we will return to frequently in this course (recall
that a number is surd if it can be obtained from integers by a finite string of the
operations +,−, ·,÷ and √ ):

1. Which regular polygons are constructible using a straightedge and compass?

What we know:

• The regular n-gon is constructible if n = 3, 4 or 5.

• If the regular n-gon is constructible, then the regular 2n-gon is also con-
structible.

• The regular n-gon is constructible if and only if cos 2π
n

is surd.

2. Can you double the cube using a straightedge and compass?

Same problem, restated: Is 3
√

2 surd?

More generally: We know that an arbitrary cubic equation can be solve by rad-
icals (you need √ and 3

√ at worst). Is an arbitrary cubic equation somehow
solvable without using 3

√ ?

3. Can you trisect an arbitrary angle using a straightedge and compass?

Same problem, restated: If cos θ is surd, must cos θ
3 be surd?

4. Can you square the circle using a straightedge and compass?

Same problem, restated: Is π constructible?

5. Is an arbitrary quintic equation (or higher-degree polynomial equation) solv-
able by radicals?

If so, what is the quintic formula? Exactly what radicals are needed?
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Chapter 2

Integers and rational numbers

2.1 N: the natural numbers
Informally, the natural numbers are:

Formally speaking, the natural numbers are defined by some axioms that we
just assume:

Axiom 2.1 (Peano’s axioms) The set of natural numbers is denoted N. This is a set
which satisfies these five axioms:

Peano’s first axiom: 0 is a natural number.

Peano’s second axiom: Every natural number n has a successor s(n) which is a
natural number.

Peano’s third axiom: 0 is not the successor of any natural number.

Peano’s fourth axiom: The successor function s : N→ N is injective.

Peano’s fifth axiom: The natural numbers are well ordered by ≤. This means that
every nonempty subset of N has a least element.

Remark: In the second axiom, “successor” just means the “next” natural num-
ber as you count. So the successor of 3 is 4, the successor of 6 is 7, etc.
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2.1. N: the natural numbers

Induction proofs

The reason the fifth axiom is so important is that it is equivalent to the following:

Axiom 2.2 (Principle of Mathematical Induction (PMI)) Suppose E ⊆ N is a
set with two properties:

1. 0 ∈ E; and

2. if n ∈ E, then n+ 1 ∈ E.

Then E = N.

Shorthand version: [P (0) and (P (n)⇒ P (n+ 1))] =⇒ ∀n, P (n).

Application: Prove that for all n ∈ N, 0 + 1 + 2 + ...+ n = 1
2n(n+ 1).

PROOF (Long version)
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2.1. N: the natural numbers

We usually shorthand the proof we just wrote as follows:

PROOF Base case: Let n = 0. Then 0 = 1
2(0)(0 + 1).

Inductive step: Suppose 0 + 1 + ...+ n = 1
2n(n+ 1). Then

0 + 1 + ...+ n+ (n+ 1) = [0 + 1 + ...+ n] + (n+ 1)

= 1
2n(n+ 1) + (n+ 1) (by the IH)

= 1
2[n(n+ 1) + 2(n+ 1)]

= 1
2[n2 + 3n+ 2]

= 1
2(n+ 1)(n+ 2)

as wanted. By induction, we are done. �

We may need this stronger version of induction:

Theorem 2.3 (Strong form of PMI) Suppose E ⊆ N is a set with two properties:

1. 0 ∈ E; and

2. if {0, 1, ..., n} ⊆ E, then n+ 1 ∈ E.

Then E = N.

Shorthand version: [P (0) and (∀k ≤ n, P (k)⇒ P (n+ 1))] =⇒ ∀n, P (n).

Application: Let Fn be the nth Fibonacci number (i.e. F0 = F1 = 1 and for n ≥ 1,
Fn+1 = Fn + Fn−1). Prove that for all n ∈ N, Fn ≤ 2n.

PROOF Base cases: When n = 0, F0 = 1 = 20 and when n = 1, F1 = 1 < 21.

Induction step: Suppose that for all k ≤ n, Fk < 2k. Then

Fn+1 = Fn + Fn−1

≤ 2n + 2n−1 (by the IH)
< 2n + 2n

= 2(2n) = 2n+1

as wanted. By (strong) induction, we are done. �
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2.1. N: the natural numbers

Binary operations

Definition 2.4 Let S be a set. A binary operation on S is a function� : S×S → S.
An algebraic system, denoted (S,�) or (S,�1,�2, ....), is a set S together with one
or more binary operations on S.

Example 1: (N,+): addition on the natural numbers

Example 2: (N, ·): multiplication on the natural numbers

Binary operations have two inputs, and one output. We usually denote binary
operations by symbols like +, ×, −, ◦, etc. and put the symbol in between the two
coordinates of the input, so when we write something like

5 + 7 = 12,

we are technically thinking of a function which could (should?) written like

+(5, 7) = 12 or (5, 7) +7−→ 12.

The binary operation presented in the above example (addition on N) is sym-
bolized by +. So technically, + is a function from N× N to N.

For now, we’ll refer to an abstract binary operation (for now) by �. Think of
this as a stand-in for something like + or ×, etc.

Definition 2.5 ((Possible) properties of binary operations) Let S be a set, and
let � be a binary operation on S.

1. � is called associative if, for every x, y, z ∈ S, x� (y � z) = (x� y)� z.

2. � is called commutative if, for every x, y ∈ S, x� y = y � x.

3. An element e ∈ S is called an identity element (for �) if x � e = x and
e� x = x for every x ∈ S.

4. Suppose e is an identity element for �. We say x ∈ S has an inverse element
(under �) if there is an element y ∈ S such that x� y = e and y � x = e.

Of these properties, the most useful and important is associativity. Here’s why:
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2.1. N: the natural numbers

Exercise: Complete the following chart with Yes or No answers (also, teach
each other about the notation used for these sets):

Is there an What
Is this Is this identity members

Binary operation operation element? If so, of S have
Set S operation associative? commutative? what is it? inverses?

N +

N ×, a.k.a. ·

M2×2(R) +

M2×2(R) matrix
multiplication

N exponentiation
a� b = ab

{0} trivial
0� 0 def= 0

2E ⋃

2E ⋂

2E 4

R3 cross
product
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2.1. N: the natural numbers

ENRICHMENT: With regard to exponentiation, there is a natural number
(namely 1) such that

a� 1 = a1 = a

for all a ∈ N. But 1 is not an identity element for this operation, because

1� a = 1a

is not generally equal to a. We say in this setting that 1 is a right identity
element for� (a left identity element would be some e such that e�x = x
for all x ∈ S; an identity element is an element that is both a left identity
and a right identity).

What’s good about N?

One good thing about the natural numbers is that they are well-ordered, meaning
that we can do induction proofs on statements indexed by natural numbers.

Other good things:

Theorem 2.6 The operations + and · on N are associative and commutative.
There exists a unique identity element for + (namely 0).
There exists a unique identity element for · (namely 1).

What’s bad about N?

Theorem 2.7 The only element of N with an additive inverse is 0.
The only element of N with a multiplicative inverse is 1.

Consequence: (N,+, ·) can be used to produce “unsolvable” equations:
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ENRICHMENT: If you took Math 324 from me, you know that good math-
ematicians are skeptics and do not believe things that haven’t been proven.
On the other hand, I didn’t prove Theorem 2.6 or 2.7. How do you prove
these things?

Well, first you need formal definitions of addition and multiplication
on N. Here they are:

• Recall that by Peano’s second axiom, there is a “successor” function
s : N→ N. We define addition via iteration of this successor function,
i.e.

a+ b
def= s(s(s(s(...s(s(a))))))

where the successor function s is applied b times to a. Based on this
definition, you can prove that addition is associative and commuta-
tive, and that 0 is the unique identity element under this operation,
and that only 0 has an additive inverse (unfortunately, to make these
proofs rigorous, you have to use induction and the definition of a
function as a relation... that makes these proofs messy and technical
and not worth doing, in my opinion).

• Once addition is defined and known to be associative, you can define
multiplication by repeated addition:

a · b def= a+ a+ ...+ a

where there are b as being added. You can prove (with messy in-
duction proofs) that this multiplication operation is associative and
commutative and that 1 is the unique identity element for this op-
eration, and that 1 is the only natural number with a multiplicative
inverse.

If you still don’t believe Theorems 2.6 or 2.7, you can come to my office
and I’ll walk through these proofs with you.
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2.2 Z: the integers
First, an abstract definition of a set on which we can add, subtract and multiply:

Definition 2.8 (Definition of ring) Let (R,+, ·) be an algebraic system. (R,+, ·)
(or just R) is called a commutative ring with unit (or just a ring) if

1. both + and · are associative and commutative;

2. both + and · have identity elements (usually denoted 0 and 1, respectively);

3. every member x of R has an inverse element under + (which is denoted −x);
and

4. · distributes over +, i.e. for all x, y, z ∈ R, x(y + z) = xy + xz.

N is not a ring (Theorem 2.7 tells us there are no inverses under + for nonzero
elements of N)... essentially this is what’s “bad” about N.

ENRICHMENT: Technically, for an algebraic system to be a a ring, one
does not require that the multiplication is commutative, nor that there is
an identity element for the multiplication. As an example, consider the set
M2×2(R) of 2×2 matrices with real entries. The binary operations of matrix
addition and matrix multiplication make this set into a (non-commutative)
ring. We won’t encounter non-commutative rings in this course, however,
and in many (not all) advanced math textbooks, ring is used the way I use
it in these lecture notes. Always look carefully at how an author defines
the word ring!

Definition 2.9 Let R be a ring. Define subtraction in R by

x− y = x+ (−y)

where + is the addition operation of R.

Consequence: Given a, b ∈ R where R is a ring, we can always solve an equa-
tion of the form

x+ a = b or x− a = b.
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Theorem 2.10 (Cancellation law for rings) Let R be a ring and suppose a, b, c ∈
R. If a+ b = a+ c, then b = c.

PROOF

Theorem 2.11 (Properties of rings) Let R be a ring, and denote its additive iden-
tity by 0 and its multiplicative identity by 1. Let x ∈ R. Then:

Uniqueness of identity elements 0 is the only additive identity of R, and 1 is the
only multiplicative identity of R.

Uniqueness of additive inverses x has exactly one additive inverse.

Multiplication by zero 0x = 0.

Additive inverse of additive inverse is original element −(−x) = x.

Multiplication by −1 gives additive inverse −1(x) = −x.

Additive inverse of multiplicative identity is itself −0 = 0.

PROOF First, we prove that 0 is the only additive identity of R. Suppose a is an
additive identity of R. Then consider

a+ 0 =


By transitivity, a = 0, so 0 is the only additive identity of R.

Next, let’s prove uniqueness of additive inverses. Suppose y and z are both
additive inverses of x. Then

x+ y = 0 = x+ z

and by the cancellation law, y = z. Thus additive inverses are unique.

The other parts of this are HW problems. �
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Prototype ring: the integers

Informally, the integers are

i.e. they are the natural numbers, together with additive inverses of all the natural
numbers (sort of... see the enrichment at the end of this section).

What’s good about Z:

1. the integers “contain” the natural numbers (sort of... see the enrichment at
the end of this section).

2. the integers are totally ordered under ≤. Furthermore, inequalities are pre-
served under addition, subtraction and multiplication by positive integers
(and reversed under multiplication by a negative integer). To prove this,
however, you need messy, technical definitions of ≤ and induction proofs
which I will omit.

3. Z is a ring:

Theorem 2.12 Z is a ring, under addition and multiplication.

PROOF See the enrichment at the end of this section.

4. Z is better than a ring:

Definition 2.13 A ringR is called an integral domain if “0 has no nontrivial
divisors”, i.e. if a, b ∈ R are such that ab = 0, then at least one of a and/or b
must be 0.

Theorem 2.14 Z is an integral domain.

PROOF Suppose ab = 0 but a 6= 0, b 6= 0.

Case 1: b > 0. Then
ab = a+ a+ a+ ...+ a.
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If a > 0, then ab > 0 since + preserves >. If a < 0, then ab < 0 since +
preserves <. Either way, we have contradicted ab = 0.

Case 2: b < 0. Then by ring properties, ab = 1(ab) = (−1)(−1)(ab) =
(−1)a(−1)b = (−a)(−b). Applying Case 1 (which holds since −b > 0), the
result follows. �

5. in Z, you can perform “division with remainder” (more on this in a future
section).

What’s not so great about Z?

1. Z is not well-ordered under ≤ (for instance, there is no least integer). So
you can’t do induction proofs directly on statements indexed by integers (al-
though you can often do induction under the assumption the integer is at
least zero, then prove a second case where the integer is negative).

2. Z does not contain reciprocals:

Theorem 2.15 The only members of Z which have multiplicative inverses are
±1.

PROOF Clearly, 1 and −1 are their own multiplicative inverses.

Suppose x ∈ Z has multiplicative inverse y. That means xy = 1. Taking
absolute values, this means |xy| = 1, i.e. |x||y| = 1. Therefore |x| is a natural
number with a multiplicative inverse, which by Theorem 2.7 means |x| = 1.
Therefore x = ±1. �

Consequence: (Z,+, ·) can be used to produce “unsolvable” equations:

P.S. What other rings are there?
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ENRICHMENT: In Math 324, we learned exactly what the integers are.
Formally speaking, an integer is an equivalence class of a pair of natural
numbers, where (a, b) ∈ N2 is equivalent to (c, d) ∈ N2 if

a+ d = b+ c.

Denoting the equivalence class of (a, b) by [(a, b)], the integer n is the equiv-
alence class [(n, 0)] and the integer −n is the equivalence class [(0, n)].

Then, addition and multiplication on integers can be defined formally
by

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]
[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)]

These operations need to be shown to be “well-defined” (see my Math 324
notes). From these definitions, we can verify that Z is a ring (i.e. that addi-
tion and multiplication are associative and commutative and have identity
elements (the additive identity is [(0, 0)] and the multiplicative identity is
[(1, 0)]), that multiplication distributes over addition, and that every class
has an additive inverse (the additive inverse of [(a, b)] is [(b, a)]).

This having been done, what do we mean when we say the integers
“contain” the natural numbers? Really, this means there is an injective
function i : N ↪→ Z (defined by i(n) = [(n, 0)]) such that i “preserves addi-
tion and multiplication”, i.e.

i(a+ b) = i(a) + i(b) and i(ab) = i(a)i(b)

for all a, b ∈ N. The image i(N) is essentially a copy of the natural numbers
inside the integers. So when we write something like “N ⊆ Z”, we really
mean i(N) that is a subset of Z.
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2.3 Q: the rational numbers
First, an abstract definition of a set on which we can add, subtract, multiply

and divide (but not by 0):

Definition 2.16 (Definition of field) Let (F,+, ·) be an algebraic system, where F
contains at least two elements. F is called a field if

1. (F,+, ·) is a ring; and

2. every element of F other than the additive identity element (i.e. 0) has an inverse
element under multiplication (i.e. a reciprocal). The reciprocal of x ∈ F is
denoted x−1 or 1

x
.

Definition 2.17 Let F be a field. For any x ∈ F , y ∈ F−{0}, we can define division
in F by

x÷ y = x

y
= x · y−1

where · is the multiplication operation of F .

Consequence: Given a, b, c ∈ F where F is a field, if a 6= 0 we can always solve
an equation of the form

ax+ b = c.

Theorem 2.18 (Cancellation law for fields) Let F be a field and suppose a, b, c ∈
F . If ab = ac and a 6= 0, then b = c.

Note: Since every field is a ring, the cancellation law for rings (a+b = a+c implies
b = c) also holds for fields.

PROOF
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Just as Z is the prototype ring, Q is the prototype field. Informally, the rational
numbers are fractions, where the numerator and denominator of the fraction are
each an integer (and the denominator is nonzero):

What’s good about Q?

1. Like Z, Q is totally ordered under≤. Furthermore, inequalities are preserved
under addition, subtraction and multiplication by positive rationals (and re-
versed under multiplication by negative rationals).

2. Like Z, Q is an integral domain.

3. The rational numbers “contain” the integers (see the enrichment at the end
of this section).

4. Unlike Z, Q is a field (so you can take reciprocals, etc.):

Theorem 2.19 Q is a field, under addition and multiplication.

PROOF See the enrichment at the end of this section.

What’s bad about Q?

1. Like Z, Q is not well-ordered under ≤ (so induction proofs are no good).

2. Unlike Z, Q doesn’t contain any “primes”, which means that you can’t really
“factor” rational numbers in a formulaic way (we will see that in Z, factor-
ization works better).

3. There are some equations with coefficients in Q that arise naturally whose
solutions can’t be easily identified as rational numbers:

P.S. What other fields are there?
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Lots of subsets of fields are themselves fields. The key concept is that if you per-
form the operations of addition, subtraction (i.e. additive inverse), multiplication,
and/or division (i.e. reciprocal) on objects in the subset, then the answer must still
be in the subset.

Theorem 2.20 Let (F,+, ·) be a field, with additive identity 0 and multiplicative
identity 1. If F0 ⊆ F is a nonempty set with the following properties:

1. F0 is “closed under addition”, i.e. x+ y ∈ F0 whenever x ∈ F0 and y ∈ F0;

2. F0 is “closed under multiplication”, i.e. xy ∈ F0 whenever x ∈ F0 and y ∈ F0;

3. F0 is “closed under additive inverses”, i.e. −x ∈ F0 whenever x ∈ F0; and

4. F0 is “closed under reciprocals”, i.e. x−1 ∈ F0 whenever x ∈ F0,

then F0 is also a field under operations + and ·. In this setting we say F0 is a subfield
of F and that F is an extension of F0.

PROOF This follows immediately from the definition of field. �

Theorem 2.21 The set S of surd numbers (i.e. constructible numbers) is a field (under
the usual operations of + and ·).

PROOF In Section 1.1, we showed that the sum and product of two surd numbers
is surd, that the additive inverse of a surd number is surd, and that the reciprocal
of a surd number is surd. Therefore S is a subfield of the field R.

As a non-example, the integers fail to be a subfield of Q because they are not
closed under reciprocals:
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2.3. Q: the rational numbers

ENRICHMENT: In Math 324, we learned exactly what the rational num-
bers are. Formally speaking, an integer is an equivalence class of an ele-
ment in S = Z × (Z − {0}), where (a, b) ∈ S is equivalent to (c, d) ∈ S if
ad = bc; denote the equivalence class of (a, b) by a

b
.

Then, addition and multiplication on rational numbers can be defined
formally by

a

b
+ c

d
= ad+ bc

bd
a

b
· c
d

= ac

bd

These operations need to be shown to be “well-defined” (see my Math 324
notes). From these definitions, we can verify that Q is a field (in particular,
the additive identity is 0

1 , the multiplicative identity is 1
1 , the additive in-

verse of a
b

is −a
b

, and the multiplicative inverse of a
b

exists if a 6= 0 and is b
a
).

This having been done, we can see that there is an injective function
i : Z ↪→ Q (defined by i(n) = n

1 ) such that i “preserves addition and multi-
plication”, i.e.

i(a+ b) = i(a) + i(b) and i(ab) = i(a)i(b)

for all a, b ∈ Z. The image i(Z) is essentially a copy of the integers inside
the rational numbers. So when we write something like “Z ⊆ Q”, we really
mean i(Z) that is a subset of Q, and when we think of an integer (like 5) as
a rational number, we are really thinking about i(5) = 5

1 .
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2.4 Divisibility
Recall: what’s bad about Q is that there aren’t primes, so factoring doesn’t make
sense. But you can factor elements of Z in a reasonable way:

Definition 2.22 Let a, b ∈ Z. We say a divides b, or a is a factor of b, or b is a
multiple of a, and write a | b, if there is an integer q such that b = qa. If a does not
divide b, we write a 6 | b.

Definition 2.23 Let S ⊆ Z. A (finite) linear combination of elements of S is any
integer which can be written as

n∑
j=1

cjsj

for integers c1, ..., cn and elements s1, ..., sn ∈ S.

For example, a linear combination of a and b is any integer which can be written
as ka+ lb for k, l ∈ Z.

Example: 17 | 221 since 221 = 17(13).

Example: 5 6 | 23

Example: 5 is a linear combination of 10 and 25 because 5 = 3(10) + (−2)(25).

Example: 5 is not a linear combination of 24 and 28

Theorem 2.24 (Basic properties of divisibility) Let a, b, c ∈ Z.

1. a | a.

2. If a | b and b 6= 0, then |a| ≤ |b|.

3. If a | b and a | c, then a divides any linear combination of b and c.

In particular, this implies

• a | b⇒ a | kb for any k ∈ Z, and
• (a | b and a | c) =⇒ both a | (b+ c) and a | (b− c).

4. If a | b and b | c, then a | c.
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2.4. Divisibility

PROOF Statement (1) is obvious, since a = 1a.
For statement (2), suppose a | b and b 6= 0.

The proofs of (3) and (4) are left as HW. �

Application: Let’s prove 5 6 | 23.

Definition 2.25 (Classification of ring elements) LetR be a ring (with multiplica-
tive identity 1).

• An element u ∈ R is called a unit if u | 1.

• An element p ∈ R is called prime if whenever p = ab for a, b ∈ R, either a or b
is a unit.

• An element c ∈ R is called composite if it is nonzero, not a prime, and not a
unit.

Example: in Z, the units are

in Z, primes include

in Z, composites include

Lemma 2.26 Let p ∈ Z. p is prime if and only if the only natural numbers which
divide p are 1 and p.

Let c ∈ Z. c is composite if and only if ∃ a ∈ Z with 1 < |a| < |c| such that a | c.

Question: Generalizing this definition, what would the units/primes/composites
be in the rational numbers?
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Theorem 2.27 A ring is a field if and only if every nonzero element of the ring is a
unit.

Lemma 2.28 (Euclid’s Lemma) Let n ∈ Z. If n is not a unit, then there is a prime
p such that p |n.

PROOF Let n ∈ Z be a non-unit.

Case 1: Suppose n = 0. Since 2 | 0, the theorem holds.

Case 2: We will show that all positive non-units have prime divisors. To do this,
let E be the set of integers which are at least 2 and which have no prime divisor.
Assume E 6= ∅. Since E ⊆ N, by the WOP E has a least element x.

Case 2(a): x is prime. Therefore x has prime divisor x, so x /∈ E, a contradiction.

Case 2(b): x is composite. By definition, there is some integer y (WLOG y is
positive), which is neither 1 nor x, which divides x. Since y < x, y /∈ E so y has
a prime divisor p. But p | y and y |x implies p |x, so x has prime divisor p. This
contradicts x being in E.

Either way, we have a contradiction, so E must be empty, proving the theorem
whenever n is a natural number.

Case 3: Last, suppose n is a negative non-unit, i.e. n ≤ −2. If n has no prime
divisor, then neither does −n. Since −n ≥ 2, this would contradict what we have
already proven in Case 2. �

Theorem 2.29 (Euclid’s Theorem) There are infinitely many primes.

PROOF Suppose not, i.e. that P is finite. That means we can list the positive prime
numbers as {p1, p2, ..., pn}.
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The concept of a prime numbers has been around for thousands of years, but
there are still unsolved problems involving primes that are simple to phrase:

Conjecture 2.30 (Twin Prime Conjecture) There are infinitely many numbers p
such that both p and p+ 2 are prime.

Examples of twin primes: 3 and 5; 29 and 31; 71 and 73

Conjecture 2.31 (Goldbach Conjecture) Every even integer greater than 2 can be
written as the sum of two primes.

Examples: 4 = 2 + 2; 100 = 47 + 53

The Goldbach conjecture has been verified for all even integers up to about 1018

via computer, but no one knows if it is true or not.

Division with remainder

One of the most important things about the integers is that you can perform divi-
sion with remainder:

Example: 27÷ 2 =

Example: 13÷ 5 =

Example: 3÷ 7 =

Example: −22÷ 6 =

Observations about these examples:
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Theorem 2.32 (Division Theorem) Let a, b ∈ Z with a > 0. Then there exist
unique integers q and r such that:

• b = aq + r, and

• r ∈ {0, 1, 2, ..., a− 1}.

In this theorem, q is referred to as the quotient and r is referred to as the remainder.

PROOF Let a, b ∈ Z with a > 0. The first part of our proof will establish the
existence of q and r.

Case 1: b ≥ 0. Since b is therefore a natural number, we can prove this by induc-
tion on b.

Base case: 0 = a(0) + 0, so we can set q = r = 0 to prove the theorem.

Induction step: Suppose the theorem is true for b, i.e. there are integers q and r
with r ∈ {0, ..., a− 1} such that

b = aq + r.

Case 1(a): r = a− 1

Case 1(b): r < a− 1

In either case, by induction on b, we are done with Case 1.
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Case 2: b < 0. Therefore −b > 0, so by Case 1, we can divide −b by a to get

−b = aq + r

where q, r ∈ Z and 0 ≤ r ≤ a− 1. That means

b = a(−q) + (−r) = a(−q − 1) + (a− r).

Case 2(a): r > 0. In this case, we have written

b = a(−q − 1) + (a− r)

so the theorem holds.

Case 2(b): r = 0. In this case, −b = aq so b = a(−q) + 0, and the theorem holds.

Between Cases 1 and 2, we have established the existence of the q and the r.
Now for the uniqueness: to show this, suppose there are q1, q2, r1, r2 ∈ Z with
0 ≤ r1, r2 ≤ a− 1 such that

b = aq1 + r1 and b = aq2 + r2.

WLOG r2 ≤ r1, otherwise reverse the subscripts. Now subtract the two equations
above to get

0 = b− b = aq1 + r1 − (aq2 + r2) = a(q1 − q2) + (r1 − r2),

i.e.
a(q2 − q1) = r1 − r2.

Since a divides the left-hand side, a divides the right-hand side, but the right-hand
side is nonnegative and at most (a − 1) − 0 < a, a contradiction unless the right-
hand side is 0. Therefore r1 = r2, so

a(q2 − q1) = 0

so since a 6= 0, it follows that q2 = q1. Thus the q and r of this theorem are unique.
�

78



2.5. The Euclidean algorithm and applications

2.5 The Euclidean algorithm and applications
Definition 2.33 Let a, b ∈ Z be nonzero. The greatest common divisor of a and b,
denoted gcd(a, b), is the integer d with the following three properties:

• d | a;

• d | b; and

• for any c ∈ Z such that c | a and c | b, c ≤ d.

a and b are called relatively prime (a.k.a. coprime) if gcd(a, b) = 1.

