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Chapter 1

Sets and functions

1.1 Why are we here?
I’d call this course Real Analysis, but at Ferris it’s called Advanced Calculus.
That means this class probably has something (or a lot) to do with calculus.
So to get started, let’s brainstorm what you learned (hopefully) in calculus:
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1.1. Why are we here?

Next, let’s try an experiment.
Sketch the graph of any function you like on these blank axes:

Next, mark two values on the x-axis; call these values a and b (a is the smaller
value, b is the bigger one).
Next, mark where f(a) and f(b) are on your graph.
Next, pick any number y between f(a) and f(b) and mark that number on your
y-axis.
Question: In your example, is there a number x between a and b so that f(x) = y?

Once you finish, check out your classmates’ graphs and see if they have the same
answer to the question asked here.
Follow-up: Do you think the answer to this question is always the same, no matter
what function you choose?
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1.1. Why are we here?

What we saw on the previous page is made formal in the following theorem:

Theorem 1.1 (Intermediate Value Theorem (IVT)) Let f ∶ R→ R be continuous,
and let a < b in R. Then, for any y between f(a) and f(b), there is x ∈ (a, b) such that
f(x) = y.

REMARK

If you take this theorem and remove the hypothesis that f is continuous, the IVT
is false.
To disprove the IVT in this setting, use a counterexample: let f ∶ R→ R be

f(x) = { 3 x ≥ 0
1 x < 0 .

-3 -2 -1 1 2 3

1

2

3

Then let a = −1 and b = 1.
2 is between f(a) = 1 and f(b) = 3, but there is no x such that f(x) = 2.

In light of this counterexample, the IVT must have something to do with what
“continuous” means.
In Calculus 1, you are taught that a function f ∶ R → R is continuous in an informal
way and in a (slightly more) formal way:

QUESTION

What does it mean (informally) for a function f ∶ R→ R to be continuous?

Slightly more formally, you are told in Calculus 1 that f ∶ R → R is continuous if it
is continuous at every a in its domain, i.e.

lim
x→a

f(x) = f(a)

for every a in the domain of f .

6



1.1. Why are we here?

In particular, commonly used functions that are continuous include

(or at least you are told in Calculus 1 that these functions are continuous).

BUT... we are about to see that this approach to understanding continuity has
some problems...

Here’s another theorem often seen in Calculus 1:

Theorem 1.2 (Mean Value Theorem (MVT)) Let a < b be two real numbers. Sup-
pose f ∶ R → R is continuous at all x ∈ [a, b] and differentiable at all x ∈ (a, b). Then
there is x ∈ (a, b) such that

f ′(x) = f(b) − f(a)
b − a

.

If you saw this theorem in Calc 1, you were probably shown a justification that
relies on a picture (so it isn’t a proof at all):

An alternative explanation of the MVT comes from physics (we’ll talk about this
later in the course when we prove the MVT).

REMARK

If you remove the hypothesis that f is differentiable at all x ∈ (a, b), the MVT is
false.
Here’s a counterexample: let f(x) = ∣x∣, let a = −1 and let b = 1. Then

f(b) − f(a)
b − a

= 1 − 1
1 − (−1) =

0
2 = 0,
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1.1. Why are we here?

but at no point x between −1 and 1 is f ′(c) = 0:

-2 -1 1 2

1

2

In light of this counterexample, the MVT must have a lot to do with what it means
for a function f ∶ R→ R to be differentiable. In Calc 1, you are taught that a function
f ∶ R→ R is differentiable it its derivative exists, meaning informally that its graph
is...

Formally, to say that the derivative of f exists means that f ′(x) exists, where f ′(x)
is defined as a limit:

f ′(x) = lim
h→0

f(x + h) − f(x)
h

Continuity and differentiability come from limits

In Calc 1, the ideas of continuity and differentiability are defined to you in terms of
limits. But that begs the question of what “limit” means. In Calc 1, you are taught
that

lim
x→a

f(x) = L

means

or some other equally meaningless garbage.
Then, you are taught how to compute limits (and subsequently derivatives and
integrals) of functions with formulas including things like x2, sinx, ex, lnx, etc.
But this description of what a limit is isn’t precise, can’t really be applied to more
sophisticated functions:
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1.1. Why are we here?

Some interesting functions

1. Functions of the form xm sin 1
xn

, where m ≥ 0 and n > 0 are integers

Are these continuous at x = 0? Differentiable at x = 0? Why or why not?

f(x) =
⎧⎪⎪⎨⎪⎪⎩

sin 1
x

if x ≠ 0
0 if x = 0 -3 -2 -1 1 2 3

-1

1

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x sin 1
x

if x ≠ 0
0 if x = 0

-2 -1 1 2

-
1

2

1

2

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x sin 1
x2 if x ≠ 0

0 if x = 0
-2 -1 1 2

-1

-
1

2

1

2

1

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 sin 1
x

if x ≠ 0
0 if x = 0 -1 -

1

2

1

2
1

-
1

5

-
1

10

1

10

1

5

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 sin 1
x2 if x ≠ 0

0 if x = 0 -1 -
1

2

1

2
1

-
2

5

-
1

5

1

5

2

5
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1.1. Why are we here?

2. Dirichlet’s function

Let f ∶ R→ R (later to be called 1Q) be defined by f(x) = { 1 if x is rational
0 if x is irrational .

• What would the graph of this look like?

• Is this function continuous at any x? At all x? At no x?
• Is it differentiable anywhere? If so, where? What is the derivative?

• Is this function integrable? If so, what is ∫
1

0
f(x)dx?

3. Thomae’s function (a.k.a. raindrop function a.k.a. popcorn function)

Let τ ∶ R→ R be defined by

τ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
q

if x is rational and x = p
q

in lowest terms, with q > 0
0 if x is irrational

.

• What does the graph of this τ look like?

0 1
1

6

5

6

1

2

1

3

2

3

1

4

3

4

2

5

3

5

1

5

4

5

3

10

1

1

2

1

3
1

4
1

61
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• Is τ continuous at any x? At all x? At no x?
• Is τ differentiable anywhere? If so, where? What is its derivative?

• Is τ integrable? If so, what is ∫
1

0
τ(x)dx?
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1.1. Why are we here?

4. The Cantor function (a.k.a. the Devil’s staircase)

Let c ∶ [0,1] → [0,1] be “defined” as follows:
Set c(0) = 0 and c(1) = 1.
Now, take the interval on which f hasn’t been defined yet and divide it into thirds.

On the middle third, set c(x) = f(0) + f(1)2 = 1
2 .

Now repeat this procedure over and over: on any interval where f isn’t defined
yet (say (a, b)), divide that interval into thirds, and on the middle third, set

c(x) = f(a) + f(b)2 .

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

19

27

20

27

7

9

25

27

26

27
1

1

8

1

4

3

8

1

2

5

8

3

4

7

8

1
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1.1. Why are we here?

You end up with a function (or do you?) whose graph looks like this:

c

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

7

9
1

1

8

1

4

3

8

1

2

5

8

3

4

7

8

1

Questions:
• Does this actually rigorously define a function c from [0,1] to [0,1]?
• If so, at which x is c continuous? (Is it continuous at all x?)
• If so, at which x is c differentiable? (Is it differentiable at all x?)
• Does c have an antiderivative? If so, what is it?

• Does ∫
1

0
c(x)dx exist? If so, what is it?

WHY IT’S IMPORTANT TO CONSIDER FUNCTIONS LIKE THESE

If we can’t adequately and precisely flesh out what’s meant by the concepts of limit,
continuity and differentiability in the context of these exotic examples, why should
we believe what these concepts are when we apply them in calculus, differential
equations, numerical analysis, probability. etc.? Put another way:

Why should we trust that the calculus computations we have been taught are
actually valid?
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1.1. Why are we here?

Course goals

1. Define precisely what is meant by limit, continuous and derivative (and also
what is meant by integral).

2. Use these precise definitions to rigorously prove the major theorems and
techniques of MATH 220 (IVT, MVT, Fundamental Theorem of Calculus).

3. Analyze some of the exotic functions described above with regard to our
precise notions of limit / continuity / differentiabilty / integrability.

It turns out that as a prerequisite to accomplishing these goals, we have to learn
about some deep properties of the real numbers (for reasons that will be discussed
later).
And to do that, we first need a refresher on some universal mathematical language,
so that’s where we’re headed next.
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1.2. Sets

1.2 Sets
The fundamental objects of mathematics are called sets. A set is really just a col-
lection or list of objects (and in math, the objects are usually things like numbers,
vectors, functions, perhaps other sets, etc.).

Definition 1.3 A set is a definable collection of objects.
The objects which comprise a set are called the set’s elements.
If x is an element of set E, we write x ∈ E.
If x is not an element of set E, we write x ∉ E.

EXAMPLES OF SETS

Observe that sets are usually denoted by capital letters:

A = {3,5,7,9,11}
B = {1,2,3,4,5,6}
C = {3,5,7}

The elements of set C described above are 3, 5 and 7.
For the set A above, 3 ∈ A and 5 ∈ A but 8 ∉ A.

Set-builder notation

We often define a set without listing the elements (using English language). For
example, the sets A,B and C given above could be described, respectively, by say-
ing

“let A be the set of odd numbers from 3 to 11”;
“let B be the set of integers from 1 to 6”;
“let C be the set of odd numbers from 3 to 7”.

We also describe sets by using what is called set-builder notation: to describe the
same sets A,B,C as above using set-builder notation, we would write (or say)

A = {x ∶ 3 ≤ x ≤ 11 and x is odd}
B = {x ∶ 1 ≤ x ≤ 6 and x is an integer}
C = {x ∶ 3 ≤ x ≤ 7 and x is odd}.

The first statement above is interpreted as follows: it says that set A is equal to the
set of numbers x such that (the colon means “such that” in mathematics) 3 ≤ x ≤ 11
and x is odd. Notice that this is exactly the set {3,5,7,9,11}.

14



1.2. Sets

To show you a different kind of example: if you were defining some set of functions
(instead of a set of numbers), then instead of x you’d write f , and then after the
colon you’d describe what has to be true about f for the function f to be in the set.

For example, the set D of functions whose derivative at x = 2 is positive could be
described by writing

D = {f ∶ f ′(2) > 0}.

For this set D, it would be valid to say that if g(x) = x3, then g ∈ D (because
g′(2) = 3(22) = 12 > 0) but if h(x) = 3 − 4x, then h ∉D (because h′(2) = −4 ≤ 0).

Definition 1.4 The empty set, denoted ∅, is the set with no elements.

Venn diagrams

A useful way to think about sets is to draw pictures called Venn diagrams. To
draw a Venn diagram, represent each set you’re thinking about by a circle (or an
oval, or a square, or a rectangle, or some other shape); think of an object as being
an element of the set if and only if it is inside the shape corresponding to the set.
For example, a Venn diagram for the setA described above (recall thatA = {3,5,7,9,11})
would be given by something like

1 3 5 7 9 11

2 4 6 8 10 12

A

because the box describingA contains exactly the elements ofA (nothing more and
nothing less).
Similarly, a Venn diagram representing the sets A, B and C from above would be
something like

1 3 5 7 9 11

2 4 6 8 10 12

AC
B

15



1.2. Sets

Venn diagram-style pictures can also be useful for subsets of real numbers like
intervals: for example, if S = {x ∈ R ∶ x < 4} and T = {x ∈ R ∶ x ≥ −1}, we might
draw S and T like this:



or



Subsets and equality of sets

Definition 1.5 Let E and F be sets.
We say E is a subset of F , and write E ⊆ F , if for all x,x ∈ E ⇒ x ∈ F .

If E is not a subset of F , we write E /⊆ F .
If E ⊆ F , we also write F ⊇ E and say that F is a superset of E.

If E ⊆ F and F ⊆ E. we say E and F are equal, and write E = F ,
If E and F are not equal, we write E ≠ F .

EXAMPLES

{0,1,2} ⊆ {0,1,2,4,8} but {0,1,2} /⊆ {0,2,4}.

Note the difference between the symbols ∈ and ⊆: the first symbol should be
preceded by an element, but the second symbol should be preceded by a set.

To say E ⊆ F means “everything in E also is in F” or “E is inside F”. If you
draw a Venn diagram, to say E ⊆ F means that the shape corresponding to set E is
completely inside the shape corresponding to set F .

EXAMPLE

For the sets A and C given earlier, C ⊆ A since every element of C is also in A.

To say two sets are equal means that they contain exactly the same elements.

EXAMPLE

{x ∶ x2 = x} = {x ∈ Z ∶ 0 ≤ x < 2} because the only elements in each set are 0 and 1.
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1.2. Sets

Writing proofs about subset and set equality

The subset relationship E ⊆ F can be restated as the conditional “if x ∈ E, then
x ∈ F”. This suggests a direct method for proving one set is a subset of another,
called the generic particular argument:

GENERIC PARTICULAR ARGUMENT to prove E ⊆ F :

Suppose x ∈ E ...... (some logical argument) ....... Thus, x ∈ F .
Therefore E ⊆ F . ◻

RECALL

Sets E and F are equal iff E ⊆ F and F ⊆ E.
This gives us a standard method of proving two sets are equal: you perform the
generic particular argument twice, once to prove E ⊆ F and again to prove F ⊆ E:

SET EQUALITY PROOF of E = F :

(⊆) Suppose x ∈ E ...... (some logical argument) ....... Thus, x ∈ F .

(⊇) Suppose x ∈ F ...... (some logical argument) ....... Thus, x ∈ E.

Since E and F are subsets of each other, E = F . ◻

Operations on sets

Definition 1.6 Let E and F be sets.
The union of E and F , denoted E ∪ F , is defined as

E ∪ F = {x ∶ x ∈ E or x ∈ F}.

The intersection of E and F , denoted E ∩ F , is defined as

E ∩ F = {x ∶ x ∈ E and x ∈ F}.

We say E and F are disjoint if E ∩ F = ∅.
The complement of E, denoted EC , is the set EC = {x ∶ x ∉ E}.
The difference of E and F , denoted E − F and read “E minus F”, is the set

E − F = E ∩ FC .
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1.2. Sets

Concepts:

• ∪ is set language for “or”–the union of a bunch of sets is the set consisting
of elements belonging to at least one of the sets. For example, using the sets
described earlier,

A ∪B = {1,2,3,4,5,6,7,9,11}

More generally, if you have a bunch of sets Eα indexed by some α, then the
union of those sets, denoted ⋃

α
Eα, is the set of things belonging to at least one

of the Eα.

• ∩ is set language for “and”–the intersection of a bunch of sets is the set con-
sisting of elements which belong to all of the given sets. For example, using
the sets described A and B above,

A ∩B = {3,5}

because the only numbers lying in both A and B are 3 and 5.

More generally, if you have a bunch of sets Eα indexed by some α, then the
intersection of those sets, denoted ⋂

α
Eα, is the set of things belonging to all

of the Eα.

• Sets are disjoint if there are no objects which are both elements of E and
elements of F .

EXAMPLE

{x ∈ R ∶ x < 0} and {x ∈ Z ∶ x ≥ 2} are disjoint.

• Complement is set language for “not”.

• The difference of E and F is the set of things in E, but not in F . For the sets
A and C above, i.e.

A = {3,5,7,9,11} and C = {3,5,7},

we have A −C = {9,11} but C −A = ∅.

Mathematics shorthand

∀ is shorthand for the phrase for all.

∃ is shorthand for the phrase there exists.

“s.t.” is shorthand for the words such that.
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1.2. Sets

EXAMPLE

Suppose you see this:
∀n ∈ Z, ∃m ∈ Z s.t. m > n. (1.1)

We read phrase (1.1) as

“For all n in the integers, there exists m in the integers such that m > n.”

To internalize (1.1) better, you might re-read it as

“For all integers n, there’s an integer m such that m > n.”

If you read (1.1) again, you may understand it as

“For all integers n, there is an integer larger than n.”

Last, if you think it about it a bit, you might realize (1.1) has the same intellectual
content as

“There is no greatest integer.”

“⇒” means therefore or implies. This means that whatever follows the “⇒” is
a logical consequence of what comes before it.

EXAMPLE

x = 5 ⇒ x2 = 25.

“⇔” means if and only if (iff). This means that whatever precedes the “⇔”
and whatever follows the “⇔” are statements with truth values that are true at
exactly the same times.

EXAMPLE

x is even ⇔ x = 2n for some integer n.

What about this statement?
x = 5 ⇔ x2 = 25.

Proofs of theorems start with PROOF and end with “◻”. The ◻ is a representa-
tion of a gravestone, which represents that the task of proving the theorem is
complete, or “dead and buried”.
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1.3. Functions

1.3 Functions
In MATH 324 (Proofs), we learn a technical definition of a function which makes
precise the idea of a “function” that you first encounter in high-school algebra or
precalculus.
Generally speaking, this technical definition isn’t useful, but it’s worth stating:

Definition 1.7 Let A and B be sets.
A function, a.k.a. map f from A to B is a rule that assigns to each element x ∈ A
exactly one element f(x) ∈ B.
This f(x) is called the value of f at x, or the image of x under f .
The notation f ∶ A→ B means that f is a function from A to B.
A is called the domain of f and B is called the codomain of f .

Definition 1.8 Let f ∶ A→ B.
The range, a.k.a. image of f , denoted Range(f) or Im(f), is the set of the function’s
values:

Range(f) = Im(f) = {y ∈ B ∶ ∃x ∈ A s.t. f(x) = y}.

EXAMPLE

Let f ∶ R→ R be f(x) = x2. Then:
• the domain of f is R;
• the codomain of f is R;
• the range of f is [0,∞).

EXAMPLE

Let f ∶ R − {0} → R be f(x) = 1
x

. Then:

• the domain of f is R − {0};
• the codomain of f is R;
• the range of f is R − {0}.

Definition 1.9 (Equality of functions) To say two functions f and g are equal
means that they have the same domain, and for all x in that common domain,

f(x) = g(x).
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Images and preimages

Definition 1.10 Let f ∶ A→ B.

• Given E ⊆ A, the image of E under f , denoted f(E), is the set

f(E) = {y ∈ B ∶ ∃x ∈ E s.t. y = f(x)}.

fA B

E

• Given E ⊆ B, the preimage (of E under f ), also called the inverse image
(of E under f ), denoted f−1(E), is the set

f−1(E) = {x ∈ A ∶ f(x) ∈ E}.

fA B

E

• Given y ∈ B, the preimage (of y under f ), also called the inverse image (of
y under f ), denoted f−1(y), is the set defined by

f−1(y) = f−1({y}) = {x ∈ A ∶ f(x) = y}.

fA B

y

To emphasize, the preimage of a point is a set.

EXAMPLE

Let f ∶ R→ R be f(x) = x2.
Then f−1(25) = {−5,5} since both 5 and −5 map to 25 under f .
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Theorem 1.11 Let f ∶ A→ B. Then:

• for any set E ⊆ A, f−1(f(E)) ⊇ E;

WARNING: in general, f−1(f(E)) ≠ E.

• for any set E ⊆ B, f(f−1(E)) = E ∩ Im(f).
WARNING: in general, f(f−1(E)) ≠ E.

PROOF HW

Indicator functions

Definition 1.12 Let A be any set and let E ⊆ A. The indicator function of E, a.k.a.
the characteristic function of E, denoted 1E , is the function 1E ∶ A→ R defined by

1E(x) = {
1 if x ∈ E
0 else .

EXAMPLE

Dirichlet’s function (that we encountered earlier) is the indicator function 1Q of the
rational numbers:

1Q ∶ R→ R 1Q(x) = {
1 x ∈ Q
0 x ∉ Q

Compositions

Definition 1.13 Let g ∶ A→ B and let f ∶ B → C.
Define the composition of f with g, denoted f ○ g, to be the function from A to C
defined by the rule

(f ○ g)(x) = f(g(x)).

A
g //

f○g

77B
f // C

EXAMPLE

If f ∶ R2 → R is f(x, y) = x2−y and g ∶ R→ R2 is g(t) = (t−2,4t+3), then f ○g ∶ R→ R
has rule

(f ○ g)(t) = f(g(t)) = f(t − 2,4t + 3) = (t − 2)2 − (4t + 3).
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Injectivity

An injection (a.k.a. a 1 − 1 function) is a function which takes different inputs to
different outputs. More precisely:

Definition 1.14 A function f ∶ A → B is called injective, a.k.a. one-to-one, a.k.a.
1 − 1, if for every x, y ∈ A,

f(x) = f(y) implies x = y.

Equivalent characterizations of injectivity:
1. f(x) = f(y) implies x = y.
2. x ≠ y implies f(x) ≠ f(y).
3. Different inputs go to different outputs.
4. For all y ∈ B, there is at most one x ∈ A s.t. f(x) = y.
5. f passes the Horizontal Line Test (in the situation where f ∶ R→ R).

EXAMPLES

f ∶ R→ R where f(x) = x2 is not injective because f(1) = f(−1) = 1.

f ∶ [0,∞) → R given by f(x) = x2 is injective:
∀ y ∈ R, there is at most one x in [0,∞) s.t. f(x) = x2 = y.

PROVING that f ∶ A→ B is injective:

Suppose x, y ∈ A are such that f(x) = f(y).
......

Therefore, x = y.
Therefore f is 1 − 1. ◻

EXAMPLE

Let’s prove that f ∶ R→ R defined by f(x) = 3(x − 1)3 − 2 is injective:
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DISPROVING that f ∶ A→ B is injective:

Let x = and y = (choose specific x, y ∈ A). Note x ≠ y.
......

Therefore, f(x) = f(y).
Therefore f is not 1 − 1. ◻

EXAMPLE

Let’s prove f ∶ R→ R defined by f(x) = cosx is not injective.
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Theorem 1.15 Let f ∶ B → C and g ∶ A→ B be functions.

1. If f and g are both injective, then f ○ g is injective.

2. If f ○ g is injective, then g is injective.

PROOF .

When proving a
statement of the
form “if P , then Q”,
start by supposing
that P is true.

To show a function
is injective, use the
recipe on the
preceding page.

Again, this is a
statement of the
form “if P , then Q”.

As before, to show
g is injective, use the
recipe.

Tell the reader the
proof is finished.
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Surjectivity

An surjection (a.k.a. an onto function) is a function which “hits” every point in its
codomain. More precisely:

Definition 1.16 A function f ∶ A→ B is called surjective, a.k.a. onto, if f(A) = B.

Equivalent characterizations of surjectivity:
1. Im(f) = f(A) = B.
2. B ⊆ Im(f).
3. Every potential output of f is an actual output.
4. For every y ∈ B, there is an x ∈ A such that f(x) = y.

EXAMPLE

f ∶ R→ R where f(x) = x2 is not onto, since −1 ∉ f(R).

EXAMPLE

f ∶ R→ [0,∞)where f(x) = x2 is onto:
∀ y ∈ [0,∞), we can let x = √y. Then f(x) = y.

PROVING that f ∶ A→ B is surjective:

Let y ∈ B.
Write a formula for some x ∈ A (that comes from some scratch work).
Show that for the x you wrote down, f(x) = y.
Conclude that f is onto. ◻

DISPROVING that f ∶ A→ B is injective:

Find a specific y ∈ B.
Prove that there is no such x ∈ A s.t. f(x) = y.
(Usually you do this by assuming there is such an x, and deriving a

contradiction.)
Conclude that f is not onto. ◻
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Theorem 1.17 Let f ∶ B → C and g ∶ A→ B be functions.

• If f and g are both surjective, then f ○ g is surjective.

• If f ○ g is surjective, then f is surjective.

PROOF HW

Bijectivity and inverse functions

A function which is both 1 − 1 and onto is called a bijection:

Definition 1.18 A function f ∶ A → B is called bijective if f is both injective and
surjective.

Equivalent characterizations of bijectivity:
1. f is both surjective and injective.
2. For every y ∈ B, there is one and only one x ∈ A such that f(x) = y.
3. Every point in the codomain has a unique preimage.

Theorem 1.19 If f ∶ B → C and g ∶ A→ B are bijections, then f ○ g is a bijection.

The main reason we care about bijections is that bijections are exactly the functions
that have inverses which are also functions:

Definition 1.20 Let f ∶ A→ B be a function (with Dom(f) = A).
If there is another function f−1 ∶ B → A (with Dom(f−1) = B) such that

∀x ∈ A,f−1(f(x)) = x and ∀y ∈ B,f(f−1(y)) = y

then we say f is invertible and that f−1 is an inverse (function) of f .

EXAMPLE

Let f ∶ R→ (0,∞) be f(x) = ex.
Then f−1 ∶ (0,∞) → R is f−1(x) = lnx.
These are inverses because

f−1(f(x)) = ln ex = x and f(f−1(x)) = eln x = x.
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Theorem 1.21 (Properties of inverse functions) Let f ∶ A→ B and g ∶ B → C.

1. f is invertible if and only if f is bijective.

2. If f is invertible, then f has only one inverse function.

3. If f is invertible, then f−1 is invertible, and (f−1)−1 = f .

4. If f and g are invertible, then f ○ g is invertible, and (f ○ g)−1 = g−1 ○ f−1.

WARNINGS on the notation “f−1”: the symbol f−1 is used for preimage and
inverse function.
Unless you know (or have proved) that the function f is invertible, f−1 means
preimage, and is not actually referring to a function named “f−1”.

PROVING that f ∶ A→ B is a bjiection:

1. Prove f is surjective.
2. Prove f is injective.
3 Conclude that f is a bijection. ◻

PROVING that f ∶ A→ B is a bjiection
(by constructing an inverse function of f ):

Write down a formula for f−1 ∶ B → A.
Show that for any x ∈ A, f−1(f(x)) = x.
Show that for any y ∈ B, f(f−1(y)) = y.
Conclude that f is invertible, hence f is a bijection. ◻

DISPROVING that f ∶ A→ B is a bjiection:

Either prove f is not surjective, or prove that f is not injective.
Therefore, f is not a bijection. ◻
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1.4 Cardinality
Definition 1.22 A set E is called finite if there is an injective function f ∶ E →
{1,2,3..., n} for some n ∈ N.
A set E is called infinite if it is not finite.
A set E is called countable if there is an injective function f ∶ E → N.
A set E is called uncountable if it is not countable.

The purpose of the function f in these definitions is that f “counts” the elements
in E. For instance, if

E = {0,5,11,−π,
√

19},

To precisely describe what we did above, define the function f ∶ E → {1,2,3,4,5}
by

f(0) = 1 f(5) = 2 f(11) = 3 f(−π) = 4 f(
√

19) = 5.
Since f takes different inputs to different outputs, f is injective, so E is finite.

It turns out that if E is finite, then there is one and only one natural number n such
that there is a bijection betweenE and {1,2,3, ..., n}. This n is called the cardinality
of E and is denoted #(E).
For the set E = {0,5,11,−π,

√
19}, we have #(E) = 5 .

Cardinality properties that are immediate from these definitions:

1. Every finite set is countable, because if f ∶ E → {1, ..., n} is injective, the same f
is an injection from E to N. Put another way, every uncountable set is infinite.

2. A subset of a finite set is finite, because if f ∶ E → {1, ..., n} is injective, then
for any subset F ⊆ E, restricting f to the subset F gives an injection from F to
{1, ..., n}.
3. A subset of a countable set is countable, because if f ∶ E → N is injective, then
for any subset F ⊆ E, restricting f to E gives an injection from F to N.

4. The empty set is finite, because technically the empty set is an injective function
from ∅ to any other set (like N).

5. The set N of natural numbers is countable, because the function f(n) = n is an
injection from N to N.
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What’s not so easy to show is:

Theorem 1.23 The set N of natural numbers is infinite.

PROOF Suppose N is finite.
Then ∃ f ∶ N→ {1, ..., n}which is injective.
Now, consider the set {f(1), f(2), ..., f(n + 1)}.
This set has n + 1 different elements, since f is injective.
But it is a subset of {1, ..., n}which only has n elements. Contradiction!1

Therefore N is infinite. ◻

As an immediate consequence, any set which has N as a subset (like Z, Q and R) is
infinite.

Theorem 1.24 The set Z of integers is countable.

Idea of proof: To show Z is countable, we have to “count” the integers.

⋯ − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 ⋯

PROOF Let f ∶ Z→ N be defined by

We claim this f is injective. To show this,

Since f ∶ Z→ N is injective, then by definition, Z is countable. ◻

1Actually, the fact that no set of n elements has a subset with n + 1 elements, while seemingly
obvious, needs proof and is actually tricky to prove. Google “pigeonhole principle” for more on
this.
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Theorem 1.25 The set Z×Z, which is the set of ordered pairs of integers, is countable.

PROOF To show Z × Z is countable, we have to “count” the points (x, y) where
x ∈ Z and y ∈ Z. Here’s how we do this:

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰

⋯ ●(−3,3) ●(−2,3) ●(−1,3) ●(0,3) ●(1,3) ●(2,3) ●(3,3) ⋯

⋯ ●(−3,2) ●(−2,2) ●(−1,2) ●(0,2) ●(1,2) ●(2,2) ●(3,2) ⋯

⋯ ●(−3,1) ●(−2,1) ●(−1,1) ●(0,1) ●(1,1) ●(2,1) ●(3,1) ⋯

⋯ ●(−3,0) ●(−2,0) ●(−1,0) ●(0,0) ●(1,0) ●(2,0) ●(3,0) ⋯

⋯ ●(−3,−1) ●(−2,−1) ●(−1,−1) ●(0,−1) ●(1,−1) ●(2,−1) ●(3,1) ⋯

⋯ ●(−3,−2) ●(−2,−2) ●(−1,−2) ●(0,−2) ●(1,−2) ●(2,−2) ●(3,2) ⋯

⋯ ●(−3,−3) ●(−2,−3) ●(−1,−3) ●(0,−3) ●(1,3−) ●(2,−3) ●(3,−3) ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

In case you don’t think this argument is rigorous enough, here’s a (horrible but
correct) formula for the function f ∶ Z × Z → N that does exactly what’s described
with the picture above:

f(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (p, q) = (0,0)
4p2 − 4p + q + 2 if p > 0 and 0 ≤ q ≤ p
4p2 + 4p + q + 2 if p > 0 and −p < q < 0

4q2 − 2q − ∣q∣q (p + 2) if q ≠ 0 and −∣q∣ ≤ p ≤ ∣q∣
4p2 − q + 2 if p < 0 and −∣p∣ ≤ q < ∣p∣

With some work (actually, with quite a bit of work), you can show this function is
injective. ◻

Theorem 1.26 The set Q of rational numbers is countable.

PROOF First, assume that every rational number is written in lowest terms as
p

q
,

where q > 0.
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Then, let g ∶ Q→ Z ×Z be defined by g (p
q
) = (p, q).

g is pretty clearly injective.
Since Z ×Z is countable, ∃ injection f ∶ Z ×Z→ N (as in the previous theorem).
The composition f ○ g ∶ Q→ N is the composition of two injections, so it is an

injection, and therefore Q is countable. ◻

Theorem 1.27 (A countable union of countable sets is countable) IfE1,E2, ...

are all countable sets, then so is
∞
⋃
k=1

Ek.

PROOF Since eachEk is countable, for each k there is an injection fk ∶ E → N, which
we can think of as an injection fk ∶ E → Z.

Define f ∶
∞
⋃
n=1

En → Z ×Z as follows: for x ∈
∞
⋃
n=1

En, let n(x) be the smallest n so

that x ∈ En. Then set f(x) = (n(x), fn(x)(x)).

Claim: f is injective.
Proof of Claim: Suppose f(x) = f(y).

This means (n(x), fn(x)(x)) = (n(y), fn(y)(y)), so n(x) = n(y).
Thus x, y ∈ En, where n = n(x) = n(y).
Furthermore, fn(x) = fn(y). But fn is injective, so x = y.
This proves the claim.