Definition 2.34 Let S ⊆ Z be a set not containing 0. The greatest common divisor
of S, denoted gcd(S), is the integer d with the following two properties:

• for every a ∈ S, d | a; and

• for any c ∈ Z such that c | a and c | b, c ≤ d (i.e. d is the greatest common
divisor).

Remark: The gcd of two numbers is always positive: gcd(−5,−10) = 5, for in-
stance.

Example: Find these:

• gcd(49, 63)

• gcd({18, 24, 10, 72})

• gcd(19, 418)

• gcd(7458, 5082)

Why do we say “the” gcd rather than “a” gcd?
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HOW TO PROVE d = gcd(a, b):

1. Show d | a.
2. Show d | b.
3. Suppose c | a and c | b. Use a logical argument to deduce c ≤ d

(often it is easier to show c | d and d ≥ 0).

Lemma 2.35 Let a, b ∈ Z be nonzero. gcd(a, b) = gcd(|a|, |b|).

PROOF Let d = gcd(a, b). We will show d = gcd(|a|, |b|);

• d = gcd(a, b), so d | a. That means ∃n ∈ Z s.t. dn = a. If a > 0, then dn = |a|; if
a < 0, then d(−n) = |a|. Either way, d | |a|.

• By the same argument as above applied to b instead of a, d | |b|.

• Last, suppose c | |a| and c | |b|. Then ∃n ∈ Z s.t. cn = |a| so either cn = a or
c(−n) = a, meaning c | a. Similarly, c | b. Since c is a common divisor of a and
b, c ≤ d = gcd(a, b) as wanted. �

P.S. Inside this proof we showed

Lemma 2.36 Let a, d ∈ Z be nonzero. d | a if and only if d | |a|.

and in fact these statements are also equivalent to |d| | a and |d| | |a|. So when you
are messing with divisibility, you can often (not always) assume WLOG that the
integers under consideration are positive.

Lemma 2.37 Let a, b ∈ Z be nonzero. If a | b, then gcd(a, b) = |a|.

PROOF HW

Back to this example: gcd(7458, 5082) =?

One way to do this is to factor each of these numbers and identify the common
factors. That way sucks, and I’m not going to spend any time doing it. A better
way to compute this is called the Euclidean algorithm, and is based on this important
principle:
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Theorem 2.38 Let a, b ∈ Z be nonzero. If q, r ∈ Z are such that b = aq + r, then

gcd(a, b) = gcd(a, r).

PROOF Let d = gcd(a, b). We need to show d = gcd(a, r):

The Euclidean algorithm is a procedure to find the gcd of two numbers by re-
peatedly dividing the larger one by the smaller one (using the Division Theorem)
and applying the preceding theorem, until you get a remainder of zero.

Example: Find gcd(7458, 5082).
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Example: Find gcd(945, 672).

Theorem 2.39 (Bezout’s Theorem) Let a, b ∈ Z be nonzero, and let d = gcd(a, b).

1. d is a linear combination of a and b.

2. d the smallest positive integer which is a linear combination of a and b.

3. The set of integers which can be written as a linear combination of a and b
coincides with the set of multiples of d. In set language, this statement can be
phrased as

aZ + bZ = dZ.

Before proving this, let’s see how this works in an example:

Example: Write gcd(945, 672) as a linear combination of 945 and 672.

Solution: From above (but in reverse order),

126 = 6 · 21 + 0

273 = 2 · 126 + 21

672 = 2 · 273 + 126

945 = 1 · 672 + 273
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PROOF We begin by proving that d is a linear combination of a and b. First, per-
form the Euclidean algorithm on a and b (WLOG 0 < a < b). Notice that the
sequence r1, r2, r3, ... obtained below is a decreasing sequence of nonnegative in-
tegers, so this sequence must be finite by the WOP, i.e. the Euclidean algorithm
terminates after some number (say N ) of steps:

b = aq1 + r1 . .

a = r1q2 + r2

r1 = r2q3 + r3

...

rN−2 = rN−1qN + rN

rN−1 = rNqN+1 + d

rN = dqN+1 + 0

To prove (2), note that from (1), d is a linear combination of a and b. Suppose
c > 0 is a linear combination of a and b. But since d divides both a and b, d divides
c by Theorem 2.24, so d | c. Since d and c are positive, d ≤ c. This makes d the
smallest positive linear combination of a and b, as wanted.

(3) is a set equality proof:
(⊆) Let x ∈ aZ + bZ. That means ∃m,n ∈ Z such that x = am + bn, i.e. x is a

linear combination of a and b. That means d |x by Theorem 2.24, so x = dl for some
l ∈ Z, so x ∈ dZ as wanted.

(⊇) Let x ∈ dZ. That means ∃ l ∈ Z such that x = dl. By (1), this means
x = (am + bn)l = a(ml) + b(nl) for integers m and n. Therefore x ∈ aZ + bZ as
wanted. �
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Factorization of integers into primes

Lemma 2.40 Let a, p ∈ Z. If p is prime and p 6 | a, then gcd(a, p) = 1.

PROOF HW

Lemma 2.41 (Prime Divisor Lemma) Let p ∈ Z be prime. If p | a1a2a3 · · · an, then
there is some j such that p | aj .

PROOF The proof is by induction on n.

Base case: Suppose p | a1a2. If p | a1, we are done, so we suppose p does not
divide a1. By Lemma 2.40, that means gcd(a1, p) = 1.

Induction step: Suppose the result is true when n = k and suppose

p | a1a2 · · · akak+1

From the base case, p | a1 · · · ak or p | ak+1. In the first situation, p divides some aj
where j ≤ k by the IH; in the second situation, p divides ak+1. Either way, by
induction we are done. �

A more general version of the Prime Divisor Lemma is this statement:

Corollary 2.42 Let a, b, c ∈ Z. If a | bc and gcd(a, b) = 1, then a | c.

PROOF HW

84
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Theorem 2.43 (Fundamental Theorem of Arithmetic (FTAm)) Let n be an in-
teger which is greater than 1. Then there exist (finitely many) positive prime numbers
p1, ..., pk such that n = p1p2 · · · pk. Furthermore, the pj are unique (except perhaps for
the order in which they are written).

PROOF WLOG n ≥ 0. First, we show the existence of the pjs. Let E be the set
of natural numbers greater than 1 which do not have a factorization into positive
primes. Suppose E 6= ∅.

Second, we show the uniqueness of the factorization. Suppose there are two
different prime factorizations, i.e.

n = p1p2 · · · pr = q1q2 · · · qs

where all the pj and qj are positive primes. Observe that

Remark: Why isn’t 1 a prime number?
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2.6. Congruence classes modulo n

2.6 Congruence classes modulo n
Arguments related to division with remainder are made easier by means of

what is called modular arithmetic. Essentially, this means taking the integers,
divvying them up into sets based on what their remainder is when divided by
n, and performing arithmetic on these remainders in a natural way. Here are the
formal ideas:

Definition 2.44 Let n ∈ Z be nonzero. Define the relation of equivalence modulo
n, temporarily denoted ≡n, on Z by

a ≡n b ⇔ n | (b− a).

The phrase “a ≡ b mod n” is the typical way we write a ≡n b.

Example: 273 ≡ 48 mod 5 because 273− 48 = 225 is a multiple of 5.

Example: 17 6≡ 26 mod 2 because 2 6 |(17− 26).

Theorem 2.45 For any nonzero n ∈ Z, ≡n is an equivalence relation.

PROOF Fix n 6= 0. First, we show ≡n is reflexive:

Next, we show ≡n is symmetric:

Last, we show ≡n is transitive:
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2.6. Congruence classes modulo n

Question: Every equivalence relation on a space E partitions E into equiva-
lence classes (recall that the equivalence class of x ∈ E is the set of things in E
that are related to x under the equivalence relation). With that in mind, a natural
question is to ask what the equivalence classes are under the relation ≡n?

Example: Describe the equivalence classes under ≡2:

Example: Describe the equivalence classes under ≡5:

Theorem 2.46 Let n 6= 0. The equivalence class of a ∈ Z under congruence modulo
n is the set

a+ nZ = {a+ nk : k ∈ Z}.

Any such set a+nZ is called a coset (modulo n). The set of equivalence classes under
congruence modulo n is called a quotient space (modulo n) and denoted Z/nZ (this
is pronounced “Z mod nZ”).

Some people denote the set Z/nZ by Zn. DO NOT DO THIS.

Note: A coset a+ nZ is a set of integers.

Example: 5 + 3Z =

Example: 7 + 4Z = 3 + 4Z = 115 + 4Z.

Example: Z/3Z = {0 + 3Z, 1 + 3Z, 2 + 3Z}.
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2.6. Congruence classes modulo n

Here is what is interesting: you can define addition and multiplication in a
natural way on Z/nZ, and these operations make Z/nZ into a ring!

Definition 2.47 Define the following binary operations on Z/nZ:

Addition: (a+ nZ) + (b+ nZ) = (a+ b) + nZ

Multiplication: (a+ nZ)(b+ nZ) = (ab) + nZ

WARNING: There is possibly a major problem with this. Let’s take the opera-
tion of addition as defined above. Allegedly, I’m telling you how to add two cosets
together and get another coset. For example, in Z/9Z, this definition means

(3 + 9Z) + (4 + 9Z) =

BUT! 3 + 9Z is the same set as

and 4 + 9Z is the same set as

so (3 + 9Z) + (4 + 9Z) had better be the same thing as (21 + 9Z) + (−5 + 9Z),
otherwise this addition doesn’t make sense.

Definition 2.48 A function or operation is called well-defined if equal inputs pro-
duce equal outputs. Otherwise, it is called ill-defined, and it really isn’t a function
or operation at all.

Theorem 2.49 Addition and multiplication are well-defined on Z/nZ.

PROOF First, we’ll show addition is well-defined. Suppose we have equal inputs
to addition: let a1 + nZ = a2 + nZ and b1 + nZ = b2 + nZ. To show addition is
well-defined, we need to show that the outputs are equal, i.e.

(a1 + b1) + nZ = (a2 + b2) + nZ.

From the definition of congruence, n | (a2−a1) and n | (b2−b1), i.e. there are integers
k and l such that

nk = a2 − a1 and nl = b2 − b1.

88



2.6. Congruence classes modulo n

Therefore

(a2 + b2)− (a1 + b1) = (a2 − a1) + (b2 − b1) = nk − nl = n(k − 1)

so
n | [(a2 + b2)− (a1 + b1)] .

Therefore (a1 + b1) + nZ = (a2 + b2) + nZ, so addition on Z/nZ is well-defined.

Next, we show multiplication is well-defined. Suppose a1, a2, b1, b2, n, k and l
are as above. Then

a2b2 − a1b1 =

Therefore a1b1 + nZ = a2b2 + nZ, so multiplication on Z/nZ is well-defined. �

Theorem 2.50 (Z/nZ,+, ·) is a ring. In particular, the additive identity is 0 + nZ,
the multiplicative identity is 1 + nZ and the additive inverse of a+ nZ is −a+ nZ.

PROOF To prove this, you need to check all the properties in the definition of ring
(Definition 2.8). Essentially, all this follows from the fact that Z is a ring and that
the operations on Z/nZ are inherited from those on Z. I won’t go through this in
class because it’s long and dull. �

Shorthand notation for
Some example computations the same computation

(18 + 25Z) + (13 + 25Z) = 6 + 25Z

(10 + 8Z)(3 + 8Z) = 6 + 8Z

(2 + 5Z)− (4 + 5Z) = 3 + 5Z
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2.6. Congruence classes modulo n

You can use the shorthand notation on the right-hand side of the chart on the
previous page, but keep in mind that what you really mean is the statement on the
left involving the addition/multiplication of cosets. The advantage of the short-
hand notation is that we can write things like

Another result that is easier to formulate with “ mod ” notation is the follow-
ing fact. Many Math 130 and Math 220 students believe that every function (not
just multiplication) distributes, i.e. that

(x+ y)2 = x2 + y2 sin(a− b) = sin a− sin b
√
x+ 4 =

√
x+ 2 etc.

This common mistake is known in math professor circles as the Freshman’s Dream.

If only these students were taking Math 420: in Z/pZ, the Freshman’s Dream
comes true!

Lemma 2.51 (Freshman’s Dream) Let p be prime. Then (a+b)p ≡ ap+bp mod p.

PROOF HW (to prove this, you will prove lots of other stuff which is as important,
if not more important, than the Freshman’s Dream itself)
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2.6. Congruence classes modulo n

Addition and multiplication tables in Z/nZ
To get some intuition for what follows, let’s construct addition and multiplication
tables for Z/6Z and Z/7Z (in these tables, we represent the coset a + nZ with its
unique element in {0, ..., n− 1}):

(Z/6Z,+) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1
2 2
3 3
4 4
5 5

(Z/6Z,×) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2
3 0 3
4 0 4
5 0 5

(Z/7Z,+) 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

(Z/7Z,×) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6

Observations:
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2.6. Congruence classes modulo n

Zero divisors in Z/nZ; integral domains

Definition 2.52 Let R be a ring. a ∈ R is called a zero divisor if a 6= 0, and there
exists b 6= 0 in R such that ab = 0. R is called an integral domain if it has no zero
divisors.

Example: (3 + 6Z)(2 + 6Z) =

Theorem 2.53 A coset a+ nZ is a zero divisor in Z/nZ if and only if gcd(a, n) > 1.

PROOF (⇒) Suppose a + nZ is a zero divisor. That means there is nonzero b + nZ
such that

(a+ nZ)(b+ nZ) = 0 + nZ, i.e. n | ab.
Now suppose not, i.e. gcd(a, n) = 1. By Bezout’s Theorem, there are k, l ∈ Z such
that

1 = ka+ ln.

Multiply through by b to get
b = kab+ lnb.

Notice that n divides the right-hand side of this, so n | b, i.e. b+ nZ isn’t nonzero, a
contradiction.

(⇐) Suppose d = gcd(a, n) > 1. Since d | a, write a = kd for k ∈ Z. Since d |n, n
d

is an integer, so we can compute

(a+ nZ)(n
d

+ nZ) = an

d
+ nZ = kn+ nZ = 0 + nZ.

Since d > 1, n
d

+ nZ is not the zero coset, so a+ nZ is a zero divisor as wanted. �

Units in Z/nZ; cancellation laws

Recall that a unit of a ring is an element which divides 1 (in the setting of Z/nZ,
“1” means 1 + nZ).

Lemma 2.54 (Group properties of the set of units) Let R be a ring with multi-
plicative identity 1. Let x, y ∈ R.

1. 1 is a unit of R.
2. If x and y are units, then xy is also a unit.
3. If x is a unit, then x−1 is a unit.

PROOF HW

92



2.6. Congruence classes modulo n

Theorem 2.55 A coset a+ nZ is a unit in Z/nZ if and only if gcd(a, n) = 1.

PROOF We use a shortcut biconditional proof.

gcd(a, n) = 1⇔ ∃ k, l ∈ Z s.t. 1 = ka+ ln (by Bezout’s Theorem)
⇔ ∃k ∈ Z s.t. (k + nZ)(a+ nZ) = 1 + nZ
⇔ a+ nZ divides 1 + nZ
⇔ a is a unit. �

Application: Consider the equation

(a+ nZ)(x+ nZ) = (ab+ nZ), i.e. ax ≡ ab mod n,

where the object is to solve for x mod n. When can you “cancel” the as?

Corollary 2.56 (Cancellation law in Z/nZ) If a is a unit in Z/nZ (i.e. gcd(a, n) =
1), then

ax ≡ ab mod n ⇒ x ≡ b mod n

Definition 2.57 Euler’s totient function, a.k.a. the Euler phi function φ counts
the number of units in Z/nZ. More precisely, φ : {2, 3, 4, ...} → N is defined by

φ(n) = #{x ∈ Z/nZ : x is a unit} = #{x ∈ {1, ..., n− 1} : gcd(x, n) = 1}.

Example: φ(7) =

Example: φ(12) =

1 2 3 4 5 6 7 8 9 10 11

Example: φ(7200) =

To compute φ(n) for larger n, use the following properties:

93
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Theorem 2.58 (Properties of the Euler phi function) Let φ : {2, 3, 4, ...} → N
be the Euler phi function. Then:

1. If p is prime, then φ(p) = p− 1.
2. If p is prime, then for any n ≥ 1, φ(pn) = pn − pn−1 = pn−1(p− 1).
3. If m and n are relatively prime, the φ(mn) = φ(m)φ(n).

PROOF We begin with the second statement. Notice that x ∈ {1, ..., pn − 1} is
relatively prime to pn if and only if p 6 |x. So the only elements of {1, ..., pn − 1} not
relatively prime to pn are the multiples of p. These are every pth number, and there
are 1

p
(pn) = pn−1 of them. So

φ(pn) = pn − pn−1 = pn−1(p− 1).

The first statement is a special case of the second (when n = 1), so it is left to
prove statement (3). We will postpone this until Chapter 5. �

Back to the example:

φ(7200) = φ(523225) = φ(52)φ(32)φ(25) = 5(5−1) 3(3−1) 24(2−1) = 20(6)(16) = 1920.

Corollary 2.59 Let n ∈ Z be nonzero. The ring Z/nZ is a field if and only if n is
prime (if and only if φ(n) = n− 1).

PROOF We know Z/nZ is a ring; it is a field if and only if all of its nonzero elements
have reciprocals if and only if all its nonzero elements are units. By the previous
theorem, this holds if gcd(a, n) = 1 for all a ∈ {1, 2, ..., n − 1}, which holds exactly
when n is prime. �

With this in mind, if p is prime we denote Z/pZ by Fp to emphasize that this
set is a field. (Use this notation only if you are messing with both the addition and
multiplication operations on the set; if you only need addition, call it Z/pZ).
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Applications of modular arithmetic

Calendar / time problems

Example: Suppose it is 10 : 00 AM right now. What time will it be in 205 hours?

Example: August 29, 2018 falls on a Wednesday. What day of the week will
August 29, 2019 fall on?

Bar code problems

Universal Product Code (UPC) symbols are now found on most products in gro-
cery and department stores. The UPC symbol is a 12-digit code identifying the
product and its manufacturer. The first 11 digits contain information about the
product, but the last digit, called the check digit, is sued for error detection.

If d1d2 · · · d12 is a valid UPC, then

3d1 + d2 + 3d3 + d4 + ...+ 3d11 + d12 ≡ 0 mod 10.

Determine the check digit for a UPC which begins

0− 49000− 05014− __
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Divisibility tests in Z

Question: How can you tell if an integer is divisible by 3?

For example, does 3 divide 725163471?

Theorem 2.60 Let n ∈ Z.
• 3 |n if and only if the sum of the digits of n is divisible by 3.
• 9 |n if and only if the sum of the digits of n is divisible by 9.
• 11 |n if and only if the alternating sum of the digits of n is divisible by 11.

PROOF Let the digits in the base 10 representation of n be akak−1ak−1 · · · a3a2a1a0.
Denote the sum of these digits by S(n) = ak + ... + a0. Using what we mean by
“base 10 representation”, we see

n = 10kak + 10k−1ak−1 + ...+ 100a2 + 10a1 + a0 =
k∑
j=0

10kak.

Note that 10 ≡ 1 mod 3, so

n =
k∑
j=0

10jaj ≡
k∑
j=0

1jaj ≡ S(n) mod 3.

Therefore 3 divides n if and only if 3 divides S(n), as wanted. (The same proof as
above works for divisibility by 9, since 10 ≡ 1 mod 9.)

The last statement is left as a HW problem. �
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Objects we have studied so far

So far, we have seen a variety of types of sets with binary operations of addition
and multiplication on them:

Rings

Integral
Domains

Fields

Question: What other examples of fields / integral domains / rings are there?
Might those other examples be useful for something (like say, figuring out whether
or not a regular n-gon is constructible or whether or not an equation is solvable by
radicals)?

Question: What other categories of algebraic objects are there? How might
those be useful?

Question: We now know that for every prime p, there is a field with cardinality
p (namely Z/pZ). If n isn’t prime, is there a field with cardinality n? If so, what is
it? (It can’t be Z/nZ, because that isn’t a field.) If not, why not?
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Chapter 3

Real and complex numbers

3.1 Theorems of Hippasus and Theatitus
The ancient Greeks (at least some of them) believed that all numbers were ra-

tional. This is in part because they thought of numbers as ratios between lengths.
They ran into a problem when they tried to find the length of a diagonal of a square
of length 1:

1

1

A Greek mathematician named Hippasus discovered the following theorem:

Theorem 3.1 (Hippasus’ Theorem) There does not exist any rational number x
such that x2 = 2.

PROOF Suppose not, i.e. that x ∈ Q is such that x2 = 2. Write x = a
b

where a, b ∈ Z
and b 6= 0. Rearranging the equation 2 = x2 =

(
a
b

)2
, we obtain

a2 = 2b2
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3.1. Theorems of Hippasus and Theatitus

This contradicts the (uniqueness part of the) FTAm. �

Hippasus showed this proof to his Greek mathematician friends onboard a ship.
His friends were so upset at him for proving this that they threw him overboard
(he drowned).

Theorem 3.2 (Theatitus’ Theorem) Let n ∈ N. If
√
n ∈ Q, then

√
n ∈ N.

PROOF Suppose
√
n ∈ Q. That means

√
n = p

q
for p, q ∈ Z with gcd(p, q) = 1.

Rearranging
√
n = p

q
, we get

Now by Bezout’s Theorem, there are integers k, l such that

1 = kp+ lq

Multiply through by
√
n to get

√
n = r

√
n p+ l

√
n q

=

Application:
√

73 is irrational by Theatitus’ Theorem, because 8 <
√

73 < 9.
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Definition 3.3 Let f be a function taking values in ring R. A root of f is an element
x ∈ Dom(f) such that f(x) = 0.

Theorem 3.4 (Rational Roots Theorem) Let

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

be a polynomial with integer coefficients. If x0 ∈ Q is a root of f , then x0 = p
q

in
lowest terms only if p | a0 and q | an.

PROOF Suppose x0 is a rational root of f , written in lowest terms as p
q
. Then

f

(
p

q

)
= an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a1

(
p

q

)
+ a0 = 0

⇒ anp
n + an−1p

n−1q + ...+ a1pq
n−1 + a0q

n = 0

Corollary 3.5 Let f be a monic polynomial (i.e. its leading coefficient is 1). Any
rational root of f must be an integer.

The Rational Roots Theorem allows us to generalize Theatitus’ Theorem to ar-
bitrary roots:

Corollary 3.6 Let n ∈ N, and let d ≥ 2. If d
√
n ∈ Q, then d

√
n ∈ N.

PROOF Apply the previous corollary to f(x) = xd − n.

100



3.2. R: the real numbers

3.2 R: the real numbers
Notice the way I phrased Hippasus’ Theorem in the previous section. Suppose
you rephrased it as

“
√

2 is not a rational number.”

There is something that is (sort-of) “wrong” with this phrasing. What is it?

This leads to a question: is there such a thing as
√

2? What about
√
−1?

More generally, what exactly is a real number? Why is
√

2 real, but
√
−1 isn’t?

A medium-sized discussion of what a real number is

If you draw a picture of the rational numbers, you will see something like this:

In particular, the rational numbers of larger and larger denominator get closer
together, but never actually “fill in” the space between the rationals. Thus the
rational numbers have “gaps” everywhere. The concept behind the real numbers
is that they are the rationals, together with new objects (irrationals) designed to
“fill in” the gaps to make a continuum of objects.

Construction # 1: limits of Cauchy sequences

We have seen there is no rational number x such that x2 = 2. On the other hand,
consider this sequence of rational numbers (which are better and better approxima-
tions to

√
2):

{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, ...}

This sequence of numbers is getting closer and closer together. More precisely, if
you give me any positive number ε, no matter how small ε is, I can delete a finite
number of terms from the front of this sequence, such that any two of the numbers
in the sequence I leave are less than ε apart.

(For example, if you give me ε = .01, I can delete 1, 1.4 and 1.41; everything that’s
left is at most .001 apart which is less than ε).
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3.2. R: the real numbers

Definition 3.7 A sequence {xn} of rational numbers is called a Cauchy sequence
if, for any ε > 0, there is N ∈ N such that whenever m,n ≥ N , |xm − xn| < ε.

Essentially, the set of real numbers is the set of things which are limits of Cauchy
sequences of rational numbers. For example,

√
2 is the real number corresponding

to the Cauchy sequence

{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, ...}

ENRICHMENT: To make this precise, you define an equivalence relation
on the set of all Cauchy sequences of rational numbers:

{xn} ∼ {yn} ⇔ ∀ε > 0,∃N ∈ N s.t. n ≥ N ⇒ |xn − yn| < ε

Essentially, if two sequences are “converging to the same thing”, they will
be equivalent under the relation ∼. Formally, we define a real number to be
a ∼ −equivalence class.

Construction # 2: Dedekind cuts

A way of thinking about an irrational, but real number, is by means of a num-
ber line. Take the rational numbers, put them on a number line, and think about
“inserting” an irrational number λ somewhere on this line:

You can describe this “inserting” procedure by saying that you have partitioned
Q into two sets Lλ and Rλ with these properties:

1. Every member of Lλ is less than every member of Rλ;

2. Lλ has no greatest member; and

3. Rλ has no least member.

If you drop the third criterion above, you can account for rational numbers as
well, by associating the rational number p

q
to the partition Lp/q = (−∞, p

q
) ∩Q and

Rp/q = [p
q
,∞) ∩ Q. Thus a real number λ can be defined as a partition of Q into

nonempty-sets Lλ and Rλ such that

1. Every member of Lλ is less than every member of Rλ; and

2. Lλ has no greatest member.
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3.2. R: the real numbers

What’s good about R?

Irrespective of which construction you use, you get the “same object”: the set of
real numbers, denoted R. This is a set with lots of useful properties.

Algebraic properties of R

Theorem 3.8 R, with the usual operations of + and ·, is a field.

ENRICHMENT: The operations + and · need formal definitions. If you
define a real number using equivalence classes of Cauchy sequences of ra-
tionals, then the sum of the real number corresponding to the Cauchy se-
quence {xn} and the real number corresponding to {yn} is the real number
corresponding to {xn + yn} (multiplication is similar). You have to show
these operations are well-defined, and that they obey the field laws, but
they do.

If you define a real number using Dedekind cuts, then the sum of the
real number corresponding to the partition {Lλ, Rλ} and the real number
corresponding to the partition {Lµ, Rµ} is the partition {Lλ+Lµ,Rλ+Rµ}.
Here, you have to show that the sum of two real numbers is actually a real
number, and that the field laws are obeyed (Stillwell does some of this in
his textbook).

Theorem 3.9 Q is a subfield of R.

ENRICHMENT: Technically, what we mean here is that there is a 1 − 1
map i : Q→ R preserving + and ·, and it is really i(Q) that is a subfield of
R. This is analogous to how we say Z is a subring of Q.

Definition 3.10 An irrational number is a real number which is not rational.

Theorem 3.11 R is totally ordered under ≤.

Furthermore, the ordering ≤ is respected by the field operations (i.e. if a ≤ b,
a+ c ≤ b+ c and if c ≥ 0, a ≤ b implies ac ≤ bc, etc.).

103
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Topological properties of R

First, a statement that says that both rational numbers and irrational numbers are
“virtually everywhere” in the real numbers:

Theorem 3.12 (Density Theorem) For every a, b ∈ R with a < b, there exists
x ∈ Q such that a < x < b and y ∈ R−Q such that a < y < b.

PROOF Take Math 430.

Theorem 3.13 (Properties of absolute value) Let x, y ∈ R. The absolute value
function | | : R→ R, defined by

|x| =
√
x2 =

{
x if x ≥ 0
−x if x < 0 ,

has the following properties:

Positivity: |x| ≥ 0.
Definiteness: |x| = 0 only if x = 0.
Symmetry: | − x| = |x|.
Triangle Inequality: |x+ y| ≤ |x|+ |y|.

PROOF All of these are obvious except the triangle inequality, which is left as a
homework problem (in Math 324, we did this with six cases, but there is an easier
method which takes advantage of the fact that |x| =

√
x2).

Thus if we define the distance between x and y to be |x− y|, this notion of dis-
tance makes R into what is called a metric space. Among other things, this allows
us to define open and closed subsets of R, gives us a mechanism to define limits,
and lets us say what it means for a function f : R→ R to be continuous. All these
concepts are within the branch of mathematics called topology.

For our purposes (this isn’t topology class), a continuous function f : R→ R is
one whose graph has no “gaps”, or one that satisfies

lim
x→c

f(x) = f(c)

for every c in the domain of f , just as it was in Math 220. All we need in Math 420
is the following fact, which is proven in Math 430 or in a topology course:
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Theorem 3.14 Every polynomial function f : R → R is continuous. Every rational
function f : R→ R is continuous, except at points which make its denominator zero.

Now for an important theorem, sometimes introduced in Calculus 1 (but not
by me):

Theorem 3.15 (Intermediate Value Theorem (IVT)) If f : R→ R is continuous
on [a, b], then for every z between f(a) and f(b), there is an c ∈ [a, b] such that
f(c) = z.

PROOF Take Math 430. (This theorem will seem obvious after I draw the pic-
ture, but it is deep, and relies upon the rigorous construction of real numbers as
Dedekind cuts or equivalence classes of Cauchy sequences of rationals.)

Picture:

Here is an important application of the IVT. Among other things, after proving
this we could rephrase Hippasus’ Theorem as “

√
2 /∈ Q”.

Corollary 3.16 (Existence of nth roots) Let λ > 0 be a real number. Then, for ev-
ery nonzero n ∈ N, there is a real number c > 0 s.t. cn = λ (i.e. c = n

√
λ exists).

PROOF Let f(x) = xn − λ. f is a polynomial, hence continuous. Now

f(0) = −λ < 0
and

f(1 + λ) = (1 + λ)n − λ > 0 (HW)
so by the IVT, there is c ∈ [a, b] s.t. f(c) = 0, i.e. cn − λ = 0, i.e. cn = λ. �

Consequence: these are all real numbers:

√
17, 5
√

2, 9
√

23857 + 3
√

234, 6
( √

7
3
√

5 + 8
√

435
+ 34 17

√
35
)7/4

.

Question: Are expressions that can be made from +, −, ×, ÷ and radicals all
the real numbers? Can π be written this way, for example?
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3.2. R: the real numbers

Theorem 3.17 (Extreme Value Theorem (EVT)) If f : R → R is continuous on
[a, b], then f has an absolute maximum and/or absolute minimum on [a, b].

PROOF Take Math 430.

Picture:

What’s bad about R?

You can make relatively simple (i.e. polynomial) equations out of real numbers
that have no solution:

Lemma 3.18 The equation x2 + 1 = 0 has no real solutions.

PROOF (that uses calculus) Let f(x) = x2 + 1. f ′(x) = 2x, so f decreases when
x < 0, increases when x > 0, and has absolute minimum when x = 0. But f(0) = 1,
so f(x) ≥ 1 for all x. �
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3.3. C: complex numbers

3.3 C: complex numbers
Definition 3.19 A complex number is an object of the form z = x + iy where
x, y ∈ R (for now, i is just a symbol... this symbol will be given meaning later). The
set of complex numbers is denoted C.

Definition 3.20 Given a complex number z = x + iy, the real part of z, denoted
<(z) or Re(z), is x, and the imaginary part of z, denoted =(z) or Im(z), is y.

A complex number z is called pure imaginary if <(z) = 0; a complex number z
is real if =(z) = 0.

Note: for z ∈ C, <(z) and =(z) are real numbers. For example:

<(2 + 5i) = 2 =(−1− 4i) = −4

Examples: <(7− 4i) = 7; =(−6 + 3i) = 3; −3i is pure imaginary.

Denoting a complex number: Usually a complex number is denoted by z, w, or a
Greek letter like ζ (zeta) or ξ (xi) or ω (omega). Try not to use s, t, u, v, x and/or y
to denote a complex numbers; these letters connote real numbers. In particular it
is always understood with complex numbers that “z” means the complex number
z = x+ iy.

Remark: in general you want to avoid immediately thinking of a complex number
as x+ iy. Just think of it as z.

WARNING: C is not ordered in any meaningful sense (this is what is bad about
C). Don’t ever talk about one complex number being ≤ another.
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3.3. C: complex numbers

Arithmetic in C
Addition and subtraction in C are defined by combining like terms. For example,

(2− 3i) + (1 + i) = 3− 2i and (−3 + i)− (2 + 7i) = −5− 6i.

Multiplication is defined by distributing terms, together with the law that i2 = −1
(this is the first time we need the idea that i =

√
−1). For example:

(2 + 5i)(−1− 2i) = −2− 5i− 4i− 10i2 = −2− 9i+ 10 = 8− 9i.

Division is trickier; to divide one complex number by a nonzero complex number,
what you do is multiply through the numerator and denominator of the fraction
by the conjugate of the denominator. An example:

(1 + i)÷ (3− 4i) = 1 + i

3− 4i = (1 + i)(3 + 4i)
(3− 4i)(3 + 4i) = −1 + 7i

25 = −1
25 + 7

25i.

2− 3i
7 + i

=

1
1− 4i =

Theorem 3.21 C, with the addition and multiplication defined above, is a field. In
particular:

• the additive identity element is 0 = 0 + 0i;

• the multiplicative identity element is 1 = 1 + 0i;

• the additive inverse of z = x+ iy is −z = −x− iy;

• the reciprocal of z = x+ iy is 1
z

= 1
x+iy = x−iy

x2+y2 = x
x2+y2 − i y

x2+y2 .

Definition 3.22 Any subfield of C is called a number field.

Fields we have seen that are number fields:

Fields we have seen that are not number fields:
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3.3. C: complex numbers

The complex numbers have an extra artithmetic operation that is important:

Definition 3.23 The (complex) conjugate of z = x+ iy ∈ C is z = x− iy.

Example: If z = 2− 7i, then z = 2 + 7i.

Lemma 3.24 (Properties of conjugation) Let z, w ∈ C.

1. Conjugation preserves addition, i.e. z + w = z + w.

2. Conjugation preserves multiplication, i.e. zw = z w.

3. <(z) = z+z
2 .

4. =(z) = z−z
2i .

PROOF HW (in each of these, you are write z = x+ iy and w = u+ iv for x, y, u, v ∈
R, and work out both sides of the equations you need to verify in terms of x, y, u
and v. You will see that they are equal.)

Geometric interpretation of C
There is a natural bijection C → R2 defined by x + iy 7→ (x, y). So, we can think
of complex numbers as being points in a plane, in the same way we think of real
numbers as points on a line.

The “x−axis” of this plane contains the real numbers, and is called the real
axis. The “y−axis” of this plane is called the imaginary axis, and contains the pure
imaginary numbers.

Addition of complex numbers corresponds to “head-to-tail” or “parallelogram”
addition of vectors, i.e.

(3 + 2i) + (1− 3i) = 4− i

is essentially the same as the vector addition

(3, 2) + (1,−3) = (4,−1).

Observe that if we think of z as a vector, then z is the vector obtained by reflect-
ing z through the real axis (note that z = z if and only if z is real):

z = 3 + 2 i

w = -4

q = 2i

-4 -2 2 4

-3

-2

-1

1

2

3
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3.3. C: complex numbers

To interpret multiplication of complex numbers geometrically, we use polar
coordinates:

Lemma 3.25 Let z ∈ C. Then zz ∈ R, and zz ≥ 0.

PROOF Write z = x+ iy for x, y ∈ R. Then

zz = (x+ iy)(x− iy) = x2 + iyx− iyx− i2y2 = x2 + y2 ≥ 0

as wanted. �

Definition 3.26 The absolute value a.k.a. norm a.k.a. modulus of a complex
number z = x+ iy is |z| =

√
zz =

√
x2 + y2.

z = x+iy

x

y

The norm of a complex number is its distance from zero, so the “norm of a com-
plex number” generalizes the notion of “absolute value of a real number”.

Another view of division in C: given z1, z2 ∈ C, we have

z1 ÷ z2 = z1

z2
= z1z2

z2z2
= z1z2

|z2|2
.

Special case (reciprocals): If z 6= 0, then

z−1 = 1
z

= z

zz
= z

|z|2
.

In particular, if |z| = 1, then z−1 = z (useful special case: 1
i

= i−1 = i = −i).

Lemma 3.27 Let z1, z2 ∈ C. Then |z1z2| = |z1||z2|.

PROOF HW
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3.3. C: complex numbers

Definition 3.28 Let z = x + iy ∈ C. The argument of z, denoted arg(z), is any
angle θ (in radians) such that x = |z| cos θ and y = |z| sin θ.

z = x+iy

x

y

Given z, you can solve for θ = arg z by setting θ = arctan
(
y
x

)
if x > 0; if x = 0

then θ = π/2 if y > 0 and θ = −π/2 if y < 0. Notice that arguments are only
defined up to multiples of 2π.

Definition 3.29 The polar coordinates of a complex number z are (r, θ) where r =
|z| and θ = arg z. If the polar coordinates of z are (r, θ), we (temporarily) write

z = r cos θ + ir sin θ = r(cos θ + i sin θ)

or z = r cis θ.

z = x+iy
= r cis θ r = |z|

θ = arg(z)

x

y

Example: Find the modulus and argument of z = −5 + 5
√

3i, and write z in
r cis θ form.
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3.3. C: complex numbers

Euler’s formula

To define functions like exponentials and trig functions of complex numbers, we
use power series (because power series are made up only of addition, subtraction,
multiplication and division, and all these operations are already defined for com-
plex numbers).

There is an issue regarding what it means for a series of complex numbers to
converge, but it turns out that any power series which converges for all real num-
bers also converges for all complex numbers.

Definition 3.30 For any complex number z ∈ C, define

ez = exp(z) =
∞∑
n=0

zn

n! = 1 + z + z2

2 + z3

3! + z4

4! + ...

cos z =
∞∑
n=0

(−1)nz2n

(2n)! = 1− z2

2 + z4

4! −
z6

6! + ...

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)! = z − z3

3! + z5

5! −
z7

7! + ...

From this, you can show that all the usual trigonometric and exponential identities
that hold for real numbers also hold for complex numbers. Amazingly, we have the
following amazing identity which links exponential and trigonometric functions:

Theorem 3.31 (Euler’s formula) For any z ∈ C, eiz = cos z + i sin z.

PROOF

eiz =
∞∑
n=0

(iz)n
n!

= 1 + iz + (iz)2

2! + (iz)3

3! + (iz)4

4! + ...

= 1 + iz + i2
z2

2! + i3
z3

3! + i4
z

4! + ...

= 1 + iz − z2

2! − i
z3

3! + z4

4! + i
z5

5! −
z6

6! − i
z7

7! + ...

=
[
1− z2

2! + z4

4! − ...
]

+ i

[
z − z3

3! + z5

5! − ...
]

= cos z + i sin z. �

As an important consequence, we see that if z has polar coordinates (r, θ), then

z = r cis θ = r(cos θ + i sin θ) = r cos θ + ir sin θ = reiθ.
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3.3. C: complex numbers

For such a z,

z = r cos θ − ir sin θ = r cos(−θ) + i sin(−θ) = re−iθ.

In particular, if we write z = reiθ where r ≥ 0 and θ ∈ R, this means (r, θ) are
the polar coordinates of z, so r = |z| and θ = arg z.

z = x+iy
= r cis θ
= reiθ

r = |z|

θ = arg(z)

x

y

Theorem 3.32 Suppose z1 = r1 cis θ1 and z2 = r2 cis θ2 (this means r1 = |z1|, r2 =
|z2|). Then z1z2 = r1r2 cis (θ1 + θ2).

PROOF Let z1 = r1e
iθ1 and z2 = r2e

iθ2 , then by elementary properties of exponen-
tials, z1z2 = r1r2e

i(θ1+θ2). �

This theorem tells us how to interpret multiplication geometrically in C. Given
two complex numbers, if those numbers are multiplied, then the “moduli multi-
ply” (since |z1z2| = |z1||z2|) and the “arguments add” (since this theorem implies
arg(z1z2) = arg z1 + arg z2).

Example: Suppose z = 6eπi/3 and w = 2eπi/4. Find zw and z
w

.
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3.3. C: complex numbers

Theorem 3.33 (de Moivre’s Theorem) Suppose z ∈ C (assume z 6= 0) has polar
form reiθ = r cis θ. Then, for any n ∈ Z,

zn = rneinθ = rn cisnθ.

PROOF We start by proving the theorem when n ∈ N. To do this, we use induction
on n. The base case n = 0 is obvious since z0 = 1 = rne0i. Now, assume the result
is true when n = k. Then,

zk+1 = zkz

=
(
rkeikθ

)
(reiθ) (by the IH)

= rk+1eikθ+iθ (by Theorem 3.32)

= rk+1e(k+1)iθ.

By induction, the theorem holds for n ∈ N.

Now suppose n is negative.

znz−n = 1(
rneinθ

)
z−n = 1e0i

By Theorem 3.32, the modulus of z−n, say s, must satisfy rns = 1. Thus s = r−n as
wanted. The argument of z−n must satisfy nθ+ arg(z−n) = 0, so arg(z−n) = −nθ as
wanted. �

Example: Compute (3 + 3i)13, writing your answer in a+ ib form.
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3.4. Fundamental Theorem of Algebra

3.4 Fundamental Theorem of Algebra
Remember that what was bad about N, Z, Q and R was...

You might ask if the same thing is bad about C. This theorem says that with
regard to polynomial equations, C is good:

Theorem 3.34 (Fundamental Theorem of Algebra (FTAl)) Let f be a polynomial
of degree at least 1, whose coefficients are complex numbers. Then f has a root z0 ∈ C.

Interestingly, all known proofs of the FTAl require at least a moderate amount of
topology. I have written out a somewhat accessible proof for you here, just so
you have seen it, but I won’t test you on this, because the material is more closely
related to what you would study in topology or real or complex analysis.

PROOF This proof has several steps. Start by letting f : C→ C be the non-constant
polynomial

f(z) = anz
n + an−1z

n−1 + ...+ a1z + a0.

Now for two lemmas. The first says that if you are in C but aren’t at a root of
a polynomial f , then you can move a little bit in some direction to make the value
of f smaller (in norm):

Lemma 1 (d’Alembert’s Lemma): If f(z0) 6= 0 for z0 ∈ C, then there is z1 ∈ C,
arbitrarily close to z0, such that |f(z1)| < |f(z0)|.
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3.4. Fundamental Theorem of Algebra

Proof of d’Alembert’s Lemma: Let ∆z ∈ C. Then

f(z) = f(z0 + ∆z) = an(z0 + ∆z)n + an−1(z0 + ∆z)n−1 + ...+ a1(z0 + ∆z) + a0

= anz
n
0 + an−1z

n−1
0 + ...+ a1z0 + a0 + A1∆z + A2(∆z)2 + ...

= f(z0) + A1(∆z) + ε.

By choosing the argument of ∆z to be − arg f(z0), and choosing the norm of ∆z
small enough so that |ε|, which contains powers of |∆z|, is far smaller than |A1(∆z)|,
and by setting z1 = z0 + ∆z, we get f(z1) = f(z0 + ∆z) which has smaller norm
than f(z0), as wanted.

The second lemma says that any continuous function on a closed square achieves
its absolute minimum value:

Lemma 2 (Extreme Value Theorem for C): Fix R > 0. If g : C → R is continuous,
then g has an absolute minimum value on S = {z = x+ iy : |x| ≤ R, |y| ≤ R}.

Sketch of proof of Extreme Value Theorem for C: Suppose not, i.e. that g is un-
bounded on the square S. Cut S into four smaller squares; g must be unbounded
on at least one of these smaller squares. Let S1 be a square on which g is un-
bounded. Repeating this argument, we obtain a sequence of squares

S ⊇ S1 ⊇ S2 ⊇ S3 ⊇ · · ·

which intersect on a single point λ ∈ S. Thus {|g(z)|} is unbounded on a small
square containing λ, which is absurd since g(λ) exists and is continuous at λ.
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3.5. Complex roots, cubic equations and regular polygons

Back to the proof of the FTAl. For large z, say for |z| ≥ R,

|f(z)| = |anzn + ...+ a0|

is dominated by |anzn|. hence cannot be small. Now, let z0 be the location of the
minimum value of |f(z)| on {z : |z| ≤ R} (this exists by the Extreme Value Theorem
for C). Clearly, |f(z0)| ≥ 0.

However, if |f(z0)| > 0, then by d’Alembert’s Lemma, |f(z0)| isn’t actually the
minimum, a contradiction. That means f(z0) = 0, as wanted. �

3.5 Complex roots, cubic equations and regular polygons
Recall from an earlier section: de Moivre’s Theorem, which says

z = r cis θ = reiθ ⇒ zn = rn cisnθ = rneinθ.

Earlier, we used this formula to compute powers; now, we use it to compute roots.

Example: Find all complex numbers z such that z3 = −4 + 4
√

3 i.
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3.5. Complex roots, cubic equations and regular polygons

Example: Find all complex numbers z such that z6 = 1.

These examples generalize:

Theorem 3.35 (Roots of complex numbers) Let w ∈ C be nonzero and let n ∈ N.
Then there are exactly n complex numbers z such that zn = w. All of these z have
modulus equal to |w|1/n, and their arguments come from the set{ 1

n
argw + 2πj

n
: j ∈ {0, 1, ..., n− 1}

}
.

PROOF For j ∈ {0, ..., n− 1}, let

zj = |w|1/ne(
1
n

argw+ 2π
n
j).

By de Moivre’s Theorem, znj = w. That there are no other nth roots of w follows
from the fact that a polynomial of degree n (such as zn − w) has at most n roots;
this will be proved in the next chapter (Corollary 4.12). �

The generic picture that goes with this theorem:

118



3.5. Complex roots, cubic equations and regular polygons

Remember cubic equations?

In Chapter 1, we learned the del Ferro / Tartaglia method of solving a cubic equa-
tion, and saw that (as far as we knew then) that said method worked so long as
the cubic did not have three real roots. Now, suppose you have a cubic equation
x3 + px+ q = 0 with three real roots, i.e. the discriminant

∆ = −4p3 − 27q2

is positive. Recall that the del Ferro / Tartaglia formula gives, as a solution to
x3 + px+ q = 0,

x = 3

√√√√−q
2 +

√
q2

4 + p3

27 + 3

√√√√−q
2 −

√
q2

4 + p3

27

= 3

√√√√−q
2 +

√
−∆
108 + 3

√√√√−q
2 −

√
−∆
108

= 3

√√√√−q
2 + i

√
∆

108 + 3

√√√√−q
2 − i

√
∆

108

In other words, the del Ferro / Tartaglia method works even if there are three
real roots, so long as you are willing to introduce complex numbers along the way!
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3.5. Complex roots, cubic equations and regular polygons

Example: x3 − 3x+
√

2 = 0

Solution: Here, p = −3, q =
√

2 so ∆ = −4(−27) − 27(2) = 54 > 0. Thus this
equation has three roots. From del Ferro / Tartaglia, we get

x = 3

√√√√−q
2 +

√
q2

4 + p3

27 + 3

√√√√−q
2 −

√
q2

4 + p3

27

= 3

√√√√−√2
2 +

√
−1
2 + 3

√√√√−√2
2 −

√
−1
2

= 3

√
−
√

2
2 + i

√
2

2 + 3

√
−
√

2
2 − i

√
2

2

Examples like this one illustrate why mathematicians initially cared about com-
plex numbers. del Ferro, Cardano, et al. didn’t care about finding imaginary solu-
tions to quadratics like x2 +1 = 0, but they cared a lot about finding real solutions to
cubics like the example above. Complex numbers were a means to an end (as they
are today in differential equations).

Another mathematician named Bombelli in 1572 called these square roots of
negative numbers “imaginary numbers”. He decided to see what kinds of arith-
metic one could do with these “imaginary” numbers, and showed that you could
make sense of addition, multiplication, division, powers and roots of them. Imag-
inary numbers were controversial until 1742, when Euler proved the Fundamental
Theorem of Algebra.

Today, we have discovered that complex numbers are not really “imaginary”.
They describe physical quantities in fluid dynamics, electromagnetism, signal and
image processing, quantum mechanics, and special and general relativity.
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3.5. Complex roots, cubic equations and regular polygons

Back to regular polygons

Recall from Chapter 1:

The regular n-gon is constructible ⇔ cos 2π
n

and/or sin 2π
n

are
constructible numbers

⇔ cos 2π
n

and/or sin 2π
n

are surd
(i.e. they are real numbers that
can be obtained from integers
using only +,−,×,÷,√ )

We can rephrase this material in the language of complex numbers.

Definition 3.36 A complex number z = x + iy is called constructible (surd) if x
and y are surd real numbers (in the sense of Chapter 1). Call the set of surd complex
numbers S.

Since i =
√
−1, a complex number is surd if and only if it can be obtained from

the integers using +,−,×,÷ and √ .

Putting this together, we have:

Theorem 3.37 The regular n-gon is constructible if and only if ζn = e2πi/n is surd.

Now for some alternate language and notation:

Definition 3.38 A complex number z is called an nth root of unity if it satisfies
zn = 1. z is called a primitive nth root of unity if zn = 1 and zk 6= 1 for any k < n.

Note: All roots of unity lie on the unit circle |z| = 1.

Example: The fourth roots of unity are ±1 and ±i.
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3.5. Complex roots, cubic equations and regular polygons

By applying de Moivre’s Theorem, the nth roots of unity are{
ei(2πj/n) = cos 2πj

n
+ i sin 2πj

n
: 0 ≤ j ≤ n− 1

}
.

The nth root of unity corresponding to j = 1, e2πi/n, is denoted by by ζn.

Theorem 3.39 The nth roots of unity are ζn, ζ2
n, ζ

3
n, ..., ζ

n−1
n and ζnn = 1.

An nth root of unity ζkn is primitive if and only if gcd(n, k) = 1.

PROOF The first statement follows directly from de Moivre’s theorem.
For the second statement:

ζkn is a primitive root of unity ⇔
(
ζkn
)j
6= 1 for all j ≤ n

⇔
(
e2πik/n

)j
6= 1 for all j ≤ n

⇔ jk 6≡ 0 mod n for all j ≤ n

⇔ k is not a zero divisor in Z/nZ
⇔ gcd(n, k) = 1 �.

Let’s suppose we were trying to think of an equation we would solve to find
ζn. Since ζnn = 1, we know ζn is a root of

zn − 1 = 0

Recall:
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3.5. Complex roots, cubic equations and regular polygons

Definition 3.40 Let p be prime. The cyclotomic polynomial Φp is the polynomial

Φp(z) = zp−1 + zp−2 + ...+ z2 + z + 1.

(The pth roots of unity other than 1 are the roots of this polynomial.)
More generally, for any positive n ∈ N, define the cyclotomic polynomial Φn to

be
Φn(z) =

∏
{k:gcd(n,k)=1}

(z − ζkn).

(The primitive nth roots of unity are therefore the roots of this polynomial.)

It turns out that for any n, Φn has integer coefficients.

Conclusion, so far: the following are equivalent:

1. The regular n-gon is constructible.

2. cos 2π
n

is surd.

3. ζn is surd.

4. The roots of Φn are surd numbers.

Theorem 3.41 Let m,n ∈ N be such that gcd(m,n) = 1. If the regular m-gon and
regular n-gon are constructible, then the regular mn-gon is constructible.

PROOF HW (Here is the idea: if the regular m- and n-gons are constructible, then
ζm and ζn are surd. These numbers, respectively, satisfy Φm(z) = 0 and Φn(z) = 0.
Now ζmn satisfies Φmn = 0; show that Φmn factors in a particular way and deduce
that ζmn is surd from that factorization.)
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3.5. Complex roots, cubic equations and regular polygons

Example: n = 5 (regular pentagon)

We seek to construct ζ5 = e2πi/5 = cos 2π
5 + i sin 2π

5 , which is a root of

Φ5(z) = z4 + z3 + z2 + z + 1 = 0.

In this example, a trick is useful: divide through Φ5 by z2 to get

z2 + z + 1 + 1
z

+ 1
z2 = 0

and observe that since |z| = 1, z = z−1. This yields the following equation (of
which ζ5 is a solution):

z2 + z + 1 + z + z2 = 0. (3.1)

Now let

x = 2<(z) = z + z.