By Theorem 1.25, Z ×Z is countable, so ∃ an injection g ∶ Z ×Z→ N.

Then g ○ f ∶
∞
⋃
n=1

En → N is an injection, making
∞
⋃
n=1

En countable. ◻

QUESTION

Is there such a thing as an uncountable set?

Remember this: If a mathematician (like me) asks you “How many ... are
there?”, almost always the mathematician is looking for one of three answers:
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An application in probability theory

One of the important building blocks in probability theory is the idea of a probabil-
ity space, which consists of:

• a set Ω,
• a σ−algebra A of subsets of Ω, meaning

– A is non-empty, i.e. Ω ∈ A;

– A is closed under complements, i.e. if E ∈ A, then EC ∈ A;

– A is closed under countable unions and countable intersections, i.e. for
any countable set I , if {Ej ∶ j ∈ I} are in A, then ⋃

j∈I
Ej and ⋂

j∈I
Ej are both

in A.

• a probability measure P , which is a function P ∶ A → R such that
– P is positive, i.e. P (E) ≥ 0 for all E ∈ A;

– P is normalized, i.e. P (Ω) = 1; and

– P is countably additive, i.e. for any countable set I and any disjoint sets
{Ej ∶ j ∈ I} in A, we have

P (⋃
j∈I
Ej) = ∑

j∈I
P (Ej).

EXAMPLE (FOR THOSE WHO HAVE TAKEN MATH 414
Suppose X is chosen uniformly on the interval [0,1]. What is P (X ∈ Q)?
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1.5 Chapter 1 Summary
DEFINITIONS AND SYMBOLS TO KNOW

Nouns x

• A set is a definable collection of objects called the elements of the set.
x ∈ E means x is an element of set E.
E ⊆ F means E is a subset of F , i.e. x ∈ E implies x ∈ F .

• The empty set ∅ is the set with no elements.

• The union E ∪ F is the set of things in E or F (or both).

• The intersection E ∩ F is the set of things in both E and F .

• The complement EC is the set of things not in E.

• The difference E − F is the set of things in E but not F .

• A function f ∶ A → B is a rule that assigns to each x ∈ A one element
f(x) ∈ B.
f(x) is called the value of f at x.
The set A of inputs to f is called the domain of f .
The set B of possible outputs of f is called the codomain of f .
If E ⊆ A, then the image f(E) is the set of outputs obtained from inputs
in E.
f(A) is called the range of f .
If E ⊆ B, the preimage f−1(E) is the set of inputs which produce an
output in E.

• The inverse of f ∶ A → B is a function f−1 ∶ B → A so that f−1 ○ f(x) = x
for all x ∈ A and f ○ f−1(x) = x for all x ∈ B. (Not every function has an
inverse.)

Adjectives that describe sets x

• Two sets are called disjoint if they have no elements in common.

• A set is called finite if there is an injection from it to {1,2,3..., n} for some
n ∈ N.

• A set is called countable if there is an injection from it to N.
Otherwise, the set is called uncountable.

Adjectives that describe functions x

• f is injective (1 − 1) if f(a) = f(b) implies a = b.
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• f ∶ A → B is surjective (onto) f(A) = B, i.e. for every y ∈ B there is x ∈ A
so that f(x) = y.

• f is bijective if it is injective and surjective; this is equivalent to f being
invertible, which means the inverse function f−1 exists.

Symbols x

• ∀means “for all”.
• ∃means “there exists”.
• s.t. means “such that”.
• ⇒means “therefore” or “implies”.
• ⇔means “if and only if”
• ◻means “end of proof”.
• N is the set of natural numbers.

Z is the set of integers.
Q is the set of rational numbers.

• #(E) is the cardinality of E (the number of elements in E).

IMPORTANT EXAMPLES OF FUNCTIONS TO REMEMBER

• Functions of the form f(x) = xm sin 1
xn

where m,n ∈ N.

• The indicator function of set E is the function 1E(x) = {
1 x ∈ E
0 x ∉ E .

• The Dirichlet function is 1Q(x) = {
1 x ∈ Q
0 x ∉ Q .

• Thomae’s function is the function τ ∶ R→ R defined by

τ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
q

x ∈ Q, x = p
q

in lowest terms with q > 0

0 x ∉ Q

• The Cantor function c has the weird staircase-looking graph shown in §1.1.

THEOREMS WITH NAMES

Intermediate Value Theorem (IVT) If f ∶ R → R is continuous, then for any y
between f(a) and f(b), ∃x between a and b such that f(x) = y.

Mean Value Theorem (MVT) Let a < b. Suppose f ∶ R → R is continuous and

differentiable. Then ∃x ∈ (a, b) such that f ′(x) = f(b) − f(a)
b − a

.
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OTHER THEOREMS TO REMEMBER

• Compositions of injections are injections.

• Compositions of surjections are surjections.

• Compositions of bijections are bijections.

• Subsets of finite sets are finite.

• Subsets of countable sets are countable.

• N, Z, Z ×Z and Q are countable infinite sets.

• Countable unions of countable sets are countable.

STANDARD PROOF TECHNIQUES

To prove E ⊆ F , assume x ∈ E and deduce x ∈ F .

To prove E = F , prove E ⊆ F and F ⊆ E.

To prove f ∶ A→ B is injective, assume f(x) = f(y) and deduce x = y.

To prove f ∶ A→ B is surjective, assume y ∈ B and write down a formula for an
x ∈ A so that f(x) = y.

To prove f ∶ A→ B is bijective, do one of these two things:

1. Prove f is injective, and prove f is surjective.

2. Prove that f has an inverse, by writing down a formula for f−1 and
showing f−1 ○ f(x) = x and f ○ f−1(x) = x.

1.6 Chapter 1 Homework
Exercises from Section 1.2

1. Let A, B and C be sets. Prove A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).
Hint: This is a set equality proof, so you should prove each side is a subset of
the other.

2. Let A, B and C be sets. Prove A − (B ∩C) = (A −B) ∪ (A −C).
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Exercises from Section 1.3

3. Let f ∶ R → R be f(x) = 2x2 + 3, and let E = {x ∈ R ∶ x ≤ 5}. Describe the sets
f(E) and f−1(E) using inequalities.

4. Let f ∶ A→ B be a function. Prove that for any set E ⊆ A, E ⊆ f−1(f(E)).
Hint: This is a subset proof. Start by letting x ∈ E. What does that mean about
f(x)?

5. Give a specific example of a function f ∶ A → B and a set E ⊆ A such that
f−1(f(E)) ≠ E.

6. Let f ∶ A → B be a function. Prove that for any set E ⊆ B, f(f−1(E)) =
E ∩ Im(f).
Hint: This is a set equality proof. For the (⊆) direction, let x ∈ f(f−1(E)).
Explain why x ∈ Im(f) and x ∈ E. For the (⊇) direction, let x ∈ E ∩ Im(f).
Since x ∈ Im(f), ∃w ∈ A s.t. f(w) = x. To what subset of A must w belong?

7. Give a specific example of a function f ∶ A → B and a set E ⊆ B with
f(f−1(E)) ≠ E.

Hint: Choose E ⊆ B so that it includes some elements not in the image of f .

8. Prove or disprove: If f ∶ A→ B is a function, E ⊆ A and F ⊆ A, then

f(E ∪ F ) = f(E) ∪ f(F ).

9. Prove or disprove: If f ∶ A→ B is a function, E ⊆ A and F ⊆ A, then

f(E ∩ F ) = f(E) ∩ f(F ).

10. Prove or disprove: If f ∶ A→ B is a function, E ⊆ B and F ⊆ B, then

f−1(E ∩ F ) = f−1(E) ∩ f−1(F ).

11. Prove or disprove: If f ∶ A→ B is a function, E ⊆ B and F ⊆ B, then

f−1(E ∪ F ) = f−1(E) ∪ f−1(F ).

12. Let A = {x ∈ R ∶ x < 1
2}; let B = {x ∈ R ∶ x ≥ 0} and let C = {x ∈ R ∶ x ≥ 1}.

a) Evaluate 1A(4).
b) Evaluate 1C(5).

c) Evaluate 1A∩B (
3
4).

d) Evaluate 1C ○ 1B(3).
e) Evaluate 1C ○ 1A(3).
f) Describe the set 1−1

A (C).
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1.6. Chapter 1 Homework

13. Let A, B and C be as in Exercise 12.

a) Sketch a graph of 1A.
b) Sketch a graph of 1A∪C .
c) Sketch a graph of the function f(x) = 4 ⋅ 1C(3x).
d) Sketch a graph of the function g(x) = 3 ⋅ 1A(x) + 1B(x) − 1C(x).

14. Determine, with proof, whether or not the function f ∶ R2 → R2 defined by
f(x, y) = (2x − y, x + 2y) is injective.

15. Determine, with proof, whether or not the function f ∶→ [−5,5] → [0,5] de-
fined by f(x) =

√
25 − x2 is surjective.

16. Prove the first part of Theorem 1.17 from the notes, which says that if f ∶ B →
C and g ∶ A→ B are both surjective, then f ○ g ∶ A→ C is surjective.

17. Prove the second statement of Theorem 1.17, which says that if f ∶ B → C
and g ∶ A → B are functions so that f ○ g ∶ A → C is surjective, then f must be
surjective.

18. Give an example of functions f ∶ B → C and g ∶ A → B where f ○ g ∶ A → C is
surjective, but g is not surjective.

19. Determine, with proof, whether or not the function f ∶ R → R defined by
f(x) = 7x − 13 is a bijection.

20. Determine, with proof, whether or not the function f ∶ R → R defined by
f(x) = x∣x∣ is a bijection.

21. Let a, b, c, d ∈ R with ad ≠ bc. Prove that the function h ∶ R − {d
c
} → R − {a

c
}

defined by h(x) = ax + b
cx + d

is a bijection.

22. Let f ∶ R−{−1} → R−{0} be f(x) = 2
x3 + 1 . Compute a formula for f−1(x) and

prove that your f−1 is indeed the inverse of f (by verifying that f−1 ○ f(x) = x
and f ○ f−1(x) = x).

Exercises from Section 1.4

23. Prove that the union of two finite sets is finite.

Hint: This is “obvious”, but not so easy to prove. Start like this: let E and
F be finite sets. Then, by definition of finite set, there exist injections fE ∶
E → {1, ...,m} and fF ∶ F → {1, ..., n}, where m,n ∈ N. Use these functions to
construct an injection from E ∪ F to {1, ...,m + n}.
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1.6. Chapter 1 Homework

24. Let E be an infinite set and let x1 be an arbitrary element of E. Prove that
E − {x1} is infinite.

Hint: Try a proof by contradiction that applies the result of Exercise 23.

25. Prove that every infinite set contains a countable infinite subset.

Hint: Use the result of Problem 24 to select an x1 ∈ E, then x2 ∈ E − {x1}, etc.

26. a) Give an example of a function f ∶ N → N that is injective but not surjec-
tive.

b) Prove that given any infinite set E, there is a function f ∶ E → E which
is injective but not surjective.
Hint: Use the result of Problem 24 to find a countable infinite subset F
of E. Using part (a) of this problem as a prototype, construct a function
f ∶ F → F which is injective but not surjective, and then extend the
function f to the rest of E.
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Chapter 2

The real numbers

The rational numbers Q and the IVT

Definition 2.1 The set of rational numbers, denoted Q, is the set of quotients of
integers:

Q = {p
q
∶ p, q ∈ Z, q ≠ 0} .

Strictly speaking, this definition isn’t quite right, because it obscures the fact that
some of these quotients are actually the same rational number. For example,

30
60 =

−8
−16 =

7
14 =

1
2 .

Technically, Q is a set of equivalence classes of pairs of integers. But we don’t need
that level of precision in our course, so we won’t worry about it.

Theorem 2.2 (Intermediate Value Theorem (IVT)) Let f ∶ R→ R be continuous,
and let a < b in R. Then, for any y between f(a) and f(b), there is x ∈ R between a
and b such that f(x) = y.

What would happen if we tried to formulate an Intermediate Value Theorem for
Q? It would look like this:

Conjecture 2.3 (Intermediate Value Theorem (IVT) for Q) Let f ∶ Q → Q be
continuous, and let a < b in Q. Then, for any y between f(a) and f(b), there is x ∈ Q
between a and b such that f(x) = y.
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Consider the function f ∶ Q→ Q defined by f(x) = x2. Let a = 1 and b = 2.

f

1 x 2


1

2

4



So if the IVT for Q is true, then there would have to be a rational number x ∈ Q
such that x2 = 2. But...

Theorem 2.4 (Hippasus’ Theorem) There is no x ∈ Q such that x2 = 2.

PROOF

What’s going wrong here? There are two possibilities:

1. x

2. x

PUNCHLINE

R must be “different” from Q in some way. So our first goal in MATH 430 is to
understand everything there is to know about R, and especially what makes it
“different” from Q.
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2.1. Algebraic and order properties

2.1 Algebraic and order properties
Rather than worrying about exactly what a real number is, let’s focus on what
properties the set of real numbers R has. First, there’s a lot of nice arithmetic and
algebra you can do with real numbers:

Definition 2.5 A field is a set F together with two binary operations of F :

Addition: + ∶ F × F → F defined by (x, y) +z→ x + y, and

Multiplication: ⋅ ∶ F × F → F defined by (x, y) ⋅z→ xy

which satisfy all the following eight rules:

1. Adding and multiplying produce elements of F :
∀x, y ∈ F , x + y ∈ F and xy ∈ F .

2. + and ⋅ are commutative:
∀x, y ∈ F , x + y = y + x and xy = yx;

3. + and ⋅ are associative:
∀x, y, z ∈ F , x + (y + z) = (x + y) + z and x(yz) = (xy)z;

4. ⋅ distributes over +:
∀x, y, z ∈ F , x(y + z) = xy + xz;

5. there is an additive identity element:
∃0 ∈ F such that 0 + x = x∀x ∈ F ;

6. there is a multiplicative identity element
∃1 ∈ F such that 1x = x∀x ∈ F ;

7. additive inverses exist:
∀x ∈ F,∃ − x ∈ F such that x + (−x) = 0;

8. reciprocals of nonzero elements exist:
∀x ≠ 0 in F , ∃x−1 such that x(x−1) = 1.

If you’ve had abstract algebra (MATH 420), there’s a much shorter way to define a
field that encompasses all eight of these properties:

Definition 2.6 (Shorter definition of field) A field is a set F with two binary op-
erations + and ⋅ such that (F,+) and (F − {0}, ⋅) are abelian groups, and such that
multiplication distributes over addition (i.e. ∀x, y, z ∈ F,x(y + z) = xy + xz).

What either of these definitions capture is that a field is a set with two operations
+ and ⋅ that have all the same “nice” rules as the addition and multiplication you
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2.1. Algebraic and order properties

learn about as a kid.

In particular, you can always add and multiply in a field (by definition), and you
can also always subtract, because

and you can always divide by anything other than zero, because

and these operations behave lots of nice rules (you can do them in either order,
regroup, there are identity and inverse elements, etc.).

In fact, there are lots of other nice rules that all fields automatically obey:

Theorem 2.7 (Arithmetic and algebraic properties of fields) Let F be any field.
Then, ∀x, y, z ∈ F , we have:

1. Additive cancellation holds:
x + z = y + z implies x = y.

2. Multiplicative cancellation holds:
xz = yz implies x = y, so long as z ≠ 0.

3. The additive identity element of the field is unique.

4. The multiplicative identity element of the field is unique.

5. The additive inverse of each element of F is unique.

6. The reciprocal of each nonzero element of F is unique.

7. 0x = 0.
8. −x = (−1)x.
9. If xy = 0, then x = 0 or y = 0.

10. −0 = 0.
11. 1−1 = 1.
12. −(−x) = x.
13. (x−1)−1 = x.
14. (−x)y = −(xy) = x(−y).

If this was an algebra class like MATH 420, it would be useful to go through proofs
of all the properties in Theorem 2.7. But that’s not really the subject matter of
MATH 430. What’s important for us is this:
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2.1. Algebraic and order properties

Assumption # 1 about the real numbers

R is a field, with additive identity element 0 and multiplicative identity
element 1.

OTHER EXAMPLES OF FIELDS

• Q

• the set C of complex numbers (i.e. numbers of the form a + bi where a, b ∈ R);

• the set Z/pZ (a.k.a. Zp) of integers mod p (if p is prime);

• the set R(x) of rational functions (a function is rational if it is the quotient of
two polynomials).

SETS THAT ARE NOT FIELDS

• the set N of natural numbers (either {0,1,2, ...} or {1,2,3, ...} depending on
the context);

• the set Z = {...,−3,−2,−1,0,1,2,3, ...} of integers;

• the set Z/nZ (a.k.a. Zn) of integers mod n (if n isn’t prime);

• the set R[x] of polynomials with real coefficients.

Order properties of R
First, let’s talk about what a relation is. Given any set S, recall that S2 = S × S is
the set of ordered pairs where each entry is in S. Next, by a relation on a set S we
technically mean any subset of S2.

Think of a relation as a “symbol” that you put between two elements of S to pro-
duce a mathematical sentence that is either true or false. Examples of such symbols
include:

The connection between the formal definition of relation and the way we usually
use relations is as follows: if R is some subset of S × S (usually R is a symbol), we
say xRy if (x, y) ∈ R and x /R y if (x, y) ∉ R.

At this point, we care about the relation ≤, which has three important properties
that make it something called a total ordering:
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2.1. Algebraic and order properties

Definition 2.8 Let S be any set. A total ordering on S is a relation ≤ on S such
that ∀x, y, z ∈ S, the following properties hold:

1. Connexity:
either x ≤ y or y ≤ x.

2. Antisymmetry:
if x ≤ y and y ≤ x, then x = y.

3. Transitivity:
if x ≤ y and y ≤ z, then x ≤ z.

In a set S that has a total ordering ≤, we automatically get another relation <. When
we write x < y, we formally mean “x ≤ y and x ≠ y”.

Definition 2.9 An ordered field is a field F , together with a total ordering ≤ on F
such that ∀x, y, z ∈ F ,

1. Addition preserves inequalities:

if x ≤ y, then x + z ≤ y + z.

2. Products of non-negative elements are non-negative:

if x ≥ 0 and y ≥ 0, then xy ≥ 0.

If F is an ordered field, we define these subsets of F :
1. the positive cone F+ = {x ∈ F ∶ x > 0}; and
2. the negative cone F− = {x ∈ F ∶ x < 0}.

Notice that F is the disjoint union of F+, F− and {0}.

Theorem 2.10 (Properties of ordered fields) Let F be an ordered field. Then, for
all w,x, y, z ∈ F :

1. Additive inverses have opposite sign as the original number:
either −x ≤ 0 ≤ x or x ≤ 0 ≤ −x.

2. Inequalities can be added:
if w ≤ x and y ≤ z, then w + y ≤ x + z.

3. Multiplying by positive constant preserves inequalities:
if x ≤ y and z ≥ 0, then xz ≤ yz.

4. Multiplying by negative constant reverses inequalities:
if x ≤ y and z ≤ 0, then xz ≥ yz.
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2.1. Algebraic and order properties

5. Positive times negative is negative:
if y ≥ 0 and z ≤ 0, then yz ≤ 0.

6. Negative times negative is positive:
if x ≤ 0 and z ≤ 0, then xz ≥ 0.

7. Squares are non-negative:
x2 ≥ 0.

8. Reciprocal has same sign as original number:
if x > 0, then x−1 > 0; if x < 0, then x−1 < 0.

9. Reciprocals reverse inequalities:
if 0 < x ≤ y, then x−1 ≥ y−1, and if x ≤ y < 0, then x−1 ≥ y−1.

PROOF To prove (1), we use cases. By connexity of ≤, either x ≥ 0 or x ≤ 0.
Case 1: If x ≥ 0, then x + (−x) ≥ 0 + (−x) so 0 ≥ −x. Thus −x ≤ 0 ≤ x as wanted.
Case 2: If x ≤ 0, then x + (−x) ≤ 0 + (−x) so 0 ≤ −x. Thus x ≤ 0 ≤ −x as wanted.

To prove (2), note w ≤ x implies w + y ≤ x + y and y ≤ z implies y + x ≤ z + x.
By transitivity, w + y ≤ x + z.

To prove (3), assume x ≤ y and z ≥ 0. Then x + (−x) ≤ y + (−x) so 0 ≤ y − x.
Since products of non-negative numbers are non-negative, 0 ≤ (y−x)z = yz−xz.
Add xz to both sides to get xz ≤ yz.

To prove (4), assume x ≤ y and z ≤ 0.
By (1), (−z) ≥ 0.
As in the proof of (3), 0 ≤ y − x.
Since products of non-negatives are non-negative, 0 ≤ (y − x)(−z) = −yz + xz.
Add yz to both sides to get yz ≤ xz.

Statement (5) follows from statement (4) by setting x = 0.

Statement (6) follows from statement (4) by setting y = 0.

Statement (7) follows from statement (6) and the second axiom in the definition of
ordered field.

To prove (8), first observe that by (7), 1 must be positive, since 1 = 12.
Now, suppose not (i.e. x and x−1 have opposite signs).
Then, by statement (6), xx−1 = 1 would have to be negative.
This is a contradiction.

To prove (9), suppose that 0 < x ≤ y. By (8), we know 0 < 1
x

and 0 < 1
y

.

Apply (3) to 0 < x ≤ y by multiplying everything through by
1
x

to get 0 < 1 ≤ y
x

.

Then multiply through by
1
y

to get 0 < 1
y
(1
x
)x ≤ 1

y
(1
x
) y, i.e. 0 < 1

y
≤ 1
x

. ◻
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2.1. Algebraic and order properties

Assumption #2 about the real numbers

R is an ordered field.

Quick remark: Elements of the positive cone of the real numbers, i.e. those real
numbers x which satisfy x > 0, are called positive numbers. Elements of the nega-
tive cone are called negative numbers.

0 is neither positive nor negative.

If we want to refer to the numbers that are ≥ 0, we call those non-negative num-
bers. “Positive” and “non-negative” are NOT synonyms.

OTHER EXAMPLES OF ORDERED FIELDS

• Q
• There are others, but they are complicated.

FIELDS THAT ARE NOT ORDERED FIELDS

• C (reason: i2 = −1 < 0, violating (9) of Theorem 2.10)

• R(x), the set of rational functions (reason: which is bigger,
1
x

or x?)

• There are others, but they are complicated.

Intervals

In an ordered field like R, we can define special subsets called intervals:

Definition 2.11 Given a, b ∈ R, set

[a, b] = {x ∈ R ∶ a ≤ x ≤ b} [a,∞) = {x ∈ R ∶ a ≤ x}
[a, b) = {x ∈ R ∶ a ≤ x < b} (a,∞) = {x ∈ R ∶ a < x}
(a, b] = {x ∈ R ∶ a < x ≤ b} (−∞, a] = {x ∈ R ∶ x ≤ a}
(a, b) = {x ∈ R ∶ a < x < b} (−∞, a) = {x ∈ R ∶ x < a}

Any subset of R which is any of these types is called an interval.
As a convention, the set of all real numbers R is also decreed to be an interval and can
be written (−∞,∞).


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2.2. Absolute value and distance

EXERCISE

What is the interval [5,3]? What is the interval [4,4]? What about (4,4)?

Solution: [5,3] =

[4,4] =

(4,4) =

2.2 Absolute value and distance
Definition 2.12 The absolute value of a real number z is

∣z∣ = { z if z ≥ 0
−z if z ≤ 0

Theorem 2.13 (Elementary properties of absolute value) Let z ∈ R. Then:

• ∣z∣ =max{−z, z}.

• −∣z∣ ≤ z ≤ ∣z∣.

• ∣z∣ = ∣ − z∣.

• ∣z∣ ≥ 0.

• ∣z∣ = 0 only if z = 0.

PROOF These are pretty self-evident, so I won’t prove all of them. However, to be
pedantic I will prove the second statement so you see how the precise arguments
work. To do this, consider two cases, depending on whether or not z ≥ 0:

Case 1: z ≥ 0. In this situation, ∣z∣ = z. Therefore

−∣z∣ = −z ≤ 0 ≤ z = ∣z∣,

establishing the second statement.
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2.2. Absolute value and distance

Case 2: z < 0. In this situation, ∣z∣ = −z. Therefore

−∣z∣ = −(−z) = z < 0 < −z = ∣z∣,

proving the second statement. ◻

Theorem 2.14 (Multiplicativity of absolute value) Let x, y ∈ R. Then

∣xy∣ = ∣x∣ ∣y∣.

PROOF HW

Hint: Consider some cases depending on the signs of x and/or y.

The distance between two real numbers

Definition 2.15 Let x, y ∈ R. The distance between x and y is ∣x − y∣.

If you think about the real numbers as being points on a number line, ∣x−y∣ literally
gives the distance between x and y:


-2 5 x y

Theorem 2.16 (Elementary properties of distance) Let x, y, r ∈ R. Then:

1. Distances are nonnegative:

∣x − x∣ ≥ 0.

2. Distance is definite:

∣x − y∣ = 0 if and only if x = y.

3. Distances are symmetric:

∣x − y∣ = ∣y − x∣.

4. Distance is multiplicative:

∣rx − ry∣ = ∣r∣ ∣x − y∣.
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2.2. Absolute value and distance

PROOF Let z = x − y, then all these follow from the elementary properties of abso-
lute value. For example, to establish that distances are symmetric,

∣x − y∣ = ∣z∣ = 1 ∣z∣ = ∣ − 1∣ ∣z∣ = ∣ − z∣ = ∣ − (x − y)∣ = ∣y − x∣.

Proofs of the other properties are similar. ◻

The triangle inequality

A simple idea we will repeatedly use in this course is what is called the Triangle
Inequality. It goes like this:

Theorem 2.17 (Triangle Inequality) If x, y ∈ R, then

∣x + y∣ ≤ ∣x∣ + ∣y∣.

PROOF There are two cases, depending on whether or not x + y ≥ 0.

Case 1: If x + y ≥ 0, we have

∣x + y∣ = x + y ≤ ∣x∣ + y ≤ ∣x∣ + ∣y∣.

Case 2: If x + y < 0, we have

∣x + y∣ = −(x + y) = −x − y ≤ ∣x∣ − y ≤ ∣x∣ + ∣y∣.

This completes the proof. ◻

If we start with the triangle inequality

∣x + y∣ ≤ ∣x∣ + ∣y∣

and let x = a − b and let y = b − c, then we get

This alternate version of the triangle inequality is good to know:
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2.2. Absolute value and distance

Theorem 2.18 (Triangle Inequality (version 2)) If a, b, c ∈ R, then

∣a − c∣ ≤ ∣a − b∣ + ∣b − c∣.

In other words,

the distance from
a to c ≤ ( the distance from

a to b ) + ( the distance from
b to c )

This version explains why we call these facts the “Triangle Inequality”. If you think
of a, b and c as points in space instead of numbers, you get the following picture:

a

b

c

Often, we think of points on a number line, and reason like this:


r s t

< 4 < 8


xn yn ym xm

<
ϵ

3
<

ϵ

3
<

ϵ

3

Notice that the order in which the points r, s, t (or xn, yn, ym, xm) appear on the
number line doesn’t affect this logic.
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2.2. Absolute value and distance

Bounded sets

Definition 2.19 A subset S ⊆ R is called bounded if ∃B > 0 such that ∀x ∈ S,
∣x∣ ≤ B. In this case B is called a bound for S. An unbounded set is one that is not
bounded.

EXAMPLES OF BOUNDED SETS





EXAMPLES OF UNBOUNDED SETS




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2.3. Sequences; convergence and divergence

2.3 Sequences; convergence and divergence
AN UPDATE ON THE BIG PICTURE

We are investigating what makes R different from Q.

Both Q and R have the same formulas for absolute value and distance, so these
concepts don’t (by themselves) distinguish R from Q.

BUT: we will find a big difference between R and Q by further investigating ideas
related to absolute value and distance. The new ideas involve the convergence of
sequences of numbers.

Definition 2.20 Let F be either Q or R, and let m ∈ Z.
A sequence (in F ) is a function {m,m + 1,m + 2, ...} → F .
If we write xn for the image of n under this function (which might ordinarily be denoted
x(n)), the entire sequence is denoted {xn} or {xn}∞n=m, so in particular,

{xn} = {xm, xm+1, xm+2, xm+3, ...}.

The variable n is called the index of the sequence {xn}.

Note 1: sequences have infinite index sets:
{1,2,3,4,5} is not a sequence.

Note 2: sequences are ordered:
{1,2,3,4,5, ...} is not the same sequence as {1,3,2,4,5,7,6,8, ...},
even though these objects are the same sets.

Note 3: “xn” versus “{xn}”

Definition 2.21 A sequence {xn} is called...
... increasing if xn ≤ xn+1 for every n;
... decreasing if xn ≥ xn+1 for every n;
... strictly increasing if xn < xn+1 for every n;
... strictly decreasing if xn > xn+1 for every n;
... monotone if either {xn} is increasing or {xn} is decreasing;
... strictly monotone if {xn} is strictly increasing or {xn} is strictly decreasing;
... bounded if {xn} is a bounded subset of R.
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2.3. Sequences; convergence and divergence

MAIN EXAMPLES

Remark: Throughout this chapter, we will be using the four sequences in this ex-
ample as “prototypes”.

So you should remember the definitions of the four sequences {an}, {bn}, {cn} and
{dn} in this example as we go forward.

For now, let’s determine which, if any, of the adjectives in Definition 2.21 apply to
each sequence.

1. an =
1
n

(i.e. {an} = {1,
1
2 ,

1
3 ,

1
4 , ...})

2. bn = 1 + (−1)n

3. cn = n2

4. {dn} = {1,1.4,1.41,1.414,1.4142, ...}
(formally, dn is the largest decimal with ≤ n places whose square is at most 2)
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2.3. Sequences; convergence and divergence

QUESTION

What happens to the terms of a sequence, as its index n as n gets larger and larger
(without bound)? In other words, what is the limiting behavior of the sequence?

Q1: Do the numbers in
the sequence get
closer and closer to
a single number?

Q2: Do the numbers in
the sequence get
closer and closer
to each other?

an =
1
n

bn = 1 + (−1)n

cn = n2

{dn} =
{1.4,1.41,1.414, ...}

MAIN EXAMPLES

The big difference between R and Q is that for sequences in R, the answers to Q1
and Q2 above always coincide.

But in Q, there are sequences like {dn} which get closer and closer to each other
and therefore “should” have a limit, but don’t (at least not in Q).

More on this later–for now, let’s talk about exactly what Q1 means in detail.
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2.3. Sequences; convergence and divergence

Definition 2.22 Let F denote either Q or R.
A sequence {xn} in F is said to converge (in F ) to a number L ∈ F if ∀ ϵ > 0 (ϵ ∈ F ),
∃N (this N usually depends on ϵ, so it might be denoted N(ϵ)) such that if n ≥ N ,
∣xn −L∣ < ϵ.
We write lim

n→∞
xn = L or limxn = L or xn

n→∞Ð→ L or just {xn} → L or xn → L to
express this.
In this situation, L is called a limit of the sequence {xn}.
A sequence {xn} is said to diverge if it does not converge to any limit.

A PICTURE TO EXPLAIN THIS DEFINITION

n



1 2 3 4 5 6 7

L

56



2.3. Sequences; convergence and divergence

REMARKS ON THE DEFINITION OF CONVERGENCE

• If, given ϵ > 0, a certain value of N works as N(ϵ) in the definition of conver-
gence of {xn}, then any number larger than N also works as N(ϵ).

• For any M , altering the first M terms of a sequence doesn’t affect its con-
vergence (reason: you can always choose N ≥ M , based on the previous
comment).

So if you know xn → L, then even if you change (or delete) the values of
x1, x2, ..., x100, {xn} still converges to L.