Notice
x2 = (z + z2 = z2 + 2zz + z2 = z2 + 2|z|+ z2 = z2 + 2 + z2

so equation (3.1) becomes
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Example: n = 7 (regular septagon)

We seek to construct ζ7 = e2πi/7 = cos 2π
7 + i sin 2π

7 , which is a root of

Φ7(z) = z6 + z5 + z4 + z3 + z2 + z + 1 = 0.

Divide through by z3 to get

z3 + z2 + z + 1 + z + z2 + z3 = 0. (3.2)

Again, let x = z + z; as before x2 = z2 + 2 + z2 and also,

x3 = z3 + 3(z + z) + z3.

Substituting all this into equation (3.2), we get

x3 + x2 − 2x− 1 = 0. (3.3)

Punchline: the regular septagon is constructible if and only if the equation

x3 + x2 − 2x− 1 = 0

has roots which are surd. (In this setting, x = 2 cos 2π
7 .)

125



Chapter 4

Polynomial rings

4.1 Definition and basic properties
Earlier, we asked what rings exist, other than fields, the ring Z of integers, and

Z/nZ. In this chapter we discuss a new class of rings:

Definition 4.1 Let F be a field. A polynomial with coefficients in F is an expression

f = f(x) = a0 + a1x+ a2x
2 + a3x3 + ...+ anx

n

where n ∈ N, a0, a1, ..., an ∈ F , and an 6= 0. In this setting n is called the degree
of f ; we write n = deg f to denote this. The x is called an indeterminate and an
object that is being used only in a formal, place-holding role. The set of polynomials
with coefficients in field F is denoted F [x].

Examples of the F in this definition include Q, R, C and Fp.

Convention: The degree of the zero polynomial is −∞. To say that a polyno-
mial is nonzero means it is not the constant zero polynomial. Thus any nonzero
polynomial has degree at least 0, and any non-constant polynomial has degree at
least 1.
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4.1. Definition and basic properties

Definition 4.2 Let F be a field and let f, g ∈ F [x] be

f(x) = a0 + a1x+ a2x
2 + ... and g(x) = b0 + b1x+ b2x

2 + ...

Define addition on F [x] as follows:

f + g = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + ...

Define multiplication on F [x] as follows:

fg = (a0 + a1x+ a2x
2 + ...)(b0 + b1x+ b2x

2 + ...)
= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x2 + ...

In particular, the xk term of the product fg is k∑
j=0

ak−jbj

xk = (akb0 + ak−1b1 + ak−2b2 + ...+ a1bk−1 + a0bk)xk.

Theorem 4.3 The addition and multiplication defined above make F [x] into a ring,
called a polynomial ring. In particular:

• the additive identity is the constant polynomial 0;
• the multiplicative identity is the constant polynomial 1; and
• the additive inverse of f = a0 + ...+ anx

n is −f = −a0 − ...− anxn.

PROOF To actually prove this, you have to check all the properties that a ring is
supposed to have (addition and multiplication are commutative and associative,
etc.). These properties are essentially inherited from the fact that any field F is also
a ring, but writing the proofs is is tedious and you won’t learn anything from it, so
I won’t bother doing it. �

Note: F [x] is not a field (HW).

Theorem 4.4 Let F be a field and let f, g ∈ F [x]. Then

deg(fg) = deg(f) + deg(g).

PROOF We did this in Chapter 1. �
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4.1. Definition and basic properties

Main concept: F [x] is a lot like Z
CONCEPT STATEMENT IN Z STATEMENT IN F [x]

Divisibility Let a, b ∈ Z. We say a | b
if there exists c ∈ Z

such that b = ac.

Divisibility If a | b, then |a| ≤ |b|.
condition

Division Let a, b ∈ Z. Then
Theorem ∃!q, r ∈ Z such that

b = aq + r and
0 ≤ r < a.

Units The units in Z are
1 and −1.

Primes p ∈ Z is prime if
p = ab implies that
a or b is a unit.

Unique ∀n ∈ N with n ≥ 2,
Factorization ∃ primes {pj}kj=1 (unique

except for their order)
s.t. n = p1p2 · · · pk.

Congruence Let n ∈ Z be nonzero.
We say a, b ∈ Z are

congruent (modulo n)
if n | (b− a).

Cosets The equivalence class
and of an integer a modulo n

“ mod ” is called a coset and is
notation denoted a+ nZ. If

cosets a+ nZ and b+ nZ,
coincide, then we write

a ≡ b mod n.
Quotient The set Z/nZ of cosets

Space modulo n forms a ring.
This ring is a field iff

n is prime.
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4.1. Definition and basic properties

Divisibility in F [x]

Definition 4.5 Let F be a field and let f, g ∈ F [x]. We say f divides g and write
f | g if there exists q ∈ F [x] such that g = fq. If f does not divide g, we write f 6 | g.

Lemma 4.6 Let F be a field and let f, g ∈ F [x]. If f | g and g is not the zero polyno-
mial, then deg(f) ≤ deg(g).

PROOF Suppose f | g, i.e. g = fq for q ∈ F [x]. Since g 6= 0, q 6= 0, so deg(q) ≥ 0.
Then deg g = deg(fq) = deg f + deg q ≥ deg f . �

Lemma 4.7 Let F be a field and let f, g, h ∈ F [x]. Then:

• if f | g and f |h, then f divides any linear combination of g and h;

• if f | g and g |h, then f |h.

PROOF Same as in Z (except that the letters in the proof represent polynomials
rather than integers). �

One catch: “linear combination” in F [x] includes things like

(x2 + 1)(x3 − 3) + (x3 − 3x2 + 2x− 3)(x2 + 4)

being a linear combination of x2 − 3 and x2 + 4, etc.

Theorem 4.8 (Division Theorem in F[x]) Let F be a field and let f, g ∈ F [x].
There exist q, r ∈ F [x] such that

f(x) = g(x)q(x) + r(x)

and deg r < deg g.

PROOF Fix f, g ∈ F [x].

By the WOP, D has a least element, say k. Thus

f(x) = g(x)q(x) + r(x)

where r(x) = akx
k + ...+ a1x+ a0. It remains to show that k < deg g.
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Suppose not, i.e. k ≥ deg g = m. Write g(x) = bmx
m + ...+ b1x+ b0. But then,

f − gq − ak
bm
xk−mg = f −

(
q − an

bm
xk−m

)
g

has degree less than k (because the xk terms cancel), contradicting the definition of
k. Thus k = deg r < deg g as desired. �

Note: The reason the coefficients in our polynomials have to be in a field (as
opposed to a ring) is because of the division necessary in the above proof.

Example: In R[x], take g(x) = x4 − 1 and f(x) = x2 + x− 2:

Units in F [x]

Theorem 4.9 Let F be a field. The units in F [x], i.e. the divisors of 1, are the nonzero
constant polynomials.

PROOF HW (use the fact that deg(fg) = deg f + deg g).
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Irreducible polynomials

Definition 4.10 Let F be a field. A polynomial p ∈ F [x] is called irreducible (over
F ) (a.k.a. prime), if it is not a unit, not zero and whenever p = fg for f, g ∈ F [x],
either f or g must be constant. A non-unit, non-irreducible polynomial in F [x] is
called reducible (over F ).

Example: x2 + 1 is irreducible over R, but x2 + 1 = (x + i)(x − i) so x2 + 1 is
reducible over C.

Example: x2 +2 is irreducible over R, but in F3[x], x2 +2 ≡ x2−1 = (x+1)(x−1)
so x2 + 2 is reducible over F3.

Theorem 4.11 (Factor Theorem of Descartes) Let F be a field and let f ∈ F [x].
If c ∈ F is such that f(c) = 0, then

f(x) = (x− c)q(x)

for some q ∈ F [x].

PROOF Divide f(x) by (x− c) using the Division Theorem to get

f(x) = (x− c)q(x) + r(x)

where deg r < deg(x− c) = 1. That means deg r = 0, i.e. r is constant, i.e.

f(x) = (x− c)q(x) + r. (4.1)

Now plug in x = c to both sides of (4.1) to get

f(c) = 0 + r.

Hence r = 0 and f(x) = (x− c)q(x) as wanted. �

Corollary 4.12 (Number of roots of a polynomial) Let F be a field. If p ∈ F [x]
has degree d ≥ 1, then p has at most d roots in F .

PROOF Induction on deg p. When deg p = 1, p(x) = ax + b (where a 6= 0) has only
the one root x = −b

a
. Now assume any polynomial of degree k has at most k roots.

Let p be a polynomial of degree k+ 1. If p has no roots, we are done. Otherwise, let
c be a root of p; by applying the Factor Theorem we have p(x) = (x− c)q(x) where
q has degree k. By the IH, q has at most k roots, so p has at most k + 1 roots. By
induction, we are done. �
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4.1. Definition and basic properties

Corollary 4.13 Suppose F is an infinite field. Let f, g ∈ F [x]. f and g are equal as
polynomials (i.e. they have the same degree and all the same coefficients on the same
powers of x) if and only if they are equal as functions F → F (i.e. f(x) = g(x) for all
x ∈ F ).

PROOF (⇒) is obvious, even if F is finite.

(⇐) Suppose f = g as functions. Consider h = f − g. Every element of F is
therefore a root of h, so h has infinitely many roots. By the previous corollary, that
means h is the zero polynomial, so f and g agree as polynomials. �

Lemma 4.14 Let F be a field and suppose h is an irreducible polynomial with a root
c ∈ F . Then h is unique up to a constant factor.

PROOF Suppose h, h∗ ∈ F [x] are both irreducible over F and both have root c.
WLOG h∗ has the smallest degree of any nonzero polynomial in F [x] which has c
as a root.

Divide h by h∗ to get h(x) = h∗(x)q∗(x)+r∗(x) and plug in x = c to get 0 = r∗(c).
But deg r∗ < deg h∗, so r∗ must be the zero polynomial. Thus h = h∗q∗. But h is
irreducible, so q∗ must be constant, i.e. h = h∗ up to a constant as wanted. �

Theorem 4.15 (General Factor Theorem) Let F be a field and let p ∈ F [x]. If
c ∈ F is such that p(c) = 0, and if h ∈ F [x] is an irreducible polynomial s.t. h(c) = 0,
then p(x) = h(x)q(x) for some q ∈ F [x].

PROOF Divide p by h to get

p(x) = h(x)q(x) + r(x).

Plug in x = c to see that r(c) = 0. But deg r < deg h, contradicting the preceding
lemma unless r is the zero polynomial. �

Theorem 4.16 (Irreducibles in C[x]) A polynomial f ∈ C[x] is irreducible if and
only if it is linear.

PROOF Suppose f ∈ C[x] is irreducible. By the FTAl, f has root z0, and by the
Factor Theorem that means f(z) = (z − z0)q(x) for some q ∈ C[x]. But since f is
irreducible, either z− z0 or q is a unit, meaning q is a unit (i.e. a constant), meaning
f is linear as wanted. �

Remark: In any F [x], linear polynomials are always irreducible. The converse
is what is interesting in the preceding statement.
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Theorem 4.17 (Irreducibles in R[x]) A polynomial f ∈ R[x] is irreducible if and
only if it is either linear, or quadratic with negative discriminant.

PROOF HW

Unique factorization into irreducibles

Theorem 4.18 (Unique Factorization in F[x]) Let F be a field and let f ∈ F [x].
Then there exist irreducible polynomials p1, p2, ..., pk ∈ F [x], unique up to their order
and constant factors, such that

f = p1p2 · · · pk.

PROOF First, we have to show that every f ∈ F [x] can be factored into irreducibles.
To do this, let

D = {deg(f) : f ∈ F [x] cannot be factored into irreducibles}.

Suppose D 6= ∅. By the WOP, D has a least member, say n. Thus there is a degree
n polynomial f which cannot be factored into irreducibles.

If f is irreducible, this is a contradiction.
But if f is reducible, we have f = gh where deg g, deg h < n. This means

deg g, deg h /∈ D so g and h both factor into irreducibles. Thus f factors into ir-
reducibles, again a contradiction.

Either way, D must be empty, meaning every polynomial factors into irre-
ducibles.

Second, we have to show the uniqueness of the factorization. This proof is the
same as the one for N, except that the letters represent (irreducible) polynomials
instead of (prime) numbers. �

Congruence classes and modular arithmetic in F [x]

Definition 4.19 (Congruence in F[x]) Let F be a field and let l ∈ F [x] be nonzero.
We say f, g ∈ F [x] are congruent (modulo l) if l | (f − g). The equivalence class
of f under this relation is called a coset (modulo l) and is denoted f + lF [x]; if
the equivalence classes of f and g coincide we write f ≡ g mod l. The set of cosets
modulo l is denoted F [x]/lF [x].

Note: One has to prove that this relation is an equivalence relation (the proof is
essentially the same as the one for equivalence modulo n on the integers).
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Definition 4.20 Let F be a field, and let l ∈ F [x] be nonzero. The set F [x]/lF [x] is a
ring under the addition and multiplication defined by

(f + lF [x]) + (g + lF [x]) = (f + g) + lF [x];

(f + lF [x])(g + lF [x]) = (fg) + lF [x].

In particular, the additive identity is 0+ lF [x]; the multiplicative identity is 1+ lF [x];
the additive inverse of f + lF [x] is −f + lF [x].

Example:

Example: From the division we did earlier,

(x4 − 1) ≡ (−4x+ 5) mod (x2 + x− 2).

More generally, every polynomial p ∈ F [x] is congruent modulo l to a polyno-
mial of degree less than deg l.

Theorem 4.21 Let F be a field and let l ∈ F [x] be nonzero. The ring F [x]/lF [x] is a
field if and only if l is irreducible.

PROOF HW
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4.2. Irreducibility tests

4.2 Irreducibility tests
In light of the previous theorem, it seems like a good idea to have some idea of

how to show whether or not a polynomial is irreducible.

• If a polynomial has a root in F , then it is reducible over F by the Factor
Theorem.

Application: Show f(x) = x4 − 3x+ 2 is reducible over Q:

• The Rational Roots Theorem says that if a polynomial with integer coeffi-
cients has a root in Q, then that root must be p

q
in lowest terms, where p

divides the constant term and q divides the leading coefficient.

Application: Show f(x) = x2 − x− 3 is irreducible over Q:

Now, for some new results. The first says that if a polynomial with integer
coefficients factors over the rationals, then it factors over the integers:

Theorem 4.22 (Gauss’ Lemma) Suppose g, h ∈ Q[x]. If f = gh has integer coeffi-
cients, then gh = g0h0 where both g0 and h0 must have integer coefficients.

PROOF Let f = gh where

f(x) = anx
n + ...+ a1x0 + a0;

g(x) = bm
cm
xm + ...+ b1

c1
x+ b0

c0
;

h(x) = rk
sk
xk + ...+ r1

s1
x+ r0

s0
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where all the aj, bj, cj, rj and sj are integers. Multiply through by the least common
denominators in g and h to obtain

ĝ(x) = umx
m + ...+ u1x+ u0

ĥ(x) = vkx
k + ...+ v1x+ v0

where ĝ(x) = cg(x) and ĥ(x) = sh(x) for integers c, h (the ujs and vj are, of course,
integers). WLOG c > 0 and s > 0. Thus

f(x) = g(x)h(x) = 1
cs
ĝ(x)ĥ(x) ⇒ csf(x) = ĝ(x)ĥ(x).

If cs = 1, we are done (let g0 = ĝ and h0 = ĥ). Otherwise, write

cs = p1p2 · · · pl
for primes p1, ..., pl and observe that for any t ∈ {1, ..., l}, pt divides every coeffi-
cient of csf(x), i.e. every coefficient of ĝ(x)ĥ(x).

Now, suppose that there is at least one coefficient of ĝ(x), and at least one co-
efficient of ĥ(x), both of which are not multiples of pt. Let r and s be the smallest
integers such that ur and vs are not multiples of pt. That means

pt |uj for j < r, and pt | vj for j < s.

Now, the coefficient of xr+s in ĝ(x)ĥ(x), which is a multiple of pt since it is a coeffi-
cient of csf(x), is

ur+sv0 + ur+s−1v1 + ...+ ur+1vs−1 + urvs + ur−1vs+1 + ...+ u1vr+s−1 + u0vr+s

Consequently pt |urvs. By the Prime Divisor Lemma, pt |ur or pt | vs, a contradic-
tion. Therefore pt divides all the coefficients of either ĝ or ĥ. WLOG pt divides all
the coefficients of ĝ. Then factor out pt from both sides of the equation

csf(x) = ĝ(x)ĥ(x)
to get

cs

pt
f(x) = ˆ̂g(x)ĥ(x).

If cs
pt

= 1, we are done; otherwise, repeat the procedure above to factor out more
primes in the factorization of cs. Eventually we will run out of primes, so eventu-
ally we will have

f(t) = (some number of hats of g)(x) (some number of hats of h)(x) = g0(x)h0(x)
as wanted. �
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Application: Determine if f(x) = x4 + 2x3 + 5x2 + 4x+ 3 is irreducible over Q.

We have ended up with the system (where b, c, e ∈ Z)
b+ e = 2

4c+ be = 5
3bc+ ce = 4

Theorem 4.23 (Irreducibility Test mod p) Let f ∈ Q[x] have integer coefficients.
For any prime p which does not divide the leading coefficient of f , if f mod p is
irreducible over Fp, then f is irreducible over Q.

PROOF We prove the contrapositive. Suppose f = gh for g, h ∈ Q[x] where
deg g, deg h ≥ 1. By Gauss’ Lemma, we can assume WLOG that g and h have
integer coefficients. Let bm be the leading coefficient of g and let ck be the leading
coefficient of h; thus bmck is the leading coefficient of f . If p 6 | bmck, then p 6 | bm and
p 6 | ck, so

deg(g mod p) = deg g = m ≥ 1 and deg(h mod p) = deg h = k ≥ 1.

That means
f mod p = (g mod p)(h mod p)

with deg(g mod p) ≥ 1 and deg(h mod p) ≥ 1, i.e. f mod p is reducible over Fp.
�
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Application: Determine if f(x) = x3 + 2x+ 2 is irreducible over Q.

Lemma 4.24 (Substitution Trick) Let f(x) ∈ Q[x]. Let x = ay + b for a, b ∈ Q
with a 6= 0. If g(y) = f(ax+ b) is irreducible in Q[y], then f is irreducible in Q[x].

PROOF If g factors into two polynomials in the variable y, then f factors in the
same way by replacing each of the ys in the g-factorization with 1

a
(x− b). �

Application: Determine if f(x) = (x+ 2)3 + 2(x+ 2) + 2 is irreducible over Q.
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Theorem 4.25 (Eisenstein Criterion) Suppose

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

is a polynomial with integer coefficients. If p is a prime such that:
• p | aj for all j ∈ {1, ..., n− 1};
• p 6 | an; and
• p2 6 | a0.

Then f is irreducible over Q.

PROOF Suppose all the hypotheses of this criterion are satisfied, but f is reducible.
Write f(x) = g(x)h(x); by Gauss’ Lemma there are integers b0, ..., bm, c0, ..., ck such
that

g(x) = bmx
m + ...+ b1x+ b0;

h(x) = ckx
k + ...+ c1x+ c0.

Observe:

• since a0 = b0c0, p divides either b0 or c0, but cannot divide both because
p2 6 | a0. WLOG assume p 6 | b0;

• since p 6 | an and an = bmck, p cannot divide either bm or ck.

Now let l be the smallest integer so that p 6 | cl. By hypothesis, p | al. Now

al = blc0 + bl−1c1 + ...+ b1cl−1 + b0cl

so by subtraction,

b0cl = al − [blc0 + bl−1c1 + ...+ b1cl−1] .

p divides every term on the right, so p | b0cl, so p | b0 by the Prime Divisor Lemma,
contradicting the first bullet point above. Thus f must be irreducible. �

Application: Determine if 2x5 + 36x2 + 15x+ 21 is irreducible over Q.
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Corollary 4.26 Let p be a prime. Then the pth cyclotomic polynomial Φp is irreducible
over Q.

PROOF For every pair of natural numbers n and k with k ≤ n, define(
n

k

)
= n!
k!(n− k)! .

The Binomial Theorem says that for any two complex numbers z and w, and any
natural number n,

(z + w)n =
n∑
k=0

(
n

k

)
znwn−k.

We will apply this to prove the corollary. Let

Φp(z) = zp−1 + zp−2 + ...+ z2 + z + 1 = zp − 1
z − 1 .

Let z = x+ 1, so that

Φp(x+ 1) = (x+ 1)p − 1
x

= 1
x

[ p∑
k=0

(
p

k

)
xk1p−k − 1

]

= 1
x

p∑
k=1

p!
k!(p− k)!x

k

=
p∑

k=1

p!
k!(p− k)!x

k−1

= xp−1 +
(
p

1

)
xp−2 +

(
p

2

)
xp−3 + ...+

(
p

p− 1

)
x+

(
p

p− 1

)

= xp−1 + pxp−2 +
(
p

2

)
xp−3 + ...+

(
p

p− 1

)
x+ p

Notice p | p! but when k ∈ {1, ..., p−1}, since k and p−k are less than p, p 6 |k!(p−k)!.
Therefore p |

(
p
k

)
.

But p does not divide the leading coefficient 1, nor does p2 divide the constant
term p. So by Eisenstein, Φp(x + 1) is irreducible over Q, meaning by the substitu-
tion trick that Φp(z) is irreducible over Q as well. �
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Chapter 5

Fields

Recall that a field is an algebraic system (F,+, ·) where + and · are associative and
commutative, have identity elements and inverses, and where the distributive law
works. (More simply, a field is a ring where every nonzero element has a recipro-
cal.)

In this course, we’ve encountered the following examples of fields:

Number fields (subfields of C):

Fields that aren’t number fields:

Quotients of polynomial rings:

What other fields are there? How do various fields relate to one another? What
do fields have to do with construction problems and/or quintic equations? That is
the subject of this chapter.
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5.1 Field extensions
One way to create a new field is to take an old field (especially Q) and “adjoin”

one or more elements to it. This means making a bigger field, which contains the
old field and contains the elements being adjoined. Here are the details:

Definition 5.1 Let F be a number field and suppose α ∈ C. Define F (α) to be the
smallest subfield of C containing F and α.

Note: Since F ⊆ F (α), we say F is a subfield of F (α) and that F (α) is an ex-
tension of F .

The worst-case scenario when you adjoin α to F to make F (α) is that you get a
field of rational functions in α:

Lemma 5.2 Let F be a number field and suppose α ∈ C. Then

F (α) =
{
f(α)
g(α) : f, g ∈ F [x] and g(α) 6= 0

}
.

PROOF First, the F (α) described above is a field (it is closed under +, ·, additive
inverses and reciprocals of nonzero elements).

Now, let G be any field containing F and α. Since G is closed under +,−, ·
and ÷, G must contain F (α) as described above, so F (α) is the smallest subfield
containing F and α, as wanted. �

Often, the description of F (α) simplifies (see the next section).

You can adjoin more than one element to a field by adjoining one element at a
time:

Definition 5.3 Let F be a number field and let α1, ..., αn ∈ C. Define

F (α1, α2, ..., αn) = [· · · [[[F (α1)](α2)](α3)] · · · (αn)].

Theorem 5.4 Let F be a number field and let α1, ..., αn ∈ C. Then F (α1, ..., αn) is
the closure of F ∪ {α1, ..., αn} under +,−·,÷. As a consequence, the order in which
the elements are adjoined to create F (α1, ..., αn) doesn’t matter.
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PROOF Induction on n. The base case n = 1 is obvious. Now suppose the result is
true when n = k. Thus

F (α1, ..., αk, αk+1) = F (α1, ..., αk)(αk+1)
= closure under +,−, ·,÷ of F (α1, ..., αk) ∪ {αk+1}
= closure under +,−, ·,÷ of F ∪ {α1, ..., αk} ∪ {αk+1}
= closure under +,−, ·,÷ of F ∪ {α1, ..., αk+1}.

By induction, we are done. �

5.2 Algebraic extensions
Recall that F (α) can be thought of as the set of rational functions in α:

F (α) =
{
f(α)
g(α) : f, g ∈ F [x] and g(α) 6= 0

}
.

Does a simpler description of F (α) exist?

Definition 5.5 Let F be a number field and let α ∈ C. α is called algebraic (over
F ) if there is a nonzero polynomial f ∈ F [x] such that f(α) = 0. If α is not algebraic
over F , α is called transcendental (over F ). The algebraic closure of F , denoted
F̂ , is the set of all algebraic numbers over F .

Example:
√

2 is algebraic over Q, because
√

2 is a root of x2 − 2.

Example: i is algebraic over Q, because i is a root of x2 + 1.

Example: for all n ≥ 2, ζn = e2πi/n is algebraic over Q, because ζn is a root of Φn.

Fact: π is transcendental over Q (proof is beyond the scope of this class).

The FTAl can be restated as:

143



5.2. Algebraic extensions

Theorem 5.6 Q̂ is countable (therefore Q̂ cannot be all of C nor can it contain all of
R).

PROOF For each n ≥ 0, let Pn be the set of all polynomials in Q[x] whose degree is
n. There is an injection from Pn to Qn+1 given by

f = anx
n + an−1x

n−1 + ...+ a1x+ a0 7→ (an, an−1, ..., a0)

and consequently, since Qn+1 is countable, so is Pn. Therefore

Q[x]− {0} =
∞⋃
n=0
Pn

is the union of countably many countable sets, hence countable. Therefore,

Q̂ =
⋃

f∈Q[x]−{0}
{α : f(α) = 0}

is the union of countably many finite sets (each set in the union is finite because a
polynomial of degree n has at most n roots), hence is countable. �

Lemma 5.7 Let F be a number field and suppose α is algebraic over F . Then:

1. there is an irreducible polynomial h ∈ F [x] such that h(α) = 0;

2. any two irreducible polynomials which have α as a root must have the same
degree.

PROOF HW

Definition 5.8 Let F be a number field and suppose α is algebraic over F . A min-
imal polynomial for α (over F ) is an irreducible polynomial h ∈ F [x] such that
h(α) = 0. Define the degree of α over F , denoted deg(α/F ), to be the degree of any
minimal polynomial for α.

Example: deg(
√

2/Q) = deg(i/Q) = 2.

Example: deg(ζn/Q) = deg Φn =

Example: F = Q; α = 2 +
√

3.
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Theorem 5.9 Let F be a number field and let α be algebraic over F with deg(α/F ) =
n. Then

F (α) = {a0 + a1α + a2α
2 + ...+ an−1α

n−1 : a0, a1, ..., an−1 ∈ F}.

PROOF Let G = {a0 + a1α + a2α
2 + ... + an−1α

n−1 : a0, a1, ..., an−1 ∈ F}. It is clear
that G ⊆ F (α).

To show F (α) ⊆ G, first let h be a minimal polynomial for α over F . Since h is
irreducible, F [x]/hF [x] is a field. That means that for any g ∈ F [x] with g(α) 6= 0, g
is not a multiple of h, so g + hF [x] is a unit, i.e. there is g−1 ∈ F [x] such that

(g + hF [x])(g−1 + hF [x]) = 1 + hF [x].

In other words, by plugging in α to this equation, we get

g(α)g−1(α) = 1.

Now let p ∈ F (α). Thus p = f(α)
g(α) = f(α)g−1(α). Thus p can be written as a

polynomial in α.

Last, since h has degree n and h(α) = 0, for any k ≥ n, αk can be rewritten as
a polynomial in terms of α, α2, ..., αn−1, so p is a polynomial in α of degree at most
n− 1, i.e. p ∈ G as wanted. �

Consequence: for example, Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}.

Question: Is 4
√

2 an element of Q(
√

2)?
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5.3 Linear algebra and field extensions
Review of linear algebra

Definition 5.10 A vector space is a collection of objects called vectors, together
with two operations (addition and multiplication by scalars) satisfying a bunch of
laws:

• addition is commutative, associative, there is an additive identity and there are
additive inverses;

• scalar multiplication is associative and 1 is an identity element; and
• scalar multiplication distributes over addition.

WARNING: vector spaces are not usually rings: the scalar multiplication is not
a binary operation on a vector space because it is a scalar times a vector (not a vector
times a vector.

Definition 5.11 Let V be a vector space, and let v1,v2, ...,vn ∈ V .
• v1, ...,vn are called linearly independent if for any c1, ..., cn ∈ R,

c1v1 + ...+ cnvn = 0 implies c1 = c2 = ... = cn = 0.

• v1, ...,vn are said to span V if for any w ∈ V ,

w = c1v1 + ...+ cnvn

for scalars c1, ..., cn.
• {v1, ...,vn} is called a basis of V if the vectors v1, ...,vn are linearly indepen-

dent and span V .

Theorem 5.12 Any two bases of vector space V must have the same number of ele-
ments.

Definition 5.13 Let V be a vector space. The dimension of V is the number of
elements in any basis of V .
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Dimension of a field extension

Big idea: Let field E be an extension of field F (i.e. F ⊆ E). Then:

Example: R ⊆ C.

Definition 5.14 LetE be an extension of field F . We say e1, ..., en ∈ E are (linearly)
independent (over F ) if for any f1, ..., fn ∈ F ,

f1e1 + f2e2 + ...+ fnen = 0 implies f1 = f2 = ... = fn = 0.

Example: {1, i} ⊆ C (viewed as an extension of R)

Example: {1, i, 3− 2i} ⊆ C (viewed as an extension of R)

Example: {1, i, i2} ⊆ C (viewed as an extension of R)

More general example: if deg(α/Q) = n, then 1, α, α2, ..., αn are not linearly
independent over Q.
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Definition 5.15 Let E be an extension of field F . We say e1, ..., en ∈ E span E if for
any e ∈ E, there exist f1, ..., fn ∈ F such that

e = f1e1 + f2e2 + ...+ fnen.

Example: {1, i} ⊆ C (viewed as an extension of R)

Theorem 5.9 restated: if deg(α/F ) = n, then 1, α, α2, ..., αn−1 span F (α).

Definition 5.16 Let E be an extension of field F . We say e1, ..., en ∈ E is a basis
for E (over F ) if e1, ..., en are linearly independent over F and span E.

Theorem 5.17 Let E be an extension of field F . Any two bases of E over F have the
same number of elements.

PROOF Essentially the same proof as the proof from Math 322 that any two bases
of a vector space have the same number of elements (i.e. the Exchange Lemma). �

Theorem 5.18 Let F be a number field and let α ∈ C. If deg(α/F ) = n, then
{1, α, α2, ..., αn−1} is a basis of F (α) over F .

PROOF HW (the set spans by Theorem 5.9; you have to show the set is indepen-
dent).

Definition 5.19 Let E be an extension of field F . The dimension of E over F ,
a.k.a. the degree of E over F , denoted dim(E/F ) or dim(E : F ) or (E : F ), is the
number of elements in any basis of E over F .

Example: dim(C/R) = 2

Example: dim(Q(
√

2)/Q) = 2
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Corollary 5.20 Let E be an extension of field F with dim(E/F ) = n. Then every
α ∈ E is algebraic over F , and deg(α/F ) ≤ n.

PROOF Consider the set {1, α, α2, ..., αn} ⊆ E. This set has n+1 elements, which is
more than dim(E/F ) elements, so this set cannot be independent. Therefore there
is an equation

a0 + a1α + ...+ anα
n = 0

where aj ∈ F for all j and not all aj are zero. In other words, there is a polynomial
f = a0 + ...+ anx

n of degree ≤ n such that f(α) = 0, proving the corollary. �

Iterated extensions

Recall that by definition, Q(
√

2,
√

3) =
[
Q(
√

2)
]

(
√

3).

Thus Q(
√

2,
√

3) is an extension of Q and an extension of Q(
√

2). So

Q(
√

2,
√

3) ⊇ Q(
√

2) ⊇ Q.

How do the dimensions of these extensions relate to one another?

Remark: In this context, 1,
√

2 (thought of as elements of Q(
√

2,
√

3)) are inde-
pendent over Q, but not independent over Q(

√
2):

Question: What is dim(Q(
√

2,
√

3)/Q(
√

2))?
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Theorem 5.21 (Dedekind Product Theorem) Suppose E ⊇ B ⊇ F are fields
with {e1, ..., em} a basis for E over B and {b1, ..., bn} a basis for B over F . Then

{e1b1, e1b2, e1b3, ...e1bn, e2b1, e2b2, ..., embn}

is a basis for E over F . In particular, this means

dim(E/F ) = dim(E/B) dim(B/F ).

PROOF Let ε ∈ E. Then since {e1, ..., em} is spans E over B,

ε =
m∑
j=1

βjej = β1e1 + β2e2 + ...+ βmem

for β1, ..., βm ∈ B. Now since b1, ..., bn spans B over F , we can write, for each j,

βj = b1fj,1 + b2fj,2 + ...+ bnfj,n

for fj,1, ..., fj,n ∈ F . By substitution, we see that

ε =
m∑
j=1

βjej =
m∑
j=1

(
n∑
k=1

bkfj,k

)
ej =

(m,n)∑
(j,k)=(1,1)

ejbkfj,k

meaning that the products {ejbk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} span E over F as wanted.

To show independence, suppose there are constants aj,k ∈ F such that

0 =
m∑
j=1

n∑
k=1

aj,kejbk =
m∑
j=1

(
n∑
k=1

aj,kbk

)
ej.

By the independence of {e1, ..., em} over B, it follows that for all j,

0 =
n∑
k=1

aj,kbk.

But by the independence of {b1, ..., bn} over F , it follows that for all j, k that aj,k = 0.
Thus the products {ejbk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} are independent over F , meaning
they form a basis of E over F . �
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5.3. Linear algebra and field extensions

Back to the example: We saw on the previous page that

dim(Q(
√

2,
√

3)/Q(
√

2) = 2 and dim(Q(
√

2)/Q) = 2.

By the Dedekind Product Theorem,

dim(Q(
√

2,
√

3)/Q) =

and a basis of Q(
√

2,
√

3) over Q is

Therefore, we can describe Q(
√

2,
√

3) as

Corollary 5.22 Let F be a number field. Then its algebraic closure F̂ is a field.

PROOF Suppose α, β ∈ F̂ . Then dim(F (α)/F ) = m and dim(F (β)/F ) = n for
positive integers m and n. That means deg(α/F ) = m, so α is the root of an ir-
reducible h ∈ F [x] ⊆ F (β)[x]. Therefore α has degree at most m over F (β), so
dim(F (α, β)/F (β)) ≤ m.

Therefore by the Dedekind Product Theorem,

dim(F (α, β)/F ) = dim(F (α, β)/F (β)) dim(F (β)/F )
≤ mn < infty

so all members of F (α, β) (including α±β, αβ and α÷β) are algebraic over F (they
have degree ≤ mn). Thus F̂ is closed under +,−, · and ÷, making it a field. �
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5.4. Classical construction problems, revisited

5.4 Classical construction problems, revisited
What we know at this point

In order to perform a geometric construction with straightedge and compass, the
coordinates of any points so obtained must be surd numbers. For each of the clas-
sical construction problems encountered in Chapter 1, we found a number α ∈ C
so that the construction problem is doable exactly if α is surd:

CLASSICAL CORRESPONDING CORRESPONDING
CONSTRUCTION NUMBER α THAT POLYNOMIAL

PROBLEM HAS TO BE SURD FOR WHICH α IS A ROOT

Squaring
the circle

Doubling
the cube

Trisecting a
60◦ angle

Constructing a
regular p-gon

(p prime)
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The key result

Theorem 5.23 (Characterization of surd numbers) If α ∈ C is a surd number,
then dim(Q(α)/Q) = 2m for some m ∈ N.

PROOF Let α ∈ C be surd. Recall that any such α must be obtained from rational
numbers by +,−, ·,÷,√ . This means α lies in a field extension

Q(α1, α2, ..., αn)

where α2
1 ∈ Q and for all j > 1, α2

j ∈ Q(α1, ..., αj−1).

Since each αj satisfies a quadratic equation over Q(α1, ..., αj−1), we see

So by the Dedekind Product Theorem,

dim(Q(α1, ..., αn)/Q) = dim(Q(α1)/Q)
n∏
j=2

dim(Q(α1, ..., αj)/Q(α1, ..., αj−1))

Since α ∈ Q(α1, α2, ..., αn), dim(α/Q) divides 2n, so it must be 2m for some m ∈ N.
�

Impossibility results

Theorem 5.24 Squaring the circle with straightedge and compass is impossible.

PROOF π is transcendental over Q, so dim(Q(π)/Q) = ∞, which is not a power of
2. Thus π is not surd. �

Theorem 5.25 Doubling the cube with straightedge and compass is impossible.

PROOF 3
√

2 has minimal polynomial x3− 2 (irreducible by either Eisenstein (p = 2)
or Rational Roots Theorem), so dim(Q( 3

√
2)/Q) = 3. This dimension is not a power

of 2, so 3
√

2 is not surd. �

More generally, this argument shows that the equation x3 − 2 = 0 cannot be
solved with +,−, ·,÷,√ alone (if it was possible to do this, the solution would be
surd). So the solution of a cubic equation really does require cube roots, in general.
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Theorem 5.26 Trisecting a 60◦ angle with straightedge and compass is impossible.

PROOF From earlier HW, x = cos 20◦ satisfies the polynomial equation

8x3 − 6x− 1 = 0.

Let y = 2x− 1 so that the above polynomial becomes

y3 + 3y2 − 3 = 0.

By Eisenstein (p = 3), y3 + 3y2 − 3 is irreducible, so dim(Q(y)/Q) = 3, which is
not a power of 2. Thus y is not a constructible number, so neither is x = 1

2(y + 1).
Since cos 20◦ is not a constructible number, a 20◦ angle cannot be constructed from
a straightedge and compass. �

Theorem 5.27 If p is a prime, then constructing a regular p-gon with straightedge
and compass is impossible, unless p− 1 is a power of 2.

PROOF Let ζp = e2πi/p; since ζp is a root of the irreducible cyclotomic polynomial
Φp (which has degree p − 1), we see that deg(Q(ζp)/Q) = p − 1 from whence the
result follows. �

Question: For which primes p is p− 1 a power of 2?

Definition 5.28 A prime p ∈ Z is called a Fermat prime if p− 1 is a power of 2.

Lemma 5.29 Every Fermat prime is of the form 22n + 1 for n ∈ N.

WARNING: the converse of this is false: 641 | (225 + 1), for example.

Remark: the only known Fermat primes are 22n + 1 when n ∈ {0, 1, 2, 3, 4}:

3, 5, 17, 257, 65537

No one knows if there are any other Fermat primes.

Theorem 5.30 A regular n-gon can be constructed with a straightedge and compass
only if

n = 2mp1p2 · · · pk
where p1, p2, ..., pk are distinct Fermat primes.
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PROOF Suppose the regular n-gon is constructible. Since ζn is a root of Φn, which
is irreducible over Q (I proved irreducibility if n is prime; if n is not prime, consult
sections 4.8 and 4.9 of Stillwell for a proof that Φn is irreducible if n is composite).
Therefore

deg(ζn/Q) = φ(n),

so φ(n) has to be a power of 2.

Now, write the prime factorization of n as

n = pj00 p
j1
1 · · · p

jk
k .

By properties of the Euler phi function,

φ(n) = pj0−1
0 (p0 − 1)pj1−1

1 (p1 − 1) · · · pjk−1
k (pk − 1).

This is a power of 2 only if
• p0 = 2, and
• j1 − 1 = j2 − 1 = ... = jk − 1 = 0, and
• p1− 1, p2− 1, ..., pk− 1 are all powers of 2 (i.e. p1, ..., pk are all Fermat primes).

This completes the proof. �

Question: What about the converse: if n = 2mp1p2 · · · pk where p1, p2, ..., pk are
distinct Fermat primes, is the regular n-gon constructible with a straightedge and
compass?
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Chapter 6

Morphisms

6.1 What is a homomorphism?
A morphism is math lingo for a function between two sets, each with some kind

of structure, so that the “structures” on the two sets are preserved. Every branch
of mathematics has its own concept(s) of “structure”, so it has its own version of
morphisms:

BRANCH OF MATHEMATICS MORPHISM

Linear algebra Linear transformation

Topology Continuous function / homeomorphism

Set theory Function / bijection

Abstract algebra ?

This class is about abstract algebra, so we will study morphisms that preserve
algebraic structures.

Definition 6.1 Let (S,�) and (S ′,�′) be two algebraic systems. We say that a func-
tion σ : S → S ′ is a homomorphism if

σ(x� y) = σ(x)�′ σ(y)

for every x, y ∈ S.
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6.1. What is a homomorphism?

In English: σ : S → S ′ is a homomorphism if, whenever you take two elements
of S, if you first � them and then do σ, you get the same thing as if you applied σ
to both of them (sending them into S ′) and then �′ing them.

A “commutative diagram” to explain:

S × S σ⊗σ //

�
��

S ′ × S ′

�′
��

S
σ // S ′

Some examples

Example A: logarithm (with arbitrary base), thought of as a function

log : ((0,∞), ·)→ (R,+).

Why is this a homomorphism?

Example B: “quotient map” σ : (Z,+)→ (Z/nZ,+) defined by σ(x) = x+ nZ

Why is this a homomorphism?
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6.1. What is a homomorphism?

Example C: σ : (Z/6Z,+, ·)→ (Z/2Z,+, ·) defined by σ(x+ 6Z) = x+ 2Z

Why is this well-defined?

Suppose x + 6Z = y + 6Z. That means x− y = 6k = 2(3k) for k ∈ Z. Therefore
2 | (x− y), so x+ 2Z = y + 2Z, i.e. σ(x+ 6Z) = σ(y + 6Z).

Why is this a homomorphism?

Example D: conjugation σ : (C,+, ·)→ (C,+, ·) defined by σ(z) = z.

Why is this a homomorphism?

Example E: σ : (Z/4Z,+)→ ({±1,±i}, ·) defined by

σ(0 + 4Z) = 1 σ(1 + 4Z) = i σ(2 + 4Z) = −1 σ(3 + 4Z) = −i

Why is this a homomorphism?
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6.1. What is a homomorphism?

HOW TO PROVE σ : (S,�)→ (S ′,�′) is a homomorphism:

Let x, y ∈ S.
σ(x� y) = ... = something.
σ(x)�′ σ(y) = ... = the same something as above.

Therefore σ is a homomorphism. �

HOW TO PROVE σ : (S,�)→ (S ′,�′) is NOT a homomorphism:

Write down two specific elements x, y ∈ S, and show that for those

two elements, σ(x� y) 6= σ(x)�′ σ(y). �

(If you took linear algebra from me, this should remind you of how we prove
whether or not a function between vector spaces is a linear transformation. That’s
because linear transformations are “homomorphisms of vector spaces”.)

Example: Prove that σ : (M2×2(R),matrix multiplication)→ (R, ·) defined by

σ

(
a b
c d

)
= a

is not a homomorphism.
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6.2 Isomorphisms and invariants
Here are three examples of algebraic structures (they are all fields, in fact):

DEFINITION OF DEFINITION OF
SET ADDITION MULTIPLICATION

Z/2Z + mod 2 · mod 2

{1,−1} · max

{∅, E} 4 ∩

I claim these three fields are really the “same” field. Why?

Addition tables Multiplication tables

(Z, 2Z,+) 0 + 2Z 1 + 2Z
0 + 2Z
1 + 2Z

(Z, 2Z, ·) 0 + 2Z 1 + 2Z
0 + 2Z
1 + 2Z

({1,−1}, ·) 1 −1
1
−1

({1,−1},max) 1 −1
1
−1

({∅, E},4) ∅ E

∅

E

({∅, E},∩) ∅ E

∅

E

Observations:
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Definition 6.2 Let (R,+, ·) and (R′,+, ·) be rings. A function σ : R→ R′ is a ring
isomorphism if

1. σ is a homomorphism from (R,+) to (R′,+);

2. σ is a homomorphism from (R, ·) to (R, ·); and

3. σ is a bijection (i.e. σ is injective and surjective).

If there is a ring isomorphism σ : R → R′, we say R and R′ are isomorphic and
write (R,+, ·) ∼= (R′,+, ·) (or just R ∼= R′).

If R and R′ are fields, we can say that σ is a field isomorphism.

Concept: Two isomorphic rings are essentially the same object (their operations
are performing the same algebra, but in different symbols and/or language). An
isomorphism is a function which acts as a “translator”, converting the language of
one ring to the other.

Example: Let σ : (Z/2Z,+ mod 2, · mod 2)→ ({1,−1}, ·,max) be defined by

σ(0 + 2Z) = 1 σ(1 + 2Z) = −1.

This is a field isomorphism (from the previous page, σ preserves the addition and
multiplication tables, and σ is clearly 1− 1 and onto).

Example: Let σ : (C,+, ·)→ (C+, ·) be σ(z) = z.

• Let z, w ∈ C. σ(z + w) = z + w = z + w = σ(z) + σ(w).

• Let z, w ∈ C. σ(zw) = zw = z w = σ(z)σ(w).

• Let z, w ∈ C be such that σ(z) = σ(w). Thus z = w. Conjugating both sides
again, we see z = w, i.e. z = w. Thus σ is 1− 1.

• Let z ∈ C. Notice that σ(z) = z = z so σ is onto.

Therefore σ is a field isomorphism.

HOW TO PROVE two rings (fields) are isomorphic:

Write down a specific σ mapping one ring (field) to the other.

Prove that σ is a ring (field) isomorphism.
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How do you prove two rings aren’t isomorphic?

Theorem 6.3 (C,+, ·) and (R,+, ·) are not isomorphic.

PROOF Suppose not, i.e. that σ : C→ R is a field isomorphism.

Claim 1: σ(0) = 0.

Claim 2: σ(1) = 1.

Now consider the following equation in C:

i2 + 1 = 0

The crux of the above proof is that C has an element i with i2 = −1, whereas R
has no such element.

Definition 6.4 An invariant is a property that is preserved by isomorphism. In other
words, if property P is an invariant and rings R and R′ are isomorphic, then either
both R and R′ have property P , or neither R nor R′ have property P .

Examples:
• Cardinality (# of elements) (obvious since any isomorphism σ is a bijection)
• Whether or not the ring is an integral domain (HW)
• Whether or not the ring is a field (HW)

To prove two rings are not isomorphic, it is often easiest to exhibit an invariant
which one has but the other doesn’t.
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Chinese Remainder Theorem

Theorem 6.5 (Chinese Remainder Theorem) Supposem,n ∈ Z are nonzero, non-
units such that gcd(m,n) = 1. Then

Z/(mn)Z ∼= Z/mZ× Z/nZ.

PROOF We start by defining a map σ : Z/(mn)Z→ Z/mZ× Z/nZ by setting

σ(x+mnZ) = (x+mZ, x+ nZ).

Claim 1: σ is well-defined.
Suppose x+mnZ = y+mnZ. Thus mn | (y− x) so y− x = kmn for k ∈ Z. That

means

y − x = m(kn)⇒ y ≡ x mod m and y − x = n(km)⇒ y ≡ x mod n,

meaning σ is well-defined.

Claim 2: σ is an additive homomorphism. To show this, let x, y ∈ Z. Then

σ((x+mnZ) + (y +mnZ)) = σ(x+ y +mnZ)
= (x+ y +mZ, x+ y + nZ)
= (x+mZ, x+ nZ) + (y +mZ, y + nZ)
= σ(x+mnZ) + σ(y +mnZ).

Claim 3: σ is a multiplicative homomorphism.
To show this, let x, y ∈ Z. Then

σ((x+mnZ)(y +mnZ)) = σ(xy +mnZ)
= (xy +mZ, xy + nZ)
= (x+mZ, x+ nZ)(y +mZ, y + nZ)
= σ(x+mnZ)σ(y +mnZ).

Claim 4: σ is onto.
To show this, let (a+mZ, b+ nZ) be an arbitrary element of Z/mZ× Z/nZ. By

Bezout’s Theorem, there are integers k, l such that

km+ ln = 1.
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In particular, this means km+ nZ = 1 + nZ and ln+mZ = 1 +mZ. Now, consider
x = bkm+ aln+mnZ ∈ Z/(mn)Z.

σ(x) = (bkm+ aln+mZ, bkm+ aln+ nZ)
= (aln+mZ, bkm+ nZ)
= (a1 +mZ, b1 + nZ)
= (a+mZ, b+ nZ).

Claim 5: σ is 1− by the Pigeonhole Principle (since Z/(mn)Z and Z/mZ×Z/nZ
both have cardinality mn, any surjection between the sets is automatically a bijec-
tion).

Claims 1-5 show σ is a ring isomorphism. �

Application: Suppose we want to solve the system of congruences{
x ≡ 3 mod 10
x ≡ 5 mod 7 .

The Chinese Remainder Theorem says that this system has a unique solution
mod 70, and to find the solution, you can use the method we used to prove Claim
4 in the Chinese Remainder Theorem: first, write gcd(10, 7) as a linear combination
of 7 and 10:

10 = 1 · 7 + 3
7 = 2 · 3 + 1
3 = 3 · 1 + 0⇒ gcd(10, 7) = 1

1 = 7− 2(3) = 7− 2(10− 1 · 7) = 3 · 7− 2 · 10 = −2(10) + 3(7)
In the context of the proof of Claim 4, that means k = −2 and l = 3. The solution
to the system of congruences is therefore

x = bkm+ aln+mnZ = 5(−2)(10) + 3(3)(7) + 10(7)Z = −37 + 70Z = 33 + 70Z.

Corollary 6.6 Let φ be the Euler phi function. If gcd(m,n) = 1, then φ(mn) =
φ(m)φ(n).

PROOF Recall that φ(mn) is the number of units in Z/(mn)Z.
Observe that (u+mZ, v+nZ) is a unit in Z/mZ×Z/nZ if and only if u+mZ is a

unit in Z/mZ and v+nZ is a unit in Z/nZ, so the number of units in Z/mZ×Z/nZ
is φ(m)φ(n).

Since Z/(mn)Z ∼= Z/mZ × Z/nZ, these two rings have the same number of
units (since units are preserved by ring homomorphisms). The corollary follows.
�
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6.3 Ring homomorphisms
It turns out that even if a would-be isomorphism isn’t bijective, it still has value,

so we give such a map another name:

Definition 6.7 Let (R,+, ·) and (R′,+, ·) be rings. A function σ : R→ R′ is a ring
homomorphism if, for any x, y ∈ R, we have

1. σ preserves addition, i.e. σ(x+ y) = σ(x) + σ(y); and

2. σ preserves multiplication, i.e. σ(xy) = σ(x)σ(y).

If σ : R→ R′ preserves + and ·, lots of other stuff comes for free:

Lemma 6.8 (Properties of ring homomorphisms) Let σ : R → R′ be a ring ho-
momorphism. Let x ∈ R. Then:

1. σ preserves additive identities, i.e. σ(0) = 0;

2. σ preserves additive inverses, i.e. σ(−x) = −σ(x);

3. If σ is nontrivial, then σ preserves multiplicative identities, i.e. σ(1) = 1;

4. If σ is nontrivial, then σ preserves units, i.e. if x is a unit in R, then σ(x) is a
unit in R′.

PROOF (1): Let x ∈ R. Since σ is a ring homomorphism,

σ(x) = σ(0 + x) = σ(0) + σ(x).

By the cancellation law (in R′), σ(0) = 0.

(2): Let x ∈ R. Since σ is a ring homomorphism,

Therefore σ(−x) must equal −σ(x) by uniqueness of additive inverses (in R′).

(3) is a HW problem.

(4): Suppose x ∈ R is a unit. Thus there is y ∈ R such that xy = 1. Then

1 = σ(1) = σ(xy) = σ(x)σ(y)

so σ(x) divides 1 in R′, i.e. σ(x) is a unit in R′. �
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Standard examples of ring homomorphisms

Zero homomorphism: Let R and R′ be any two rings, and define σ : R → R′ by
σ(x) = 0 for all x ∈ R. σ is a ring homomorphism.

Identity map: Let R be a ring. Then IR : R → R defined by IR(x) = x is a ring
homomorphism.

Evaluation maps: Let F be a field, and let α ∈ F . Then σ : F [x] → F defined by
σ(f) = f(α) is a ring homomorphism.

Quotient maps (integer setting): Let n ∈ Z be nonzero. Then σ : Z → Z/nZ
defined by σ(x) = x+ nZ is a ring homomorphism.

Quotient maps (polynomial setting): Let F be a field and let l ∈ F [x] be nonzero.
Then σ : F [x] → F [x]/lF [x] defined by σ(f) = f + lF [x] is a ring homomor-
phism.