• When you know a sequence converges, expressions (so long as they are > 0)
can play the role of ϵ in the definition of convergence, i.e.

if xn → L, then “∀ ϵ > 0∃N so that n ≥ N implies ∣xn −L∣ <
ϵ

2 .”

and

if xn → L, then “∀ ϵ > 0∃N so that n ≥ N implies ∣an −L∣ <
ϵ4

100 .”

but you can’t say

if an → L, then “∀ ϵ > 0∃N so that n ≥ N implies ∣an −L∣ < ϵ − 1.”

• If you know xn → L, then for any ϵ > 0, you can turn the picture on the
previous page “sideways” and think of a number line like this:


L

ϵ ϵ

or more generally, something like this:


L

ϵ2

8

ϵ2

8
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2.3. Sequences; convergence and divergence

EXAMPLE

Prove that the sequence {an} converges, where an =
1
n

.

Unfortunately, there is a problem with this proof (that is very hard to find).
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2.3. Sequences; convergence and divergence

Definition 2.23 An ordered field F containing N is called Archimedean if, for every
x ∈ F , there is N ∈ N so that N > x.

Assumption #3 about the real numbers

R is Archimedean.

The example we did on the previous page (proving
1
n
→ 0) is our first example of

what I call an epsilon proof (or an ϵ-proof ). These proofs have the following flavor:

• You let ϵ > 0.
• Based on some given information, this ϵ may tell you some stuff that is true,

or provide you with some constants like M or M1 or N0 or N1 or δ0 or η or γ
for which “something” is true.

• Then, you may have to choose something like an N or δ or L, either coming
from the constants you get in the previous item, or based on some indepen-
dent reasoning.

• You work out something and show that it is less than ϵ. (In the context of
proving a sequence {xn} converges, this means you are working out ∣xn − L∣
for n ≥ N .)

• Last you draw a conclusion based on the fact that the expression worked out
to be less than ϵ. This may be that a sequence converges, or that a function is
continuous, etc.

The main class of proofs we learn how to write in MATH 430 are ϵ-proofs.

Convergence and divergence viewed as a two-player game

A nice way to think about convergence of a sequence is as a two-player game.

Player 1 is the ϵ player, and Player 2 is the N player.
Player 1 goes first and chooses a positive number ϵ.
Then Player 2 chooses an N .
If, for every n ≥ N , ∣an −L∣ < ϵ, Player 2 wins; otherwise, Player 1 wins.

To say that the sequence converges means that Player 2 can always win.
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2.3. Sequences; convergence and divergence

A proof that the sequence converges is essentially a description of a strategy
that Player 2 can use to win, no matter what Player 1 does (in other words,
that accounts for all choices of ϵ that the first player might make).

A proof that the sequence doesn’t converge to L is a description of a strategy
that Player 1 can use to win, meaning

EXAMPLE

Let bn = 1 + (−1)n. Determine whether or not bn → 2.

n



1 2 3 4 5 6

2

0

REMARK / QUESTION

The preceding argument proves that bn /→ 2 (by finding one particular ϵ > 0 such
that there is no corresponding N ).
But this doesn’t rule out that bn → something else.
How would you might that a sequence diverges?
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2.3. Sequences; convergence and divergence

ONE LAST REMARK

When you’re reading an ϵ proof, choices of constants like the N or δ being made in
the proof can seem like “magic”.

They aren’t magic–they come from scratch work that was done first, and that isn’t
included in the proof.

When you read an ϵ-proof, try to think about the scratch work that was done to
create the argument.

EXERCISE

Let xn =
n2 − 1
n2 + 1 . Prove that {xn} converges.
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2.3. Sequences; convergence and divergence

EXERCISE

Let xn =
√
n + 1 −

√
n. Prove that xn → 0.
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2.3. Sequences; convergence and divergence

Properties of convergent sequences and limits

Theorem 2.24 (Limits preserve constants) If xn = c for all n, then xn → c.

PROOF Let ϵ > 0. Given this ϵ, choose N = xxx

xxx
. Then for n ≥ N , we have

∣xn − c∣ = ∣c − c∣ = 0 < ϵ.

Thus xn → c by definition. ◻

Theorem 2.25 (Limits are unique) A convergent sequence can have at most one
limit.

PROOF We will prove this by contradiction.
Suppose {xn} is a sequence with two limits L and M , where L ≠M .

WLOG
xxx

xxx
xxxxxxxxx .


L M
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2.3. Sequences; convergence and divergence

Theorem 2.26 (Convergent sequences are bounded) A convergent sequence must
be bounded.

PROOF Suppose xn → L.
Let ϵ = 1. Then, ∃N so that n ≥ N implies ∣xn −L∣ < 1.


L

1 1

That means that when n ≥ N , xn < L + 1 so ∣xn∣ < ∣L + 1∣ ≤ ∣L∣ + 1.
Now, let

B =

It is clear that ∣xn∣ ≤ B for every n. Therefore {xn} is bounded. ◻

CONSEQUENCE

Let cn = n2. {cn} diverges (because it is unbounded).

Main Limit Theorem

The Main Limit Theorem says that limits of sequences are preserved under arith-
metic.

Theorem 2.27 (Main Limit Theorem) Suppose {xn} and {yn} are convergent se-
quences. Then:

1. For any constant r, {r xn} converges, and lim (r xn) = r (limxn);

2. {xn + yn} converges, and lim(xn + yn) = limxn + lim yn;

3. {xn − yn} converges, and lim(xn − yn) = limxn − lim yn;

4. {x2
n} converges, and limx2

n = (limxn)2;

5. {xnyn} converges, and lim (xnyn) = (limxn) (lim yn);

6. if M ≠ 0, then {xn

yn

} converges, and lim(xn

yn

) = limxn

lim yn

.
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2.3. Sequences; convergence and divergence

PROOF Throughout this proof, let Lx = limxn and Ly = lim yn.

To prove statement (1), let ϵ > 0.
Case 1: if r = 0, then {rxn} = {0}which converges to 0 = 0Lx = rLx since

limits preserve constants.
Case 2: if r ≠ 0, since xn → Lx,

For n ≥ N , we have

∣(r xn) − (rL)∣ = ∣r(xn −L)∣ = ∣r∣ ∣xn −L∣ <

Therefore cxn → rLx by definition of convergence.

To prove statement (2), let ϵ > 0.
Since xn → Lx,

Since yn → Ly,

Now, let N =

If n ≥ N , then

∣(xn + yn) − (Lx +Ly)∣ =

For statement (3), observe xn + (−1)yn = xn − yn.
So by statements (1) and (2), xn − yn → Lx + (−1)Ly = Lx −Ly.

For statement (4), let ϵ > 0.
Since {xn} converges, {xn} is bounded, i.e ∃Bx s.t. ∣xn∣ ≤ Bx for all n.
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2.3. Sequences; convergence and divergence

Also, there is N such that whenever n ≥ N , ∣xn −L∣ <
ϵ

Bx +Lx

.

For n ≥ N , we have

∣x2
n −L2

x∣ = ∣(xn −Lx)(xn +Lx)∣
= ∣xn −Lx∣ ∣xn +Lx∣
≤ ∣xn −Lx∣ (∣xn∣ +Lx)

< ϵ

Bx +Lx

(Bx +Lx) = ϵ.

Thus x2
n → L2

x by definition.

For statement (5), observe that if you FOIL it out,

1
4 (xn + yn)2 −

1
4 (xn − yn)2 = xnyn.

So by statements (2), (3) and (4),

xnyn →
1
4 (Lx +Ly)2 −

1
4 (Lx−y)2 = LxLy.

Last, for statement (6), let’s start by proving
1
yn

→ 1
Ly

.

Assume for now that Ly > 0 (we’ll take care of the situation where Ly < 0 in
a minute). Let ϵ > 0.

Since Ly ≠ 0, there is N1 such that if n ≥ N1,

∣yn −Ly ∣ <
Ly

2 ,

meaning that for n ≥ N1, yn >
Ly

2 > 0.

Thus for n ≥ N1, 0 < 1
yn

< 2
Ly

.

Furthermore, there is N2 such that if n ≥ N2,

∣yn −Ly ∣ <
ϵ

2L
2
y.

Let N =max{N1,N2}. For n ≥ N ,

∣ 1
yn

− 1
Ly

∣ = ∣
Ly

ynLy

− yn

ynLy

∣ =
∣Ly − yn∣
ynLy

=
∣yn −Ly ∣
Ly

1
yn

<

ϵ

2L
2
y

Ly

( 2
Ly

) = ϵ.

Therefore
1
bn

→ 1
M

as wanted.
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2.3. Sequences; convergence and divergence

IfLy < 0, then −yn → −Ly. Since −Ly > 0, we can apply the previous argument

to {−yn} to conclude
1
−yn

→ 1
−Ly

. Thus
1
yn

→ 1
Ly

by statement (1).

To finish up statement (6), observe
xn

yn

= xn (
1
yn

), so by statement (5) and what

we just proved,
xn

yn

→ Lx (
1
Ly

) = Lx

Ly

. ◻

Theorem 2.28 (Limits preserve soft inequalities) Let {xn} and {yn} be conver-
gent sequences. If there exists N so that xn ≤ yn for all n ≥ N , then limxn ≤ lim yn.

PROOF Let Lx = limxn and let Ly = lim yn.
Suppose not, i.e. Lx > Ly.

Now, let ϵ = 1
2(Lx −Ly).

Then since xn → Lx and yn → Ly, there exist Nx and Ny such that

n ≥ Nx⇒ ∣xn −Lx∣ < ϵ⇒ xn > Lx − ϵ;
n ≥ Ny ⇒ ∣yn −Ly ∣ < ϵ⇒ yn < Ly + ϵ.


Ly Lx

ϵ ϵ

For n ≥max{Nx,Ny,N}, we have

xn > Lx − ϵ = Lx −
1
2(Lx −Ly) =

1
2Lx +

1
2Ly = Ly +

1
2(Lx −Ly) = Ly + ϵ > yn,

contradicting xn ≤ yn.
This proves the result by contradiction. ◻
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2.3. Sequences; convergence and divergence

Squeeze Theorems

Theorem 2.29 (Squeeze Theorem (version 1)) Suppose that {xn},{yn} and {zn}
are sequences such that xn ≤ yn ≤ zn for all n. If limxn = lim zn = L, then yn → L.

PROOF HW
Hint: If we knew {yn} converged, this is immediate from Theorem 2.28.
But we aren’t assuming {yn} converges–we have to prove this with an ϵ-proof.

The next version of the Squeeze Theorem is often more useful in proofs.

Theorem 2.30 (Squeeze Theorem (version 2)) Suppose {xn} is a sequence and
there exists N so that ∣xn −L∣ ≤ an for all n ≥ N . If an → 0, then xn → L.

PROOF Let dn = ∣xn −L∣. By hypothesis, we have

0 ≤ dn ≤ an

so by (version 1 of) the Squeeze Theorem,
xxxxx

x
xxxx . That means that given

any ϵ > 0, there is
xxx

x
x so that

xxxxx

x
xxxx implies

∣dn − 0∣ < ϵ

By definition of convergence, xn → L. ◻

CONSEQUENCE

• Suppose {zn} is some sequence with ∣zn − r∣ ≤
1
n

. We can immediately con-

clude that
xxxxx

x
xxxx .

• Suppose {wn} is some sequence with ∣wn∣ ≤
3
n2 . We can immediately conclude

that
xxxxx

x
xxxx .
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2.3. Sequences; convergence and divergence

EXAMPLE

Let yn = 2−n = 1
2n
= (1

2)
n

. Prove yn → 0.

PROOF The proof relies on the following claim:

Claim: For n ≥ 2, (1
2)

n

≤ 1
n

.

Assuming this claim is true, we have

∣yn − 0∣ = ∣yn∣ = yn = (
1
2)

n

≤ 1
n
,

and since
1
n
→ 0, it follows from the Squeeze Theorem that yn → 0.

It remains to prove the claim. To do this, first note that for any k ≥ 2,
1
k
≤ 1

2 so

k − 1
k
= 1 − 1

k
≥ 1 − 1

2 =
1
2 .

Therefore

CONSEQUENCE

For any r ≥ 2, r−n ≤ 2−n, so by the Squeeze Theorem r−n = (1
r
)

n

→ 0.
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2.4. Cauchy sequences

2.4 Cauchy sequences
We now want to address the second question in our chart we had earlier:

Q1: Do the numbers in
the sequence get
closer and closer to
a single number?

(Does the sequence
converge?

Q2: Do the numbers in
the sequence get
closer and closer
to each other?

an =
1
n

YES (an → 0)

bn = 1 + (−1)n We think NO.

cn = n2 NO (unbounded)

{dn} =
{1.4,1.41,1.414, ...}

We think YES in R
but NO in Q.

Definition 2.31 Let F be either Q or R, and let {xn} be a sequence in F .
{xn} is called a Cauchy sequence (in F ) if for every ϵ > 0 (ϵ ∈ F ), there is N such that
if m,n ≥ N , then ∣xm − xn∣ < ϵ.

Idea: In a Cauchy sequence, the numbers in the sequence are getting closer and
closer to each other. Notice that this is an intrinsic property of the sequence (it
makes no reference to any limit of the sequence).

n



1 2 3 4 5 6 7


xm xn(m,n≥N)

< ϵ
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2.4. Cauchy sequences

Theorem 2.32 (Convergent sequences are Cauchy) If {xn} converges, then {xn}
is Cauchy.

PROOF Let L = limxn. Let ϵ > 0. There is N such that

n ≥ N ⇒ ∣xn −L∣ <

To show {xn} is Cauchy, suppose m,n ≥ N . Then

∣xm − xn∣

So {xn} is Cauchy, as wanted. ◻

CONSEQUENCE

For an =
1
n

, {an} is Cauchy (since {an} converges).

EXAMPLE

Let bn = 1 + (−1)n. Prove that {bn} is not a Cauchy sequence.

n



1 2 3 4 5 6

2

0

CONSEQUENCE

{bn} diverges (if it converged, it would be Cauchy).
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QUESTION

We know every convergent sequence is Cauchy. What about the converse of this:

Does every Cauchy sequence converge?

If so, then “Cauchy sequences” and “convergent sequences” are exactly the same
things. Let’s consider this question in the context of one of our examples:

EXAMPLE

Let dn be the largest rational number which can be written with at most n decimal
places whose square is less than or equal to 2. Prove {dn} is a Cauchy sequence.

(Recall that {dn} = {1,1.4,1.41,1.414, ...}, so {dn} is an increasing sequence.)

SCRATCH WORK

More generally, for any N , we see that for all n ≥ N , dN ≤ dn ≤ dN + 10−N :


1.414...xN

dN

1.414...(xN+1)

dN +1

10-N

PROOF
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2.4. Cauchy sequences

EXAMPLE, CONTINUED

Let dn be the largest rational number which can be written with at most n decimal
places whose square is less than or equal to 2. (Recall {dn} = {1,1.4,1.41,1.414, ...}.)
Does {dn} converge in Q?

Solution: Suppose that {dn} does converge in Q.
That means dn → L, where L is a rational number.
Therefore d2

n → L2, and since d2
n ≤ 2 for all n, L2 ≤ 2 since limits preserve ≤.

Since L ∈ Q, L2 ≠ 2 (Hippasus), so it must be the case that L2 < 2.

Now, choose ϵ = 1
2(2 −L

2), which is positive.


L2 2

ϵ ϵ

Since d2
n → L, ∃N such that if n ≥ N , then ∣d2

n −L2∣ < ϵ.
However, let’s choose n so that n ≥ N and 10−n < ϵ5 .

(This is doable since we know 10−n → 0.)
Next, let’s do this estimate, whose purpose will be seen in a minute:

∣(dn + 10−n)2 −L2∣ = ∣L2 − (dn + 10−n)2∣

= ∣L2 − d2
n − 2 ⋅ dn10−n + 10−2n∣

≤ ∣L2 − d2
n∣ + 10−n ∣2dn + 10−n∣

< ϵ + 10−n ∣2dn + 10−n∣
≤ ϵ + 10−n ∣4 + 1∣
= ϵ + 10−n ⋅ 5

< ϵ + ( ϵ5)5 = 2ϵ .

We have shown ∣(dn + 10−n)2 −L2∣ < 2ϵ, so

(dn + 10−n)2 < L2 + 2ϵ = L2 + 2(2 −L2

2 ) = 2. (2.1)

This is a contradiction! dn is supposed to be the largest number with ≤ n
decimal places whose square is at most 2, but dn + 10−n is also a number
with ≤ n decimal places whose square, by (2.1) above, is less than 2.

Therefore {dn} cannot converge in Q.
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2.4. Cauchy sequences

CONSEQUENCE

We’ve found a sequence {dn} which is Cauchy but does not converge in Q. Does
this sequence {dn} converge in R?

Turns out, the answer is YES, but it’s not because of anything about that sequence,
it is because of an assumption we make about R (that isn’t true in Q):

Definition 2.33 An ordered field F is called complete if every Cauchy sequence in
F converges to a limit which is in F .

Assumption #4 about the real numbers

R is complete.

Note: Q is not complete (the sequence {dn} discussed above is Cauchy, but does
not converge to a limit in Q). Thus completeness is the big difference between R
and Q: R is complete, but Q is not.

Putting our assumptions about the real numbers together, we are assuming
that

R is a , .

This leads to three questions:

1. Is there such a thing?

2. If so, how many such things are there (maybe lots)?

3. Do we need any other assumptions about R to distinguish it from other such
things?

Rigorous proofs of the answers to these questions are beyond the scope of this
course, but I will tell you that there is a complete Archimedean ordered field and
(up to field isomorphism) there is only one complete Archimedean ordered field.
So it is valid to say:

Definition 2.34 The set R is the complete Archimedean ordered field. Elements of
R are called real numbers. Elements of R that are not in Q are called irrational
numbers.

74



2.4. Cauchy sequences

Getting back to the sequence {dn}, we showed that {dn} is Cauchy. By complete-
ness, that means there is a real number L such that dn → L. The work we did on
the previous page shows L2 must equal 2, meaning that we now know there is a
real number L such that L2 = 2.

Similar arguments shows the following:

Theorem 2.35 (Existence of square roots) Let x be any non-negative real number.
Then there is another real number

√
x such that (

√
x)2 = x.

PROOF HW
Hints: Let yn be the largest rational number that can be written with at most n

decimal places whose square is less than or equal to x.
Show {yn} is a Cauchy sequence (similar to how we showed {dn}was Cauchy).
By completeness, this will mean {yn} has a limit. Call this limit

√
x.

Explain why (
√
x)2 ≤ x.

Explain why it cannot be that (
√
x)2 < L (by deriving a contradiction similar to

the one obtained for {dn}). ◻

Theorem 2.36 (Existence of nth roots) Let x be any non-negative real number, and
let n ∈ {1,2,3, ...}. Then there is another real number n

√
x such that (

√
x)n = x.

PROOF The proof is similar to that of Theorem 2.35 and is omitted. ◻

Other properties of Cauchy sequences

Theorem 2.37 (Cauchy sequences are bounded) Let {xn} be a Cauchy sequence.
Then {xn} is bounded.

PROOF Since {xn} is Cauchy, given ϵ = 1, there is N such that if m,n ≥ N ,

∣xn − xm∣ < 1.

In particular, this means that for n ≥ N , ∣xn − xN ∣ < 1, so ∣xn∣ < ∣xN ∣ + 1. Now, let

B =max {∣x0∣, ∣x1∣, ∣x2∣, ..., ∣xN−1∣, ∣xN ∣ + 1} .

It is clear that ∣xn∣ ≤ B for all n, so {xn} is bounded. ◻

CONSEQUENCE

Let cn = n2. {cn} is not Cauchy (if it was, it would be bounded).
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2.4. Cauchy sequences

Theorem 2.38 (The Cauchy property is preserved under arithmetic) Let {xn}
and {yn} be Cauchy sequences. Then:

1. {r xn} is Cauchy, for any constant r ∈ R.

2. {xn + yn} is Cauchy.

3. {xn − yn} is Cauchy.

4. {x2
n} is Cauchy.

5. {xnyn} is Cauchy.

Remark: For sequences in R, “Cauchy sequence” and “convergent sequence” are
the same thing, so this result would follow immediately from what we proved

about arithmetic of convergent sequences (and it would also follow that {an

bn

} is

Cauchy if lim bn ≠ 0). But this theorem doesn’t assume that the context is R, so we
can’t use completeness.

PROOF The first three statements are HW problems.

For statement (4), assume {xn} is Cauchy and let ϵ > 0.
Since {xn} is Cauchy {an} is bounded, i.e. ∃B s.t. ∣xn∣ ≤ B for all n.
Also, ∃N such that for m,n ≥ N , ∣xm − xn∣ <

ϵ

2B .
So for m,n ≥ N , we have

∣x2
m − x2

n∣ = ∣(xm − xn)(xm + xn)∣ = ∣xm − xn∣ ∣xm + xn∣
≤ ∣xm − xn∣ (∣xm∣ + ∣xn∣)

< ϵ

2B (B +B) = ϵ.

Thus {x2
n} is Cauchy by definition.

For statement (5), recall that
1
4 (xn + yn)2 −

1
4 (xn − yn)2 = xnyn.

So by statements (1), (2), (3) and (4), {xnyn} is Cauchy. ◻
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2.5 Suprema and infima
We have seen that while both Q and R are Archimedean ordered fields with a no-

tion of distance, there is a big difference between Q and R: R is
xxx

xxx
xxxxxxxxxxx ,

whereas Q is not. In this section, we explore some important consequences of this
fact.

Suprema and infima

Definition 2.39 Let E ⊆ R.

• An upper bound for E is a real number B such that x ≤ B for all x ∈ E.

If E has an upper bound, we say E is bounded above.

• A lower bound for E is a real number B such that x ≥ B for all x ∈ E.

If E has a lower bound, we say E is bounded below.

Lemma 2.40 Let E ⊆ R. E is bounded if and only if E is both bounded above and
bounded below.

PROOF (⇒) If E is bounded, then there is B such that ∣x∣ ≤ B for all x ∈ E.

Thus
xxxx

x
is an upper bound for E and

xxxx

x
is a lower bound for E.

(⇐) Suppose E is bounded below by l and bounded above by u.
Then E is bounded by max{∣l∣, ∣u∣}. ◻

EXAMPLES

• E = [6,11) 
6 11

E

• F = [5,∞)
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Definition 2.41 Given any set S ⊆ R, we define

−E = {−x ∶ x ∈ E}.

Lemma 2.42 Let S ⊆ R.

• −(−E) = E.

• If E is bounded above by B, then −E is bounded below by −B.

• If E is bounded below by B, then −E is bounded above by −B.

PROOF These are straightforward arguments. For the first statement:

x ∈ −(−E) ⇔ −x ∈ −E⇔−(−x) ∈ E⇔ x ∈ E.

For the second statement, suppose E is bounded above by B.
Now consider x ∈ −E. −x ∈ E so −x ≤ E. Thus x ≥ −E.
Therefore −B is a lower bound for −E.

The third statement is left as a HW problem. ◻

Definition 2.43 Let E ⊆ R.

• A real number s is called a supremum of E, or a least upper bound of E, if

1. s is an upper bound for E, and
2. if t is any upper bound for E, then s ≤ t.

In this situation we write s = supE.

• A real number i is called an infimum of E, or a greatest lower bound of E,
if

1. i is a lower bound for E, and
2. if v is any lower bound for E, then i ≥ v.

In this situation we write i = infE.

PICTURE


E
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Lemma 2.44 (Suprema and infima are unique) Let E ⊆ R. E can have at most
one supremum, and at most one infimum.

PROOF Suppose s and s′ are both suprema of E.
That means they are both upper bounds of E.
By the second part of the definition of supremum, since s is a supremum, s is

less than or equal to any upper bound of E (such as s′), so s ≤ s′.
But since s′ is a supremum, by the same logic in reverse s′ ≤ s.
Since s ≤ s′ and s′ ≤ s, s = s′.

The uniqueness of the infimum of a set that is bounded below has a similar
proof. ◻

Lemma 2.45 (Reversing Lemma) Let E ⊆ R.

1. If s = supE, then −s = inf(−E).

2. If i = infE, then −i = sup(−E).

PROOF For statement (1), let s = supE. To show −s = inf(−E), we need to show
two things:

1. We need to show

To do this, let x ∈ −E.

Therefore

Therefore

Thus x ≥ −s, meaning −s is a lower bound of −E.

2. We need to show

To do this, suppose v is any lower bound of −E.

By Lemma 2.42, −v is

Since s = supE, we know

Thus v ≤ −s. Therefore −s is the greatest lower bound of −E, so −s = inf(−E).

Statement (2) has a similar proof, and is left as HW. ◻
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EXAMPLE

Let a, b ∈ R be such that a < b. Determine, with proof, the supremum and infimum
of the interval E = [a, b).
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2.5. Suprema and infima

Similar arguments as to those on the previous page show:

Lemma 2.46 (Suprema and infima of intervals) Let a, b ∈ R. Then:

• sup(a, b) = sup(a, b] = sup[a, b) = sup[a, b] = sup(−∞, b) = sup(−∞, b] = b.

• inf(a, b) = inf(a, b] = inf[a, b) = inf[a, b] = inf(a,∞) = inf[a,∞) = a.

Now for a very important consequence of completeness:

Theorem 2.47 (Supremum Property) Let E ⊆ R be nonempty. If E is bounded
above, then supE exists.

Note: The supremum property fails in Q. For instance consider the set

E = {x ∈ Q ∶ x2 < 2} = (−∞,
√

2) ∩Q

E has no supremum in Q (by an argument similar to the one on the previous
page, the supremum would have to be a number s such that s2 = 2).

PROOF OF THE SUPREMUM PROPERTY First, here’s a summary of how the proof
works. We’ll recursively construct a sequence {un} of real numbers, all of which
are upper bounds for E, and this sequence will turn out to be a Cauchy sequence.
By completeness, this sequence has a limit which we’ll call s. Last, we’ll show that
s = supE.

Now for the details: since E is bounded above, it has an upper bound u0.
Now, let x0 be any number which is not an upper bound of E

(doable since E ≠ ∅: for instance, take any z ∈ E and let x0 = z − 1).
Let δ0 = u0 − x0; notice δ0 > 0.

Now, recursively construct sequences {un} and {xn} as follows: to define un+1
and xn+1 from un and xn,

1. Set mn =
1
2(un + xn) to be the midpoint between un and xn.

2. If mn is an upper bound for S, then set un+1 =mn and xn+1 = xn.

3. If mn isn’t an upper bound for S, then set un+1 = un and xn+1 =mn.


E

u0x0

δ0
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2.5. Suprema and infima

Observations:

1. {xn} is an increasing sequence of numbers, none of which are upper bounds
of E;

2. {un} is a decreasing sequence of upper bounds of E;

3. every xn is less than every um;

4. ∣un+1 − xn+1∣ =
1
2 ∣un − xn∣, meaning ∣un − xn∣ =

1
2n
δ0; so by the Squeeze Theorem

(un − xn) → 0 (and (xn − un) → 0 also).

Claim 1: {un} is a Cauchy sequence.

Proof of Claim 1: Since
1
2n
δ0 → 0, given ϵ > 0 we can find N so that

1
2N
δ0 < ϵ.

Now suppose m,n ≥ N . Notice that whenever m,n ≥ N ,

um, un ∈ [xN , uN].



uNxN

1

2N
δ0

By applying observation (4) above, that means

∣um − un∣ ≤ ∣uN − xN ∣ =
1

2N
δ0 < ϵ.

This proves Claim 1.

By completeness, since {un} is Cauchy, there is a real number s = limun.

Claim 2: s = limxn.

Proof of Claim 2: Applying observation (4) above,

limxn = lim[un + (xn − un)] = limun + lim(xn − un) = s + 0 = s.
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2.5. Suprema and infima

Claim 3: s = supE.

Proof of Claim 3: Let x ∈ E. By construction, x ≤ un for every n.
Since limits preserve ≤, that means x ≤ limun = s.
Thus s is an upper bound for E.

Second, let t < s. Set ϵ = 1
2(s − t).

Since xn → s, there is N such that ∣xn −L∣ < ϵ for all n ≥ N .
This means

∣xN − s∣ < ϵ

⇒ s − xN <
1
2(s − t)

⇒ xN > s −
1
2(s − t) =

1
2(s + t) >

1
2(t + t) = t.


xNt

ϵ ϵ

s

Since xN is not a lower bound of E, neither is t.
We’ve proven no number less than s is an upper bound for E, so this means

s must be the least upper bound of E, i.e. s = supE as wanted. ◻

Theorem 2.48 (Infimum property) LetE ⊆ R be nonempty. IfE is bounded below,
then infE exists.

PROOF Since E is bounded below, −E is bounded above.
So by the Supremum Property, supE exists.
Finally, by the Reversing Lemma, infE = − sup(−E). ◻

Let’s introduce some notation that may help with subsequent results:

Definition 2.49 If E is not bounded above, we write supE = ∞, but this doesn’t
mean that the supremum of E actually exists.

If E is not bounded below, we write infE = −∞. Again, this doesn’t mean that the
infimum of E actually exists.
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2.5. Suprema and infima

EXAMPLE

What is the supremum of ∅?

Theorem 2.50 If S ≠ ∅, then inf S ≤ supS.

PROOF Let x ∈ S. Since infima are lower bounds, inf S ≤ x. Since suprema are
upper bounds, we have x ≤ supS. Apply transitivity of ≤. ◻

Other characterizations of suprema and infima

Lemma 2.51 Let B be an upper bound of nonempty E ⊆ R. Then

B = supE ⇔ ∀ ϵ > 0,∃x ∈ E such that B − ϵ < x.

PICTURES TO EXPLAIN


E

B = sup E

ϵ


E

B ≠ sup E

ϵ

PROOF (⇒) Suppose B = supE and let ϵ > 0.
If there is no x ∈ E such that L − ϵ < x, then B − ϵ would be an upper bound for

E strictly less than B, contradicting B = supE.

(⇐) Suppose not, i.e. that there is an upper bound t of E with t < B.

Let ϵ = 1
2(B − t) and notice

B − ϵ = B − 1
2(B − t) =

1
2B +

1
2t = t +

1
2(B − t) = t + ϵ > t.


E

Bt

ϵ

84



2.5. Suprema and infima

By hypothesis, ∃x ∈ E with B − ϵ < x.
For this x, x > t, contradicting the fact that t is an upper bound of E.
Therefore B = supE. ◻

HOMEWORK

Formulate and prove a lemma analagous to Lemma 2.51 for infima, rather than
suprema.

Lemma 2.52 Let E ⊆ R be a set which is bounded above. Then, for every t < supE,

(t, supE] ∩E ≠ ∅.

PROOF Let t < supE. Then, define ϵ = supE − t > 0.


E

sup E

ϵ

t

By Lemma 2.51, there is x ∈ E such that supE − ϵ < x.
This means supE − (supE − t) = t < x.
This x belongs to (t, supE] ∩E, so (t supE] ∩E = ∅. ◻

HOMEWORK

Formulate and prove a lemma analagous to Lemma 2.52 for infima, rather than
suprema.

Lemma 2.53 Let E ⊆ R be a set which is bounded above. Then there exists an in-
creasing sequence {xn} of points in E with xn → supE.

Let E ⊆ R be a set which is bounded below. Then there exists a decreasing sequence
{xn} of points in E with xn → supE.

PROOF The proof of the first statement is HW.

For the second statement, if E is bounded below, then −E is bounded above.
By the first statement, there is an increasing sequence {xn} ⊆ −E with

xn → sup(−E).

Thus −xn → − sup(−E) = infE.
Since each xn ∈ −E, −xn ∈ E, so {−xn} is the desired sequence. ◻
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Lemma 2.54 If E ⊆ R is bounded above, then

supS = inf{t ∶ t is an upper bound for S}.