Compositions of homomorphisms: Let R,R′ and R′′ be rings. If σ : R → R′ and
τ : R′ → R′′ are ring homomorphisms, then so is τ ◦ σ : R→ R′′ (HW).

Conjugation (on C): σ : C→ C defined by σ(z) = z is a ring homomorphism.

(This is Example D from earlier in this chapter.)

Kernels of homomorphisms

Definition 6.9 Let σ : R→ R′ be a ring homomorphism, and let 0 denote the additive
identity element of R′. The kernel of σ, denoted ker(σ), is the set

ker(σ) = {x ∈ R : σ(x) = 0}.

Example C (from earlier): σ : Z/6Z→ Z/2Z defined by σ(x+ 6Z) = x+ 2Z.
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Example D (from earlier): σ : C→ C defined by σ(z) = z.

Example B (from earlier): quotient map σ : Z→ Z/nZ

Since the identity of Z/nZ is 0 + nZ,

ker(σ) = {x ∈ Z : σ(x) = 0 + nZ} = nZ.

Lemma 6.10 (Properties of kernels) Let σ : R→ R′ be a ring homomorphism. Let
0 denote the additive identity element of R. Then:

1. 0 ∈ ker(σ);

2. ker(σ) = {0} if and only if σ is injective;

3. if x, y ∈ ker(σ), then x+ y ∈ ker(σ);

4. if x ∈ ker(σ), then xy ∈ ker(σ) for any y ∈ R.

PROOF (1) follows from (1) of Lemma 6.8.

(2): (⇒) Suppose ker(σ) = {0}. Now suppose x, y ∈ R are such that σ(x) = σ(y).
Consider σ(x − y) = σ(x) − σ(y) = 0. This means x − y ∈ ker(σ), so x − y = 0, so
x = y. That means σ is injective.

(⇐) Suppose ker(σ) 6= {0}; that means there is k 6= 0 belonging to ker(σ). Thus
σ(0) = σ(k) so σ is not injective. By contraposition, we are done with (2).

(3): Suppose x, y ∈ ker(σ). That means σ(x) = 0 and σ(y) = 0. Thus

σ(x+ y) = σ(x) + σ(y) = 0 + 0 = 0

so x+ y ∈ ker(σ) as wanted.

(4) is a HW problem (it is similar to (3)). �

Note: A surjective ring homomorphism is a ring isomorphism iff its kernel is {0}.
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Quotient rings

Definition 6.11 Let σ : R→ R′ be a ring homomorphism. Define the relation ≡σ on
R by

x ≡σ y ⇔ σ(x) = σ(y).

Prototype example: σ : Z → Z/nZ defined by σ(x) = x + nZ. Then ≡σ is the
relation of equivalence modulo n discussed in detail in Chapter 2.

Lemma 6.12 Let σ : R → R′ be a ring homomorphism. Then ≡σ is an equivalence
relation, and the equivalence class of x ∈ R is

x+ ker(σ) = {x+ k : k ∈ ker(σ)}.

PROOF First, we prove ≡σ is an equivalence relation:

• σ(x) = σ(x) obviously, so ≡σ is reflexive.

• If σ(x) = σ(y), then σ(y) = σ(x), so ≡σ is symmetric.

• If σ(x) = σ(y) and σ(y) = σ(z), then clearly σ(x) = σ(z), so ≡σ is transitive.

Second, let x, y ∈ R. Then

y ≡σ x⇔ σ(x) = σ(y)
⇔ σ(y)− σ(x) = 0
⇔ σ(y − x) = 0
⇔ y − x ∈ ker(σ)
⇔ y = x+ k for k ∈ ker(σ)
⇔ y ∈ x+ ker(σ). �

Example B (from earlier): σ : Z→ Z/nZ quotient map; ker(σ) = nZ

Example D (from earlier): σ : C→ C defined by σ(z) = z; ker(σ) = {0}
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Example C (from earlier): σ : Z/6Z → Z/2Z defined by σ(x + 6Z) = x + 2Z;
ker(σ) = {0 + 6Z, 2 + 6Z, 4 + 6Z}.

Theorem 6.13 Let σ : R→ R′; denote the set of≡σ-equivalence classes byR/ ker(σ).
This set is called a quotient ring (of R by ker(σ)). R/ ker(σ) is a ring, where the
addition and multiplication are defined as follows:

(x+ ker(σ) + (y + ker(σ)) = (x+ y) + ker(σ)

(x+ ker(σ)(y + ker(σ)) = xy + ker(σ)

In particular, the additive identity of R/ ker(σ) is 0 + ker(σ) and the multiplicative
identity of R/ ker(σ) is 1 + ker(σ).

PROOF The main thing to prove is that this addition and multiplication are well-
defined. These proofs are essentially the same as the proofs that + and · are
well-defined on Z/nZ (Chapter 2) and are left as HW. The ring axioms need to
be checked, but they all hold. �.

So what?
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Theorem 6.14 (First Isomorphism Theorem) Let σ : R→ R′ be a surjective ring
homomorphism. Then

R/ ker(σ) ∼= R′.

PROOF Define τ : R/ker(σ)→ R′ by

τ(x+ ker(σ)) = σ(x).

Claim 1: τ is well-defined.
To show this, suppose x+ ker(σ) = y + ker(σ). Then x− y ∈ ker(σ), so

0 = σ(x− y) = σ(x)− σ(y).

Thus τ(x+ ker(σ)) = σ(x) = σ(y) = τ(y + ker(σ)), so τ is well-defined.

Claim 2: τ is an additive homomorphism.
To show this, let x, y ∈ R. Then

τ((x+ ker(σ)) + (y + ker(σ))) = τ(x+ y + ker(σ))
= σ(x+ y)
= σ(x) + σ(y)
= τ(x+ ker(σ)) + τ(y + ker(σ)).

Claim 3: τ is a multiplicative homomorphism.
To show this, let x, y ∈ R. Then

τ((x+ ker(σ))(y + ker(σ))) = τ(xy + ker(σ))
= σ(xy)
= σ(x)σ(y)
= τ(x+ ker(σ))τ(y + ker(σ)).

Claim 4: τ is onto. To show this, let y ∈ R′. Since σ is surjective, there is x ∈ R
such that σ(x) = y. Thus τ(x+ ker(σ)) = σ(x) = y so τ is onto.

Claim 5: τ is 1− 1. To show this, suppose x+ ker(σ) ∈ ker(τ). Thus σ(x) = 0 so
x ∈ ker(σ) so x+ ker(σ) = 0 + ker(σ). Thus ker(τ) = {0 + ker(σ)}, so τ is 1− 1.

Claims 1-5 show that σ is a ring isomorphism. �
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Corollary 6.15 Let F be a number field and let α be algebraic over F . Let h ∈ F [x]
be a minimal polynomial for α (i.e. an irreducible polynomial such that h(α) = 0).
Then

F [x]/hF [x] ∼= F (α).

PROOF Define σ : F [x] → F (α) by σ(f) = f(α). σ is an evaluation map, hence a
ring homomorphism. By Theorem 5.18, σ is onto (this theorem says that

{1, α, α2, ..., αn−1}

spans F (α)). Therefore, this result follows from the First Isomorphism Theorem if
we can show ker(σ) = hF [x]. We show this here:

f ∈ ker(σ)⇔ f(α) = 0
⇔ f = hq (by the General Factor Theorem from Chapter 4)
⇔ f ∈ hF [x]. �

Theorem 6.16 (Conjugation Theorem) Suppose α, β ∈ C are algebraic over num-
ber field F . TFAE:

1. α and β are roots of the same irreducible polynomial h ∈ F [x].

2. There is a field isomorphism σ : F (α)→ F (β) with σ(α) = β and σ(x) = x for
all x ∈ F .

PROOF (⇒) The preceding corollary says

F (α) ∼= F [x]/hF [x] ∼= F (β)

via evaluation maps which send elements as follows:

α ←[ x+ hF [x] 7→ β

If c ∈ F , then the maps work like this:

c ←[ c+ hF [x] 7→ c

By composition, we get the isomorphism σ with the appropriate properties.
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(⇐) Suppose there exists an isomorphism σ with the appropriate properties
given in (2). Let h be a minimal polynomial for α over F ; then h(α) = 0. Applying
σ to both sides of this equation, we get

0 = σ(h(α)) = h(σ(α)) = h(β)

proving the theorem. �

Application: The map σ : Q( 3
√

2)→ Q(ζ3
3
√

2) defined by σ(x) = x for all x ∈ Q
and σ( 3

√
2) = ζ3

3
√

2 is an isomorphism.

Application: The only isomorphism σ : Q( 3
√

2)→ Q( 3
√

2) is the identity map.

Theorem 6.17 (Isomorphism Extension Theorem) Let F, F ′ be fields. Then any
field isomorphism σ : F → F ′ extends to a (ring) isomorphism σ : F [x] → F ′[x] by
setting σ(x) = x.

PROOF This involves checking isomorphism properties, which is straight-forward
but tedious, so I won’t do it here. See page 94 of Stillwell for the details.
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6.4 Automorphisms
Definition 6.18 Let (R,+, ·) be a ring. A ring isomorphism σ : R → R is called an
automorphism of R. The set of automorphisms of R is denoted Aut(R).

Example: Aut(Q) = {IQ} (earlier HW).

Example: Aut(R) = {IR} (essentially the same proof as for Q).

Example: Aut(C) 3 {IC, σ}where σ(z) = z. Are there other automorphisms?

Theorem 6.19 (Group properties of automorphisms) Let R be a ring. Then:

Aut(R) is closed under composition: If σ, τ ∈ Aut(R), then σ ◦ τ ∈ Aut(R).

Aut(R) contains an identity: The identity function IR ∈ Aut(R) (where IR(x) =
x for all x ∈ R).

Aut(R) is closed under inverses: If σ ∈ Aut(R), then σ−1 ∈ Aut(R).

WARNING: There is no reason to believe that Aut(F ) is commutative under
composition.

Theorem 6.20 (Automorphism Extension Theorem) LetF be a number field and
let α be algebraic over F . Then any σ ∈ Aut(F ) extends to an automorphism σ of
F (α) by setting σ(α) = α.

PROOF This involves checking isomorphism properties, which is straight-forward
but tedious, so I won’t do it here. See page 94-95 of Stillwell for the details.
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Chapter 7

Groups

7.1 An update on the big picture
One of our motivating problems from the first week of the course was solving poly-
nomial equations. More specifically, we want to describe the roots of polynomial p
where p ∈ Q[x]. Here’s what we know now:

In general

Let F be any field, and let p ∈ F [x]. The equation p(x) = 0 has at most deg p
solutions. By the Factor Theorem, x0 ∈ F is a root of p ∈ F [x] if and only if

(x− x0) | p(x).

If p ∈ Q[x], then every solution of such an equation belongs to the algebraic closure
Q̂ of Q, which is a countable subfield of C. The degree of any root of p over Q is at
most deg p.

The Fundamental Theorem of Algebra guarantees that if p ∈ C[x], then p has a root
in C (so it has exactly p roots, counting multiplicities).

If p ∈ R[x], then for any complex root z of p, the conjugate z must also be a root.

π is transcendental over Q, meaning it is not a root of any polynomial p ∈ Q[x].

Linear equations

Let F be any field. If p ∈ F [x] has degree 1, then every equation p(x) = 0 has
exactly one solution in F . This solution is obtainable with only the operations
+,−, ·,÷.
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Quadratic equations

Let F be any number field. Then for any p ∈ F [x] which has degree 2, the roots of
p either:

• belong to F , in which case p is reducible over F ; or

• belong to the same 2-dimensional extension E of F , in which case p is ir-
reducible over F and both roots of p have degree 2 over F . Furthermore,
there is an automorphism of E which sends every element of F to itself and
interchanges the two roots of p.

Any quadratic equation whose coefficients belong to C is solvable via the quadratic
formula using +,−, ·,÷,√ , and all these operations are actually necessary to solve
an arbitrary quadratic equation (as an example, x2 − 2 = 0 has no solution in the
rationals).

More generally, any constructible (a.k.a. surd) number must have degree 2m over
Q for some natural number m. This means, for instance:

• 3
√

2 is not surd, i.e. doubling the cube is not possible;

• π is not constructible, i.e. squaring the circle is not possible;

• cos 20◦ is not surd, i.e. trisecting a 60◦ angle is not possible;

• if p is a prime such that p− 1 is not a power of 2, then cos 2π
n

is not surd, and
therefore the regular p-gon is not constructible.

Cubic equations

Let F be any number field. Then for any p ∈ F [x] with deg p = 3, the roots of p
have degree at most 3 over F . There are two disjoint possibilities:

• If there is a root of p whose degree is less than 3, then p is reducible over f ,
and p must have a root in F .

• Otherwise, p is irreducible over F , all roots of p have degree 3 over F , and
each root belongs to a 3-dimensional extension of F (different roots might
not lie in the same 3-dimensional extension, however).

Cubic equations whose coefficients belong to C can be solved using the cubic
formula of del Ferro and Tartaglia using +,−, ·,÷,√ , 3

√ , and these operations are
all actually necessary to solve arbitrary cubic equations (as an example, x3 − 2 = 0
has root 3

√
2 which is not surd).
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Quartic equations

Let F be any number field. Then for any p ∈ F [x] with deg p = 4, the roots of p
have degree at most 4 over F . There are two disjoint possibilities:

• p has a root in F , in which case p factors over F into a linear term and a cubic
(the cubic can be studied by the methods above).

• p is reducible over F but has no root in F . In this case, p factors over F into
two irreducible quadratics, and the four roots of p all have degree 2 over F .

• p is irreducible over F , all roots of p have degree 4 over F , and each belongs
to a 4-dimensional extension of F .

Quartic equations whose coefficients belong to C can be solved using the “quar-
tic formula” (a method similar to that of del Ferro and Tartaglia) using the oper-
ations +,−, ·,÷,√ , 3

√ (you don’t need 4
√ only because 4

√ =
√√ ), and these

operations are all actually necessary to solve arbitrary quartic equations.

Quintic equations (and beyond)

Let F be any number field. Then for any p ∈ F [x] with deg p = 5, the roots of
p have at most 5 over F . If p is reducible, then we can analyze each factor of p
separately by the above cases. But if p is irreducible, we don’t know very much.
We are interested in the following questions:

• Is an arbitrary quintic solvable by radicals?

• Is there a “quintic formula”?

• If so, what is it and what operations does it use?

• If not, why not?

Strategy

Take polynomial p ∈ Q[x] and consider the equation p(x) = 0. This equation has at
most deg p solutions in C.

Then, make a new field by adjoining the roots of p to Q; call this field F .

New idea: look at the set Aut(F ) of automorphisms of F . It turns out that this set
has some algebraic structure which can be interpreted geometrically as the sym-
metries of some figure. This translates back into information about when and why
you can (or can’t) solve a polynomial equation by radicals.
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7.2 What is a group?
We are aiming for an algebraic structure on Aut(F ), where F is some field. Un-

like rings and fields (where there are two natural operations + and ·, there’s only
one natural operation on Aut(F ).

The elements of Aut(F ) are

and the only thing you know can do with these types of objects to obtain an-
other element of Aut(F ) is

Definition 7.1 (Definition of group) An algebraic system (G,�) is called a group
if it has the following four properties:

G is closed under �: If x, y ∈ G, then x� y ∈ G.

� is associative: If x, y, z ∈ G, then (x� y)� z = x� (y � z).

� has an identity: There is an element e = eG ∈ G such that for all x ∈ G, e� x =
x� e = x.

Elements of G have inverses under �: For any x ∈ G, there is an element x−1 ∈
G such that x−1 � x = x� x−1 = e.

The operation � is called the composition rule for the group.

Definition 7.2 Let G be a group. The number of elements of G is called the order of
G and is denoted |G|.

Look back at Theorem 6.19 for some motivation as to where these properties
come from. By that theorem, the set of automorphisms of any field form a group
under composition.

With groups, we tend to write the composition rule � without using any sym-
bol. So instead of writing

g � h or g + h or g · h or g ◦ h,

we just write gh.

WARNING: Nothing in the definition of group requires that the composition
law is commutative, so in general, in group G,

gh 6= hg.
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Definition 7.3 Let G be a group. If the operation � is commutative (i.e gh = hg for
all g, h ∈ G), we say that (G,�) is an abelian group.

The word “abelian” is in honor of the Norwegian mathematician Niels Abel.

When performing group operations, we write g2 for gg, and g5 means ggggg,
etc. What does g−3 mean?

So a group is abelian if gh = hg for all g, h ∈ G. But in general, gh 6= hg in a
group.

The notation “gh” for the composition rule of a group can be confusing, be-
cause sometimes “composition” really means addition or multiplication. See the
chart below:

IF THE BINARY WHEN WE WHEN WE WHEN WE THE IDENTITY
OPERATION IN WRITE “gh”, WRITE “g4”, WRITE “g−1”, ELEMENT e

THE GROUP IS ... WE MEAN... WE MEAN... WE MEAN... MEANS...

addition
+

multiplication
·

composition of
functions ◦

Remark: Remember that you compose functions from right to left. So if you
write gh where g, h ∈ G, you should think of doing h first, then g.
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Properties of groups

Theorem 7.4 (Properties of groups) Let G be a group. Then:

Identity is unique: there is only one identity element of G.
Inverses are unique: for any g ∈ G, there is only one element g−1 ∈ G which is an

inverse of g.

Inverse of the identity is the identity: e−1 = e.
Inverse of an inverse: for any g ∈ G, (g−1)−1 = g.
Inverse of a product: for any g, h ∈ G, (gh)−1 = h−1g−1.

Left cancellation law: if gh = gk, then h = k.
Right cancellation law: if hg = kg, then h = k.
Abelian cancellation law: if G is abelian and gh = kg or hg = gk, then h = k.

Left or right inverse must be an inverse: gh = e if and only if hg = e if and only
if h = g−1.

Exponent rules: if g ∈ G and m,n ∈ Z, then gmgn = gm+n and (gm)n = gmn.

PROOF For the first statement, suppose there are two identity elements e and e′.
Then

ee′ =
{
e since e′ is an identity
e′ since e is an identity

Thus e = e′, meaning there is only one identity element.

Uniqueness of inverses is a HW problem.

Third, ee = e so e = e−1.

Fourth, gg−1 = g−1g = e since g−1 is an inverse of g, so g is the inverse of g−1.

Fifth, by applying associativity, (gh)(h−1g−1) = ghh−1g−1 = geg−1 = gg−1 = e,
so h−1g−1 is the inverse of gh as wanted.

For the left cancellation law, suppose gh = gk. Multiply both sides of this
equation on the left by g−1 to get

g−1gh = g−1gk,

i.e. h = k as wanted. For the right cancellation law, multiply both sides of the
equation on the right by g−1. If G is abelian, then either of the given equations
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gh = kg or hg = gk are equivalent to gh = gk, from which the left cancellation law
can be applied to give h = k.

Suppose gh = e. Then gh = gg−1 so by the left cancellation law, h = g−1. Simi-
larly, if hg = e = g−1g, by the right cancelllation law h = g−1.

Last, the exponent rules are obvious by associativity. �

Application: in a group G, you can always solve gx = h and xg = h for x:

Example of a group: (Z,+). This is an abelian group, because addition on Z is
commutative.

This is a terrible example to start with, because

(1) (Z,+) is abelian, whereas most groups aren’t, and

(2) the elements of Z are numbers that are added under the group operation, and
really, you should think of a group as being comprised of functions being composed
under the group operation.

How can you think of Z as as being a collection of functions?
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Group or not a group?

Exercise: Recall that a group is an algebraic system where:
1. the set is closed under the operation;
2. the operation is associative;
3. the operation has an identity; and
4. every element in the set has an inverse under the operation.
Decide whether each of the algebraic systems below comprises a group (no

proofs needed). If the system isn’t a group, explain which of the four items above
fails:

1. (Z, ·)

2. (2Z,+)

3. (Z/8Z,+)

4. (Z,−)

5. (M2(R), matrix addition)

6. (M2(R), matrix multiplication)

7. ((0,∞), ·)

8. (Q,+)

9. (Q, ·)

10. (GL2(R), matrix addition)
Notation: GL2(R) is the set of 2× 2 invertible matrices with real entries.

11. (GL2(R), matrix multiplication)

12. (2E,∪)

13. (2E,4)

181



7.2. What is a group?

Subgroups

Definition 7.5 Let G be a group. A subset H ⊆ G is called a subgroup of G if it
is itself a group under the same operation as G. Since H is automatically associative,
this means H has to satisfy three things:

H contains the identity: e ∈ H .

H is closed under the composition rule: For any h1, h2 ∈ H , h1h2 must be inH .

H is closed under inverses: If h ∈ H , then h−1 ∈ H .

If H is a subgroup of G, we write H ≤ G. If H is a subgroup of G which is not equal
to all of G, we write H < G and call H a proper subgroup of G.

Example: Let G = (Z,+) and let H be the set of odd numbers. Is H a subgroup
of G?

Example: LetG = (Z,+) and letH be the set of perfect squares. IsH a subgroup
of G?

Example: Let G = (Z,+) and let H be the set of positive numbers. Is H a
subgroup of G?

Example: LetG = (Z,+) and letH be the set of even numbers. IsH a subgroup
of G?

Every groupG has at least two subgroups: {e} andG itself. These are called trivial
subgroups of G; a nontrivial subgroup of G is a subgroup H with {e} < H < G.
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HOW TO PROVE H is a subgroup of G:

0. If it’s not obvious, prove H ⊆ G.
(Usually this is obvious or given and can be omitted.)

1. ... (logical argument) ... e ∈ H .
(this shows H contains the identity)

2. Let h1, h2 ∈ H . ... (logical argument) ... Therefore h1h2 ∈ H .
(this shows H is closed under the composition rule)

3. Let h ∈ H . ... (logical argument) ... Therefore h−1 ∈ H .
(this shows H is closed under inverses)

Therefore H ≤ G. �

HOW TO PROVE H is NOT a subgroup of G:

Do any one of the following things:
0. Write down an element of H that isn’t in G.

1. Prove that e /∈ H .
2. Write down two explicit elements of H whose composition is

not in H .

3. Write down an explicit element of H whose inverse is not in H .

Example: Determine, with proof, whether or not 7Z = {7n : n ∈ Z} is a sub-
group of (Z,+).
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Group homomorphisms and isomorphisms

Definition 7.6 Let G and G′ be groups. A map σ : G → G′ is called a (group)
homomorphism if for every g1, g2 ∈ G,

σ(g1g2) = σ(g1)σ(g2).

A group homomorphism that is also a bijection is called a (group) isomorphism; if
there is a group isomorphism σ : G→ G′ we say G and G′ are isomorphic and write
G ∼= G′. An invariant is a property of a group that is preserved under isomorphism.

As with isomorphic rings and fields, two isomorphic groups should be thought
of as being “the same group expressed in a different language”.

Theorem 7.7 (Properties of group homomorphisms) Let σ : G→ G′ be a group
homomorphism. Then:

1. σ preserves identities, i.e. σ(eG) = eG′ ;
2. σ preserves inverses, i.e. σ(g−1) = [σ(g)]−1 for all g ∈ G;
3. σ preserves subgroups, i.e. if H ≤ G, then σ(H) ≤ G′.

PROOF (1): Let g ∈ G. Then

σ(g) = σ(eGg) = σ(eG)σ(g).

By the right cancellation law, eG′ = σ(eG) as wanted.

For (2), let g ∈ G. Then:

eG′ = σ(eG) = σ(gg−1) = σ(g)σ(g−1).

Left-multiply both sides of this equation by [σ(g)]−1 to get [σ(g)]−1 = σ(g−1).

The last statement is a HW problem (you have to prove 1 ∈ σ(H), that σ(H) is
closed under composition, and that σ(H) is closed under inverses). �

Kernels, quotient groups and the First Isomorphism Theorem for groups

The stuff we did in the previous chapter for rings carries over to groups:

Definition 7.8 Let σ : G→ G′ be a group homomorphism. The kernel of σ, denoted
ker(σ), is the set of elements which map to the identity under σ:

ker(σ) = {g ∈ G : σ(g) = e}.

184



7.2. What is a group?

Theorem 7.9 Let σ : G→ G′ be a group homomorphism. Then ker(σ) is a subgroup
of G.

PROOF First, σ(eG) = eG′ so eG ∈ ker(σ).
Second, suppose h1, h2 ∈ ker(σ). That means σ(h1) = e and σ(h2) = e. Then

σ(h1h2) = σ(h1)σ(h2) = ee = e so h1h2 ∈ ker(σ).
Last, suppose h ∈ ker(σ). σ(h−1) = (σ(h))−1 = e−1 = e so h−1 ∈ ker(σ). Thus

ker(σ) ≤ G. �

Lemma 7.10 Let σ : G→ G′ be a group homomorphism. σ is injective if and only if
ker(σ) = {e}.

PROOF HW

Theorem 7.11 Let σ : G → G′ be a group homomorphism. Define a relation ≡σ
on G by setting g1 ≡σ g2 if σ(g1) = σ(g2). This is an equivalence relation, and the
equivalence classes are sets

g ker(σ) = {gk : k ∈ ker(σ)}.

Denote the set of equivalence classes under ≡σ by G/ ker(σ), and define an operation
on G/ ker(σ) by

(g1 ker(σ))(g2 ker(σ)) = g1g2 ker(σ).

Then G/ ker(σ) is a group.

PROOF Essentially, this is the same proof as what was given in the context of rings
in the preceding chapter. There is a catch, however, which we will dive more
deeply into later when we discuss normal subgroups in Section 7.6.

Theorem 7.12 (First Isomorphism Theorem) Let σ : G → G′ be a surjective
group homomorphism. Then

G/ ker(σ) ∼= G′.

PROOF As with the First Isomorphism Theorem for rings, you define τ : G/ ker(σ)→
G′ by τ(g ker(σ)) = σ(τ). This map is well-defined, is a group homomorphism, and
is a bijection, applying arguments that are essentially the same as those given for
rings. �
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HOW TO PROVE σ : G→ G′ is a group homomorphism:

Let g1, g2 ∈ g.
σ(g1g2) = ... = something.
σ(g1)σ(g2) = ... = the same something as above.

Therefore σ is a group homomorphism.