If E ⊆ R is bounded below, then

inf S = sup{v ∶ v is a lower bound for S}.

PROOF The first statement is HW.
Hints: Let

U = {t ∶ t is an upper bound of E}

and let s = supE.
To prove s = inf U , you need to show two things: first, that s is a lower

bound for U and second, if v is any lower bound for U , then v < s.

For the second statement, apply the Reversing Lemma:

sup{v ∶ v is a lower bound for E} = − inf [−{v ∶ v is a lower bound for E}]
= − inf{v ∶ v is an upper bound for −E}
= − sup(−E)

(by the first statement, applied to −E)
= infE. ◻

2.6 Other consequences of completeness
Monotone Convergence Theorem

Suprema and infima can also be used to tell us something about certain kinds of
sequences of real numbers:

Theorem 2.55 (Monotone Convergence Theorem) Let {xn} be a sequence of real
numbers which is increasing and bounded above. Then xn → sup({xn}).

Remark: The important conclusion here is that the sequence converges to some-
thing (the fact that the limit is sup({xn}) is sometimes useful, but less impor-
tant).
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PROOF Let L = sup({xn}). To prove xn → L, let ϵ > 0.
By Lemma 2.51, there is N such that L − ϵ < xN .


{xn}

L=sup({xn})

ϵ

Since {xn} is increasing, xn > L − ϵ for all n ≥ N .
At the same time, xn ≤ L since suprema are upper bounds.
Thus we have, for all n ≥ N ,

L − ϵ < xn ≤ L,

implying ∣xn −L∣ < ϵ. Thus xn → L by definition. ◻

Corollary 2.56 (Monotone Convergence Theorem) Let {xn} be a sequence of real
numbers which is decreasing and bounded below. Then xn → inf({xn}).

PROOF Suppose {xn} is decreasing and bounded below.
Then, {−xn} is increasing and bounded above.
So −xn → sup({−xn}) = − inf({xn}), meaning xn → inf({xn}). ◻

Archimedean properties

The Archimedean properties of the real numbers generally refer to the idea that R
contains arbitrarily large numbers, and arbitrarily small positive numbers.

The first version of the Archimedean Property, which we assume without proof,
ensures that the real numbers contain arbitrarily large whole numbers:

Corollary 2.57 R is unbounded.

PROOF Suppose not, i.e. R is bounded, say by B.
That means R ⊆ [−B,B].
But by the Archimedean Property, there is n ∈ N ⊆ R with n > B.
Thus n /∈ [−B,B], contradicting R ⊆ [−B,B]. ◻

The second version of the Archimedean Property ensures that the real numbers
contain arbitrarily small positive numbers:
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Theorem 2.58 (Archimedean Property II) Given any x ∈ (0,∞), there is n ∈ N
such that

1
n
< x.

PROOF Let x > 0. Then
1
x
> 0.

Apply the first Archimedean Property to find n ∈ N with n > 1
x

.

Take reciprocals of both sides to get
1
n
< x. ◻

The third version of the Archimidean Property says that every positive real num-
ber can be squeezed between two whole numbers:

Theorem 2.59 (Archimedean Property III) Let x ∈ (0,∞). Then there is n ∈ N
such that n ≤ x < n + 1.

PROOF HW

Hint: Consider the set E of natural numbers which are ≤ x.
Show this set is nonempty and bounded above, and proceed from there.

The Density Theorem

Theorem 2.60 (Density Theorem) Let a, b ∈ R be such that a < b. Then:

1. ∃x ∈ Q s.t. a < x < b; and

2. ∃x ∈ (R −Q) s.t. a < x < b.

This theorem tells us that the rational numbers are dense in R, i.e. that a picture of
the real numbers where the rationals are indicated looks like this:



Interestingly, the irrational numbers are also dense in R!
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2.6. Other consequences of completeness

PROOF For the first statement, assume a < b.

Therefore b−a > 0, so by the Archimedean Property (II), ∃n ∈ N s.t.
1
n
< b−a,

meaning a + 1
n
< b.

Then let
E = {p ∈ Z ∶ p

n
≤ b} .

Claim: E ≠ ∅.
Proof of Claim: If b ≥ 0, then 0 ∈ E.

If b < 0, by the Archimedean Property (I) ∃p ∈ N s.t. p > −bn.
Then −p < bn, so −p ∈ E.
Either way, E ≠ ∅. This proves the claim.


3

n

2

n

1

n

1/n

ba

Next, if p ∈ E, then
p

n
≤ b so p ≤ bn, meaning E is bounded above by bn.

That means s = supE exists (and is an integer), and
s

n
≤ b.

There are two cases:

Case 1:
s

n
= b. In this case, set x = s − 1

n
.



s

n
s-1

n

1

n

=ba

x ∈ Q, x < b, and x = s
n
− 1
n
= b − 1

n
> a from above, so a < x < b as wanted.
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2.6. Other consequences of completeness

Case 2:
s

n
< b. In this case, set x = s

n
.



s

n
s-1

n

1

n

ba

Clearly x ∈ Q and x < b.

Last, if x ≤ a, then x + 1
n
= s + 1

n
< a + 1

n
< b, so s + 1 ∈ E, contradicting

s = supE.
Therefore a < x < b as wanted.

The second statement is a HW problem.
Hint: Instead of directly finding an irrational between a and b, use the first

part of the Density Theorem to find a rational number between two other
real numbers.

Then use a formula of that rational number to obtain an irrational number
between a and b. ◻
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2.7 Subsequences
It is often useful to build a new sequence from a given one by picking out certain
elements of the sequence (like picking out every other one, or ones with certain
properties, etc.) This is called constructing a subsequence.

Definition 2.61 Let {xn}∞n=m be a sequence and letm ≤ n1 < n2 < n3 < ... be a strictly
increasing sequence of integers. The sequence

{xnk
}∞k=1 = {xn1 , xn2 , xn3 , ...}

is called a subsequence of {xn}. A real number L is called a subsequential limit
of {xn} if there is a subsequence {xnk

} with ank

k→∞Ð→ L.

EXAMPLE

Let bn = 1 + (−1)n, i.e. {bn} = {2,0,2,0,2,0, ...}.

Note: subsequences have to have infinitely many terms, and in particular, as k →
∞, nk → ∞ as well. This means that given any N , there is always a K such that if
k ≥K, nk ≥ N .

Theorem 2.62 Let {xn} be a sequence of real numbers.

1. If {xn} is Cauchy, then any subsequence of {xn} is also Cauchy.

2. If xn → L, then any subsequence of {xn} must also converge to L.

3. If {xn} has two different subsequential limits, then {xn} diverges.
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2.7. Subsequences

PROOF For the first statement, let {xnk
} be a subsequence of {xn}.

Let ϵ > 0.
Since {xn} is Cauchy, ∃N s.t. m,n ≥ N implies ∣xm − xn∣ < ϵ.
Choose K such that k ≥K implies nk > N .
Then, for any j, k ≥K, nj and nk are ≥ N , so ∣xnj

− xnk
∣ < ϵ.

Therefore {xnk
} is Cauchy.

For statement (2), let ϵ > 0. Since , there is N such that n ≥ N implies

. Choose such that implies .

Then, for any , , so ank
→ L.

The last statement is the contrapositive of the second. ◻

EXAMPLE

Let bn = 1 + (−1)n, i.e. {bn} = {2,0,2,0,2,0, ...}. Prove {bn} diverges.
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Subsequence existence theorems

Theorem 2.63 (Monotone Subsequence Theorem) Every sequence of real num-
bers has a monotone subsequence.

PROOF Let {xn} be a sequence of real numbers.
Define an index n to be a peak if xn ≥ xm for every m ≥ n.

n
1 2 3 4 5 10 15 20 25 30

Case 1: If there are infinitely many indices which are peaks, set nk = kth peak.
By the definition of peak, xnk

≥ xnk+1 , so we have described a decreasing
subsequence {xnk

} of {an}.

Case 2: If there are only finitely many peaks, let N be the largest peak
(N is an index of the sequence).

n

N

Let n1 = N + 1. Since n1 isn’t a peak, ∃n2 > n1 with xn2 > xn1 .
Since n2 is not a peak, there is n3 > n2 with xn3 > xn2 , etc.
Continuing in this way, we get an increasing subsequence {xnk

}. ◻
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2.7. Subsequences

Theorem 2.64 (Bolzano-Weierstrass Theorem) Every bounded sequence of real
numbers has a convergent subsequence.

PROOF HW
Hint: This isn’t hard if you research the previous theorems of this chapter.

Our next theorem here says that if an /→ L, then you can build a subsequence of
{an} that “avoids” L:

Theorem 2.65 (Avoidance Theorem) Let {xn} be a sequence of real numbers. Then

xn /→ L ⇔ ∃ ϵ0 > 0,∃ subsequence {xnk
} s.t. ∀k, ∣xnk

−L∣ ≥ ϵ0.


{xnk}

L

ϵ0 ϵ0

PROOF (⇒) Suppose xn /→ L.
Then, for some ϵ0 > 0, there is no N such that ∣xn −L∣ < ϵ0 for all n ≥ N .
That means there are infinitely many n such that ∣xn −L∣ ≥ ϵ0.
Let nk be the kth such n; this gives a subsequence {xnk

}with the desired
properties.

(⇐)We prove the result by contradiction.
Let ϵ0 > 0 and {xnk

} be a subsequence s.t. ∣xnk
−L∣ ≥ ϵ0 for all k.

If xn → L, then there would be N such that n ≥ N would imply ∣xn −L∣ < ϵ0.
But nk →∞ as k →∞, so eventually one of these xn would be an xnk

,
violating the hypothesis. ◻

Theorem 2.66 If {xn} is a bounded sequence of real numbers so that every convergent
subsequence of {xn} converges to L, then xn → L.

PROOF Suppose not. Then, by the Avoidance Theorem, there is ϵ0 > 0 and there is
a subsequence {xnk

} such that for all k, ∣xnk
−L∣ ≥ ϵ0.

By the Bolzano-Weierstrass Theorem, {xnk
} has a convergent subsequence {xnkl

}
which converges to some L′.

But since ∣xnkl
−L∣ ≥ ϵ0 for all l, and limits preserve ≥, ∣L′ −L∣ ≥ ϵ0 > 0 so L ≠ L′.

This is a contradiction. ◻
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2.8 Limits superior and inferior

Definition 2.67 Let {xn} be a sequence of real numbers.

• If {xn} is bounded above, let

limxn = lim
n→∞
(sup{xm ∶m ≥ n}) .

limxn is called the limit superior (or just lim sup) of {xn} and is also denoted
lim supan.

If {xn} is not bounded above, we write limxn = ∞, though this does not mean
the limit superior actually exists.

• If {xn} is bounded above, let

limxn = lim
n→∞
(inf{xm ∶m ≥ n}) .

limxn is called the limit inferior (or just lim inf) of {xn} and is also denoted
lim inf an.

If {xn} is not bounded below, we write limxn = −∞, though this does not mean
the limit inferior actually exists.

A PICTURE TO EXPLAIN

n



1 2 3
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2.8. Limits superior and inferior

Theorem 2.68 Let {xn} be a bounded sequence of real numbers.

1. limxn exists.

2. limxn exists.

3. If {xn} is bounded, then limxn ≤ limxn.

PROOF For the first statement, for each n let sn = sup{xm ∶m ≥ n}.
Since {xn} is bounded below, so is {sn}.
Also, notice that for each n,

{xm ∶m ≥ n} ⊇ {xm ∶m ≥ n + 1}.

Therefore sn = sup{xm ∶m ≥ n} ≥ sup{xm ∶m ≥ n + 1} = sn+1, meaning that
the sequence {sn} is decreasing.

Since {sn} is decreasing and bounded below, by the
x

x
xxxxx Theorem,

lim sn exists, i.e. lim(sup{xm ∶m ≥ n}) exists, i.e. limxn exists.

The second statement is HW.

For statement (3), if we let sn be as above and let in = inf{xm ∶m ≥ n}, we have

in ≤ sn

Since limits preserve ≤,
lim in ≤ lim sn

lim inf{xm ∶m ≥ n}) ≤ lim(sup{xm ∶m ≥ n})
limxn ≤ limxn. ◻
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Theorem 2.69 Let {xn} be a bounded sequence of real numbers and let S be the set of
subsequential limits of {xn}. Then

limxn = supS and limxn = inf S.

PROOF To prove the first statement, we will to establish two claims:
Claim 1: limxn is an upper bound of S.
Claim 2: limxn ∈ S. (This ensures no number < limxn is an upper bound of S.)

Proof of Claim 1: Let s ∈ S. That means ∃ subsequence {xnk
}with xnk

k→∞Ð→ s.
Let ϵ > 0.
Then ∃K s.t. k ≥K implies ∣xnk

− s∣ < ϵ, i.e. xnk
> s − ϵ.

Also, since nk →∞, ∃k ≥K s.t. nk > n, and for this k,
sup{xm ∶m ≥ n} ≥ xnk

> s − ϵ.

Since limits preserve ≥, limxn = lim sup{xm ∶m ≥ n} ≥ s − ϵ.
Last, since ϵ > 0 is arbitrary, limxn ≥ s.
Therefore limxn is an upper bound for S.

Proof of Claim 2: Let L = limxn = lim(sup{xm ∶m ≥ n}).
We will construct a subsequence {xnk

} of {xn} that converges to L by
defining n1, then n2, then n3 and so on.

To define n1, observe that by definition of convergence (with ϵ = 1
4 ), ∃N1 s.t.

n ≥ N1⇒ ∣ sup{xm ∶m ≥ n} −L∣ <
1
4 ,

i.e. L − 1
4 < sup{xm ∶m ≥ n} < L +

1
4 .

By a characterization of sup (with ϵ = 1
4 ), ∃n1 ≥ n ≥ N1 s.t.

L − 1
4 −

1
4 < xn1 < L + 1

4
L − 1

2 < xn1 < L +
1
4 ,

i.e. ∣xn1 −L∣ <
1
2 .


L

1

4

1

4

1

4
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To define n2, repeat this procedure with a smaller ϵ.

In particular, use ϵ = 1
8 to find N2 (WLOG N2 > n1) s.t.

n ≥ N2⇒ ∣ sup{xm ∶m ≥ n} −L∣ <
1
6 ,

i.e. L − 1
4 < sup{xm ∶m ≥ n} < L +

1
8 .

By a characterization of sup (with ϵ = 1
8 ), ∃n2 ≥ n ≥ N2 > n1 s.t.

L − 1
8 −

1
8 < xn2 < L + 1

8
L − 1

4 < xn2 < L +
1
8 ,

i.e. ∣xn2 −L∣ <
1
4 .


Lxn2

1

8

1

8

1

8

More generally, for each k we can (using ϵ = 1
2k+1 ) define nk+1 > nk so that

∣xnk
−L∣ < 1

2k
.


Lxnk

1

2k+1
1

2k+1
1

2k+1

By the Squeeze Theorem, xnk
→ L, so L ∈ S, proving Claim 2.

The proof of the second statement (limxn = inf S) is left as HW. ◻
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Theorem 2.70 Let {xn} be a bounded sequence of real numbers. TFAE:

1. limxn = limxn = L.

2. xn → L.

PROOF Throughout the proof, let S be the set of subsequential limits of {xn}.

(1) ⇒ (2): S ≠ ∅ by the
x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Theorem.

By hypothesis,

inf S = limxn = L = limxn = supS,

so S = {L}. In other words, every convergent subsequence of {xn}
converges to L. By Theorem 2.66, xn → L.

(2) ⇒ (1): Suppose xn → L.
Thus every subsequence {xnk

} also converges to L, so S = {L}.
Therefore L = inf S = limxn and L = supS = limxn. ◻

Remark: To apply the (1) ⇒ (2) direction of Theorem 2.69, it is sufficient to
show limxn ≤ limxn (since we know the opposite inequality always holds).
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2.9 Sequences of functions
To this point, we have focused on studying equences {xn} of numbers (determining
which sequences converge, which are Cauchy, etc.).
It is also useful to discuss the convergence of sequences of other types of mathe-
matical objects (vectors, matrices, random variables, etc.); in this course, we care
about sequences of functions.

EXAMPLE

Let {fn} be the sequence of functions [0,1] → R defined by fn(x) =
x

n
.

f1

f2
f3
f4
fn

1

1

1

2
1

3
1

6

QUESTION

What does it mean for such a sequence to converge?

Pointwise convergence

Definition 2.71 Let E ⊆ R and {fn} be a sequence of functions E → R.
We say {fn} converges (pointwise) (on E) to f ∶ E → R, and write fn → f on E,
if fn(x) → f(x) for all x ∈ E.
Equivalently, ∀x ∈ E and ∀ ϵ > 0 ∃N = N(x, ϵ) ∈ N s.t.

n ≥ N ⇒ ∣fn(x) − f(x)∣ < ϵ.

In this context, f is called the (pointwise) limit of {fn}.

Good things about pointwise convergence:

1. It is usually easy to compute the pointwise limit of a sequence of functions.

For example, if fn(x) =
x

n
, then fn → f where

100



2.9. Sequences of functions

2. It preserves soft inequalities: if fn(x) ≤ g(x) for all x and fn → f , then f(x) ≤
g(x) for all x.

3. There is a completeness property: if, for every x ∈ E, {fn(x)} is a Cauchy
sequence, then ∃ f ∶ E → R such that fn → f .

Bad things about pointwise convergence:

1. If all you know is fn → f , you usually can’t conclude anything about f (like
whether it is continuous, differentiable, or integrable) from information com-
ing from the fn.

2. There is no notion of “distance” between two functions that is consistent with
pointwise convergence.

Uniform convergence
GOAL

Come up with a notion of “convergence” of a sequence of functions that avoids
the drawbacks of pointwise convergence.

To do this, let’s think about convergent sequences of numbers.
We can colloquially restate the idea that xn → L by saying

“when n is large, xn becomes arbitrarily close to L”.

So if we have a sequence of functions {fn} that “converges” to f , we might say

“when n is large, fn becomes arbitrarily close to f .”

This begs a question: what does it mean for one function to be “close”?
For real numbers x and y, they are within ϵ of one another if ∣x − y∣ < ϵ.
What do you think it means for two functions f and g to be within a “distance”

of < ϵ from one another?

f
g
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With this in mind, we might say that {fn} converges to f if

“when n is large, ∣fn(x) − f(x)∣ < ϵ for all x”.

This leads to the following definition.

Definition 2.72 Let E ⊆ R and let {fn} be a sequence of functions E → R.
We say {fn} converges uniformly (on E) to f ∶ R → R, and write fn ⇉ f on E, if
∀ ϵ > 0, ∃N = N(ϵ) ∈ N s.t.

n ≥ N ⇒ ∣fn(x) − f(x)∣ < ϵ for all x ∈ E.

In this context, f is called the uniform limit of {fn}.

Lemma 2.73 (Uniform convergence implies pointwise convergence) Let E ⊆
R and let {fn} be a sequence of functions E → R. If fn ⇉ f on E, then fn → f on E.

PROOF This is immediate from the definitions. ◻

The converse of Lemma 2.73 is false. Consider these examples:

EXAMPLE A

Let {fn} be the sequence of functions fn ∶ [0,1] → R defined by fn(x) =
x

n
.

Earlier, we observed fn → 0. Does fn ⇉ 0?

f1

f2
f3
f4
fn

1

1

1

2
1

3
1

6
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EXAMPLE B
Let {fn} be the sequence of functions fn ∶ [0,1] → R defined by fn(x) = xn.
Find a function f ∶ [0,1] → R so that fn → f . Does fn ⇉ f?

f1

f2

fn

1

1
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Completeness of uniform convergence

Definition 2.74 Let E ⊆ R and let {fn} be a sequence of functions E → R.
We say {fn} is uniformly Cauchy (on E) if ∀ ϵ > 0, ∃N = N(ϵ) ∈ N s.t.

m,n ≥ N ⇒ ∣fn(x) − fm(x)∣ < ϵ for all x ∈ E.

Theorem 2.75 A sequence {fn} of functions E → R is uniformly Cauchy if and only
if it is uniformly convergent.

PROOF By the definition of uniformly Cauchy, each {fn(x)} is a Cauchy sequence
of real numbers, hence converges to some f(x) by completeness of R. This
defines a function f ∶ E → R so that fn → f on E.

Now fix ϵ > 0.
{fn} being uniformly Cauchy implies ∃N = N(ϵ) such that

m,n ≥ N implies ∣fm(x) − fn(x)∣ <
ϵ

2 for all x ∈ E.

That means that for all x ∈ E,

− ϵ2 < fm(x) − fn(x) <
ϵ

2 .

Fix n and take limits on all these terms as m→∞; since limits preserve soft
inequalities we have

− ϵ2 ≤ f(x) − fn(x) ≤
ϵ

2

which implies (for all x ∈ E) that

−ϵ < f(x) − fn(x) < ϵ

i.e. ∣fn(x) − f(x)∣ < ϵ for all x ∈ E.
This proves fn ⇉ f on E. ◻
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2.10 Chapter 2 Summary

Note: items marked with a red star (☀) are only in the long version of my
lecture notes.

DEFINITIONS TO KNOW

Nouns x

• R is the complete Archimedean ordered field.
• The absolute value ∣x of x ∈ R is x if x ≥ 0 and −x if x < 0.
• The distance between x and y is ∣x − y∣.
• An upper bound of a set E ⊆ R is a number B so that ∀x ∈ E,x ≤ B.

A lower bound of a set E ⊆ R is a number B so that ∀x ∈ E,x ≥ B.
• The supremum of a set E ⊆ R is its least upper bound, i.e. a number s

so that s is an upper bound of E and if t is any upper bound of E, then
t ≥ s.
The infimum of a set E ⊆ R is its greatest lower bound, i.e. a number i
so that i is a lower bound of E and if v is any lower bound of E, then
v ≤ i.

• A subsequence of {xn}n is a sequence {xnk
}k where {nk} is a strictly

increasing sequence of indices.

• L is a subsequential limit of {xn} if ∃ subsequence {xnk
}with xnk

k→∞Ð→ L.
• (☀) The limit superior of {xn} is limxn = lim (sup{xm ∶m ≥ n}).

(☀) The limit inferior of {xn} is limxn = lim (inf{xm ∶m ≥ n}).

Adjectives that describe subsets of R (including sequences) x

• E is bounded above if it has an upper bound.
E is bounded below if it has a lower bound.
E is bounded if it is bounded above and bounded below (equivalently,
if ∃B ∈ R so that ∣x∣ ≤ B for all x ∈ E).

Adjectives that describe sequences x

• {xn} is increasing if xn ≤ xn+1 for all n.
{xn} is decreasing if xn ≥ xn+1 for all n.
{xn} is monotone if it is either increasing or decreasing.

• {xn} converges to L if ∀ϵ > 0, ∃N so that n ≥ N implies ∣xn −L∣ < ϵ.
• {xn} diverges if it does not converge to any L ∈ R.
• {xn} is Cauchy if ∀ ϵ > 0, ∃N so that m,n ≥ N implies ∣xm − xn∣ < ϵ.
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Adjectives that describe sequences of functions x

• (☀) {fn} converges pointwise to f on E if ∀x ∈ E, fn(x) → f(x).
• (☀) {fn} converges uniformly to f on E if ∀ϵ > 0, ∃N so that n ≥ N

implies ∣fn(x) − f(x)∣ < ϵ∀x ∈ E.

• (☀) {fn} is uniformly Cauchy on E if ∀ϵ > 0, ∃N so that m,n ≥ N
implies ∣fn(x) − fm(x)∣ < ϵ∀x ∈ E.

THEOREMS WITH NAMES

Triangle inequality (△ ineq): x

∣x + y∣ ≤ ∣x∣ + ∣y∣;
∣x − z∣ ≤ ∣x − y∣ + ∣y − z∣.

Completeness of R: A sequence of real numbers converges if and only if it is
Cauchy. (Convergent sequences are always Cauchy, but the converse isn’t
true for the rational numbers.)

Main Limit Theorem: Limits are preserved under arithmetic (so is the Cauchy
property).

Squeeze Theorem: x

If xn ≤ yn ≤ zn and limxn = lim zn = L, then yn → L.

If ∣xn −L∣ ≤ an and an → 0, then xn → L.

Reversing Lemma: − supE = inf(−E) and − infE = sup(−E).

Supremum Property: If nonempty E ⊆ R is bounded above, then supE exists.

Infimum Property: If nonempty E ⊆ R is bounded below, then infE exists.

Monotone Convergence Theorem (MCT): If {xn} is increasing and bounded above,
then xn → sup{xn}. If {xn} is decreasing and bounded below, then xn →
inf{xn}.

Archimedean Properties: x

I. ∀x ∈ R, ∃n ∈ N so that n > x.

II. ∀x > 0, ∃n ∈ N so that
1
n
< x.

III. ∀x > 0, ∃n ∈ N so that n ≤ x < n + 1.

Density Theorem: If a < b, then the interval (a, b) contains both a rational number
and an irrational number.
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Monotone Subsequence Theorem (MST): Every sequence has a monotone sub-
sequence.

Bolzano-Weierstrass Theorem (B-W): Every bounded sequence has a convergent
subsequence.

Avoidance Theorem: If xn /→ L, then ∃ ϵ0 > 0 and ∃ subsequence {xnk
} so that

∣xnk
−L∣ ≥ ϵ0 for all k.

OTHER THEOREMS TO REMEMBER

• Convergent sequences (so also Cauchy sequences) are bounded.

• Limits preserve soft inequalities ≤ and ≥.

• If E ⊆ R is bounded above, then ∃{xn} ⊆ E so that xn → supE.

If E ⊆ R is bounded below, then ∃{xn} ⊆ E so that xn → infE.

• If xn → L, then any subsequence {xnk
} also converges to L.

• A sequence with two different subsequential limits must diverge.

• If the subsequential limit set of a bounded sequence consists of a single num-
ber, then the sequence converges to that number.

• (☀) If limxn ≤ limxn, then limxn = limxn and {xn} converges to this common
value.

• (☀) A sequence of functions that converges uniformly must converge point-
wise.

• (☀) A sequence of functions converges uniformly if and only if it is uni-
formly Cauchy.

STANDARD PROOF TECHNIQUES

To prove that {xn} converges, do one of these things:

1. Apply the MCT.

2. Apply the Main Limit Theorem.

3. Use the Squeeze Theorem (usually, this means showing ∣xn −L∣ ≤ an for some
{an}where an → 0).

4. Prove it directly (let ϵ > 0; from scratch work figure out N so that n ≥ N
implies ∣xn −L∣ < ϵ).

5. Prove {xn} is Cauchy.

6. (☀) Prove limxn ≤ limxn.
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7. Show the sequence is bounded, and that every subsequence {xnk
} converges

to L.

8. Show {xn} is a subsequence of a convergent sequence.

To prove that {xn} diverges, do one of these things:

1. Show {xn} is unbounded.

2. Show {xn} has two different subsequential limits (or that a subsequence of
{xn} diverges).

3. Prove {xn} isn’t Cauchy.

To prove s = supE, do both of these things:

1. Show s is an upper bound of E (let x ∈ E and argue why x ≤ s).
2. Show s is the least upper bound, by doing one of these things:

a) Assume t is an upper bound of E and proving s ≤ t.
b) Show s ∈ E.

c) Let ϵ > 0 and from scratch work, find a number x ∈ E ∩ (s − ϵ, s].

To prove i = infE, do both of these things:

1. Show i is an lower bound of E (let x ∈ E and argue why x ≥ i).
2. Show i is the greatest lower bound, by doing one of these things:

a) Assume v is a lower bound of E and proving i ≥ v.

b) Show i ∈ E.

c) Let ϵ > 0 and from scratch work, find a number x ∈ E ∩ [i, i + ϵ).
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2.11 Chapter 2 Homework
Exercises from Section 2.1

1. Prove that there is no rational number x so that x2 = 5.

2. Prove that there is no rational number x so that 2x = 3. (You may not assume
anything about logarithms in this problem.)

3. Prove that there is no total ordering on the field C of complex numbers which
makes C into an ordered field.

Hint: Suppose that there is a total ordering ≤ on C which makes C into an
ordered field. Derive a contradiction, starting with the observation that either
i > 0 or i < 0.

4. Prove that in any ordered field, 1 > 0. (The trick here is not to assume what
you are to prove–only use facts about ordered fields given in §2.1.)

5. Consider the equation ∣x − 11∣ < ∣x + 5∣. Rather than solving this equation
algebraically, let’s think about it this way: if x is a solution of this equation,

that means the distance from x to
x

x
xx is less than the distance from x to

x

x
xx ? Draw a number line and think about the set of x for which this holds;

that’s the solution of the equation. Write that solution set as an inequality.

6. Describe the solution set of ∣x + 12∣ > ∣x + 4∣.

Exercises from Section 2.2

7. Prove Theorem 2.14, which says that for x, y ∈ R, ∣xy∣ = ∣x∣ ∣y∣.

8. Prove the fourth statement of Theorem 2.16, which says that for x, y, r ∈ R,
∣rx − ry∣ = ∣r∣ ∣x − y∣.

9. Let x, y ∈ R. Prove ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣.

10. Classify each of these sets as bounded or unbounded:

a) [3,∞)
b) Q ∩ (−3,5)
c) {3n ∶ n ∈ Z}

d) {2−n ∶ n ∈ N}
e) {2−n ∶ n ∈ Z}
f) ∅
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Exercises from Section 2.3

11. For each given sequence,

i. Determine whether or not the sequence is bounded. If it is bounded,
give an explicit bound.

ii. Determine if the sequence is monotone; if it is, classify it as increasing
or decreasing.

iii. If the sequence is monotone, determine whether it is strictly increas-
ing/decreasing.

a) {n + 1
n
}
∞

n=1

b) {(−2) 1
2 (n

2+n)}
∞

n=1

c) {cos πn2 }
∞

n=0

d) {an}∞n=1, where {an} is the largest rational number with denominator ≤ n
such that an < π

e) {bn}∞n=1, where {bn} is the largest rational number with denominator n
such that bn < π

12. Let q0 =
1
2 and for each n ≥ 1, set qn =

1
qn−1 + 2 .

a) Simplify q1, q2, q3, and q4.

b) Prove that {qn} is bounded.

Hints: Clearly qn ≥ 0 for all n. We claim that qn ≤
1
2 for all n. To prove this

claim, suppose not; then letN be the smallest index so that qN >
1
2 . Show

that N ≠ 0, then N ≥ 1 so N − 1 ∈ N. Since N is the smallest index so that

qN >
1
2 , it must be that qN−1 ≤ 1

2 . Explain why these last two inequalities
contradict one another.

13. Let xn =
3n + 2
n − 1 . Prove that {xn} converges (using only the definition of con-

vergence, not any theorems that follow later in the notes).

14. Use the definition of convergence to prove that
2n
n + 1 → 2.

15. Use the definition of convergence to prove that
n2 − 1
2n2 + 3 →

1
2 .
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16. Let xn =
1
n3 .

a) Prove {xn} converges using only the Main Limit Theorem and the fact

that
1
n
→ 0.

b) Prove {xn} converges directly, using an ϵ-proof.

17. Let {xn} and {yn} be two sequences of real numbers where {xn} converges
but {yn} diverges. Prove that {xn + yn} diverges.

Hint: A proof by contradiction is short (use the fact that the difference of two
convergent sequences converges).

18. Prove the Squeeze Theorem (Theorem 2.29, which says that if {xn},{yn} and
{zn} are sequences such that xn ≤ yn ≤ zn for all n, and if limxn = lim zn = L,
then yn → L.

Exercises from Section 2.4

19. Prove Theorem 2.35, which says that for any non-negative real number x,
there is another real number

√
x such that (

√
x)2 = x.