(To show σ is an isomorphism, first prove that it is a

homomorphism, then prove σ is surjective and injective.)

Example: Determine, with proof, whether or not the function σ : (Z,+) →
(7Z,+) defined by σ(x) = 14x is a group homomorphism. (Is σ injective? Is σ an
isomorphism?)
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7.3 Examples of groups
1. Automorphism groups

Let F be a field. Then Aut(F ) is a group under the operation of composition of
functions.

Why are Aut(F ) important examples of groups? Two reasons:

1.

2. Cayley’s Theorem, which says that every group is isomorphic to a set of
functions under composition:

Theorem 7.13 (Cayley’s Theorem) Every group G is isomorphic to a set G′ of bi-
jections from G to itself, where the group operation on G′ is composition of functions.

PROOF Let ψg : G→ G be the function ψg(x) = xg. This is a bijection of G, because
its inverse is

(ψg)−1 = ψg−1 .

Now consider the set
G′ = {ψg : g ∈ G};

this is a group under composition since

ψgh = ψg ◦ ψh.

Now consider the function σ : G→ G′ given by σ(g) = ψg. First,

σ(gh) = ψgh = ψgψh = σ(g)σ(h).

so σ is a group homomorphism. Now, suppose g ∈ ker(σ). That means σ(g) = ψg
is the identity function, so xg = x for all x ∈ G. By the left cancellation law, that
means g = e. This proves ker(σ) = {e}, so σ is injective. Clearly σ is onto, because
for any ψg ∈ G′, σ(g) = ψg. Therefore σ is a group isomorphism between G and G′.
�
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2. Additive groups of rings; cyclic groups

Let R be a ring. Then (R,+) is an abelian group called the additive group of R,
where the identity element is e = 0 and the inverse “x−1” of x is −x.

Note: any ring homomorphism (isomorphism) σ : R → R′ automatically is a
group homomorphism (isomorphism) σ : (R,+)→ (R′,+).

Specific examples in this context: (Z,+); (Q,+); (R,+); (C,+); (Z/nZ,+).

Some additive groups of rings have extra structure:

Definition 7.14 A group G is called cyclic if there is an element g ∈ G such that
every element of G is of the form gn for some n ∈ Z. For any element g such that
G = {gn : n ∈ Z}, we say g generates G, and write G = <g>.

So a cyclic group must look like:

Theorem 7.15 Every infinite cyclic group is isomorphic to (Z,+). Every finite cyclic
group is isomorphic to (Z/nZ,+).

PROOF Let G be a cyclic group. Then ∃ g ∈ G such that G = {gk : k ∈ Z}. Now
define σ : Z→ G by σ(k) = gk.

σ(k + l) = gk+l = gkgl = σ(k)σ(l)

so σ is a group homomorphism. Since G is cyclic, σ is surjective. Thus, by the First
Isomorphism Theorem, G ∼= Z/ ker(σ). If σ is injective, we have G ∼= Z. If σ is not
injective, then ker(σ) is a subset of Z, containing {0}, closed under addition. Thus
ker(σ) = nZ for some n ∈ Z (HW from Chapter 2), and by the First Isomorphism
Theorem G ∼= Z/nZ as wanted. �

Corollary 7.16 Every cyclic group is abelian.

Application: Consider the set {1, ζn, ζ2
n, ..., ζ

n−1
n } under multiplication. This is a

cyclic group of order n, so it is isomorphic to (Z/nZ,+).
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3. Units of a ring, under multiplication

Let R be a ring. Let R× be the set of elements of R that are units. Then (R×, ·) is a
group under the ring multiplication called the multiplicative group of R or group
of units of R, where the identity element is e = 1 and the inverse of x ∈ R× is its
reciprocal.

Example: (Z/6Z)×

4. The trivial group

Let G = {e} with binary operation ee = e. This forms a group, called the trivial
group. The order of this group is 1, and this is the only group of order 1.

P.S. the trivial group is the group of units in Z/2Z.

5. Products of groups

Theorem 7.17 Let G1 and G2 be groups. Then G1 ×G2 is a group, where the group
operation is defined coordinate-wise by

(g1, g2)(h1, h2) = (g1h1, g2h2).

PROOF HW

Example: By the Chinese Remainder Theorem, if gcd(m,n) = 1, then

(Z/mZ× Z/nZ,+) ∼= (Z/(mn)Z,+).

So Z/12Z ∼= Z/3Z× Z/4Z, for example.

What if gcd(m,n) 6= 1? For example, is (Z/4Z,+) ∼= (Z/2Z× Z/2Z,+)?
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Definition 7.18 The Klein 4-group, denoted V , is (Z/2Z × Z/2Z,+). V is the
smallest non-cyclic group.

Lemma 7.19 The only groups of order 4 (up to isomorphism) are (Z/4Z,+) and the
Klein 4-group V .

PROOF HW (later on)

Definition 7.20 Let G be a group and let g ∈ G. If there is a positive n ∈ N such
that gn = e, then we say g has finite order (in G) and we call the smallest positive n
such that gn = e the order of g (in G).

The crux of the argument on the previous page is that the order of any element
is preserved by isomorphism, so if for some k, one group has a different number of
elements of order k than a second group has, the two groups cannot be isomorphic.

Lemma 7.21 Let G be a group. The only element of order 1 in G is the identity e.

Corollary 7.22 Every group of order 2 is isomorphic to (Z/2Z,+).

PROOF HW

Example: Aut(C) ∼= (Z/2Z,+).

Corollary 7.23 Let p be prime. Every group of order p is isomorphic to (Z/pZ,+).

PROOF HW (later on)

Example: Find the order of every element in Z/2Z× Z/4Z.

ELEMENT ORDER

e = (0, 0)
(0 + 2Z, 1 + 4Z) = (0, 1)

(0, 2)
(0, 3)

ELEMENT ORDER

(1, 0)
(1, 1)
(1, 2)
(1, 3)
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6. Dihedral groups

Imagine a shape lying flat in a box of the same shape. You can take the shape out
of the box, and if the shape has some symmetry, you can flip over and/or rotate
the shape before putting it back in the box.

The transformations of an object are called its symmetries the symmetries of an
object form a group. More formally,

Definition 7.24 Let S be a geometric figure. A symmetry of S is a function f : S →
S which preserves the distance between any two points in S.

Of particular importance are the symmetries of regular polygons:

Definition 7.25 Let n ≥ 3. The (nth) dihedral group Dn is the set of symmetries of
a regular n-gon, i.e. the set of linear transformations of a plane which send a regular
polygon to itself.

Example: Give notation for the elements of D3 and construct a composition
table for D3.
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Exercise: Give notation for the elements of D4 (Hint: “r” and “f” may be use-
ful), and construct a composition table for D4. Then try to find some nontrivial
subgroups of D4.
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Theorem 7.26 (Properties of dihedral groups) Let Dn be the nth dihedral group.
Then:

• |Dn| = 2n.
• Dn = {e, r, r2, ..., rn−1, f, rf, r2f, ...rn−1f} where r ∈ Dn has order n and
f ∈ Dn has order 2 (if the regular polygon is centered at the origin and has a
vertex on the x-axis, think of r as a counterclockwise rotation by 2π

n
and think of

f as a reflection across the x-axis).
• If n ≥ 3, then Dn is not abelian (in particular fr = rn−1f 6= rf ).
• Dn has a cyclic subgroup {e, r, r2, ..., rn−1} of order n.
• Dn has a cyclic subgroup {e, f} of order 2.

Application: Recall that ζ3 = e2πi/3 and let F = Q( 3
√

2, ζ3). Let’s study F and
Aut(F ):

• 3
√

2 has degree 3 over Q because it is a root of the irreducible polynomial
x3 − 2. So

{1, 3
√

2,
(

3
√

2
)2
}

is a basis for Q( 3
√

2) over Q.

• ζ3 has degree 2 over Q because it is a root of the irreducible polynomial
Φ3(x) = x2 +x+1. This polynomial is also irreducible over Q( 3

√
2), because it

has no real roots and Q( 3
√

2) ⊆ R. Therefore ζ3 has degree 2 over Q( 3
√

2) and

{1, ζ3}

is a basis for Q( 3
√

2)(ζ3) = F over Q( 3
√

2).

• By the Dedekind Product Theorem, dim(F/Q) = 3 · 2 = 6 and

{1, 3
√

2,
(

3
√

2
)2
, ζ3,

3
√

2ζ3,
(

3
√

2
)2
ζ3}

is a basis for F over Q.

• any automorphism of F must be the identity on Q, since Aut(Q) = {IQ}.
Therefore any element of Aut(F ) is determined by its values at 3

√
2 and ζ3.

What can those values be? First, if σ ∈ Aut(F ), what can σ(ζ3) be?
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Second, if σ ∈ Aut(F ), what can σ( 3
√

2) be?

To summarize, these are the six possibilities:

NAME OF σ σ(ζ3) σ( 3
√

2) σ( 3
√

2) σ( 3
√

2ζ3) σ( 3
√

2ζ2
3 )

e ζ3
3
√

2 3
√

2 3
√

2ζ3
3
√

2ζ2
3

ζ3
3
√

2ζ3
3
√

2ζ3
3
√

2ζ2
3

3
√

2

ζ3
3
√

2ζ2
3

3
√

2ζ2
3

3
√

2 3
√

2ζ3

ζ2
3

3
√

2 3
√

2 3
√

2ζ2
3

3
√

2ζ3

ζ2
3

3
√

2ζ3
3
√

2ζ3
3
√

2 3
√

2ζ2
3

ζ2
3

3
√

2ζ2
3

3
√

2ζ2
3

3
√

2ζ3
3
√

2

Notice that each of these automorphisms permutes the set { 3
√

2, 3
√

2ζ3,
3
√

2ζ2
3}.

Let’s graph this set in a complex plane:

This example suggests how we study Aut(F ) in general. We try to find some
“common” group which is isomorphic to Aut(F ) that we know a lot about.
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7.4 Permutation groups
Now we turn to the last class of groups. This class is important because by

Cayley’s Theorem, every finite group is isomorphic to a subgroup of one of these
groups.

Definition 7.27 Let N be a positive integer. The symmetric group on N letters,
denoted SN or Sym(N) or S(N), is the set of all bijections of the set {1, 2, ..., N}.
(This set forms a group under composition of functions.) Elements of SN are called
permutations (of {1, ..., N}).

Exercise: List all the elements of S2:

Exercise: List all the elements of S3:

Exercise: Construct a composition table for S3:
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Question: What is the order of SN? We’ve seen |S2| = 2 and |S3| = 6.

Inconvenient notation for permutations that is sometimes used: Suppose σ ∈
S5 is σ(1) = 2; σ(2) = 4; σ(3) = 3; σ(4) = 1. Then we can write:

We’d like more efficient notation for permutations, and we turn to that issue
next.

Cycles

Definition 7.28 Let σ ∈ SN be a permutation. If there is a subset {a1, a2, ..., ak} of
{1, ..., N} such that

σ(x) =


ak+1 if x ∈ {a1, a2, ..., ak−1}
a1 if x = ak
x if x /∈ {a1, ..., ak}

,

then σ is called a cycle (of length k) (or a k-cycle) and we write

σ =
(
a1 a2 a3 · · · ak

)
.

Two cycles σ, τ ∈ SN are called disjoint if their corresponding sets {a1, ..., ak} in
this definition are disjoint.

A 2-cycle
(
a1 a2

)
is also called a transposition.

Note: The cycles (3 5 8) and (5 8 3) are the same, because they both represent a
permutation that does this:

But neither (3 5 8) nor (5 8 3) are equal to (3 8 5):
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Example: Let σ ∈ S6 be σ =
(

1 2 3 4 5 6
3 2 6 1 5 4

)
. Write σ in cycle notation.

Example: Let τ ∈ S6 be τ =
(

1 2 3 4 5 6
1 2 5 4 3 6

)
. Write τ in cycle notation.

Theorem 7.29 Let σ ∈ SN . Then σ is a product of disjoint cycles.

PROOF Set b1 = 1 and let k1 = min{n ≥ 1 : σn(b1) = b1}. Then define

O1 = {b1, σ(b1), σ2(b1), ..., σk1−1(b1)}

and let σ1 =
(
b1 σ(b1) ... σk1−1(b1)

)
.

If O1 = {1, ..., N}, we are done, since σ = σ1, a cycle. Otherwise, let b2 =
min{n ∈ {1, ..., N} : n /∈ O1} and notice b2 ≥ 2. Now define k2 = min{n ≥ 1 :
σn(b2) = b2} and set

O2 = {b2, σ(b2), σ2(b2), ..., σk2−1(b2)}

and
σ2 =

(
b2 σ(b2) ... σk2−1(b2)

)
.

Notice O1 ∩ O2 = ∅, because if not, σj(b1) = b2 for some j, meaning b2 ∈ O1, a
contradiction. Therefore σ1 and σ2 are disjoint cycles.

At this point, if O1 ∪ O2 = {1, ..., N}, we are done, since σ = σ1σ2, a product of
two cycles. Otherwise, let b3 = min{n ∈ {1, ..., N} : n /∈ O1 ∪ O2}; notice b3 ≥ 3.
Define k3 = min{n ≥ 1 : σn(b3) = b3} and set

O3 = {b3, σ(b3), σ2(b3), ..., σk2−1(b3)}

and
σ3 =

(
b3 σ(b3) ... σk3−1(b3)

)
.

As before, σ3 is disjoint from both σ1 and σ2. Continuing in this fashion, eventually
O1 ∪O2 ∪ · · · ∪Om = {1, ..., N}, and we see that

σ = σ1σ2 · · · σm
as wanted. �
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Remark: Although SN is not abelian, disjoint cycles always commute, so the
order the cycles are written in the previous theorem doesn’t matter, i.e.

(1 2 4)(3 7) = (3 7)(1 2 4).

Example: Let σ ∈ S6 be σ =
(

1 2 3 4 5 6
1 4 6 5 2 3

)
. Write σ in cycle notation.

Henceforth, all permutations will be written in cycle notation.

Example computations with cycle notation

Example: Compute and simplify the following:

(1 2 3)(1 2)

(1 2 5)(3 5)(1 2)

the inverse of (1 4 2 3)(5 8):

Example: Find the order of (1 2 3)(4 5)(6 7 8 9).

Example: Suppose σ = (1 3 4)(2 6) and τ = (1 5 2)(3 6). Compute στ .

Example: List all the elements of S3 in cycle notation:

(Having done these examples, it is a good idea to return to the first page of this
section and rewrite things in terms of cycle notation.)
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Parity and alternating groups

Corollary 7.30 Let σ ∈ SN . Then σ is a product of transpositions.

PROOF In light of Theorem 7.29, it is sufficient to show that any cycle is a product
of transpositions. But by direct calculation,

(a1 a2 · · · ak−1 ak) = (a1 ak)(a1 ak−1) · · · (a1 a4)(a1 a3)(a1 a2).

So we are done. �

Note: This corollary shows explicitly that a k−cycle can be written as a product
of k − 1 transpositions.

Note: There is nothing unique about the transpositions in this corollary (there
are lots of ways to write a permutation as a product of transpositions). However,
there is more to this story. It turns out that permutations, like integers, come in
two flavors: “odd” and “even”. Here’s how we distinguish them:

Definition 7.31 The sign, or signature function sgn : SN → {−1, 1} is the func-
tion

sgn(σ) = P (xσ(1), xσ(2), ..., xσ(N))
P (x1, x2, ..., xN)

where
P (x1, ..., xN) =

∏
i<j

(xi − xj).

Examples: If N = 3, then

P (x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)

but
P (x3, x1, x2) =

Furthermore, if σ = (1 2), then

sgn(σ) =

and if σ = (1 3 2), then

sgn(σ) = P (x3, x1, x2)
P (x1, x2, x3) = (x3 − x1)(x3 − x2)(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3) =

In general, P is the product of (N−1)+(N−2)+...+3+2+1 = 1
2N(N−1) differences.
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Lemma 7.32 If τ ∈ SN is a transposition, then sgn(τ) = −1.

PROOF Suppose τ = (a b) where a < b. Then

sgn(τ) = P (xτ(1), ..., xτ(N))
P (x1, ..., xN)

= P (x1, x2, ..., xb, xa+1, ..., xb−1, xa, ..., xN)
P (x1, x2, ..., xa, xa+1, ..., xb−1, xb, ..., xN) .

In the above expression, all the differences (xi − xj) where i < a, i < b, j > a and
j > b cancel, and all the differences (xi− xj) where neither i nor j are a or b cancel,
leaving

sgn(τ) = [(xb − xa+1)(xb − xa+2) · · · (xb − xa)] [(xa+1 − xa)(xa+2 − xa) · · · (xb−1 − xa)]
[(xa − xa+1)(xa − xa+2) · · · (xa − xb)] [(xa+1 − xb)(xa+2 − xb) · · · (xb−1 − xb)]

= (−1)[b−a+1]+[b−a] = (−1)2(b−a)+1 = −1. �

Theorem 7.33 sgn : SN → {−1, 1} is a group homomorphism (where the group
operation on {−1, 1} is multiplication).

PROOF Let σ, τ ∈ SN . Then

sgn(στ) = P (xστ(1), ..., xστ(N))
P (x1, ..., xN)

= P (xστ(1), ..., xστ(N))
P (xτ(1), ..., xτ(N))

·
P (xτ(1), ..., xτ(N))
P (x1, ..., xN)

= sgn(σ) sgn(τ). �

Corollary 7.34 If σ can be written as the product of m1 transpositions and also writ-
ten as the product ofm2 transpositions, then either (bothm1 andm2 are even), or (both
m1 and m2 are odd).

PROOF By previous results, sgn(σ) = (−1)m1 = (−1)m2 . The result follows. �

200



7.4. Permutation groups

Definition 7.35 Let σ ∈ SN . σ is called even if it can be written as the product of
an even number of transpositions; σ is called odd if it can be written as the product of
an odd number of transpositions. The evenness/oddness of a permutation is called its
parity.

Equivalently, σ is even iff sgn(σ) = 1 and σ is odd iff sgn(σ) = −1.

Since sgn is a homomorphism, the product of two permutations of the same
parity is even, and the product of two permutations of opposite parity is odd.

Remember from Corollary that a k-cycle can be written as a product of k − 1
transpositions. So 3-cycles, 5-cycles, etc. are even, and 2-cycles, 4-cycles, etc. are
odd.

Example: Is (3 5 8)(2 7)(4 6 11) even or odd?

Definition 7.36 The set of even permutations in SN is called the alternating group
(on N letters) and is denoted AN .

Since AN = ker( sgn), it is clear that AN is a subgroup of SN .

Lemma 7.37 |AN | = 1
2n!.

PROOF Note that σ ∈ AN if and only if σ(1 2) ∈ SN − AN . Thus the function
f : AN → SN −AN defined by f(σ) = σ(1 2) is a bijection (it is bijective because it
is its own inverse), meaning

|AN | = #(SN −AN) = |SN | − |AN | = N !− |AN |.

Solving for |AN | gives the result. �
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Elements of SN can be studied according to their cycle structure, and we can
easily discern members of AN by doing this. As an example, let’s study all the
members of S3 and S4:

DISJOINT CYCLE PERMUTATIONS IN S3 NUMBER OF EVEN OR
STRUCTURE WITH THAT STRUCTURE ORDER THESE IN S3 ODD?

NUMBER OF EVEN OR
DISJOINT CYCLE STRUCTURE ORDER THESE IN S4 ODD?
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ENRICHMENT: You may remember from linear algebra the concept of
the determinant of an N × N square matrix. For example, the determinant
of a 3× 3 square matrix is

det

 a b c
d e f
g h i

 = aei+ cdh+ bfg − bdi− ceg − afh.

Notice that this formula for the determinant contains six terms, of which
three are added and three are subtracted. Each of the terms being added
or subtracted is the product of three numbers, such that the three numbers
consist of one number from each row of the matrix and one number from
each column of the matrix. Therefore, for each of the numbers being added
or subtracted, there is a permutation σ ∈ S3 so that the term is

a1σ(1)a2σ(2)a3σ(3)

where, as usual, aij represents the element of the matrix in the ith row
and jth column. For example, the term bfg in the determinant comes from
σ = (1 2 3) since for this σ,

a1σ(1)a2σ(2)a3σ(3) = a12a23a31 = bfg.

If you look carefully, you will see that the terms being added in the
determinant (like bfg) come from the even permutations in S3, and the
terms being subtracted come from the odd permutations in S3. So we can
write the formula for the determinant of a 3× 3 matrix as follows:

detA =
∑
σ∈S3

sgn(σ)a1σ(1)a2σ(2)a3σ(3).

This formula generalizes: for anyN×N matrixA, the formal definition
of the determinant of A is

detA =
∑
σ∈SN

 sgn(σ)
N∏
j=1

ajσ(j)

 .
From this formula, you can prove all the properties of determinants you

know and love. For example, if you swap two rows of a matrix, all the sig-
natures of the corresponding σs in the determinant formula are multiplied
by −1 (since the σ gets multiplied by a transposition coming from swap-
ping the rows), meaning the determinant gets multiplied by −1 as well.
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Symmetries of three-dimensional figures

Exercise: Describe the group of symmetries of a regular tetrahedron:
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7.5 Subgroups and cosets
Examples of subgroups

1. Kernel of any homomorphism

Special case: for any N , AN < SN , since AN = ker( sgn).

2. Cyclic subgroups

Definition 7.38 Let G be a group and let g ∈ G. The subgroup generated by g,
denoted <g>, is the subgroup

<g> = {gk : k ∈ Z}.

For any g ∈ G, <g> is a cyclic group whose order is equal to the order of ele-
ment g. Thus we have proven that every group contains a cyclic subgroup.

Example: G = S4; g = (1 2 3).

Example: G = (Z,+); g = 7

Cosets

Every subgroupH ofG generates two equivalence relations onG. The equivalence
classes under these relations are called cosets.

Definition 7.39 Let G be a group and let H ≤ G. For every g ∈ G, define:

• the left coset of H containing g, denoted gH , by gH = {gh : h ∈ H}, and

• the right coset of H containing g, denoted Hg, by Hg = {hg : h ∈ H}.
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Example: Let G = S3 and let H = <(1 2)> = {e, (1 2)}. Then:

ELEMENT OF G LEFT COSET gH RIGHT COSET Hg
e

(1 2)

(1 3)

(2 3)

(1 2 3) {(1 2 3), (1 3)} {(1 2 3), (2 3)}

(1 3 2) {(1 3 2), (2 3)} {(1 3 2), (1 3)}

Observe:

1. Two left cosets are either the same, or disjoint.

2. Two right cosets are either the same, or disjoint.

3. The left cosets and the right cosets are not the same subsets of S3.

Theorem 7.40 Let G be a group and let H ≤ G. Two left (right) cosets of H in G are
either equal or disjoint. Thus they form a partition of G.

PROOF Suppose x ∈ g1H ∩ g2H . Then x = g1h1 and x = g2h2 for h1, h2 ∈ H . Thus

g1h1 = g2h2 ⇒ g1 = g2h2h
−1
1

and for any h′ ∈ H ,
g1h

′ = g2h2h
−1
1 h′

and since H is a subgroup, h2h
−1
1 h′ ∈ H . We have proved g1H ⊆ g2H , and by

symmetric argument, g2H ⊆ g1H . Thus any two left cosets which intersect in at
least one point are equal, proving the theorem (the proof for right cosets is similar).
�

Consequence: Since the left (right) cosets of H in G partition G, the relation of
“being in the same left (right) coset of H” is an equivalence relation on G.

Theorem 7.41 (Lagrange’s Theorem) LetG be a finite group and letH ≤ G. Then
|H| divides |G|.
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PROOF Let g ∈ G. The function f : H → gH defined by f(x) = gx is a bijection
(because it has inverse f−1(x) = g−1x), so the cardinalities of H and gH are the
same.

That means every left coset of H in G has the same cardinality as H . Let the
number of cosets be denoted by k; then

k |H| = |G|,

proving the theorem. �

Application: If |G| = 30, then G has no subgroup of order 7.

Corollary 7.42 Let G be a finite group and let g ∈ G. Then the order of g divides |G|.

PROOF The order of cyclic subgroup <g> ≤ G is the order of the element g. The
result follows from the preceding theorem. �

Application: S4 has no element of order 5 (since 5 6 | 24 = |S4|).

Note: The function x 7→ xg is also a bijection between H and Hg for any g ∈ G,
so every right coset of H in G also has the same cardinality as H .

Definition 7.43 If the number of left cosets of H in G is finite, we say H has finite
index in G and we denote the number of left cosets by [G : H]. This number is called
the index of H in G.

Note: By Lagrange’s Theorem, if G is finite, this means [G : H] = |G|
|H| .

Note: [G : H] is also the number of right cosets, by the following lemma:

Lemma 7.44 The set of left cosets of H in G has the same cardinality as the set of
right cosets in G.

PROOF The function gH 7→ Hg is well-defined and gives a bijection between the
set of left cosets and the set of right cosets. �

Theorem 7.45 (Index Product Theorem) Suppose K ≤ H ≤ G are groups with
G finite, then [G : K] = [G : H][H : K].

PROOF This follows from Lagrange’s Theorem directly:

[G : K] = |G|
|K|

= |G|
|H|
· |H|
|K|

= [G : H][H : K]. �
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Fermat’s Little Theorem and Euler’s Theorem

Fermat’s most famous “theorem” is his “last” theorem, which says:

If n ≥ 3 is an integer, the equation an + bn = cn has no integer solutions (a, b, c) ∈ Z3

other than when a and/or b are zero.

Fermat wrote this down and scribbled “I have discovered a truly marvelous
proof of this!” next to it, and then died before he wrote more on it. In 1994 Andrew
Wiles gave the first published proof of this theorem, so us math nerds now call the
above fact Wiles’ Theorem rather than Fermat’s Last Theorem.

Fermat’s most useful theorem is not his last theorem, but his “little” theorem:

Theorem 7.46 (Fermat’s Little Theorem) If p is prime and gcd(a, p) = 1, then

ap−1 ≡ 1 mod p.

PROOF Consider the group of units in Z/pZ. This group has order p−1. Therefore,
the order of any a+ pZ divides p− 1, so (a+ pZ)p−1 = 1 + pZ as wanted. �.

Application: What is the remainder when 2290 is divided by 73?

Remark: Fermat’s Little Theorem implies ap ≡ a mod p whenever gcd(a, p) =
1. In fact, if gcd(a, p) = p, then ap ≡ 0p ≡ 0 ≡ a mod p so Fermat’s Little Theorem
can also be stated this way:

Corollary 7.47 (Fermat’s Little Theorem (restated)) If p is prime, then for any a,

ap ≡ a mod p.

Fermat’s Little Theorem generalizes as follows:

Theorem 7.48 (Euler’s Theorem) If gcd(a, n) = 1, then

aφ(n) ≡ 1 mod p

where φ is the Euler phi function.

PROOF Consider the group of units in Z/nZ. This group has order φ(n). Therefore,
the order of any unit a+ nZ divides φ(n), so (a+ nZ)φ(n) = 1 + nZ as wanted. �.
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7.6 Normal subgroups and quotient groups
Definition 7.49 Let G be a group and let H ≤ G. H is called a normal subgroup
of G if for every g ∈ G and h ∈ H , ghg−1 ∈ H . We denote a normal subgroup H of
G by writing H / G.

HOW TO PROVE H is a normal subgroup of G:

1. Prove H is a subgroup of G.

2. Let g ∈ G, h ∈ H . ... (logical argument) ... Therefore ghg−1 ∈ H .

Therefore H / G. �

Lemma 7.50 If G is an abelian group, then every subgroup of G is normal.

PROOF Let H ≤ G and suppose g ∈ G, h ∈ H . Then

ghg−1 = gg−1h = eh = h ∈ H

so H is normal by definition. �

Example 1: Every subgroup nZ of Z is normal, since (Z,+) is abelian.

Example 2: Let G = S3 and let H1 = <(1 2)> = {e, (1 2)}.

Example 3: Let G = S3 and H2 = A3 = <(1 2 3)> = {e, (1 2 3), (1 3 2)}.

The “real” reason A3 / S3 is that A3 is a kernel (of the sgn homomorphism):
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Theorem 7.51 Let G and G′ be groups and let σ : G → G′ be a group homomor-
phism. Then ker(σ) is a normal subgroup of G.

PROOF We have already proven that ker(σ) ≤ G. Let h ∈ ker(σ) and g ∈ G. Since
h ∈ ker(σ), σ(h) = e.

Therefore ghg−1 ∈ ker(σ), so ker(σ) / G as wanted. �

In fact, a converse of this theorem is also true: every normal subgroup of G is
the kernel of some homomorphism G→ G′, where G′ is some other group.

ALTERNATE METHOD TO PROVE H is a normal subgroup of G:

1. Write down a function σ : G→ G′ where G′ is some group.

2. Prove σ is a group homomorphism.

3. Prove H = ker(σ).

Therefore H / G. �

Theorem 7.52 Let G be a group and let H ≤ G. TFAE:
1. H / G.
2. For all g ∈ G, gH = Hg.
3. For all g ∈ G, gHg−1 = H .
4. For all g ∈ G, gHg−1 ⊆ H .
5. Every left coset of H in G is also a right coset.
6. Every right coset of H in G is also a left coset.

PROOF (1⇒ 4): obvious by definition.
(4⇒ 3): gHg−1 ⊆ H is given, so we need to show H ⊆ gHg−1. Let h ∈ H . Then

g−1h(g−1)−1 = h′ ∈ H by (4), so h = gh′g−1 ∈ gHg−1 as wanted.
(3⇒ 2): (⊆) Let x ∈ gH ; then x = gh for h ∈ G. Then xg−1 = ghg−1 ∈ H by (3)

so xg−1 = h′ ∈ H . Thus x = h′g, so x ∈ Hg as wanted.
(⊇) Let Let x ∈ Hg; then x = hg for h ∈ G. Then g−1x = g−1hg−1 = g−1h(g−1)−1 ∈

H by (3) so g−1x = h′ ∈ H . Thus x = gh′, so x ∈ gH as wanted.
(2⇔ 5,6) is obvious (just a restatement of (2) in English).
(2⇒ 1): Let h ∈ H and g ∈ G. Then gh ∈ gH = Hg so there is h′ ∈ H such that

gh = h′g, i.e. ghg−1 = h′ ∈ H . �
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As a consequence, if H / G, we don’t have to worry about “left” or “right”
cosets, because they are the same thing. We can then denote the set of cosets by
G/H and define a binary operation on G/H coming from the binary operation on
G:

Definition 7.53 Let G be a group and let H / G. The set of cosets of H in G is
denoted G/H (read “G mod H”). We define an operation on G/H by setting, for
any g1, g2 ∈ G,

(g1H)(g2H) = (g1g2)H.

Theorem 7.54 Let G be a group and let H / G. Then, the set of cosets G/H forms a
group called either the quotient group (of G by H) or “G mod H”.

PROOF We need to show G/H is a group:

1. First, by definition, G/H is closed under the operation if it is well-defined, so
we check that it is in fact well-defined. Suppose g1H = g′1H and g2H = g′2H .
Since H is normal, we also know by the previous theorem that g′2H = Hg′2.

(g1H)(g2H) = (g1g2)H = g1g2H

= g1g
′
2H

= g1Hg
′
2

= g′1Hg
′
2

= g′1g
′
2H = (g′1H)(g′2H),

so the operation is well-defined.

2. We need to show that the operation is associative. Let g1, g2, g3 ∈ H .

(g1H) [(g2H)(g3H)] = (g1H)(g2g3H)
= (g1(g2g3))H
= ((g1g2)g3)H (by the associativity of G)
= (g1g2H)(g3H)
= [(g1H)(g2H)] (g3H)

as wanted.

3. We need to show eH = H is the identity for G/H . To see this, let g ∈ G and
note

(gH)(eH) = (ge)H = gH and (eH)(gh) = (eg)H = gH

as wanted.
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4. Last, we need to check that for any g ∈ G, g−1H is an inverse element of gH .
To see this, note

(g−1H)(gH) = (g−1g)H = eH = H and (gH)(g−1H) = (gg−1)H = eH = H

as wanted. �

Example: G = (Z,+), H = 5Z.

Example: G = S3, H = A3

Remarks: Restating previous theorems gives:

• If H / G has finite index in G, then |G/H| = [G : H].

• If G is finite, then for any H / G, |G/H| = |G|/|H|.

• If K / H / G, then |G/K| = |G/H| |H/K|.
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Simple groups

Every group G has two normal subgroups: {e} and G itself. Some groups have no
other normal subgroups:

Definition 7.55 If G is a group with no normal subgroups other than {e} and G,
then G is called simple.

Being simple sounds good, but it is actually bad. A non-simple group can be
studied by looking at its normal subgroups and examining how those normal sub-
groups “fit together” to form the whole group. As an example, the dihedral group
Dn is not simple:

But you can think about a dihedral group by considering the “rotation part”
(the normal subgroup) and the “flip” (what’s not in the normal subgroup) and
thinking about how the rotation and the flip interact.

If a group is simple, there’s no analogous reasoning available. You have to look
at the whole bleeping group altogether.

Example: (Z/pZ,+) is simple if p is prime:

Example: if N ≥ 3, the symmetric group SN is not simple:

Here is the most important example of a simple group:

Theorem 7.56 A5 is simple.
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PROOF Let H /A5 and suppose H 6= {e}. We prove this theorem in three steps:

Step 1: Prove that (H /A5 and H 6= {e}) implies that H contains a 3-cycle.
Step 2: Prove that (H/AN ,N ≥ 5 andH contains a 3-cycle) implies thatH contains

all 3-cycles in SN .
Step 3: Prove that every element in AN (for N ≥ 5) can be written as a composi-

tion of 3-cycles.

Proof of Step 1: Since H 6= {e}, H must contain an even permutation σ 6= e. We
will show by cases, based on the possible cycle structure of σ, that no matter what
σ is, H must contain a 3-cycle:

Case 1: σ = (a b c), a 3-cycle. In this situation, H = A5 by the previous lemma.

Case 2: σ = (a b)(c d) where a, b, c and d are different. Here, since H is normal,

(a b e)σ(a b e)−1 = (b e)(c d) ∈ H

and since H is a subgroup, H is closed under composition so

[(a b)(c d)] [(b e)(c d)] = (a b e) ∈ H.

Case 3: σ = (a b c d e), a 5-cycle. Again, since H is normal,

[(a b)(c d)] (a b c d e) [(a b)(c d)]−1 = (a d c e b)

and since H is a subgroup, H is closed under composition so

(a b c d e)(a d c e b) = (a e c) ∈ H.

In any case, H contains a 3-cycle. This completes Step 1.

Proof of Step 2: Consider the 3-cycle (1 2 3). Given (x y z) ∈ H , let σ = (3 z)(2 y)(1x).
There are two cases:

Case 1: σ ∈ AN . In this case, consider

σ(1 2 3)σ−1 = (3 z)(2 y)(1x)(1 2 3)(x 1)(y 2)(z 3) = (x y z).

Case 2: σ /∈ AN . In this case, note σ(4 5) ∈ AN and consider

[σ(4 5)] (1 2 3) [σ(4 5)]−1 = (3 z)(2 y)(1x)(4 5)(1 2 3)(4 5)(x 1)(y 2)(z 3)
= (3 z)(2 y)(1x) [(4 5)(1 2 3)(4 5)] (x 1)(y 2)(z 3)
= (3 z)(2 y)(1x)(1 2 3)(x 1)(y 2)(z 3)
= (x y z).
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Either way, τ(1 2 3)τ−1 = (x y z) for some τ ∈ AN . Equivalently, [τ−1](x y z)[τ−1]−1 =
(1 2 3) so the punchline is

(1 2 3) ∈ H if and only if (x y z) ∈ H.

Therefore if H contains one 3-cycle, it contains (1 2 3) and therefore contains all 3-
cycles. This finishes Step 2.

Proof of Step 3: Let N ≥ 5 and suppose σ ∈ SN is the product of two transpo-
sitions. There are three cases:

Case 1: σ = (a b)(a b). Here, σ = e = (1 2 3)(1 3 2).

Case 2: σ = (a b)(b c) where a, b and c are distinct. In this situation,

(a b)(b c) = (a b c).

Case 3: σ = (a b)(c d) where a, b, c and d are all distinct. In this situation,

(a b)(c d) = (e a f)(a b e)(e c f)(c d e).

This proves that any product of two transpositions can be written as the product
of 3-cycles, finishing Step 3.

From Steps 1-3, H = A5, so A5 is simple. �

Fact: if N ≥ 5, then AN is simple.
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ENRICHMENT: A reasonable question to ask is whether or not there is a
“catalog” of all groups. That’s way too hard to do - the notion of “group”
is just too broad.

A simpler question is to ask whether or not there is a “catalog” of all
finite groups. That’s also way too hard.

An even simpler question is to ask whether or not there is a “catalog”
of all finite simple groups. It turns out that such a catalog exists, and the
catalog is kind of weird. Here are four categories of groups which are
known to be simple (the first two of which we have studied in this class):

1. cyclic groups of prime order (i.e. (Z/pZ,+));

2. alternating groups AN where N ≥ 5;

3. groups of “Lie type”;

4. “Tits” groups.

It turns out that if G is a finite simple group, then either G is in one of these
categories, or G is one of 26 other groups, called sporadic groups. The
largest sporadic group is called the Monster and has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

That’s 808 sexdecillion and change.
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Chapter 8

Quintic equations

8.1 Solvability by radicals
Background: We are interested in determining whether or not polynomial equa-

tions (especially quintic equations) are solvable by radicals. In Chapter 1, I said
that an equation was solvable by radicals if you can find its solutions using +,−, ·,÷
and roots.

The problem with this definition is that the phrase “you can find” is too vague.
We need a definition of solvability by radicals that is more “mathematical”, i.e.
refers to the existence of some kind of well-defined object.

Definition 8.1 Let p ∈ C[x] be the monic polynomial

p(x) = xn + an−1x
n−1 + ...+ a1x+ a0.

A coefficient field of p is any number field Q(a0, a1, ..., an−1).

POLYNOMIAL COEFFICIENT FIELD(S)

x2 − 3x+ 4

x3 +
√

2x− 4
√

2 + 3

x5 − ζ3x
2 + x+ 4ζ2

3
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Definition 8.2 Let p ∈ C[x] be the monic polynomial

p(x) = xn + an−1x
n−1 + ...+ a1x+ a0

and denote the roots of p as x1, x2, ..., xn. The root field of p is Q(x1, x2, ..., xn).

Definition 8.3 Let E and F be number fields with F ⊆ E. We say E is a radical
adjunction of F if E = F (α) for some α ∈ C such that αm ∈ F (i.e. if E = F ( m

√
f)

for some f ∈ F ).

Let E and F be number fields with F ⊆ E. We say E is a radical extension of
F if

E = F (α1, ..., αk)

where for each j ∈ {1, ..., k − 1}, F (α1, ..., αj+1) = F (α1, ..., αj)(αj+1) is a radical
adjunction of F (α1, ..., αj+1).

A radical extension E of F is called regular if E = F (α1, ..., αk) is a radical
extension where

1. each αj is a pth root of some element in F (α1, ..., αj−1) for some prime p, and
2. either αj is a pth root of unity, or F (α1, ..., αj−1) already contains all pth roots

of unity.

Example 1: Q(π) is not a radical extension of Q.

Example 2: Q(
√

2) is a regular radical extension of Q.

Example 3: Q( 3
√

2) is a radical extension of Q which is not regular.

Example 4: Q(ζ3,
3
√

2) is a regular radical extension of Q.

Now for the definition of solvability by radicals which is useful:

Definition 8.4 The polynomial equation

p(x) = xn + an−1x
n−1 + ...+ a1x+ a0 = 0

is called solvable by radicals (over a given coefficient field F ) if there is a radical
extension of F containing the root field of p. (WLOG this radical extension can be
taken to be regular.)
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Example: quadratic equations

p(x) = x2 + bx+ c = 0

Example: cubic equations

f(x) = x3 + px+ q = 0

Example: a quartic equation

p(x) = x4 − 16x2 + 4 = 0

Theorem 8.5 Every quadratic, cubic and quartic equation is solvable by radicals over
Q.
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8.2 Galois groups
Question: How might we show that a polynomial equation p(x) = 0 is not solvable
by radicals?

Definition 8.6 Let E be an extension of field F . The Galois group of E over F ,
denoted Gal(E/F ) or Gal(E : F ), is the set of automorphisms of E which fix every
element of F , i.e.

Gal(E/F ) = {σ ∈ Aut(E) : σ(x) = x for every x ∈ F}.

Lemma 8.7 Gal(E/F ) is a group under composition of functions.

Example 1: E = Q(
√

2), F = Q

Example 2: E = Q( 3
√

2), F = Q

Example 3: E = Q(
√

2,
√

3), F = Q
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Example 4: E = Q(
√

2,
√

3), F = Q(
√

2)

Example 5: E = Q(ζ3,
3
√

2), F = Q

Example 5: E = Q(ζ3,
3
√

2), F = Q(ζ3)

Theorem 8.8 Let E be the root field of polynomial p ∈ F [x]. Suppose Gal(E/F ) is
isomorphic to a subgroup of Sn, where n is the number of roots of E. Then, there is
a radical extension E of E and a surjective group homomorphism π : Gal(E/F ) →
Gal(E/F ).

PROOF Let the roots of p be x1, ..., xn. WriteE = F (α1, ..., αn) and for each αj , write
αj = rj(x1, ..., xn).

Now for each αj and each σ ∈ Sn, adjoin rj(xσ(1), xσ(2), ..., xσ(n)) to E. Call this
radical extension E.

Now given σ ∈ Gal(E/F ), we can think of σ as an element of Sn by looking
at how it permutes x1, ..., xn, and therefore view σ as an element of Gal(E/F ),
which when restricted to E is an automorphism of E. That means the map π :
Gal(E/F ) → Gal(E/F ) given by π(σ) = σ|E is surjective. It is left to show this
is a group homomorphism (this is clear, since restriction of functions preserves
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composition, but we’ll show it rigorously): let σ, σ′ ∈ Gal(E/F ), and observe

π(σσ′) = (σσ′)|E = σ|Eσ′|E = π(σ)π(σ′).

Thus π gives the desired group homomorphism. �

Consequence: Every element of Gal(E/F ) (where E is the root field and F is a
coefficient field of the polynomial p) comes from an element of Gal(E/F ) for some
regular radical extension E of F .

Example: p(x) = x3 − 2 ∈ Q[x].
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Solvability of groups

Here’s an adjective which describes some, but not all groups. Its importance will
be seen in a bit:

Definition 8.9 Let G be a group. G is called solvable if there exist a sequence of
subgroups

{e} = Gk ≤ Gk−1 ≤ Gk−2 ≤ ... ≤ G2 ≤ G1 ≤ G0 = G

such that:

• each Gj is a normal subgroup of Gj−1; and

• each quotient group Gj−1/Gj is abelian.

The sequence G = G0, G1, G2, ..., Gk = {e} is called a (not “the”) derived series for
G.

Remark: Derived series for a solvable group are not unique, but there is a stan-
dard way to find the derived series for a solvable group.

Example 1: G = any abelian group.

Example 1a: G = V , the Klein 4-group.

Example 2: G = S3 ∼= D3.
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Example 3: G = S4.

Example 4: G = S5.

Lemma 8.10 If G is a solvable group and σ : G→ H is a surjective group homomor-
phism, then H is solvable.

PROOF HW

Why does solvability of a group matter?

Lemma 8.11 If B ⊆ B(α) ⊆ E are number fields where B(α) is a regular radi-
cal extension of B, then Gal(E/B(α)) / Gal(E/B) and Gal(E/B)/Gal(E/B(α) is
abelian.

PROOF Define the function π : Gal(E/B)→ Aut(B(α)) by

π(σ) = σ|B(α),

i.e. π(σ) restricts the domain of σ (which was originally E) to B(α) ⊆ E.

First, we show π is a group homomorphism (this is clear since restriction of
functions preserves composition):

π(σσ′) = (σσ′)|B(α) = σ|B(α)σ
′|B(α) = π(σ)π(σ′).

Second, we have to show that π(σ) is in fact an automorphism of B(α). To do
this, let σ ∈ Gal(E/B). Since σ(b) = b for all b ∈ B, σ|B(α) is determined by its
value at α. Since B(α) is a regular extension of B, there are two cases:
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Case 1: α is a pth root of unity. Then

[σ(α)]p = σ(αp) = σ(1) = 1

so σ(α) must also be a pth root of unity, hence is in B(α).

Case 2: α is not a pth root of unity, bur αp ∈ B for some prime p and B contains all
pth roots of unity. In this situation,

[σ(α)]p = σ(αp) = αp ∈ B

so σ(α) = ζα where ζ is a pth root of unity (so ζ ∈ B). Thus σ(α) ∈ B(α).

Third, we show ker(π) = Gal(E/B(α)):

σ ∈ ker(π)⇔ π(σ) = IB(α)

⇔ σ(b) = b for all b ∈ B(α)
⇔ σ ∈ Gal(E/B(α)) (by definition of Gal(E/B(α))).

This proves Gal(E/B(α)) / Gal(E/B) since every kernel is a normal subgroup.

Last, we show Gal(E/B)/Gal(E/B(α)) is abelian. Let σ+ ker(π) and τ + ker(π)
be cosets in Gal(E/B)/Gal(E/B(α)). Then:

Case 1: α is a pth root of unity. Then from above, for any σ ∈ Gal(E/B), π(σ)(α) is
also a pth root of unity, i.e. π(σ) = σi where σi(α) = αi for some i. Therefore,
for any σ, τ ∈ Gal(E/B)/Gal(E/B(α)) with π(σ) = σi and π(τ) = σj , we have

π(στ)(α) = σ(αj) = αij = αji = τ(αi) = π(τσ)(α).

Therefore π(στ) = π(τσ). Now let σ[ker(π)] and τ [ker(π)] be elements of
Gal(E/B)/Gal(E/B(α)). Let x ∈ στ ker(π); this means π(x) = π(στ) = π(τσ)
so x ∈ τσ ker(π). Thus Gal(E/B)/Gal(E/B(α)) is abelian.

Case 2: α is not a pth root of unity, bur αp ∈ B for some prime p and B contains
all pth roots of unity. In this situation, for σ ∈ Gal(E/B), π(σ)(α) = ζjα
where ζ ∈ B is some pth root of unity, i.e. π(σ) = σj where σi(α) = ζjα for
some j. Therefore, for any σ, τ ∈ Gal(E/B)/Gal(E/B(α)) with π(σ) = σi and
π(τ) = σj , we have

π(στ)(α) = σiσj(α) = ζ ijα = ζjiα = σjσi(α) = π(τσ)(α).

As with Case 1, it follows that Gal(E/B)/Gal(E/B(α)) is abelian.

This completes the proof of the lemma. �
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8.2. Galois groups

Theorem 8.12 Suppose E is a regular radical extension of F . Then Gal(E/F ) is a
solvable group.

PROOF If E is a regular radical extension of F , then

F ⊆ F (α1) ⊆ F (α1, α2) ⊆ · · ·F (α1, ..., αk−1) ⊆ F (α1, ..., αk) = E

and after renaming, this chain can be written as

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fk−1 ⊆ Fk = E

where each triple Fj ⊆ Fj+1 ⊆ Fj+2 satisfies the hypotheses of the B,B(α) and E
of Lemma 8.11. By applying the lemma, we see that

{1} = Gal(E/E) = Gal(E/Fk) / Gal(E/Fk−1) / · · · / Gal(E/F1) / Gal(E/F )

and Gal(E/Fj)/Gal(E/Fj+1) is abelian for each j ∈ {0, ..., k − 1}. In other words,
Gal(E/F ) is a solvable group. �

Remark: The converse of this theorem is also true (see Chapter 9 of Stillwell).

Corollary 8.13 Let E be the root field of p ∈ F [x]. p is solvable by radicals only if
Gal(E/F ) is a solvable group.

PROOF If p is solvable by radicals, then there is a regular radical extension E of
F containing E. By the preceding theorem, Gal(E/F ) is a solvable group. By
Theorem 8.8, there is a surjective homomorphism Gal(E/F ) → Gal(E/F ), so by
Lemma 8.10, Gal(E/F ) must be a solvable group. �
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8.3 Quintic equations, revisited
What we know: If there is a polynomial pwith root fieldE such thatGal(E/Q) ∼=

S5, then p cannot be solvable by radicals (since S5 is not a solvable group).

What’s left: Is there actually a polynomial whose root field has Galois group S5
over Q?

Definition 8.14 Let H ≤ SN . H is called transitive if for every a, b ∈ {1, ..., N},
there is a permutation σ ∈ H such that σ(a) = b.

Example 1: H = SN

Example 2: H = AN (N ≥ 3)

Example 3: H = <(1 2 · · · N)>

Example 4: H = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
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Theorem 8.15 Let p ∈ Q[x] be an irreducible polynomial with root field E. Then
Gal(E/Q) is isomorphic to a transitive subgroup of SN , where N is the number of
distinct roots of p in C.

PROOF First, let α be a root of p, and let σ ∈ Gal(E/Q). Since σ is an automor-
phism, and since σ preserves Q, we see p(σ(α)) = σ(p(α)) = σ(0) = 0, i.e. σ(α)
must also be a root of p. Therefore any σ ∈ Gal(EQ) permutes the roots of p, and
is therefore isomorphic to a subgroup of SN .

Recall the Conjugation Theorem from Chapter 6, which says (in the language
of this chapter) that for any two roots α and β of p, there is a field isomorphism
σα,β : Q(α)→ Q(β) with σ(α) = β but σ(q) = q for all q ∈ Q.

By the Automorphism Extension Theorem from Chapter 6, this σ extends to an
automorphism of E fixing F (i.e. an element of Gal(E/F )) by setting σ(x) = x for
any root of p not in Q(α). Thus Gal(E/F ) contains an element σ taking α to β as
desired. �

Theorem 8.16 LetH ≤ S5 be a transitive subgroup containing a transposition. Then
H = S5.

PROOF Let H ≤ S5 be any subgroup. Define a relation ∼ on {1, 2, 3, 4, 5} by

i ∼ j ⇔ (i j) ∈ H.

This is an equivalence relation (reflexivity follows since (i i) = e ∈ H ; symmetry is
obvious; for transitivity, if i ∼ j and j ∼ k, then (i j) and (j k) are in H , so since H
is a subgroup, (i j)(j k) = (i k) ∈ H so i ∼ k).

Now, suppose there is k ∈ {1, ..., 5} such that 1 6∼ k. Since H is transitive, there
is σ ∈ H with σ(1) = k, meaning that for any j wth 1 ∼ j,

σ(i j)σ−1 = (k, σ(j)) ∈ H.

Therefore 1 ∼ j implies k ∼ σ(j).

At the same time, for any j with k ∼ j,

σ−1(k j)σ = (1, σ−1(j)) ∈ H

so k ∼ j implies 1 ∼ σ−1(j).

Therefore σ is a bijection between the equivalence class of 1 and the equivalence
class of k. Since k is arbitrary, it follows that each equivalence class has the same
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cardinality.

Thus each class must have size 1 or 5. It can’t be 1, since H contains a transpo-
sition, meaning there is a class of size at least 2. Therefore there must only be one
class of size 5, i.e. H contains every transposition. Since every element of S5 is a
product of transpositions, H must be all of S5. �

After 180+ pages, we finally come to a resolution of a problem first posed in
Chapter 1:

Theorem 8.17 Arbitary quintic equations with coefficients in Q are not solvable by
radicals.

In other words, there is no such thing as a “quintic formula” involving only
+,−, ·,÷,√ , 3

√
, 5
√
, p
√
, etc. which solves generic quintic equations.

PROOF We will show that p(x) = x5 − 4x + 2 is not solvable by radicals. Let E be
the root field of p.

Claim 1: p is irreducible.

Claim 2: p has five distinct roots, of which three are real.

229



8.3. Quintic equations, revisited

Claim 3: Gal(E/F ) contains a transposition.

Claims 1-3 imply that Gal(E/F ) ∼= S5, which is not a solvable group. Thus p is not
solvable by radicals. �
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unsolvability of quintic equations, 229
UPC, 95

value (of a function), 14
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Venn diagrams, 6

well ordering, 12
well-defined, 88
Wiles, Andrew, 208
without loss of generality, 23
WLOG, 23

zero divisor, 92
zero homomorphism, 166

238