20. Prove the first three statements of Theorem 2.38 (without using complete-
ness).

21. Prove or disprove: if {xn} and {yn} are Cauchy sequences of real numbers,

then {xn

yn

} is a Cauchy sequence.

22. Give an explicit example of a sequence {xn} of real numbers such that the
sequence {∣xn∣} converges but the sequence {xn} diverges.

Exercises from Section 2.5

23. Prove the third statement of Lemma 2.42, which says that ifE ⊆ R is bounded
below by B, then −E is bounded above by −B.

24. Prove the second statement of the Reversing Lemma (Lemma 2.45), which
says that if i = infE, then −i = sup(−E).

25. Formulate and prove a lemma analagous to Lemma 2.51 for infima, rather
than suprema.

26. Prove the first statement of Lemma 2.53, which says that if E ⊆ R is a set
which is bounded above, then there exists an increasing sequence {xn} of
points in E with xn → supE.
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Hint: For each n, apply Lemma 2.51 with ϵ = 1
n

. This defines a sequence {xn};
prove xn → supE.

27. Prove the first statement of Lemma 2.52, which says that If E ⊆ R is bounded
above, then supS = inf{t ∶ t is an upper bound for S}.

28. Let S1 and S2 be any two subsets of R. Define the sum of these sets to be the
set

S1 + S2 = {s1 + s2 ∶ s1 ∈ S1, s2 ∈ S2}
and the difference of these two sets to be the set

S1 − S2 = {s1 − s2 ∶ s1 ∈ S1, s2 ∈ S2}.

a) Suppose S1 ⊆ R and S2 ⊆ R are both bounded above. Show that S1 + S2
is bounded above, and prove or disprove: sup(S1 + S2) = supS1 + supS2.

b) Suppose S1 ⊆ R and S2 ⊆ R are both bounded. Show that S1 − S2 is
bounded, and prove or disprove: sup(S1 − S2) = supS1 − supS2.

Exercises from Section 2.6

29. Prove the third Archimedean Property (Theorem 2.59, which says that if x ∈
(0,∞), then there is n ∈ N such that n ≤ x < n + 1.

30. Prove that for any x ∈ R, there is n ∈ Z such that n ≤ x < n + 1.

Hint: If x > 0, this follows from the third Archimedean Property (preceding
exercise). Prove two other cases: x = 0 and x < 0. For x < 0, apply the third
Archimedean Property to −x.

31. Prove the second statement of the Density Theorem (Theorem 2.60), which
says that if a < b, then there exists x ∈ R −Q so that a < x < b.
Hint: Use the first part of the Density Theorem to find a rational number in
the interval (a +

√
2, b +

√
2).

32. Consider the sequence {xn} of real numbers defined recursively by setting

x1 = 2 and then defining xn+1 = 2 − 1
xn

for all n ≥ 1.

a) Write out the first five terms of this sequence.

b) Prove that {xn} converges.
Hint: The Monotone Convergence Theorem may be helpful.

33. Consider the sequence {xn} of real numbers defined recursively by setting
x1 = 2 and then defining xn+1 =

√
xn + 3 for all n ≥ 1. Prove that {xn} con-

verges.
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34. Consider the sequence {xn}where xn =
n2 + 2
n2 + 4 .

a) Prove {xn} converges using the MCT.

b) Prove {xn} converges by establishing the inequality 1 − 2
n2 ≤ xn ≤ 1 and

applying the Squeeze Theorem.

c) Prove {xn} converges directly (using an ϵ-proof).

d) Prove {xn} converges by rewriting it with some algebra and applying
the Main Limit Theorem (other than the Main Limit Theorem, assume

nothing other than
1
n
→ 0).

35. Prove that for any x ∈ R, there is a sequence {xn} of rational numbers that
converges to x.

36. Let {xn} be a sequence of positive rational numbers with
xn+1

xn

→ L.

a) Show that if {xn} converges, then L ≤ 1.
Hint: Prove this by contradiction: assume L > 1 and show the sequence
is unbounded.

b) Prove that if L < 1, then {xn} converges. To what does {xn} converge?

c) Prove, by constructing examples, that if L = 1, it is possible for {xn} to
converge, and possible for {xn} to diverge.

37. Let {xn} be a sequence of real numbers. We say that {xn} Cesàro converges
(to L) if

lim
n→∞

1
n

n

∑
k=1

xk = L.

(The notion of Cesàro convergence is useful in the study of Markov chains in
MATH 416.)

a) Prove that if xn → L, then {xn} Cesàro converges to L.
Hint: Let ϵ > 0 and choose N so that n ≥ N implies ∣xn − L∣ < ϵ. Now,

for n ≥ N take
n

∑
k=1

xk and split this sum into two parts: the terms from

k = 1 to N plus the terms from k = N + 1 to n. After dividing by n, the
first part clearly converges to something. Bound the second part based

on the fact that ∣xn −L∣ < ϵ; this will show that ∣ 1
n

n

∑
k=1

xk −L∣ < ϵ.

b) Give an example of a sequence {xn} ⊆ R which Cesàro converges but
diverges.
Hint: Look at our prototype examples of sequences.
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c) Give an example of a bounded sequence which does not Cesáro con-
verge.
Hint: Build a sequence that starts with a 1, then has some 0s, then has
some 1s, then some 0s, etc. If you choose the right number of 0s (and

1s) in each block of terms, you can force the sequence { 1
n

n

∑
k=1

xk} to have

subsequences converging to two different limits.

38. Prove Polya’s Lemma, which says that if {xn} ⊆ R is a subadditive sequence
of nonnegative numbers (subadditive means that for all m,n ∈ N, xm+n ≤ xm +
xn), then the sequence { 1

n
xn} converges.

Hint: First, use the subadditivity to show that xn ≤ nx1 for all n. Then, use

that to show the sequence { 1
n
xn} is decreasing. Since the sequence {xn} is

assumed non-negative, the MCT applies.

Exercises from Section 2.7

39. Prove the Bolzano-Weierstrass Theorem (Theorem 2.64), which says that ev-
ery bounded sequence of real numbers has a convergent subsequence.

Exercises from Section 2.8

40. For each of the following sequences, find limxn and limxn (no proofs re-
quired; just write the answers):

a) xn =
n + 4
3n − 2

b) xn = 5 + 3 ⋅ (−1)n

c) xn = sin(nπ4 )

d) xn = {
3 if n is odd

3 + e−n if n is even

e) xn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
n

if n is prime

1 − 1
n

if n is not prime

f) xn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
n

if n ≤ 100

1 − 1
n

if n > 100

41. Prove the second statement of Theorem 2.68, which says that for a bounded
sequence {xn} of real numbers, limxn exists.

42. Prove the second statement of Theorem 2.69, which says that for a bounded
sequence {xn} of real numbers with subsequential limit set S, limxn = inf S.

43. Let {xn} and {yn} be two bounded sequences of real numbers.

a) Prove that lim (xn + yn) ≤ limxn + lim yn.
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b) Show by giving an explicit counterexample that it is not necessarily the
case that lim (xn + yn) = limxn + lim yn.

Exercises from Section 2.9

44. Let {fn} and {gn} be sequences of functions, each taking R to R, with fn ⇉ f
and gn ⇉ g. Prove fn + gn ⇉ f + g.

45. Let {fn} be a sequence of functions R → R, with fn ⇉ f . Prove rfn ⇉ r f for
any constant r ∈ R.

46. Show by constructing a specific counterexample that if {fn} and {gn} are se-
quences of functions, each taking R to R, with fn ⇉ f and gn ⇉ g, it is not
necessarily the case that fngn ⇉ fg.

47. Let {fn} be the sequence of functions [0,1] → R defined by fn(x) =
x

1 + nx2 .
Find the pointwise limit f of {fn} and determine whether or not {fn} con-
verges uniformly to f on [0,1].

48. Let {gn} be the sequence of functions [0,1] → R defined by gn(x) =
nx

1 + nx2 .
Find the pointwise limit g of {gn} and determine whether or not {gn} con-
verges uniformly to g on [0,1].

49. Let {hn} be the sequence of functions [0,1] → R defined by hn(x) =
nx

1 + n2x2 .
Find the pointwise limit h of {hn} and determine whether or not {hn} con-
verges uniformly to h on [0,1].
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Chapter 3

Topology of R

3.1 Open and closed sets
Loosely speaking, topology is a branch of mathematics which is sort of like “ab-
stract geometry”: it studies the properties of shapes and other sets that are pre-
served under stretching, compressing, shifting, twisting, and other “continuous”
deformations of the space.
This subject depends on the notion of an open subset of a space, and the idea is that
the sets which are “open” remain open when you stretch/rotate/twist the space.

In this course, we care most about calculus, not topology. But you can’t really do
calculus without understanding some of the topology of R, so we’ll discuss some
fundamental topological concepts in this chapter.

Open balls

Definition 3.1 Let x ∈ R and ϵ > 0. The set

Bϵ(x) = {y ∈ R ∶ ∣y − x∣ < ϵ}

is called the open ball (of radius ϵ, centered at x).

EXAMPLES

B3(8) = 

B1/6(0) = 
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Lemma 3.2 (Open balls are bounded open intervals) A set E ⊆ R is an open
ball if and only if E = (a, b) for real numbers a and b with a < b.

PROOF (⇒) Suppose E is an open ball, i.e. B = Bϵ(x) for some x ∈ R and ϵ > 0.
Then

E =

as wanted.



(⇐) Suppose E = (a, b).



a bE

Then E = Bϵ(x) for

x = and ϵ =

so E is an open ball, as desired. ◻

Open sets

Definition 3.3 Let E ⊆ R. E is called open if for every x ∈ E, there is ϵ > 0 such that
Bϵ(x) ⊆ E.

Idea: Open sets are those where every point in the set has “room to breathe”
without leaving the set.

EXAMPLES

E = (0,1)



0 1E
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3.1. Open and closed sets

E = [0,1)



0 1E

Other open sets:

Other sets that are not open:

Theorem 3.4 (Open balls are open sets) Let E ⊆ R be an open ball. Then E is an
open set.

PROOF HW (this is similar to the example E = (0,1) shown on the previous page).

Theorem 3.5 (Unions of open sets are open) Let {Eα} be a collection of open sets
(finite, countable or uncountably many sets). Then ⋃

α
Eα is open.

PROOF Let x ∈⋃
α
Eα.

Then x ∈ Eα for some α.
Since Eα is open, ∃ ϵ > 0 s.t. Bϵ(x) ⊆ Eα ⊆ E. ◻

Theorem 3.6 (Intersections of finitely many open sets are open) LetE1, ...,En

be subsets of R, each of which is open. Then
n

⋂
k=1

Ek is open.

PROOF Let x ∈
n

⋂
k=1

Ek.

That means x ∈ Ek for all k ∈ {1,2, ..., n}.
Since each Ek is open, for each k, ∃ ϵk > 0 s.t. Bϵk

(x) ⊆ Ek.
Let ϵ =min{ϵ1, ϵ2, ..., ϵn}.
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3.1. Open and closed sets

Then if y ∈ Bϵ(x), y ∈ Bϵ(x) ⊆ Bϵk
(x) ⊆ Ek for all k.

Thus Bϵ(x) ⊆
n

⋂
k=1

Ek. ◻

WARNING: An intersection of countably infinitely many open sets may not
be open. As an example, let

En = (−
1
n
,

1
n
) .

Each En is open, but
∞
⋂

n=1
En = {0}, which is not open.

TO PROVE A SET E IS OPEN:

Let x ∈ E.

Write down a formula for ϵ > 0 (often coming from some scratch work).

Prove that Bϵ(x) ⊆ E. ◻

Alternatively, prove E is the union of sets already known to be open
(such as open balls). ◻

Alternatively, proveE is the intersection of finitely many sets already known
to be open. ◻

Closed sets

Definition 3.7 A set E ⊆ R is called closed if EC is open.

WARNING: Sets are not doors!
Doors are open, or closed, but never both and never neither.
Sets can be open, closed, both (we use the word clopen for this) or neither.

“closed” does NOT mean “not open”.
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EXAMPLES

(0,1)C =

[a, b]

{x}

R

∅

Q

(0,1)

Theorem 3.8 (Intersections of closed sets are closed) Let {Eα} be a collection of
closed sets (finite, countable or uncountably many sets). Then ⋂

α
Eα is closed.

PROOF Since each Eα is closed, each EC
α is open.

Since unions of open sets are open,⋃
α
EC

α is open.

Thus⋂
α
Eα = [⋃

α
EC

α ]
C

is the complement of an open set, hence closed. ◻

Theorem 3.9 (Unions of finitely many closed sets are closed) Let E1, ...,En be

subsets of R, each of which is closed. Then
n

⋃
k=1

Ek is closed.

PROOF Since each Ek is closed, each EC
k is open.

Since an intersection of finitely many open sets is open,
n

⋂
k=1

EC
k is open.

So
n

⋃
k=1

Ek = [
n

⋂
k=1

EC
k ]

C

is the complement of an open set, hence closed. ◻
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Sequential closedness

Definition 3.10 Let E ⊆ R. E is called sequentially closed if for every sequence
{xn} of numbers in E that converges to x ∈ R, it must be the case that x ∈ E.

EXAMPLES

(0,1)

Q

[0,1]

Theorem 3.11 (Closed sets are the same as sequentially closed sets) LetE ⊆ R.
Then E is closed if and only if E is sequentially closed.

PROOF (⇒) Suppose E is closed.
To show E is sequentially closed, we let {xn} ⊆ E be a convergent sequence,

with xn → x where x ∈ R; we need to show x ∈ E.
We will prove this by contradiction: suppose not, i.e. x ∉ E, i.e. x ∈ EC .

Since EC is open, ∃ s.t. ⊆ EC .

Since xn → x, ∃ s.t. ⇒ xN ∈ Bϵ(x) ⊆ EC .
Contradiction! xN ∈ EC , but {xn} ⊆ E.
Therefore x ∈ E, meaning E is sequentially closed.
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3.1. Open and closed sets



(⇐) Suppose E is sequentially closed.
To show E is closed, we will show EC is open. So let x ∈ EC .
Again we argue by contradiction.
Suppose there is no ϵ > 0 such that Bϵ(x) ⊆ EC .

Then, for every n, ∃xn ∈ B1/n(x) −EC , meaning xn ∈ E and ∣xn − x∣ <
1
n

.

By the , xn → x, and since E is assumed to be
sequentially closed, x ∈ E.

This is a contradiction, so ∃ ϵ > 0 s.t. Bϵ(x) ⊆ EC .
This makes EC open, so therefore E is closed. ◻

Theorem 3.12 .
Let E ⊆ R be open. Then supE /∈ E and infE ∉ E.
Let F ⊆ R be a closed set which is bounded above. Then supF ∈ F .
Let F ⊆ R be a closed set which is bounded below. Then inf F ∈ F .

PROOF HW

TO PROVE A SET E IS CLOSED:

Prove EC is open (see above). ◻

Alternatively, prove E is sequentially closed:
Let {xn} ⊆ E be s.t. xn → x, and prove x ∈ E. ◻

Alternatively, prove E is the intersection of sets already known
to be closed. ◻

Alternatively, prove E is the union of finitely many sets already known
to be closed. ◻
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3.2. Intervals, betweenness and connectedness

3.2 Intervals, betweenness and connectedness
In Chapter 2 we defined intervals by giving a laundry list of the types of sets that
we call intervals:

QUESTION

Is there an invariant of those sets, i.e. a property that those sets have that other sets
don’t have (apart from being an “interval”)?

To answer this question, let’s look at an example of a set that isn’t an interval:

E = (0,1) ∪ (2,3)



0 1

E

2 3

Heuristically, what makes this E not be an interval?

This idea is captured formally with the concept of betweenness:

Betweenness

Definition 3.13 Let E ⊆ R. We say E has the betweenness property if for every
y, z ∈ E with y ≤ z, [y, z] ⊆ E.

EXAMPLE

E = (0,1) ∪ (2,3) does not have betweenness:



0 1

E

2 3
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Lemma 3.14 Let E ⊆ R. E is an interval if and only if E has the betweenness prop-
erty.

PROOF (⇒) Suppose E ⊆ R is an interval.
We prove this with 10 cases, depending on what type of interval E is:

Case 1: If E = ∅, then E has betweenness vacuously.
Case 2: If E = R, then E obviously has betweenness, since every [y, z] is a

subset of R.
Case 3: If E = [a, b], then let y, z ∈ E with y ≤ z. This means a ≤ y ≤ z ≤ b.

To verify that E has betweenness, we need to show [y, z] ⊆ E.
Toward that end, let x ∈ [y, z]. Then y ≤ x ≤ z, so a ≤ x ≤ b, so x ∈ [a, b] = E
as wanted.

Case 4: If E = (a, b], repeat Case 3, changing each red [ to ( and each red ≤
to <.

Case 5: If E = [a, b), repeat Case 3, changing each green ] to ) and each green
≤ to <.

Case 6: If E = (a, b), repeat Case 3, making the changes indicated in both
Cases 4 and 5.

Case 7: If E = [a,∞), let y, z ∈ E with y ≤ z. This means a ≤ y ≤ z.
As above, we need to show [y, z] ⊆ E, so let x ∈ [y, z].
Then a ≤ y ≤ x ≤ z, so a ≤ x, so x ∈ [a,∞) = E.

Case 8: If E = (a,∞), repeat Case 7, changing each red [ to ( and each red ≤
to <.

Case 9: If E = (−∞, b], let y, z ∈ E with y ≤ z. This means y ≤ z ≤ b.
As above, we need to show [y, z] ⊆ E, so let x ∈ [y, z].
Then y ≤ x ≤ z ≤ b, so x ≤ b, so x ∈ (−∞, b] = E.

Case 10: If E = (−∞, b), repeat Case 9, changing each green ] to ) and each
green ≤ to <.

(⇐) Suppose E ⊆ R has the betweenness property.
Claim: (infE, supE) ⊆ E ⊆ [infE, supE].

Once the claim is proven, it follows that E must be an interval.
Proof of Claim: For the first inclusion, let x ∈ (infE, supE).

Then x > infE and x < supE.



inf E sup Ex

By a characterization of inf and sup,
∃ y ∈ [infE,x)⋂E and ∃ z ∈ (x, supE]⋂E.
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3.2. Intervals, betweenness and connectedness

By the betweenness property, [y, z] ⊆ E.
We have x ∈ [y, z] ⊆ E.

For the second inclusion (E ⊆ [infE, supE]), let x ∈ E.
Then, infE ≤ x ≤ supE, so x ∈ [infE, supE].

This proves the claim, and therefore the theorem. ◻

Connectedness

Definition 3.15 Let E ⊆ R. A disconnection of E is a pair of sets U and V with all
four of these properties:

1. U and V are open;

2. U and V are disjoint, i.e. U ∩ V = ∅;

3. U and V both hit E, meaning U ∩E ≠ ∅ and V ∩E ≠ ∅;

4. U and V cover E, meaning E ⊆ U ∪ V .

E ⊆ R is called connected if it does not have a disconnection.
E is called disconnected if it has a disconnection.

EXAMPLES

E = (0,1)∪(2,3) 

0 1

E

2 3

F = R − {3} 

Q 

R−Q 

[0,1] 

0 1
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Lemma 3.16 If E ⊆ R is connected, then E has betweenness.

PROOF We prove the contrapositive. Suppose E does not have betweenness.
That means ∃y, z ∈ E with y ≤ z but [y, z] /⊆ E.
Therefore, ∃x ∈ [y, z]with x ∉ E.


y zx

Now let U = (−∞, x) and V = (x,∞).
1. U and V are open (HW);
2. U and V are disjoint;
3. U and V both hit E, since y ∈ U ∩E and z ∈ V ∩E; and
4. U and V cover E, since E ⊆ R − {x} ⊆ U ∪ V .
Therefore {U,V } is a disconnection of E. ◻

PREVIEW

We will see later that the converse of Lemma 3.16 is true, i.e. if E ⊆ R has between-
ness, then E is connected. But proving this is harder, because to prove a set is
connected requires ruling out all possible disconnections. To do this, we need a way
of describing all open sets in R, since a disconnection is a pair of open sets.

Fortunately there is a theorem that describes all open subsets of R:

Theorem 3.17 (Lindelöf’s Theorem) A subset of R is open if and only if it is the
union of countably many disjoint open intervals.

To prove Lindelöf’s Theorem, we need to discuss equivalence relations. Recall that a
relation on a set E is a symbol you put between two elements of E that produces a
true or false statement.

Definition 3.18 Let E be a set. A relation ∼ on E is called an equivalence relation
if it has three properties:

1. ∼ is reflexive: ∀x ∈ E, x ∼ x.

2. ∼ is symmetric: ∀x, y ∈ E, x ∼ y implies y ∼ x.

3. ∼ is transitive: ∀x, y, z ∈ E, x ∼ y and y ∼ z imply x ∼ z.

A prototype example of an equivalence relation is “=”.
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Definition 3.19 Let ∼ be an equivalence relation on set E.
For any x ∈ E, the equivalence class of x, denoted [x], is the set of all y ∈ E such
that y ∼ x.

Lemma 3.20 Given any equivalence relation on any set E:

1. any two equivalence classes either coincide or are disjoint; and

2. the union of all the equivalence classes is E.

PROOF To prove (1), suppose [x] and [y] are not disjoint; then they both contain
some z ∈ E.

Since z ∈ [x], z ∼ x, and since z ∈ [y], z ∼ y. So by transitivity, x ∼ y.
Now, if a ∈ [x], a ∼ x; by transitivity a ∼ y so a ∈ [y]. This proves [x] ⊆ [y].
At the same time, if a ∈ [y], a ∼ y; by transitivity a ∼ x so a ∈ [x]. This proves
[y] ⊆ [x].

Therefore [x] = [y].

For statement (2),
Clearly, [x] ⊆ E so ⋃

x∈E
[x] ⊆ E.

By reflexivity, x ∼ x so x ∈ [x]. Thus E = ⋃
x∈E
{x} ⊆ ⋃

x∈E
[x].

Therefore E = ⋃
x∈E
[x]. ◻

EXAMPLE

Consider “≡3”, the relation on Z denoting congruence mod 3 (this means we say
x ≡3 y if x and y have the same remainder when divided by 3).

The concept is that an equivalence relation on a set E partitions E into disjoint
equivalence classes. With that in mind, we prove Lindelöf’s Theorem by defining
an equivalence relation on an arbitrary open set E and showing that the equiva-
lence classes are open intervals. Now for the details:

127



3.2. Intervals, betweenness and connectedness

PROOF OF LINDELÖF’S THEOREM
(⇐) This is immediate, since unions of open sets are open.

(⇒) Let E ⊆ R be open. Define a relation ∼ on E by saying

x ∼ y⇔ [min{x, y},max{x, y}] ⊆ E.


x zy

E

Claim 1: ∼ is an equivalence relation.

Proof of Claim 1: That ∼ is reflexive and symmetric is obvious.
To prove transitivity, suppose x ∼ y and y ∼ z.
Thus [min{x, y},max{x, y}] ⊆ E and [min{y, z},max{y, z}] ⊆ E.
Therefore[min{x, y, z},max{x, y, z}] ⊆ E.
Therefore [min{x, z},max{x, z}] ⊆ E, meaning x ∼ z.
Thus ∼ is transitive.

Claim 2: The ∼ -equivalence classes are intervals.

Proof of Claim 2: Let F (x) denote the equivalence class of x ∈ E.
We will show F (x) has betweenness.
To do this, suppose y, z ∈ F (x)with y ≤ z.
By definition of ∼, [min{y, x},max{y, x}] and [min{z, x},max{z, x}] are both

subsets of E, meaning [min{y, z, x},max{y, z, x}] is also a subset of E, so
[y, z] ⊆ F (x).

Therefore F (x) has betweenness, so it is an interval.

Claim 3: The ∼ -equivalence classes are open intervals.

Proof of Claim 3: Again, let F (x) be the equivalence class of x ∈ E.
If F (x) is bounded above, let s = supF (x).


sx

F(x)

If s ∈ F (x), then s ∈ E, and since E is open, ∃ ϵ > 0 s.t. Bϵ(s) ⊆ E.
But then, s + ϵ2 ∈ F (x), making s not an upper bound of F (x),

contradicting s = supF (x). Therefore s /∈ F (x).
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An argument similar to that in the previous four lines proves that if F (x) is
bounded below, inf F (x) /∈ F (x).

Thus F (x) is an interval that does not contain either its sup or its inf, so it is
an open interval, as desired.

Claim 4: There are only countably many ∼ -equivalence classes.

Proof of Claim 4: By the Density Theorem, each equivalence class (being an open
interval) must contain a rational number.

There are only countably many rational numbers, so there can only be
countably many equivalence classes.

Finally, by Lemma 3.20 E is the disjoint union of its ∼ -equivalence classes,
proving the (⇒) direction. ◻

We finish this section with a theorem that sums up our work on intervals.

A word on notation: TFAE means “The following are equivalent”, meaning that if
any one of the statements is true, they are all true, and if any one of the statements
is false, they are all false.

Theorem 3.21 Let E ⊆ R. TFAE:

1. E is an interval.
2. E has the betweenness property.
3. E is connected.

PROOF (1)⇔ (2) is Lemma 3.14.
(3)⇒ (2) is Lemma 3.16.
(2)⇒ (3): Suppose not, i.e. that ∃E ⊆ R that has betweenness but is

disconnected, say by open sets U and V .
Since U and V are open, we can write them as the disjoint union of

countably many open intervals:

U =
∞
⋃
k=1
(ak, bk) and V =

∞
⋃
k=1
(ck, dk).

Since {U,V } is a disconnection of E:
● U hits E ⇒ ∃k ∈ N and y ∈ R so that y ∈ (ak, bk) ∩E.
● V hits E ⇒ ∃ l ∈ N and z ∈ R so that z ∈ (cl, dl) ∩E.
● U and V are disjoint, so (ak, bk) and (cl, dl) are disjoint.

Therefore, either ak < y < bk < cl < z < dl or cl < z < dl < ak < y < bk.
WLOG (without loss of generality), the first situation holds (otherwise, switch
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the names of U and V ).
Since E has betweenness, bk ∈ E. So we have a picture like this:



bkak
y∈E

cl dl
z∈E

⊆U ⊆V

Since E ⊆ U ∪ V , this gives two possibilities:
Case 1: bk ∈ U .

This means bk ∈ (am, bm) for some m.
m ≠ k since bk ∉ (ak, bk).



bkak
am bm

However, in this situation, because all the intervals are open,

(am, bm) ∩ (ak, bk) ≠ ∅,

contradicting the fact that the (ak, bk) are disjoint open intervals, so
this case is impossible.

Case 2: bk ∈ V .
This means bk ∈ (cm, dm) for some m.



bkak
cm dm

However, this would imply (again since the intervals are open) that

(cm, dm) ∩ (ak, bk) ≠ ∅, i.e. U ∩ V ≠ ∅,

which is impossible. So this case can’t happen either.
In either case, we have a contradiction to the assumption that E has a

disconnection.
Therefore E is connected, as wanted. ◻
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3.3 Compactness
MOTIVATION

Arbitrary subsets of R have suprema and infima, but a supremum may be ∞ or
may not be in the set you’re taking the supremum of. An infimum may be −∞ or
not in the set you’re taking the infimum of.

EXAMPLE E = (0,1)

However, a finite set E ⊆ R, E always has a maximum and a minimum (and that
maximum and minimum are members of E).

EXAMPLE F = {1,6,8,12,25}

We want to generalize this application of “finiteness” by characterizing other sub-
sets of R that always contain their maximum and their minimum.

Open covers and subcovers

Definition 3.22 Let E ⊆ R.
An open cover(ing) of E is a set {Uα}α of open sets whose union contains (i.e. “cov-
ers” E), i.e.

E ⊆ ⋃
α
Uα.

Let {Uα} be an open cover of E. A subcover (of {Uα}) is another open cover of E
consisting of some (maybe all) of the Uα.
E is called compact if every open cover of E has a finite subcover.

EXAMPLE 1


1 2 3 4 5

U1 U2 Uπ

E = {1,2,3,4,5}
For each α ∈ R, let Uα = (α −

5
2 , α +

5
2).

{Uα} is an open cover of E, since E ⊆⋃
α
Uα:
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EXAMPLE 2



10
1

2

1

3

1

4

1

5

FU2U3

F = (0,1)
For each n ∈ N, let Un = (

1
n
,1).

{Un} is an open cover of F , since F ⊆
∞
⋃

n=1
Un:

However, there is no finite subcover of {Un}:

EXAMPLE 3
Let E ⊆ R be any set. An open cover of E can be obtained by taking
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Theorem 3.23 (Union of finitely many compact sets is compact) IfE1,E2, ...,En

are each compact subsets of R, then
n

⋃
k=1

Ek is also compact.

PROOF HW
Hints: to show a set is compact, start with an arbitrary open cover {Uα} of that

set. You have to show that there must be a finite subcover. Here, you start with an

open cover {Uα} of
n

⋃
k=1

Ek. Notice that {Uα} is also an open cover of eachEk. Apply

compactness of Ek to find finite subcovers of each Ek, and put them together to get

a finite subcover of
n

⋃
k=1

Ek.

Theorem 3.24 (Intersection of compact sets is compact) If {Eα} is a collection
of compact subsets of R, then ⋂αEα is also compact.

PROOF HW

Countable subcovers

It turns out that every open cover of any subset of R has a countable subcover. We
prove that in the next two results:

Lemma 3.25 Let E ⊆ R. E is separable, meaning there is a countable set C ⊆ E
such that for every x ∈ E and every ϵ > 0, there is y ∈ C such that ∣y − x∣ < ϵ.

PROOF For each n, use the idea of Example 3 above to construct this countable
open cover of R by balls with rational centers:

{B1/n(q) ∶ q ∈ Q}.

(This cover is countable because there are only countably many choices of q ∈ Q
and countably many choices of n ∈ N.)

Now, for each set B1/n(q) in the cover that intersects E, select one point in that
ball that is also in E.

This produces a countable set Cn of points in E.



E
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Now let C =
∞
⋃
n=1

Cn.

C, being the countable union of countable sets, is countable.
It remains to show ∀x ∈ E, ∀ϵ > 0, ∃ y ∈ C s.t. ∣y − x∣ < ϵ.

To verify this, first let x ∈ E and ϵ > 0.

Given ϵ, choose n > 3
2ϵ , so that

3
2n < ϵ.

Next, by the Density Theorem, ∃ rational number q ∈ (x − 1
2n,x +

1
2n).

That means ∣x − q∣ < 1
2n , so ∣x − q∣ < 1

n
, i.e. x ∈ B1/n(q).

Since B1/n(q) ∩E ≠ ∅, ∃ y ∈ Cn, i.e. y ∈ B1/n(q)⋂E.


B1/n(q)x∈E q

1

n

1

n

y∈C

1

2 n

1

2 n

For this y, ∣y − x∣ ≤ ∣y − q∣ + ∣q − x∣ < 1
n
+ 1

2n =
3

2n < ϵ.
This proves the theorem. ◻

Theorem 3.26 Let E ⊆ R. For any cover of E by open sets {Uα}, there is a countable
subcover.

PROOF Let C ⊆ E be as in Lemma 3.25 (meaning that ∀x ∈ E and ∀ ϵ > 0, ∃ y ∈ C
with ∣x − y∣ < ϵ).

Now consider the open sets

B = {Bq(c) ∶ c ∈ C, q ∈ Q ⋂(0,∞)}.

Since C and Q are countable, there are countably many sets in B.
Next, let B′ be the collection of sets in B which are contained entirely within a

single Uα (where {Uα} is the open cover given in the theorem).
B′ is a countable collection of open sets; label these sets as F1, F2, F3, ....

Claim: B′ = {F1, F2, F3, ...} is a cover of E.
Proof of Claim: Let x ∈ E.

Since {Uα} is a cover of E, ∃α s.t. x ∈ Uα.
This Uα is open, so ∃ rational number ϵ > 0 s.t. Bϵ(x) ⊆ Uα.
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Applying Corollary 3.25, there is y ∈ C such that ∣y − x∣ < ϵ4 . Notice

Bϵ/2(y) ⊆ Bϵ/2+∣y−x∣(x) ⊆ Bϵ/2+ϵ/4(x) = B3ϵ/4(x) ⊆ Bϵ(x) ⊆ Uα,

so Bϵ/2(y) is one of the members of B′ (say FN ).
At the same time x ∈ Bϵ/2(y), so x ∈ FN .
This shows every x ∈ E belongs to some FN , proving the claim.

For each set Fn in B′, we now choose a Un from the {Uα}which contains Fn

(such a Uα must exist by the definition of B′).
This yields a countable subcollection {U1, U2, U3, ...}where Fn ⊆ Un for all n.
If x ∈ E, then

x ∈
∞
⋃
n=1

Fn ⊆
∞
⋃
n=1

Un,

so {Un}∞n=1 is a countable subcover of the {Uα}. ◻

So for any open cover of any subset of R, finding a countable subcover is triv-
ial (now that we have proved this theorem). But finding a finite subcover might
be impossible, as we have seen with the set (0,1) and as we now see with the set R:

EXAMPLE

Prove that R is not compact.
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Sequential compactness

Definition 3.27 A set E ⊆ R is called sequentially compact if every sequence of
numbers in E has a subsequence which converges to a number in E.

EXAMPLES

R

(0,1]

Q

[0,1]
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Theorem 3.28 Let E ⊆ R. E is compact if and only if it is sequentially compact.

PROOF (⇒) Assume E is compact and let {xn} be a sequence in E.
Case 1: There are only finitely many different numbers in {xn}.

In this situation, ∃x ∈ E s.t. for infinitely many n, xn = x.
Then ∃ subsequence {xnk

}where xnk
= x for all k.

This subsequence converges to x ∈ E.

Case 2: {xn} has infinitely many different elements.
In this situation, we make the following claim:
Claim: ∃x ∈ E s.t. for every ϵ > 0, ∃xn s.t. ∣xn − x∣ < ϵ.
Proof of claim: Suppose not, i.e. ∀ y ∈ E, ∃ ϵ(y) > 0 s.t. Bϵ(y)(y) ∩ {xn} = {y}.

Now, {Bϵ(y)(y) ∶ y ∈ E} is an open cover of E.
By compactness there is a finite subcover

{Bϵ(yk)(yk) ∶ 1 ≤ k ≤ n}.

But then,

{xn}∞n=1 = {xn}∞n=1 ∩E (since {xn} ⊆ E)

⊆ [
n

⋃
k=1

Bϵ(yk)(yk)] ∩ {xn}∞n=1 (since {Bϵ(yk)(yk)} covers E)

=
n

⋃
k=1
[Bϵ(yk)(yk) ∩ {xn}∞n=1]

=
n

⋃
k=1
{y} (by the red remark above)

= {y},

contradicting the fact that {xn} has infinitely many different elements.
Applying the claim with ϵ = 1, ∃n1 ∈ N s.t. xn1 ≠ x and ∣xn1 − x∣ < 1.

Applying the claim again with ϵ =min{1
2 , ∣xn1 − y∣} to show

∃n2 > n1 s.t. xn2 ≠ x and ∣xn2 − x∣ <
1
2 .

For each k, apply the claim again with ϵ =min{ 1
k + 1 , ∣xnk

− y∣} to show

∃nk+1 > nk s.t. xnk+1 ≠ x and ∣xnk+1 − x∣ <
1

k + 1 .

By the Squeeze Theorem, xnk
→ x ∈ E.

Therefore E is sequentially compact.
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(⇐) Assume E is sequentially compact.
Start with an arbitrary open cover {Uα} of E; by Theorem 3.26, ∃ countable

subcover {U1, U2, U3, ...}.
Suppose not, i.e. that there is no finite subcover of {U1, U2, U3, ...}.
Then, ∀n ≥ 0, {U1, ..., Un} does not cover E, so ∃xn ∈ E − (U1 ∪U2 ∪⋯ ∪Un).
E is assumed sequentially compact, so {xn} has a subsequence {xnk

}which
converges to some x ∈ E.

This x must belong to UN for some N , since {U1, U2, ...} cover E.
As UN is open, there is ϵ0 > 0 such that Bϵ0(x) ⊆ UN .
On the other hand, for every n ≥ N , xn ∉ UN , so xn ∉ Bϵ0(x), i.e. ∣xn − x∣ ≥ ϵ0.
This contradicts xnk

→ x, so in fact {U1, U2, ...}must have a finite subcover.
This means E is compact as wanted. ◻

Theorem 3.29 (Heine-Borel Theorem) Let E ⊆ R. E is compact if and only if E
is closed and bounded.

PROOF (⇒) Assume E is compact; that means E is sequentially compact.
To show E is closed, suppose {xn} ⊆ E is some sequence with xn → x ∈ R.
By sequential compactness, ∃ subsequence {xnk

}which converges to a number
in E.

But this number must be x (since any subsequence has the same limit as the
original convergent sequence), so x ∈ E.

Thus E is sequentially closed, hence closed.

To show E is bounded, let ϵ > 0.
Observe that {Bϵ(x) ∶ x ∈ E} is an open cover of E.

By compactness, there is a finite subcover, i.e. E ⊆
n

⋃
k=1

Bϵ(xk).

Last, let b =max{∣x1∣, ∣x2∣, ..., ∣xn∣}.
For every x ∈ E, ∣x∣ ≤ b + ϵ, so E is bounded.

(⇐) Let E be closed and bounded.
Then, let {xn} be a sequence in E.

Since E is bounded, by the Theorem, {xn} has a
convergent subsequence {xnk

}.
Since E is closed, it is sequentially closed, so x = limxnk

belongs to E.
We have proven E is sequentially compact, and therefore E is compact. ◻
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Corollary 3.30 Let E ⊆ R.
If E is compact, then supE ∈ E and infE ∈ E.
In other words, supE =maxE and infE =minE, so E contains its maximum and

minimum.

PROOF Let s = supE; for every n, we can choose xn ∈ (s −
1
n
, s] ⋂ E.

Thus ∣xn − s∣ ≤
1
n

so xn → s.

Since E is compact, it is closed, hence sequentially closed, so s ∈ E.

The proof that infE ∈ E is similar. ◻

The Nested Interval Theorem

From work in the last two sections, a subset of R is connected and compact if and
only if it is a closed and bounded interval [a, b].
Now for a result which says something about what happens when you intersect
certain types of these sets:

Theorem 3.31 (Nested Interval Theorem) Let {In} be a sequence of nonempty com-
pact intervals in R. If In+1 ⊆ In for every n, then

∞
⋂
n=1

In ≠ ∅.

VOCABULARY

A sequence of sets is called nested if the sets either get bigger and bigger, or smaller
and smaller. For this theorem, the sets get smaller and smaller:

Note: All the hypotheses of this theorem are important for the conclusion to be
true (HW).

We’re going to prove the Nested Interval Theorem two different ways: one way
that uses completeness, and one way that uses compactness.
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FIRST PROOF As each In is a closed bounded interval, we can write In = [an, bn]
with an ≤ bn.

The fact that In+1 ⊆ In means {an} is an increasing sequence bounded above by
b1 and {bn} is a decreasing sequence bounded below by a1.

By the MCT, a = liman = supan and b = lim bn = inf bn exist, and a ≤ b since limits
preserve soft inequalities.

So [a, b] ≠ ∅.

Claim: [a, b] =
∞
⋂
n=1

In.

Proof of claim: (⊆) Let x ∈ [a, b].
Then x ≥ a = supan so x ≥ an∀n, and x ≤ b = inf bn, so x ≤ bn∀n.
Thus x ∈ [an, bn] = In for all n.

Therefore x ∈
∞
⋂
n=1

In as wanted.

(⊇) Let x ∈
∞
⋂
n=1

In =
∞
⋂
n=1
[an, bn].

Thus x ≥ an for all n, so x ≥ supan = a.
Similarly, x ≤ bn for all n, so x ≤ inf bn = b.
Thus x ∈ [a, b] as wanted. ◻

SECOND PROOF Suppose not, that
∞
⋂
n=1

In = ∅.

Then since each In is compact, each In is closed.
So each IC

n is open, and by DeMorgan’s Law,

∞
⋃
n=1

IC
n = (

∞
⋂
n=1

In)
C

= ∅C = R.

In other words, {IC
n } is an open covering of R, hence an open covering of the

compact set I1.

By compactness, ∃ finite subcover, i.e.∃N s.t.
N

⋃
n=1

IC
n ⊇ I1. Thus

(
N

⋂
n=1

In)
C

=
N

⋃
n=1

IC
n ⊇ I1

so

IN =
N

⋂
n=1

In ⊆ IC
1 .

But this contradicts IN ⊆ IN−1 ⊆ ⋯ ⊆ I2 ⊆ I1, since IN ≠ ∅.
The result follows by contradiction. ◻
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Corollary 3.32 Let In = [an, bn] be a sequence of nonempty, closed, bounded intervals
in R. If In+1 ⊆ In for every n and (bn − an) → 0, then there is a unique real number x
such that

∞
⋂
n=1

In = {x}.

PROOF Let x = lim bn (which exists by the MCT).
Since lim(bn − an) = 0, lim bn = liman = x, so by the first proof of the Nested

Interval Theorem,

∞
⋂
n=1

In = [supan, inf bn] = [liman, lim bn] = [x,x] = {x}. ◻

Corollary 3.33 R is uncountable.

PROOF First, we will prove [0,1] is uncountable.
Suppose not, i.e. ∃ an injection f ∶ [0,1] → N. Write xn = f−1(n) so that

[0,1] = {x1, x2, x3, x4, ...}.

Now, let I0 = [0,1] and for each n ≥ 1, choose a closed, nonempty interval

In ⊆ In−1, which has
1
3 the length of In−1, such that xn /∈ In.



0 1

By the Nested Interval Theorem,
∞
⋂

n=1
In ≠ ∅, so ∃x ∈

∞
⋂

n=1
In ⊆ [0,1].

But this x cannot equal xn for any n: x ∈ In, but xn /∈ In.
This contradicts the assumption that [0,1] = {x1, x2, x3, x4, ...}.
Therefore [0,1]must be countable.

If R was countable, then any subset of R (such as [0,1]) would be countable.
Thus R is also uncountable. ◻
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3.4 Chapter 3 Summary
DEFINITIONS TO KNOW

Acronyms x

• WLOG means “without loss of generality”

• TFAE means “the following are equivalent”

Nouns x

• An open ball Bϵ(x) is a set {y ∈ R ∶ ∣y − x∣ < ϵ}; equivalently, an open ball
in R is a bounded open interval (a, b).

• A set E ⊆ R has betweenness if ∀a, b ∈ E with a ≤ b, [a, b] ⊆ E.

• A disconnection of set E ⊆ R is a pair of disjoint open sets {U,V }which
both hit E and whose union covers E.

• A relation ∼ on set E is called an equivalence relation if it is reflexive
(x ∼ x), symmetric (x ∼ y implies y ∼ x) and transitive (x ∼ y and y ∼ z
implies x ∼ z).
If ∼ is an equivalence relation on E, the equivalence class of x ∈ E is the
set of things in E equivalent to x.

• An open cover of set E is a collection of open sets whose union contains
E.
A subcover of open cover {Uα} is another open cover consisting of some
(maybe all) of the Uα.

Adjectives that describe subsets of R x

• E is open if ∀x ∈ E, ∃ ϵ > 0 s.t. Bϵ(x) ⊆ E.

• E is closed if its complement is open.

• E is clopen if it is closed and open.

• E is sequentially closed if for every sequence in E that converges to a
limit in R, the limit must be in E.

• E is connected if it does not have a disconnection.

• E is called compact if every open cover of E has a finite subcover.

• E is called sequentially compact if every sequence of numbers in E has
a subsequence which converges to a limit in E.
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THEOREMS WITH NAMES

Lindelöf’s Theorem E ⊆ R is open⇔ E is the union of countably many disjoint
open intervals.

Heine-Borel Theorem E ⊆ R is compact⇔ E is closed and bounded.

(⇔ E is sequentially compact, although this part isn’t “Heine-Borel”)

Nested Interval Theorem If {In} is a sequence of nonempty, closed bounded in-
tervals with In+1 ⊆ In for all n, then⋂

n
In ≠ ∅.

In this setting, if In = [an, bn] and bn − an → 0, then ∃x ∈ R s.t. ⋂
n
In = {x}.

OTHER THEOREMS TO REMEMBER

• Open balls are open sets; the union of any number of open sets is open; the
intersection of finitely many open sets is open.

• The intersection of any number of closed sets is closed; the union of finitely
many closed sets is closed.

• E ⊆ R is closed⇔ E is sequentially closed.

• Open sets do not contain their infimum or supremum.

• Closed sets (therefore also compact sets) contain their infimum and their
supremum.

• For E ⊆ R, E is an interval⇔ E has betweenness⇔ E is connected.

• The intersection of any number of compact sets is compact; the union of
finitely many compact sets is compact.

• Every open cover of any subset of R has a countable subcover.

• R is uncountable.

STANDARD PROOF TECHNIQUES

To prove that E ⊆ R is open, do one of these things:

1. Show E is the union of sets already known to be open (like open intervals).

2. Show E is the intersection of finitely many sets already known to be open.

3. Use the definition: let x ∈ E and write down a formula for ϵ > 0 coming from
scratch work; then prove Bϵ(x) ⊆ E.
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To prove that E ⊆ R is closed, do one of these things:

1. Show E is the intersection of sets already known to be closed (like singletons
or closed intervals).

2. Show E is the union of finitely many sets already known to be closed.

3. Show E is sequentially closed: take {xn} ⊆ E with xn → x, and prove x ∈ E.

4. Show EC is open (see above).

To prove that E ⊆ R is connected, do one of these things:

1. Show E is an interval.

2. Show E has betweenness: let x, y ∈ E with x ≤ y and prove [x, y] ⊆ E.

3. Show E has no disconnection (usually by assuming not and deriving a con-
tradiction).

To prove that E ⊆ R is compact, do one of these things:

1. Show E is closed and bounded.

2. Show E is the intersection of sets already known to be compact.

3. Show E is the union of finitely many sets already known to be compact.

4. Show E is sequentially compact: take {xn} ⊆ E and prove there is a subse-
quence {xnk

} s.t. xnk
→ x ∈ E.

5. Use the definition: let {Uα} be an open cover of E and prove that it has a
finite subcover.
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3.5 Chapter 3 Homework
Exercises from Section 3.1

1. Prove that for any x ∈ R, if 0 < δ < ϵ, then Bδ(x) ⊆ Bϵ(x).

2. Prove that for any x, y ∈ R and any ϵ > 0, Bϵ(x) ⊆ Bϵ+∣x−y∣(y).

3. Prove Theorem 3.4, which says that every open ball in R is an open set.

4. Prove that for any x ∈ R, the sets (−∞, x) and (x,∞) are open.

5. Give a specific example, with proof, of countably many closed sets whose
union is not closed.

6. Let a ≤ b. Prove that [a, b] is closed.

Note: Having done this problem, you will have proven that any singleton (i.e.
set with one element) {a} is closed, since {a} = [a, a].
Also, you will have proven that any finite set is closed, since any finite set is

the union of finitely many singletons (i.e. {x1, ..., xn} =
n

⋃
k=1
{xk}).

7. Let E ⊆ R. Prove that E is open if and only if −E is open (recall that −E =
{−x ∶ x ∈ E}.

8. Let E ⊆ R. Prove that E is closed if and only if −E is closed.

9. Prove the first statement of Theorem 3.12, which says that if E ⊆ R is open,
then supE ∉ E and infE ∉ E.

10. Prove the second statement of Theorem 3.12, which says that if E ⊆ R is a
closed set that is bounded above, then supE ∈ E.

11. Prove the third statement of Theorem 3.12, which says that ifE ⊆ R is a closed
set that is bounded below, then infE ∈ E.

12. Without proof, characterize each of these sets as “open”, “closed”, “clopen”,
or “neither open nor closed”:

a) {0}
b) E = {0,1}
c) [0,1)

d) F = { 1
n
∶ n ∈ N}

e) G = { 1
n
∶ n ∈ N} ∪ {0}

f) [0,∞)

g) R − {0}

h) Z

i) R −Q

j) ∅
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Exercises from Section 3.2

13. For each set described in Exercise 12, determine whether or not the set is
connected. If the set is disconnected, write down an explicit disconnection of
the set; if the set is connected, you do not need to prove that it is connected.

14. Prove or disprove: if E and F are connected subsets of R, then E ∪ F is
connected.

15. Prove or disprove: if E and F are connected subsets of R and E ∩F ≠ ∅, then
E ∪ F is connected.

Hint: Use the fact that connected subsets have the betweenness property.

16. Prove or disprove: if E and F are connected subsets of R, then E ∩ F is
connected.

17. Consider the set E = {a + b
√

2 ∶ a, b ∈ Q}. Show E is disconnected by finding
an explicit disconnection of E (you need to prove that you have found a
disconnection).

Exercises from Section 3.3

18. Use the definition of compactness (not sequential compactness or Heine-
Borel) to show that [1,∞) is not compact.

19. Prove Theorem 3.23, which says that if E1,E2, ...,En are compact subsets of

R, then
n

⋃
k=1

Ek is compact.

20. Prove Theorem 3.24, which says that if {Eα} is a collection of compact subsets
of R, then⋂

α
Ek is compact.

21. Prove that if E ⊆ R is compact and F ⊆ E is closed, then F is compact.

22. For each set described in Exercise 12, determine whether or not the set is
compact (no proof is required).

23. Determine, with proof, whether each set is compact:

a) E = { 1
n
∶ n ∈ N}

b) F = { 1
n
∶ n ∈ N} ∪ {0}

24. This problem verifies that all the hypotheses of the Nested Interval Theorem
are needed to draw its conclusion.
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a) Give an example of a sequence {In} of nonempty, closed, and bounded

intervals with
∞
⋂
n=1

In = ∅.

b) Give an example of a sequence {In} of nonempty closed intervals with

In+1 ⊆ In for every n where
∞
⋂
n=1

In = ∅.

c) Give an example of a sequence {In} of nonempty bounded intervals

with In+1 ⊆ In for every n where
∞
⋂
n=1

In = ∅.
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Chapter 4

Infinite series

4.1 Convergence of infinite series
In this chapter, we discuss infinite series, which you first encountered in Calculus 2.
Recall that an infinite series is

To accomplish this, we associate to every infinite series a sequence of numbers;
summing the infinite series corresponds to taking the limit of that sequence:

Definition 4.1 Let {an} be a sequence of real numbers.
The sequence {SN} of partial sums associated to {an} is defined as follows:

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

⋮ ⋮

SN = ∑
n≤N

an =
N

∑
n=1

an

If the sequence {SN} converges to S ∈ R, then we say∑an converges (to S) and we

write∑an = S or
∞
∑
n=1

an = S.

If {SN} diverges, we say∑an diverges.
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Let’s discuss some basic series you first study in Calculus 2:

Theorem 4.2 (Geometric series formula) Let r ∈ (−1,1). Then

∞
∑
n=0

rn = 1
1 − r .

PROOF To show this, we need to use the definition of convergence.
Let SN be the N th partial sum of this series. Then

SN = r0 + r1 + r2 +⋯ + rn−1 + rn.

Therefore (1 − r)SN = 1 − rN+1, so SN =
1 − rN+1

1 − r .

Now, as N →∞, SN =
1 − rN+1

1 − r →

There are a couple of related formulas that we will need:

Corollary 4.3 (Finite geometric sum formulas) Let r ∈ R, and let M,N ∈ N be
such that M ≤ N . Then

N

∑
n=0

rn = 1 − rN+1

1 − r and
N

∑
n=M

rn = rM (1 − rN−M+1

1 − r ) .

PROOF We proved the first formula when proving the preceding theorem.
For the second formula,

N

∑
n=M

rn = rM + rM+1 +⋯rN

= rM (1 + r + r2 +⋯ + rN−M)

= rM
N−M

∑
n=0

rn

= rM (1 − rN−M+1

1 − r ) . ◻

149



4.1. Convergence of infinite series

Theorem 4.4 The harmonic series
∞
∑
n=1

1
n

diverges.

PROOF If the series converges, then its sequence {SN} of partial sums converges,
so any subsequence of {SN} also converges.

But, consider the subsequence {S2N}:

S2N = 1
1 +

1
2 +

1
3 +

1
4 +⋯ +

1
7 +

1
8 +⋯ +

1
15 +

1
16 +⋯ +

1
25 − 1 +

1
25 +⋯ +

1
2N

>

= 1
2 +

1
2(1) +

1
4(2) +

1
8(4)⋯

1
2N
(2N−1)

= 1
2 +

1
2 +

1
2 +⋯ +

1
2

= N2 .

Since S2N > N2 , {S2N} is unbounded, hence cannot converge.

Thus neither does {SN}, so∑
1
n

must diverge, as wanted. ◻

Theorem 4.5 The p-series
∞
∑
n=1

1
n2 converges.

PROOF Let SN be the N th partial sum of this series.
{SN} is an increasing sequence, since each term of the series is positive.
So it is sufficient to show that the sequence {SN} is bounded above.
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Notice first that

S2k−1 = 1 + 1
4 +

1
9 +

1
16 +

1
25 +⋯ +

1
(2k − 1)2

= 1 + [14 +
1
9] + [

1
16 +⋯ +

1
(23 − 1)2 ] + [

1
(23)2

+⋯ + 1
(24 − 1)2 ] +⋯ +

1
(2k − 1)2

<

= 1 + 1
4(2) +

1
16(4) +

1
26 (2

3) + 1
28 (2

4) + ... + 1
22k−2 (2

k−1)

= 1 + 1
2 +

1
4 +

1
23 +

1
24 +⋯ +

1
2k−1

=
k−1
∑
n=0
(1

2)
n

<
∞
∑
n=0
(1

2)
n

= 1
1 − 1

2
= 2.

That means {S2k−1} is bounded above by 2, so {SN} is also bounded above by
2 since {SN} is increasing.

By the MCT, {SN} converges, so
∞
∑
n=1

1
n2 converges by definition. ◻

Corollary 4.6 For any p ≥ 2, the p-series

∞
∑
n=1

1
np

converges.

PROOF For each N , the N th partial sums of this series form an increasing sequence

of numbers, the N th of which is less than the N th partial sum of∑
1
n2 , and

subsequently less than
∞
∑
n=1

1
n2 . By the MCT,∑

1
np

converges. ◻
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4.2 Decimal and base b representations
In elementary school, you learn about decimals. For example, if you write

x = .45028 = .45028000000⋯ or y = .131313131313⋯,

you have intuition as to what that means. Now let’s give that intuition some formal
grounding. For the numbers x and y given above, what we really mean when we
write those decimal representations is

x = .45028 =

y = .131313131313... =

Put another way, decimals are shorthand for a particular kind of infinite series:

Theorem 4.7 (Every decimal representation gives a real number) Let {xn} be
a sequence of numbers, each taken from the set {0,1,2, ...,9}. Then the series

∞
∑
n=1

xn

10n

converges to a real number x. We write this as

x = .x1x2x3⋯ or x = .x1x2x3⋯[10]
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PROOF Let SN be the N th partial sum of the series.
Notice that {SN} is an increasing sequence, and

SN =
N

∑
n=1

xn

10n

≤
N

∑
n=1

9
10n

= 9
N

∑
n=1
( 1

10)
n

= 9
10

N−1
∑
n=0
( 1

10)
n

= 9
10 ⋅

1 − ( 1
10)

N

1 − 1
10

= [1 − ( 1
10)

N

]

≤ 1.

By the MCT, {SN} converges to a real number x (and 0 ≤ x ≤ 1). ◻

Definition 4.8 Let x0 ∈ {0,1,2, ...} and let xn ∈ {0,1,2, ...,9} for all n. By

x0.x1x2x3x4⋯,

we mean the nonnegative real number x0 +
∞
∑
n=1

xn

10n
.

EXAMPLE

4.72727272727... =

153



4.2. Decimal and base b representations

Definition 4.9 The floor function is the function ⌊ ⌋ ∶ R→ R defined by setting

⌊x⌋ = sup{y ∶ y ≤ x and y ∈ Z}.

EXAMPLES

⌊5⌋ = xxxxxxxxxxxxxxxxxx ⌊17
6 ⌋ = xxxxxxxxxxx

⌊π⌋ = ⌊−π⌋ =

⌊
√

2⌋ = ⌊−2⌋ =

The graph of the floor function looks like this:

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Theorem 4.10 (Every real number has a decimal representation) Let x ∈ R.
Then ∃ a sequence of numbers {xn}, each taken from the set {0,1,2, ...,9}, s.t.

x = ⌊x⌋ +
∞
∑
n=1

xn

10n

= ⌊x⌋.x1x2x3x4⋯
= ⌊x⌋.x1x2x3x4⋯[10]

This is called a decimal or base 10 representation of x.

PROOF Suppose for now that x ∈ [0,1] (other x’s will be handled later).
To obtain a decimal representation of x, we use the Nested Interval Theorem.
Let D = {0,1, ..,9}; the elements of D are called (decimal) digits.

First step: For each n1 ∈D, let In1 = [
n1

10 ,
n1 + 1

10 ].
9
⋃

n1=0
In1 = [0,1], so x must belong to some In1 .
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4.2. Decimal and base b representations

Set x1 = n1, and let a1 and b1 be the the left- and right-hand endpoints of In1 :

a1 =
n1

10 and b1 =
n1 + 1

10 .



0 11

10

2

10

7

10

8

10

I0 I1 I7

Second step: Now, for each n2 ∈D, set In1,n2 = [
10n1 + n2

100 ,
10n1 + n2 + 1

100 ].

Since
9
⋃

n2=0
In1,n2 = In1 , x must belong to some In1,n2 .

Set x2 = n2, and let a2 and b2 be the left- and right-hand endpoints of In1,n2 .

7

10

8

10

73

100

74

100

75

100

I7,3 I7,4 I7

(k + 1)th step: If x ∈ In1,n2,n3,...,nk
, then for each nk+1 ∈D, set

In1,n2,...,nk,nk+1 = [
10kn1 + 10k−1n2 +⋯ + 10nk + nk+1

10k+1 ,
10kn1 +⋯ + 10nk + nk+1 + 1

10k+1 ] .

Since
9
⋃

nk+1=0
In1,n2,...,nk+1 = In1,n2,...,nk

, x must belong to some In1,n2,...,nk+1 .

Set xk+1 = nk+1.
Let ak+1 and bk+1 be the left- and right-hand endpoints of In1,n2,...,nk+1 .

In1,n2,...,nk ,4In1,n2,...,nk ,0 In1,n2,...,nk ,9

In1,n2,...,nk
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4.2. Decimal and base b representations

Repeating these steps, we get a nested decreasing sequence of intervals

Ix1 ⊇ Ix1,x2 ⊇ Ix1,x2,x3 ⊇ ⋯ ∋ x;

this sequence is also denoted

[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ ⋯ ∋ x.

Now, observe for each k that bk = ak +
1

10k
.

Therefore bk − ak10−k → 0, so by the (corollary of the) Nested Interval Theorem,

∞
⋂
k=1

Ix1,x2,...,xk,... = {x}.

Now consider the infinite series
∞
∑
k=1

xk

10k
(call this series (*)).

Since ak =
k

∑
j=1

xj

10j
, the sequence of partial sums of (*) is {a1, a2, a3, ...}. This

sequence converges to the unique point in
∞
⋂

k=1
Ix1,..,xk

, which is x.

Thus x =
∞
∑
k=1

xk

10k
= .x1x2x3x4⋯ as wanted.

This wraps up the situation when x ∈ [0,1].

Next, for an arbitrary x ∈ [0,∞), note x = ⌊x⌋ + (x − ⌊x⌋).
By the previous work, since x− ⌊x⌋ ∈ [0,1), the number x− ⌊x⌋ has a decimal

representation, which begins with the decimal point.
Stick ⌊x⌋ in front of the decimal to get the decimal representation of x.

Last, for x ∈ (−∞,0], note −x ∈ [0,∞).
By previous work, −x has a decimal representation x0.x1x2⋯.
A decimal representation of −x is therefore −x0.x1x2⋯. ◻

QUESTION

We’ve proven every x ∈ R has a decimal representation. Could some x have
multiple different decimal representations?
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4.2. Decimal and base b representations

EXAMPLE

Consider x = 37
100 .



0 13

10

4

10

I3

x

3

10

4

10

36

100

38

100

I3,6 I3,7 I3

x

Theorem 4.11 (Uniqueness of decimal representations) Let x ∈ [0,1].
If x = a

10N
for some a ∈ {0,1,2, ...,10N}, then x has exactly two decimal representa-

tions, which must be

x = .x1x2x3⋯xN−1xN999999999⋯[10]

and
x = .x1x2x3⋯xN−1(xN + 1)000000000⋯[10].

for some sequence {x1, x2, ..., xN} of numbers, each belonging to {0,1,2, ...,9},
with xN ≠ 9.

Otherwise, x has exactly one decimal representation.
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4.2. Decimal and base b representations

PROOF In order for x to have more than one decimal representation, x has to be
an endpoint of one of the intervals In1,...,nk

described in the proof of the
previous theorem.

But these endpoints are precisely those which are rational numbers with
denominator equal to a power of 10, meaning x has the desired form.

If x belongs to two intervals In1,...,nk
, choose the smallest k for which this is

the case.
Then, x is the right endpoint of In1,n2,...,nk

and the left endpoint of In1,n2,...,nk+1.
At every step after the kth one, xwill be the right-most endpoint of In1,...,nk,9,9,9,...,9

and the left-most endpoint of In1,...,nk+1,0,0,0,0,...,0, producing the two decimal
representations described in the theorem.

In1,n2,... nk-1,nk+1In1,n2,... nk-1,nk

In1,n2,...,nk-1
x

Last, to show that the indicated decimal representations of an x with two
decimal representations are the same, observe

.x1x2x3⋯xN999999⋯[10] =
N

∑
n=0

xn

10n
+

∞
∑

n=N+1

9
10n

=
N

∑
n=0

xn

10n
+ 9

10N+1 (
1

1 − 1
10
)

=
N

∑
n=0

xn

10n
+ 9

10N+1 (
10
9 )

=
N

∑
n=0

xn

10n
+ 1

10N

=
N−1
∑
n=0

xn

10n
+ xN + 1

10N

= .x1x2x3⋯xN−1(xN + 1)00000⋯[10]. ◻
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4.2. Decimal and base b representations

Corollary 4.12 R is uncountable.

PROOF We will again prove [0,1] is uncountable, but by a slightly different method
as before.

Since [0,1] ⊆ R, it will follow that R is uncountable.
To show this, suppose not, i.e. that [0,1] is countable.
That means ∃ injection f ∶ [0,1] → N.
Take each number f−1(n) and write its decimal representation (if it has more

than one decimal representation, just choose one arbitrarily):

f−1(1) = . x11 x12x13x14 ⋯[10]

f−1(2) = .x21 x22 x23x24 ⋯[10]

f−1(3) = .x31x32 x33 x34 ⋯[10]

f−1(4) = .x41x42x43 x44 ⋯[10]

f−1(5) = .x51x52x53x54 ⋱ [10]

⋮ ⋮
f−1(n) = .xn1xn2xn3xn4 ⋯ xnn ⋯[10]

⋮ ⋮

Now, choose numbers y1, y2, y3, ... ∈ {1, ...,8} such that ∀n,

We obtain y = .y1y2y3⋯[10] ∈ [0,1].
y has only one decimal representation, since it has no 0s or 9s as digits.
Furthermore, y cannot be any of the f−1(n), because it is different from f−1(n)

in the nth decimal place.
This contradicts [0,1] being countable. ◻
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Representation in other bases

There’s nothing special about the choice of 10 as a base (other than that we have 10
fingers and 10 toes).
You can prove the same theorems we just discussed for any base b ∈ {2,3,4, ...}
with exactly the same arguments as before (mostly, just replace the 10s with bs):

Theorem 4.13 Let b ∈ {2,3,4,5, ...}.
Every x ∈ R has a base b representation, meaning a sequence {xn} in {0,1,2, ..., b−
1} such that

x = ⌊x⌋.x1x2x3x4⋯[b] = ⌊x⌋ +
∞
∑
n=1

xn

bn
.

If b = 2, we call this a binary representation of x, and if b = 3, we call this a ternary
representation of x.

If x = a

bN
for some N ∈ {1,2,3, ...} and some a ∈ {0,1,2, ..., bN}, then x has exactly

two base b representations:

x = ⌊x⌋.x1x2x3⋯xN−1xN(b − 1)(b − 1)(b − 1)(b − 1)⋯[b]

and
x = ⌊x⌋.x1x2x3⋯xN−1(xN + 1)000000⋯[b];

otherwise, the base b representation of x is unique.

EXAMPLES

What are all the base 6 representations of
455
216?

What numbers have a base 7 representation which begins .32.....[7]?
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4.2. Decimal and base b representations

What rational number has base 3 representation .12121212...[3]?

The Cantor function

Definition 4.14 The Cantor function c ∶ [0,1] → [0,1] is the function defined as
follows:
Step 1: Let x ∈ [0,1] have ternary (base 3) representation

x = .x1x2x3x4⋯[3].

Step 2: If any of the digits xn are 1, replace all the digits after the first 1 with 0.
Step 3: Replace any of the digits (before the first 1) that are 2s with 1s. (In other

words, divide all the digits before the first 1 by 2.)
Step 4: Treat the string .y1y2y3⋯[2] as a binary (base 2) representation of a real num-

ber. The result is c(x).

EXAMPLE

Compute c(x) if x = .020221021021012201...[3].

EXAMPLE

Compute c(2
3).
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Theorem 4.15 The Cantor function is well-defined.
(This means that if x has two different ternary representations, then c(x) does not
depend on which ternary representation you take in Step 1 of computing c(x)).

PROOF Suppose you took x ∈ [0,1]with two different ternary representations.
That means those representations must be

x = .x1x2x3⋯xn−1xn222222⋯[3] = .x1x2x3⋯xn−1(xn + 1)0000⋯[3]

for some string of ternary digits x1, x2, ..., xn (where xn ≠ 2).

Case 1: xk = 1 for some k < n.
In this situation, the different digits in these two representations get

turned into 0s in Step 1, so both representations yield the same value of
c(x).

Case 2: xk ≠ 1 for all k < n, but xn = 1. Here, using the first form of x, we get

Step 1: x = .x1x2x3⋯xn−112222222222⋯[3]
Step 2: .x1x2x3⋯xn−110000000000⋯[3]
Step 3: .(x1

2 )(
x2

2 )(
x3

2 )(
x1

2 )⋯(
xn−1

2 )10000000⋯[2]

Using the second form of x, we get

Step 1: x = .x1x2x3⋯xn−120000000000⋯[3]
Step 2: .x1x2x3⋯xn−120000000000⋯[3]
Step 3: .(x1

2 )(
x2

2 )(
x3

2 )(
x1

2 )⋯(
xn−1

2 )10000000⋯[2]

After Step 3, the two forms produce the same binary representation.
Therefore they yield the same value of c(x).

Case 3: xk ≠ 1 for all k < n and xn = 0.
Here, using the first form of x, we get

Step 1: x = .x1x2x3⋯xn−102222222222⋯[3]
Step 2: .x1x2x3⋯xn−102222222222⋯[3]
Step 3: .(x1

2 )(
x2

2 )(
x3

2 )(
x1

2 )⋯(
xn−1

2 )0111111111⋯[2]

Step 4: c(x) =
n−1
∑
k=1

xk/2
2k
+

∞
∑

k=n+1

1
2k
=

n−1
∑
k=1

xk/2
2k
+ 1

2n
.
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Using the second form of x, we get

Step 1: x = .x1x2x3⋯xn−110000000000⋯[3]
Step 2: .x1x2x3⋯xn−110000000000⋯[3]
Step 3: .(x1

2 )(
x2

2 )(
x3

2 )(
x1

2 )⋯(
xn−1

2 )10000000⋯[2]

Step 4: c(x) =
n−1
∑
k=1

xk/2
2k
+ 1

2n
.

Notice that you get the same thing for c(x). ◻

The graph of the Cantor function
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Theorem 4.16 The Cantor function c ∶ [0,1] → [0,1] is surjective.

PROOF Let y ∈ [0,1]. We need to find x ∈ [0,1] such that c(x) = y.
To do this, write y in binary as

y = .y1y2y3⋯[2].

Now, let xn = 2yn for each n, and consider the number

x = .x1x2x3⋯[3].

Notice that the ternary expansion of x has no 1s in it. So

c(x) = .(x1

2 )(
x2

2 )(
x3

2 )(
x1

2 )⋯[2] = .y1y2y3⋯[2] = y.

Thus c is surjective as wanted. ◻

Theorem 4.17 The Cantor function c ∶ [0,1] → [0,1] is increasing.

PROOF Let x, y ∈ [0,1] be such that x < y. Write x and y in ternary:

x = .x1x2x3⋯[3]
y = .y1y2y3⋯[3]

WLOG, if x and/or y happen to have two ternary representations, choose the
one that ends in all 0s, not all 2s.

Our goal is to show c(x) ≤ c(y).
Now, let k be the smallest index such that xk ≠ yk (such a k exists since x ≠ y).
For this k, since x ≤ y, xk < yk.

Case 1: xj = 1 for some j < k.
In this situation, when doing Step 2 of the Cantor function, we get the same

string of digits for x and y. Ultimately, this yields c(x) = c(y).

Case 2: xj ≠ 1 for all j < k, xk = 1 and yk = 2.
In this case, when doing Step 2 on x and y, we obtain (respectively)

.x1x2x3⋯xk−1100000⋯[3] and .x1x2x3⋯xk−12yk+1yk+2⋯[3]

and when the digits before the first one are halved, we get

.(x1

2 )(
x2

2 )(
x3

2 )⋯(
xk−1

2 )100000⋯[2]
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from x and

.x1x2x(
x1

2 )(
x2

2 )(
x3

2 )⋯(
xk−1

2 )1ak+1ak+2⋯[2]

from y.
Thus

c(x) =
k−1
∑
j=1

(xj/2)
2j

+ 1
2k

and

c(y) =
k−1
∑
j=1

(xj/2)
2j

+ 1
2k
+

∞
∑

j=k+1

aj

2j

≥
k−1
∑
j=1

(xj/2)
2j

+ 1
2k

= c(x).

Case 3: xj ≠ 1 for all j < k, xk = 0 and yk = 1.
In this case, when doing Step 2 on x and y we obtain

.x1x2x3⋯xk−10xk+1xk+2⋯[3] and .x1x2x3⋯xk−110000⋯[3]
and when the digits before the first one are halved, we get

.(x1

2 )(
x2

2 )(
x3

2 )⋯(
xk−1

2 )0ak+1ak+2⋯[2]

from x and

.x1x2x(
x1

2 )(
x2

2 )(
x3

2 )⋯(
xk−1

2 )100000⋯[2]

from y.
Thus

c(x) =
k−1
∑
j=1

(xj/2)
2j

+
∞
∑

j=k+1

aj

2j

≤
k−1
∑
j=1

(xj/2)
2j

+
∞
∑

j=k+1

1
2j

=
k−1
∑
j=1

(xj/2)
2j

+ 1
2k

= c(y).

In all three cases we have shown c(x) ≤ c(y) (under the assumption x < y),
making c increasing. ◻

165



4.3. More on infinite series

4.3 More on infinite series
Theorem 4.18 (Linearity of Convergence of Infinite Series) Let {an} and {bn}
be sequences of real numbers, and let r ∈ R. If∑an = S and∑ bn = T , then

∑(an + bn) = S + T and ∑ r an = rS.

PROOF HW

Hint: Let SN and TN be the N th partial sums of∑an and∑ bn, respectively.
By definition of convergent series, S = limSN and T = limTN .
What are the partial sums of∑(an + bn)? What’s true about them, and why?

Theorem 4.19 (Triangle Inequality for Infinite Series) Let {an} be a sequence of
real numbers. If∑∣an∣ converges, then so does∑an.

PROOF First, denote by SN the partial sums of ∣an∣.
Since ∣an∣ ≥ 0 for all n, SN is an increasing sequence.
Since∑∣an∣ converges (let’s say to S), it must be that SN ≤ S for all N .
For each n, let

a+n =max{an,0} = {
an if an ≥ 0
0 if an < 0

and
a−n =min{an,0} = {

an if an ≤ 0
0 if an > 0 .

Notice a+n + a−n = an and a+n − a−n = ∣an∣.
Now, consider the series∑a+n. First, a+n ≥ 0 for all n, so the partial sums S+N

of∑a+n form an increasing sequence. Also, notice that 0 ≤ a+n ≤ ∣an∣ for all
n, so by taking partial sums, S+N ≤ SN ≤ S. By the MCT, {S+N} converges,
i.e.∑a+n converges.

Since∑∣an∣ converges and∑a+n converges, it follows that

∑a−n = ∑(a+n − ∣an∣)

also converges. But then∑an = ∑(a+n + a−n) converges as well. ◻
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Theorem 4.20 (Ratio Test) Let {an} be a sequence of real numbers.

1. If lim
n→∞

∣an+1∣
∣an∣

< 1, then∑an converges.

2. If lim
n→∞

∣an+1∣
∣an∣

> 1, then∑an diverges.

If lim
n→∞

∣an+1∣
∣an∣

does not exist or equals 1, then no conclusion can be drawn from this

theorem.

PROOF We prove the first statement here. Let L = lim
n→∞

∣an+1∣
∣an∣

and suppose L < 1.

Let r = 1
2(1 +L); notice that r < 1.

Since
∣an+1∣
∣an∣

→ L, there is N ≥ 0 so that for n ≥ N ,

∣ ∣an+1∣
∣an∣

−L∣ < 1
2(1 −L).

which implies that when n ≥ N ,
∣an+1∣
∣an∣

< r, which rearranges into

∣an+1∣ < r∣an∣.

Thus for k ≥ N , ∣ak∣ < rk−N ∣aN ∣.
Now, when n ≥ N , the nth partial sum of∑∣an∣ is

SN = ∑
k≤n
∣ak∣ = ∑

k<N
∣ak∣ +

n

∑
k=N
∣ak∣

≤ ∑
k<N
∣ak∣ +

n

∑
k=N

rk−N ∣aN ∣

≤ ∑
k<N
∣ak∣ +

∞
∑
k=N

rk−N ∣aN ∣

= ∑
k<N
∣ak∣ + ∣aN ∣

∞
∑
k=N

rk−N

= ∑
k<N
∣ak∣ + ∣aN ∣

∞
∑
k=0

rk (index change)

= ∑
k<N
∣ak∣ + ∣aN ∣

1
1 − r . (geometric series formula)

Since all the ∣ak∣ are non-negative, {SN} is an increasing sequence, bounded
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above by the finite number [∑
k<N
∣ak∣ + ∣aN ∣

1
1 − r].

Thus {SN} converges by the MCT, i.e.∑∣an∣ converges.
∑an therefore converges by the Triangle Inequality for infinite series.

The proof of the second statement is left as HW. It has a similar proof as the
first statement, except that here the goal is to show that the partial sums of
∑an are unbounded. ◻

4.4 Convergence of power series; transcendental functions
First, we can repeat all the definitions of Section 4.1 in the context of series made
up of functions rather than numbers:

Definition 4.21 Let {fn}∞n=0 be a sequence of functions from E to R.
The sequence {SN} of partial sums associated to {fn} is the sequence of functions
defined as follows:

S0(x) = f0(x)
S1(x) = f0(x) + f1(x)
S2(x) = f0(x) + f1(x) + f2(x)
⋮ ⋮

SN(x) = ∑
n≤N

fn(x) =
N

∑
n=0

fn(x).

If the sequence {SN} converges (pointwise) to f ∶ E → R, we say ∑ fn converges
(pointwise) (to f ) on E and write∑ fn = f on E.
We say the series∑ fn converges uniformly to f if SN ⇉ f on E.

We often make series of of power functions:

Definition 4.22 Let {an}∞n=0 be a sequence of real numbers. Then the infinite series

of functions
∞
∑
n=0

anx
n is called a power series.
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Theorem 4.23 Let
∞
∑
n=0

anx
n be a power series with lim

n→∞
n
√
∣an∣ = 0. Then:

1. anx
n converges pointwise on R to a function f ∶ R→ R.

2. For any compact subset E of R,∑anx
n converges uniformly to f on E.

PROOF To get started, we first prove that the sequence {an}must be bounded.

To verify this, note that by hypothesis n
√
∣an∣ → 0.

Therefore ∃K ∈ N s.t. n ≥K implies ∣ n
√
∣an∣∣ <

1
2 , i.e. ∣an∣ < (

1
2)

n

≤ 1.

That means that the entire sequence {an} is bounded by

A =max{∣a0∣, ∣a1∣, ∣a2∣, ..., ∣aK ∣,1}.
Now, we prove statement (2).

Let E ⊆ R be compact; thus E is bounded so E ⊆ [−B,B] for some B ≥ 1.
Now, let ϵ > 0. WLOG ϵ ∈ (0,1).

Given this ϵ, choose δ ∈ (0,1) so that
δK

1 − δ < ϵ.

(This can be done because lim
δ→0

δK

1 − δ = 0.)

Next, choose L ≥K so that n ≥ L implies n
√
∣an∣ <

δ

B
, i.e. ∣an∣ < (

δ

B
)

n

.

Now, let N >M ≥ L. We have, for any x ∈ E, ∣x∣ ≤ B so

∣( N th partial
sum of∑anx

n ) − (
M th partial

sum of∑anx
n )∣ = ∣

N

∑
n=0

anx
n −

M

∑
n=0

anx
n∣

= ∣
N

∑
n=M+1

anx
n∣

≤
N

∑
n=M+1

∣an∣ ∣x∣n

<
N

∑
n=M+1

( δ
B
)

n

Bn

≤
∞
∑

n=K
δn = δK

1 − δ < ϵ.

Therefore the partial sums of∑anx
n are uniformly Cauchy on E.

That means∑anx
n converges uniformly on E. This proves (2).

Finally, for statement (1), let x ∈ R. x is contained in the compact interval
E = [−∣x∣ − 1, ∣x∣ + 1], and∑anx

n converges uniformly on E, so it must
converge pointwise on E (and in particular at x). ◻
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Transcendental functions

Theorem 4.24 Let x ∈ R. Then, the following series all converge pointwise on R, and
converge uniformly on compact subsets of R:

•
∞
∑
n=0

xn

n! = 1 + x + x
2

2 +
x3

3! +
x4

4! +
x5

5! + ...

•
∞
∑
n=0
(−1)n x2n+1

(2n + 1)! = x −
x3

3! +
x5

5! −
x7

7! + ...

•
∞
∑
n=0
(−1)n x2n

(2n)! = 1 − x
2

2 +
x4

4! −
x6

6! + ...

Remark: When x = 0, the n = 0 term of a series is problematic, but we can plug in
x = 0 to the written out form of the series to see that...

PROOF For the first series, we start with this claim:
Claim: For any a > 0, there exists N ∈ N so that n ≥ N implies n! > an.

Proof of claim: Given a > 0, choose N ≥ a so that (a + 1
a
)

N

> (a + 1)a
a! , which

implies the following chain of inequalities:

(a + 1
a
)

N−a

> (a + 1)a
a! ⋅ (a + 1

a
)
−a

⇒ (a + 1)N−a

aN−a
> a

a

a!
⇒ (a + 1)N−aa! > aN .

Now, for n ≥ N ,

n! = n(n − 1)(n − 2)⋯(a + 2)(a + 1)a(a − 1)⋯3 ⋅ 2 ⋅ 1
≥ (a + 1)(a + 1)(a + 1)⋯(a + 1)(a + 1)a!
= (a + 1)N−aa!
> aN (from above).

Now, let ϵ > 0.

Applying the claim with a = 1
ϵ

, we can find N so that for all n ≥ N ,

∣ n
√
∣an∣ − 0∣ = n

√
1
n! ≤

n

√
1

(1/ϵ)n = ϵ.

This means lim
n→∞

n
√
∣an∣ = 0. The result then follows by Theorem 4.23.

The other two series are left as HW. ◻

170



4.4. Convergence of power series; transcendental functions

Definition 4.25 Given x ∈ R, define

exp(x) =
∞
∑
n=0

xn

n! .

This defines a function exp ∶ R → R called the (natural) exponential function. We

define the number e, called Euler’s number, to be e = exp(1) =
∞
∑
n=0

1
n! .

What we know about exp at this point

• exp(x) is defined for every x ∈ R, and the power series defining exp converges
uniformly on any compact subset of R.

• exp(0) = 1 (just plug in x = 0 to the definition to see this).

• lim
n→∞

exp(n)DNE (this sequence is unbounded since exp(x) ≥ 1+xwhen x ≥ 0).

What we don’t know about exp right now

• We don’t know anything about the numerical value of e (other than e > 1).

• We don’t know e = lim
n→∞
(1 + 1

n
)

n

.

• We don’t know exp(x) = ex ∀x ∈ R.

• We don’t know exp(x + y) = exp(x) exp(y) ∀x, y ∈ R (and other exponent
rules)

• We don’t know exp is differentiable (or continuous, or integrable)

• We don’t know exp is increasing

• We don’t know lim
n→−∞

exp(n) = 0

• We don’t know how big exp(x) is compared to other functions that increase
without bound as x→∞, like x or x2 or xx

• We don’t know e is invertible, or anything else about logarithms
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Definition 4.26 Define functions sin ∶ R→ R and cos ∶ R→ R by

sinx =
∞
∑
n=0
(−1)n x2n+1

(2n + 1)! and cosx =
∞
∑
n=0
(−1)n x2n

(2n)! .

These functions are respectively called sine and cosine.

What we know about sin and cos at this point

• sinx and cosx are defined for every x ∈ R, and the power series defining these
functions converge uniformly on any compact subset of R.

• sin 0 = 0

• cos 0 = 1

• sin(−x) = − sinx (just plug in −x to the definition of sin)

• cos(−x) = cosx (just plug in −x to the definition of cos)

What we don’t know about sin and cos right now

• We don’t know any connection with our sin/cos defined here and triangles
or the unit circle

• We don’t know cos2 x + sin2 x = 1 (or any other identities)

• We don’t have any knowledge of values of sinx or cosx when x ≠ 0

• We don’t know −1 ≤ sinx ≤ 1, −1 ≤ cosx ≤ 1

• We don’t know
d

dx
(sinx) = cosx or

d

dx
(cosx) = − sinx (we don’t even know

sin and/or cos are differentiable, integrable or even continuous)
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4.5 Chapter 4 Summary
DEFINITIONS TO KNOW

Nouns x

• The partial sums of
∞
∑
n=1

an are the sequence {SN}N where SN = a1 + a2 +
... + aN .

• The floor of x ∈ R is the largest integer less than or equal to x; this is
denoted ⌊x⌋.

• Fix b ∈ {2,3,4, ...}. A base b representation of x ∈ R is a sequence {xn} ⊆
{0,1,2, ..., b − 1} so that

x = ⌊x⌋.x1x2x3x4⋯[b] = ⌊x⌋ +
∞
∑
n=1

xn

bn
.

A binary representation means a base 2 representation.
A ternary representation means a base 3 representation.
A decimal representation means a base 10 representation.

• (☀) A power series is an infinite series∑anx
n, where {an} is a sequence

of numbers.

Adjectives that describe subsets of R x

• To say∑an converges to S (i.e. ∑an = S) means SN → S, where {SN}
are the partial sums of∑an.

• To say ∑an diverges means ∑an does not converge to any number
S ∈ R.

THEOREMS WITH NAMES

Geometric series formula If r ∈ (−1,1), then
∞
∑
n=0

rn = 1
1 − r .

Finite geometric sum formula For any r ∈ R,
N

∑
n=M

rn = rM (1 − rN−M+1

1 − r ).

Uniqueness of base b representations Every x ∈ R has a base b representation.

x has a unique base b representation unless x = a

bN
for some a ∈ Z and N ∈ N,

in which case x has exactly two base b representations that look like

x = ⌊x⌋.x1x2x3⋯xN−1xN(b − 1)(b − 1)(b − 1)⋯[b]
and

x = ⌊x⌋.x1x2x3⋯xN−1(xN + 1)00000000⋯[b].
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(☀) Linearity of Convergence of Infinite Series If ∑an = S and ∑ bn = T , then
(an + bn) = S + T and∑(r an) = rS for any r ∈ R.

(☀) Triangle Inequality for Infinite Series If∑∣an∣ converges, so does∑an.

(☀) Ratio Test If lim
n→∞

∣an+1∣
∣an∣

< 1, then∑an converges.

If lim
n→∞

∣an+1∣
∣an∣

> 1, then∑an diverges.

OTHER THEOREMS TO REMEMBER

• The harmonic series∑
1
n

diverges.

• The p-series∑
1
np

converges if p ≥ 2.

(In fact, this series converges if p > 1 (HW).)

• (☀) If lim
n→∞

n
√
∣an∣ = 0, then the power series∑anx

n converges pointwise on R
and converges uniformly on compact subsets of R.

(☀) SERIES DEFINITIONS OF TRANSCENDENTAL FUNCTIONS

• exp(x) =
∞
∑
n=0

xn

n!
exp 0 = 1; expx > 0∀x; exp is increasing

• cos(x) =
∞
∑
n=0
(−1)n x2n

(2n)!
cos 0 = 1; cos(−x) = cosx

• sin(x) =
∞
∑
n=0
(−1)n x2n+1

(2n + 1)!
sin 0 = 0; sin(−x) = − sinx

WHAT WE HAVE LEARNED ABOUT THE CANTOR FUNCTION c

• c(x) is defined by taking a base 3 representation of x, deleting any digits after
the first 1, replacing any remaining 2s with 1s, and intepreting the resulting
string as a binary representation of c(x).

• c ∶ [0,1] → [0,1] is well-defined, surjective and increasing.
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4.6 Chapter 4 Homework
Exercises from Section 4.1

In Exercises 1-3, we finish the proof of the geometric series formula by verifying
that if r ∈ (−1,1), then rn → 0. (In Chapter 2, we proved this is true when r ∈
(−1

2 ,
1
2), but we don’t know this yet when r ∈ (−1,−1

2] ∪ [
1
2 ,1).)

1. Prove Bernoulli’s inequality, which says that for any δ > 0 and any n ∈ N,
(1 + δ)n ≥ 1 + δn.

Hints: Fix δ > 0. To prove Bernoulli’s inequality, suppose not. Then there
is a smallest n so that (1 + δ)n < 1 + δn. Check that this n cannot be 0, which
means that n−1 ∈ N. Since n−1 is less than n, and n is the smallest n for which
Bernoulli’s inequaity is false, Bernoulli’s inequality must be true for exponent
n − 1, i.e. (1 + δ)n−1 ≥ 1 + δ(n − 1). We now have these four inequalities:

n ≥ 1 (1 + δ)n−1 ≥ 1 + δ(n − 1) δ > 0 (1 + δ)n < 1 + δn

A contradiction can be derived from these inequalities.

2. Prove s > 1 implies {sn ∶ n ∈ N} is unbounded.

Hints: Suppose not, then there isB so that sn ≤ B for all n. Write s = 1+δ; since
δ > 0, we can apply Bernoulli’s inequality; this will lead to a contradiction
(related to the Archimedean Property).

3. Prove rn → 0 when r ∈ (−1,1).

Hints: If r ∈ (−1,1), we can apply Exercise 2 to show { 1
∣r∣n
∶ n ∈ N} is un-

bounded. This will help you choose your N when you write an ϵ-proof of
rn → 0.

4. a) Prove that the geometric series
∞
∑
n=0

rn diverges when r = −1.

b) Prove that the geometric series
∞
∑
n=0

rn diverges when r = 1.

5. Prove that the geometric series
∞
∑
n=0

rn diverges when ∣r∣ > 1.

Hint: Use Bernoulli’s inequality (Exercise 1) to show that the partial sums of
this series are unbounded.

6. Prove that for any p > 1, the p-series∑
1
np

converges.
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Hints: The situation where p ≥ 2 was handled earlier in the chapter. In
this exercise, argue similar to the proof of Theorem 4.5 by first showing that

S2k−1 ≤
1

1 − 1
2p−1

. Then apply the MCT.

7. Consider the series ∑
n=0
∞ 1
n + 1n + 2.

a) Find an explicit formula for the N th partial sum of this series.
Hint: Rewrite the terms of this sequence using partial fractions, and then
write the partial sum out. A lot of the terms will cancel.

b) Use part (a) to show that the series converges and find its sum.

8. Determine whether the series
∞
∑
n=1

nn+1

(n + 1)n converges or diverges.

Hint: Find an inequality relating
nn+1

(n + 1)n and the nth term of a series we

studied in this chapter.

9. Prove the Comparison Test for infinite series, which says that if 0 ≤ an ≤ bn

for all n, then

• ∑ bn converges⇒∑an converges, and

• ∑an converges⇒∑ bn diverges.

Hints: For the first statement, apply the MCT to the partial sums of∑an. The
second statement is the contrapositive of the first.

10. (☀) Prove that the alternating harmonic series
∞
∑
n=1

(−1)n+1

n
converges.

Hints: Let SN be the N th partial sum of this series. Use the MCT to show
that the subsequences {S2k} and {S2k+1} converge, respectively, to limSN and
limSN . Then, show that S2k+1 − S2k → 0, which proves that limSN = limSN .

11. Prove the nth term test for divergence, which says that if {an} is a sequence
of numbers which does not converge to 0, then∑an diverges.

Hints: Suppose not, i.e. that∑an converges. In this situation ,what must be
true about the subsequences {Sn} and {Sn+1}? Consequently, what must be
true about {an}?

Exercises from Section 4.2

12. Compute each quantity:
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a) ⌊2.25⌋ + ⌊−2.25⌋

b) ⌊
√

70⌋

c) 2⌊π⌋

d) 4 + ⌊13
5 ⌋

13. a) Write down two real numbers x and y so that ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋.
b) Write down two real numbers x and y so that ⌊x + y⌋ ≠ ⌊x⌋ + ⌊y⌋.

14. Let b ∈ {2,3,4, ...}. Prove that the set of numbers that do not have a unique
base b representation is countable.

Hint: Establish that this set is the countable union of countable sets.

15. Let E be the set of real numbers that have only the digits 3 and 8 in their dec-
imal representations. Determine, with proof, whether or not E is countable.

Hint: Look carefully at the proof that R is uncountable in Corollary 4.12, and
how a similar argument might apply in this situation.

16. a) What numbers have a base 8 representation that starts .12⋯[8]?
b) What number has base 4 representation .123123123123123⋯[4]?

c) Find a base 3 representation of
3
8 .

d) Find two different base 5 representations of
367
625 .

17. Let c be the Cantor function. For each x, compute c(x), writing your answer
as a rational number.

a) x = 14
27

b) x = 19
27

c) x = .020221020121⋯[3]

d) x = 5
6

e) x = .022022022022022022⋯[3]

f) x = 1
7

Exercises from Section 4.3

18. Prove Theorem 4.18, which says that if∑an = S and∑ bn = T , then

a) ∑(an + bn) = S + T , and

b) ∑ r an = rS for any constant r ∈ R.

19. Prove that if∑an = S but∑ bn diverges, then∑(an + bn) diverges.

20. Prove that if∑an diverges and r ≠ 0 is a constant, then∑ r an diverges.
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21. a) Give an example of series∑an and∑ bn which both diverge, but∑(an+
bn) converges.

b) Give an example of series∑an and∑ bn which both diverge, and∑(an+
bn) also diverges.

22. Suppose∑∣an∣ converges and that {bn} is a bounded sequence of numbers.
Prove∑anbn converges.

23. Prove the second statement of the Ratio Test (Theorem 4.20), which says that

if {an} is a sequence of real numbers such that lim
n→∞

∣an+1∣
∣an∣

> 1, then∑an di-
verges.

24. Consider the series
∞
∑
n=1

n2000

2n
. Prove that this series converges.

Hint: Use the Ratio Test.

25. Prove (part of) the Root Test, which says that if lim
n→∞

n
√
∣an∣ < 1, then ∑an

converges.

Hints: The proof of this is similar to the proof of the Ratio Test. Let L =
lim
n→∞

n
√
∣an∣ and then let r = 1

2(1+L). Prove that there is N so that k ≥ N implies
∣ak∣ < rk−N ∣aN ∣; then, the rest of the proof is the same as the Ratio Test.

Exercises from Section 4.4

26. Prove that the series that defines sinx (given in Theorem 4.24 and Definition
4.26) converges for all x ∈ R.

27. Prove that the series that defines cosx (given in Theorem 4.24 and Definition
4.26) converges for all x ∈ R.

28. In this exercise we prove that e is an irrational number. Remember that our
definition of e is that

e = exp(1) =
∞
∑
n=1

1
n! .

To prove e is irrational, carry out the following steps:

a) Suppose not, i.e. e is rational; this means e = p
q

where p, q > 0 are natural

numbers with no common factors. Let z = q!(e −
q

∑
n=0

1
n!). Explain why

z ∈ Z.

b) Explain why z > 0.
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c) Show that whenever n > q + 1,
q!
n! < (q + 1)q−n.

d) Use part (c) to explain why z < 1.

Parts (a), (b) and (d) yield a contradiction, because there is no integer between
0 and 1. Thus e is irrational.

29. In this problem, we prove this generalization of Theorem 4.23, which goes

like this: let
∞
∑
n=0

anx
n be a power series and let

R = [lim n
√
∣an∣]

−1
;

R is called the radius of convergence of the power series.

• If R = 0, then∑anx
n diverges for any x ≠ 0;

• if R = ∞, then∑anx
n converges for any x ∈ R;

• if 0 < R < ∞, then ∑anx
n converges when ∣x∣ < R and diverges when

∣x∣ > R.

To do this, carry out the following steps:

a) Show the series∑anx
n always converges when x = 0.

b) Suppose R = 0. Conclude that n
√
∣an∣ is unbounded. Explain why this

means, for any x ≠ 0, that anxn cannot converge to 0. Apply the nth term
test for divergence (Exercise 11) to finish the proof of the first bullet point
above.

c) Suppose R = ∞. Let x ∈ R − {0}. Use the definition of R to show that

there exists N so that n ≥ N implies n
√
∣an∣ ≤

1
∣x∣

. Rearrange this into

an inequality about ∣anxn∣, and apply the Comparison Test and Triangle
Inequality for infinite series to finish the proof of the first part of the
third bullet point above.

d) Suppose 0 < R < ∞. Let x ∈ (−R,R), and let r = 1
2 (
∣x∣
R + 1). Use the

definition of R to show that there exists N so that n ≥ N implies n
√
∣an∣ ≤

r

∣x∣
. Rearrange this into an inequality about ∣anxn∣, and then proceed

similar to part (c).

e) Prove the second part of the third bullet point above (what you did in
the previous parts is something of a prototype here).
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Chapter 5

Continuity

5.1 Continuous functions
Definition 5.1 A function f ∶ R→ R is called continuous (cts) if for every open set
U ⊆ R, the inverse image f−1(U) is also an open set.

It is easy to use this definition to show that a function is not continuous.
All you need to do is find one open set U so that f−1(U) is not open.

EXAMPLE 1

f

f(x) = { x + 2 x ≠ 3
3 x = 3

f

2 3

2
3
4
5
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EXAMPLE 2
Recall that the Dirichlet function is the indicator function of the rationals:

1Q(x) = {
1 if x ∈ Q
0 if x /∈ Q .

Determine, with proof, whether or not 1Q is continuous.

EXAMPLE 3
Let f ∶ R→ R be defined by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

sin 1
x

if x ≠ 0
0 if x = 0

.

Determine, with proof, whether or not f is continuous.

f

-3 -2 -1 1 2 3

-1

1
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To show that a function is continuous, we often appeal to this theorem:

Theorem 5.2 Let f ∶ R → R. If ∀a, b ∈ R with a < b, f−1(a, b) is an open set, then f
is continuous.

PROOF First, we claim that under the hypotheses of this theorem, f−1(a,∞) is
open. To show this, notice

(a,∞) =
∞
⋃
n=1
(a, a + n);

therefore

f−1(a,∞) = f−1 (
∞
⋃
n=1
(a, a + n)) =

∞
⋃
n=1

f−1(a, a + n)

is the union of open sets, hence is open.

A similar argument (HW) shows that under the hypotheses of the theorem,
f−1(−∞, b) is open for any b ∈ R.

Finally, let U ⊆ R be any open set. By ’s Theorem, we can write U
as the disjoint union

U = ⋃
j

(aj, bj),

where it is possible that one of the aj’s is −∞ and one of the bj’s is∞. Now,

f−1(U) = f−1 (⋃
j

(aj, bj)) = ⋃
j

f−1(aj, bj).

By hypothesis, this is the union of open sets, hence is open.
By definition, this makes f continuous. ◻

EXAMPLE 4
Let f ∶ R→ R be f(x) = x. Prove that f is continuous.
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EXAMPLE 5
Let f ∶ R→ R be f(x) = c, where c ∈ R is a constant. Prove that f is continuous.

EXAMPLE 6
Let f ∶ R→ R be f(x) = x3. Prove that f is continuous.

Theorem 5.3 (Compositions of cts functions are cts) Suppose f, g ∶ R → R. If f
and g are continuous, then f ○ g is continuous.

PROOF Let U ⊆ R be open. Since f is continuous, we know

Since g is continuous, it follows that

Therefore
(f ○ g)−1(U) = g−1 (f−1(U))

is open, making f ○ g continuous by definition. ◻
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5.2 Consequences of continuity
In this section, we study some important consequences of a function being contin-
uous, related to topological ideas introduced in Chapter 3.

Preservation of compactness and existence of extrema

Lemma 5.4 Let f ∶ A→ B be any function and let E ⊆ A. Then f−1(f(E)) ⊇ E.

PROOF This was HW from Chapter 1.

Theorem 5.5 (Preservation of compactness) Suppose f ∶ R→ R is continuous.
If E ⊆ R is compact, then f(E) is also compact.

PROOF Assume E ⊆ R is compact.

To prove f(E) is compact, let be an of f(E).

Since f is continuous, each of the sets are open, so {f−1(Uα)} is an
open cover of f−1(f(E)).

Therefore {f−1(Uα)} is also an open cover of E, since f−1(f(E)) ⊇ E.

f
f (E)E

Uαf -1(Uα)

Since E is compact, there exists a of {f−1(Uα)}, which
we denote by

Claim:

Proof of claim: Let x ∈ f(E).

That means .
Since {f−1(Uj)}n

j=1 covers E, a ∈ f−1(Uj) for some j.

That means .

We’ve shown that every open cover of f(E) has a finite subcover, so f(E) is
compact. ◻

184



5.2. Consequences of continuity

Definition 5.6 Let f ∶ R→ R, and let E ⊆ R.
If a ∈ E is such that f(a) ≥ f(x) for every x ∈ E, we say that f(a) is the absolute
maximum value of f on E.
If a ∈ E is such that f(a) ≤ f(x) for every x ∈ E, we say that f(a) is the absolute
minimum value of f on E.

EXAMPLES

f(x) = 1
x

f

1

1

Abs max of f on (0,1]

g(x) = 3 − (x − 1)2

g

1 2

2

3

Abs max of g on R

Abs max of g on (−∞,0]

Abs max of g on (1,2)
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Theorem 5.7 (Max-Min Existence Theorem) Let E ⊆ R be compact, and let f ∶
E → R be continuous.
Then f has an absolute maximum value on E and an absolute minimum value on E.

PROOF By preservation of compactness, f(E) is compact.
Compact sets contain their maximum and minimum (Corollary 3.30). ◻

Preservation of connectedness and the IVT

Theorem 5.8 (Preservation of connectedness) Let f ∶ R→ R be continuous.
If E ⊆ R is connected, then f(E) is also connected.

PROOF Suppose not.
That means f(E) has a disconnection, meaning a pair {U,V } of sets such that

• x

• x

• x

• x

 

f

VU

f (E)E

Claim: {f−1(U), f−1(V )} is a disconnection of E.
Proof of claim:

• Since , f−1(U) and f−1(V ) are both open.
• f−1(U) and f−1(V ) are disjoint, since

f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅.

• {f−1(U), f−1(V )} covers E, since

E ⊆ f−1(f(E)) ⊆ f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).

• f−1(U) hits E: let y ∈ U ∩ f(E); then y = f(x) for x ∈ f−1(U) ∩E.
The same logic shows f−1(V ) hits E, proving the claim.

This contradicts E being connected.
So by contradiction, f(E)must be connected. ◻

After five and a half chapters of work, we have finally done enough to prove one
of the theorems we discussed at the very beginning of the course:
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5.2. Consequences of continuity

Theorem 5.9 (Intermediate Value Theorem (IVT)) Let f ∶ [a, b] → R be contin-
uous.
For any y between f(a) and f(b), there exists x ∈ (a, b) such that f(x) = y.

PROOF Let E = [a, b].
E is connected, so by preservation of connectedness, f(E) is also connected.

That makes f(E) an , so f(E) has .
This property says that for any y between two numbers in f(E) (such as f(a)

and f(b)), .
That means there is x ∈ E such that f(x) = y. ◻

f

a b

f (a)

f (b)

y

APPLICATION

Let f(x) = x5 + 2x3 −x− 1. Assuming that f is continuous (we’ll prove it’s cts later),
prove that the equation f(x) = 0 has a solution between 0 and 1.
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5.2. Consequences of continuity

Ideas needed to prove the IVT

The IVT is a fairly easy result to understand (by MATH 430 standards), because of
the associated picture. And its proof was pretty short (four sentences). However,
if we look at what we had to prove to get to the IVT, we see this:

IVT

cts functions
preserve

connected sets

OO

cts function

77

connected
set

OO

// betweennessnn

jj

..

vv

intervaloo

tt

open set //

OO

))

disconnection

OO

open ball

OO

Lindelöf’s
Theorem

RR

Supremum
Property

??

oo R is completeoo

distance

hh

supremum

OO

1
2n
→ 0

gg

subtraction

66

absolute
value

OO

upper
bound

OO

1
n
→ 0

OO

multiplication //

88

positive/
negative/

zero
trichotomy

OO

R is
Archimedean

OO

R is a field

OO

;;

77

R is ordered

OO

DD

OO

gg

GG

The point is that while the IVT looks simple, there’s a lot going on behind the
scenes. In particular, any proof of the IVT either directly or indirectly uses all the
essential properties of R.
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5.3. Equivalent formulations of continuity

5.3 Equivalent formulations of continuity
Continuity at a point

EXAMPLE 7

Let f ∶ R→ R be f(x) =
⎧⎪⎪⎨⎪⎪⎩

3 − 1
2x if x ≤ 2

x − 5 if x > 2
.

f

2

-3

2

Definition 5.10 Let f ∶ R → R, and let a ∈ R. We say f is continuous at a if for
every ϵ > 0, there is δ > 0 so that if ∣x − a∣ < δ, then ∣f(x) − f(a)∣ < ϵ.
f is continuous on E ⊆ R if, for every a ∈ E, f is continuous at a.

f cts at a xxxxxxxxxxx g not cts at a

f

ϵ

ϵ

a

f (a)
g

ϵ

ϵ

a

g(a)
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5.3. Equivalent formulations of continuity

EXAMPLE 8
Prove that the function f(x) = 5x + 2 is continuous at x = 3.

Scratch work:

PROOF
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5.3. Equivalent formulations of continuity

EXAMPLE 9

Let f ∶ R→ R be f(x) =
⎧⎪⎪⎨⎪⎪⎩

3 − 1
2x if x ≤ 2

x − 5 if x > 2
. Prove that f is not continuous at x = 2.

f

2

-3

2
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5.3. Equivalent formulations of continuity

At this point, we have two (potentially competing) notions of continuity:

• continuity of a function (defined in terms of open sets), and

• continuity at each point (defined in terms of ϵs and δs).

The next result reconciles these two ideas:

Theorem 5.11 Let f ∶ R→ R. f is continuous⇔ f is continuous at every a ∈ R.

PROOF (⇒) Suppose f is continuous (meaning that the inverse image of any open
set is open).
Let a ∈ R and fix ϵ > 0.
Since Bϵ(f(a)) = (f(a) − ϵ, f(a) + ϵ) is open, its inverse image

U = f−1(Bϵ(f(a)))

is an open set that contains a.

Bϵ(f (a))

a

f (a)

By definition of open set, there is δ > 0 such that Bδ(a) ⊆ U .
Now, for any x ∈ R such that ∣x − a∣ < δ,

x ∈ U ⇒ f(x) ∈ Bϵ(f(a)) ⇒ ∣f(x) − f(a)∣ < ϵ.

Thus f is continuous at a.

(⇐) Suppose f is continuous at every real number.
Now consider an open interval (c, d) ∈ R.
By openness, for each y ∈ (c, d), there is ϵ(y) > 0 such that Bϵ(y)(y) ⊆ (c, d).
Furthermore, for every a ∈ f−1(y), f is cts at a, meaning ∃ δ(a) > 0 s.t.

∣x − a∣ < δ(a)

(equivalently,
x ∈ Bδ(a)(a))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

implies
⎧⎪⎪⎨⎪⎪⎩

∣f(x) − f(a)∣ = ∣f(x) − y∣ < ϵ(y)

(meaning f(x) ∈ Bϵ(y)(y) ⊆ (c, d))
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5.3. Equivalent formulations of continuity

Bϵ (y)(y)

c

d

a

y

We have just shown x ∈ Bδ(a)(a) ⇒ f(x) ⊆ (c, d), which in set language
means

⋃
a∈f−1(c,d)

Bδ(a)(a) ⊆ f−1(c, d).

The reverse set inclusion also holds: if x ∈ f−1(c, d), then

x ∈ Bδ(x)(x) ⊆ ⋃
a∈f−1(c,d)

Bδ(a)(a).

Therefore
f−1(c, d) = ⋃

a∈f−1(c,d)
Bδ(a)(a).

This means f−1(c, d) is a union of open balls, hence is an open set.
It follows that f is continuous. ◻
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5.3. Equivalent formulations of continuity

EXAMPLE 10
Let τ ∶ R→ R be Thomae’s function, defined by

τ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
q

x ∈ Q and x = p
q

in lowest terms, with q > 0

0 x ∉ Q
.

0 1
1

2

1

3

2

3

1

4

3

4

2

5

3

5

1

5

4

5

1

1

2

1

3
1

4
1

6
1

10

Determine the values a, if any, at which f is continuous.
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5.3. Equivalent formulations of continuity

.
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5.3. Equivalent formulations of continuity

Continuous functions preserve sequences

Theorem 5.12 (Preservation of convergent sequences) Let f ∶ R→ R. TFAE:

1. f is continuous at a ∈ R.

2. For any sequence {xn} that converges to a, f(xn) → f(a).

PROOF (⇒) Suppose f is cts at x and suppose xn → a.
Our goal is to show f(xn) → f(a).

Toward that end, .

Since f is cts at a, there is so that

Next, since xn → a, there is so that

Thus, ∀n ≥ N , we have ∣xn − a∣ < δ, which implies ∣f(xn) − f(a)∣ < ϵ.
This means f(xn) → f(a).

(⇐) Suppose that for any sequence {xn} that converges to a, f(xn) → f(a).
We prove this by contradiction: suppose f is not cts at a; therefore
∃ ϵ0 > 0 s.t. ∀ δ > 0, ∃x with ∣x − a∣ < δ but ∣f(x) − f(a)∣ ≥ ϵ0.

In particular, for every n ∈ N, there is xn with

∣xn − a∣ <
1
n
, but ∣f(xn) − f(a)∣ ≥ ϵ0 .

Since ∣xn − a∣ <
1
n

, xn → a by the .

By hypothesis, f(xn) → f(a), so ∃N s.t. for n ≥ N , ∣f(xn) − f(a)∣ < ϵ0 .
The two boxed inequalities contradict one another.
Therefore f must be continuous at a. ◻

Corollary 5.13 Let f ∶ R→ R be continuous. For any convergent sequence {xn},

f(limxn) = lim f(xn).

196



5.3. Equivalent formulations of continuity

EXAMPLE 11

Let f ∶ R→ R be f(x) = { 3 + 2x if x ≠ 1
4 if x = 1 . Prove that f is not continuous at x = 1.

Arithmetic with continuous functions

The preceding result (preservation of convergent sequences) gives us a nice way to
show that constant multiples, sums, differences and products of continuous func-
tions are continuous:

Corollary 5.14 Suppose f ∶ R→ R and g ∶ R→ R are continuous at a ∈ R. Then:

1. For any constant k ∈ R, kf is continuous at a;

2. f + g, f − g, and fg are continuous at a; and

3. if g(a) ≠ 0, then
f

g
is continuous at a;

Furthermore, suppose f ∶ R→ R and g ∶ R→ R are continuous. Then:

1. For any constant k ∈ R, kf is continuous;

2. f + g, f − g, and fg are continuous; and

3. if g(x) ≠ 0 for all x ∈ R, then
f

g
is continuous.
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5.3. Equivalent formulations of continuity

PROOF Let {xn} be any sequence that converges to a.
Since f and g are assumed continuous at a, f(xn) → f(a) and g(xn) → g(a).
From previous theorems about sequences (Ch. 2), we know

(kf)(xn) = k f(xn) → k f(a) = (kf)(a);
(f + g)(xn) = f(xn) + g(xn) → f(a) + g(a) = (f + g)(a);
(f − g)(xn) = f(xn) − g(xn) → f(a) − g(a) = (f − g)(a);
(fg)(xn) = f(xn)g(xn) → f(a)g(a) = (fg)(a);

(f
g
) (xn) =

f(xn)
g(xn)

→ f(a)
g(a)

= (f
g
) (a) so long as g(a) ≠ 0.

So all these functions preserve convergent sequences, so they are all cts at a
by Theorem 5.12.

Now for the second part of the corollary.
If f and g are cts, then they are cts at every a ∈ R by Theorem 5.11.
By the first part of this corollary, kf , f + g, f − g and fg are cts ∀a ∈ R,

and
f

g
is continuous for all a ∈ R so long as g(a) ≠ 0 for all a.

All of these functions are therefore continuous by Theorem 5.11. ◻

Continuity of monotone surjections

Recall the Cantor function, discussed in Chapter 3, whose graph is as follows:

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

7

9

8

9
1

1

8

1

4

3

8

1

2

5

8

3

4

7

8

1

QUESTION

At what points a ∈ [0,1] is the Cantor function continuous?

We’ll answer this by proving a theorem that applies to not just the Cantor function,
but any function that is monotone and surjective.
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5.3. Equivalent formulations of continuity

Theorem 5.15 Let f ∶ R→ R. If f is monotone and surjective, then f is continuous.

PROOF Suppose for now that f is increasing and surjective.
(We’ll handle the situation when f is decreasing later.)
Let a, b ∈ R with a < b.

Claim: f−1(a, b) = (sup f−1(a), inf f−1(b)).

If we prove this claim, then the inverse image of any open interval is open,
meaning f is continuous, as wanted.

Proof of claim: This is a set equality argument:

(⊆) Let x ∈ f−1(a, b). That means f(x) ∈ (a, b), so a < f(x) < b.
Now let w ∈ f−1(a). If w ≥ x, then a = f(w) ≥ f(x), a contradiction to f

being increasing. Therefore w < x.
This makes x an upper bound of f−1(a), so x ≥ sup f−1(a).

a

b

f -1(a) f -1(b)

To show x ≠ sup f−1(a), let y = 1
2 (a + f(x)). Note a < y < f(x).

Since f is surjective, there is c ∈ f−1(y).
c is also an upper bound of f−1(a) (for the same reason x is).
At the same time, c < x since f(c) = y < f(x) and f is increasing.
So x is not the least upper bound of f−1(a), i.e. x > sup f−1(a).

A similar argument shows x < inf f−1(b) (this is left as HW).

(⊇) Let x ∈ (sup{f−1(a)}, inf{f−1(b)}).
Then, for any y ∈ f−1(a) and z ∈ f−1(b), y < x < z, so since f is increasing,

a = f(y) ≤ f(x) ≤ f(z) = b.

If a = f(x), then x ∈ f−1(a).
This means sup{f−1(a)} ≥ x, a contradiction.
Similarly, if f(x) = b, then x ∈ f−1(b), so inf{f−1(b)} ≤ x, also impossible.
Therefore a < f(x) < b, i.e. x ∈ f−1(a, b), as wanted.
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5.4. Limits of functions

This proves the claim, which shows f is continuous.

Finally, if f is decreasing and surjective, then −f is increasing and surjective,
hence −f is continuous by the first part of this proof. That means f = −(−f)
is also continuous. ◻

Corollary 5.16 The Cantor function c ∶ [0,1] → [0,1] is continuous.

PROOF We proved in Chapter 3 that c is surjective and increasing. ◻

5.4 Limits of functions
In Calculus 1, you learn about the concept of limit of a function. The concept of
limit is the building block of the rest of the subject; indeed, calculus is, to a large
extent, the study of limits.
However, you are often told what a limit is in a vague, imprecise way. The reason
is that the actual definition of limit is technical and requires some understanding
of advanced material. Of course, YOU are now an advanced student, so you can
handle the legitimate, mathematically rigorous definition of limit:

Definition 5.17 Let f ∶ R→ R and let a ∈ R. We say a real number L is a limit of f
as x approaches a, and write

lim
x→a

f(x) = L,

if given any ϵ > 0, there is δ > 0 such that

0 < ∣x − a∣ < δ implies ∣f(x) −L∣ < ϵ.

REMARKS

1. In order for this definition to make sense, we don’t need f to be defined
everywhere, and we don’t actually need f to be defined at a.

The minimum requirement is that the domain of f includes all points in some
open interval containing a, except for perhaps a itself.

2. By definition, nothing about what happens with f when x = a has anything
to do with whether or not lim

x→a
f(x) exists, or what its value is.
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5.4. Limits of functions

So, for instance, for any two functions f, g ∶ R → R, we immediately know
(just based on the definition) that we can “factor and cancel” without chang-
ing the value of the limit, i.e. write things like

lim
x→a

f(x)(x − a)
g(x)(x − a)

= lim
x→a

f(x)
g(x)

based solely on the definition of limit, since the red and blue fractions are
identical except when x = a.

3. In this definition, a and Lmust be real numbers. In Calculus 1, you also learn
about “infinite limits” and “limits at infinity”, like

lim
x→±∞

f(x) = L and lim
x→a

f(x) = ±∞.

We (probably) won’t discuss these. They have their own separate definitions
with ϵ and δ (or N ) in them.

A picture to explain the ϵ, δ definition of limit

f

ϵ

ϵ

a

L
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5.4. Limits of functions

Limits of functions and limits of sequences

When you are taught limits (or maybe when you teach limits someday) in Calculus
1, you are taught the informal nonsense that

lim
x→a

f(x) = L

means

“as x gets closer and closer to a, f(x) gets closer and closer to L”.

What does this “closer and closer” mean? Well, nothing really (which is why
this idea is imprecise), but it sort of has something to do with convergence of se-
quences:

Theorem 5.18 (Limits preserve convergent sequences) Let f ∶ R → R, and let
a ∈ R. TFAE:

1. lim
x→a

f(x) = L.

2. Given any sequence {xn} of real numbers such that

a) xn ≠ a for every n, and
b) xn → a,

it follows that f(xn) → L.

NOTE: Earlier we had a result that showed that continuous functions preserved
convergent sequences when you evaluate the function at the limit of the
sequence :

xn → a; f continuous ⇒ f(xn) → f(a).

This theorem says that given any function (not necessarily a continuous one),
non-constant convergent sequences are preserved when you evaluate the limit

of the function at the limit of the sequence :

xn → a (where xn ≠ a); f any function ⇒ f(xn) → lim
x→a

f(a).

This suggests that when f is continuous,

We’ll prove that a little later.
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5.4. Limits of functions

PROOF (1⇒ 2) Assume lim
x→a

f(x) = L.

Let {xn} be any sequence with xn ≠ a for all n, where xn → a.
To prove f(xn) → L, let ϵ > 0.
Since lim

x→a
f(x) = L, ∃ δ > 0 s.t.

. (5.1)

Since xn → a, ∃N > 0 s.t.
. (5.2)

So for n ≥ N , we have ∣xn − a∣ < δ by line (5.2) above.
Since xn ≠ a for all n, we have ∣f(xn) −L∣ < ϵ from line (5.1) above.

By definition, f(xn) → L.

(2⇒ 1) Assume that for any sequence {xn}with xn ≠ a for all n such that
xn → a, f(xn) → L.

To prove lim
x→a

f(x) = L, suppose not.

That means ∃ ϵ0 > 0 such that ∀ δ > 0, there is x with

0 < ∣x − a∣ < δ but ∣f(x) − f(a)∣ ≥ ϵ0.

In particular, for every n ∈ N, there is xn ∈ R with

0 < ∣xn − a∣ <
1
n

but ∣f(xn) −L∣ ≥ ϵ0.

This produces a sequence {xn}; since 0 < ∣xn − a∣ ∀n, xn ≠ a∀n.

Also, since ∣xn − a∣ <
1
n

, it follows that xn → a.

But ∣f(xn) −L∣ ≥ ϵ0 for all n, so f(xn) /→ L, contradicting the hypothesis.

By contradiction, the result is true. ◻

EXAMPLE 12

Prove that lim
x→0

1
x

DNE.

203



5.4. Limits of functions

One reason Theorem 5.18 is important is because it enables us to translate all the
facts we proved earlier about convergence of sequences over to the setting of limits
of functions:

Theorem 5.19 (Uniqueness of limit of a function) Let f ∶ R → R and let a ∈ R.
If lim

x→a
f(x) = L and lim

x→a
f(x) =M , then L =M .

PROOF Let {xn} be an arbitrary sequence with xn ≠ a for all n, so that xn → a.
By Theorem 5.18, f(xn) → L and f(xn) →M .
But limits of sequences are unique (Chapter 2), so L =M . ◻

Theorem 5.20 Let f ∶ R→ R. If lim
x→a

f(x) exists, then there is a δ > 0 so that the set

{f(x) ∶ x ∈ (a − δ, a + δ)}

is bounded.

PROOF Suppose not, i.e. that for every δ > 0, the set

{f(x) ∶ x ∈ (a − δ, a + δ)}

is unbounded. That means that for every n ∈ N, there is

xn ∈ (a −
1
n
, a + 1

n
)

such that f(xn) > n.

This produces a sequence {xn}with ∣xn − a∣ <
1
n

, meaning xn → a.

So by Theorem 5.18, f(xn) converges to lim
x→a

f(x).
However, since f(xn) > n, {f(xn)} is unbounded, hence diverges.
This is a contradiction. ◻
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5.4. Limits of functions

Theorem 5.21 (Main Limit Theorem (for functions)) Let f, g ∶ R → R be func-
tions and let a ∈ R be such that

lim
x→a

f(x) = L and lim
x→a

g(x) =M.

Then:

1. for any constant c ∈ R, lim
x→a
[cf(x)] = cL;

2. lim
x→a
[f(x) + g(x)] = L +M ;

3. lim
x→a
[f(x) − g(x)] = L −M ;

4. lim
x→a
[f(x)g(x)] = LM ; and

5. if M ≠ 0, then lim
x→a

f(x)
g(x)

= L

M
.

PROOF Let {xn} be a sequence with xn ≠ a for all n, such that xn → a.
By Theorem 5.18, f(xn) → L and g(xn) →M .
By the Main Limit Theorem for sequences,

(cf)(xn) = cf(xn) → cL;
(f + g)(xn) = f(xn) + g(xn) → L +M ;
(f − g)(xn) = f(xn) − g(xn) → L −M ;
(fg)(xn) = f(xn)g(xn) → LM ;

and if M ≠ 0,

(f
g
) (xn) =

f(xn)
g(xn)

→ L

M
.

Applying Theorem 5.18 again yields the desired facts. ◻
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5.4. Limits of functions

EXAMPLE 13

Prove that lim
x→3

x2 − 9
x2 + 4x − 21 exists, and find its value.

Solution of a Calculus 1 student:

A more rigorous version of that argument:

A direct argument, using the definition of limit:
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5.4. Limits of functions

Theorem 5.22 (Limits preserve soft inequalities) Let f, g ∶ R → R be functions
and let a ∈ R.
Assume f(x) ≤ g(x) for all x ∈ R − {a}.
Then, if these limits exist, we have

lim
x→a

f(x) ≤ lim
x→a

g(x).

PROOF Let L = lim
x→a

f(x) and let M = lim
x→a

g(x).
Next, let {xn} be a sequence with xn ≠ a for all n, such that xn → a.
By Theorem 5.18, f(xn) → L and g(xn) →M .
But since f(xn) ≤ g(xn), it follows that L ≤M , since limits of sequences preserve

soft inequalities. ◻

Theorem 5.23 (Squeeze Theorem (for functions)) Let f, g, h ∶ R → R be func-
tions and let a ∈ R. Assume f(x) ≤ g(x) ≤ h(x) for all x ∈ R − {a}. If

lim
x→a

f(x) = lim
x→a

h(x) = L,

then lim
x→a

g(x) = L as well.

PROOF let {xn} be a sequence with xn ≠ a for all n, such that xn → a.
By Theorem 5.18, f(xn) → L and h(xn) → L.
But since f(xn) ≤ g(xn) ≤ h(xn), g(xn) → L by the Squeeze Theorem for

sequences.
The result follows from Theorem 5.18. ◻
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5.4. Limits of functions

EXAMPLE 14
Let m > 0 and let n ∈ {1,2,3, ...}. Set

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xm sin( 1
xn
) if x ≠ 0

0 if x = 0
.

Determine if lim
x→0

f(x) exists; if so, find its value.

f

f
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5.4. Limits of functions

Last, we’ll verify that the way the concept of continuity is often presented in Calc
1 is valid:

Theorem 5.24 Let f ∶ R→ R and let a ∈ R. TFAE:

1. f is continuous at a.

2. lim
x→a

f(x) = f(a).

PROOF (⇒) Suppose f is continuous at a.
To prove the limit statement, let ϵ > 0.
By the definition of continuity at a, there is δ > 0 such that

∣x − a∣ < δ ⇒ ∣f(x) − f(a)∣ < ϵ.

Clearly, for this δ,

0 < ∣x − a∣ < δ ⇒ ∣f(x) − f(a)∣ < ϵ,

so lim
x→a

f(x) = f(a) as wanted.

(⇐) Suppose lim
x→a

f(x) = f(a).
To prove f is continuous at a, let ϵ > 0.
By the definition of limit, there is δ > 0 such that

0 < ∣x − a∣ < δ ⇒ ∣f(x) − f(a)∣ < ϵ.

Now, if ∣x − a∣ < δ, either

x = a, meaning ∣f(x) − f(a)∣ = ∣f(a) − f(a)∣ = 0 < ϵ
or

0 < ∣x − a∣ < δ, meaning ∣f(x) − f(a)∣ < ϵ.

Either way, we have

∣x − a∣ < δ ⇒ ∣f(x) − f(a)∣ < ϵ,

meaning f is continuous at a as wanted. ◻
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5.5. Sequences of continuous functions

5.5 Sequences of continuous functions
The perils of interchanging limits

QUESTION

Is the limit of a sequence of continuous functions necessarily continuous?
More precisely, if fn ∶ R→ R is cts for all n and fn → f , is f cts?

Let’s dive into the question posed above using the characterization of continuous
functions as those that preserve convergent sequences.

f continuous ⇔ lim
m→∞

f(xm) = f( lim
m→∞

xm) for any convergent sequence {xm}

⇔ lim
m→∞

[ lim
n→∞

fn(xm)] = lim
n→∞

fn ( lim
m→∞

xm) .

(since fn is continuous)

⇔ lim
m→∞

[ lim
n→∞

fn(xm)] = lim
n→∞
[ lim

m→∞
fn(xm)] .

Notice that the question of whether or not the limit f is continuous boils down to
a question about iterated limits (one limit inside another).
What we care about is whether one can interchange limits, i.e. do the limits m → ∞
and n→∞ in either order and get the same answer.
Unfortunately, in general iterated limits cannot be interchanged legally:

EXAMPLE 14
Evaluate these iterated limits:

lim
x→0
[lim

y→0

x + y
x − y

] lim
y→0
[lim

x→0

x + y
x − y

]
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5.5. Sequences of continuous functions

Uniform limits of continuous functions
REVISED QUESTION

Is the uniform limit of a sequence of continuous functions necessarily cts?
More precisely, if fn ∶ R→ R is cts for all n and fn ⇉ f , is f cts?
(In our example on the previous page, fn /⇉ f .)

Theorem 5.25 Suppose {fn} is a sequence of continuous functions from E ⊆ R to R.
If fn ⇉ f on E, then f is continuous on E.

PROOF Suppose fn ⇉ f on E.
Let a ∈ E; our goal is to show f is cts at a ∈ E.
To do this, let ϵ > 0.
Since fn ⇉ f , ∃N s.t. n ≥ N implies ∣fn(x) − f(x)∣ <

ϵ

3 for all x ∈ E.

Since fN is cts (at a), ∃ δ > 0 s.t. ∣x − a∣ < δ implies ∣fN(x) − fN(a)∣ <
ϵ

3 .

Now

∣f(x) − f(a)∣ ≤ ∣f(x) − fN(x)∣ + ∣fN(x) − fN(a)∣ + ∣fN(a) − f(a)∣

< ϵ3 +
ϵ

3 +
ϵ

3
= ϵ.

This shows f is continuous at a.
Since a ∈ E is arbitrary, f is continuous on E as wanted. ◻

Corollary 5.26 exp, sin and cos are continuous functions.

PROOF Recall Theorem 4.24, which says that the power series defining exp, sin and
cos converge uniformly on compact subsets of R.

That means, applying our latest result, that these functions are continuous on
any compact subset of R.

But every x ∈ R is contained in a compact subset [x−1, x+1], so these functions
must be continuous at every x. ◻
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5.6 Chapter 5 Summary
DEFINITIONS TO KNOW

Nouns x

• f ∶ R → R has absolute maximum value f(c) on E ⊆ R if c ∈ E is so that
f(x) ≤ f(c) for all x ∈ E.
f ∶ R → R has absolute minimum value f(c) on E ⊆ R if c ∈ E is so that
f(x) ≥ f(c) for all x ∈ E.

• We say L is the limit of f ∶ R→ R as x approaches a, and write lim
x→a

f(x) =
L, if ∀ ϵ > 0 ∃ δ > 0 s.t. 0 < ∣x − a∣ < δ implies ∣f(x) −L∣ < ϵ.

Adjectives that describe functions f ∶ R→ R x

• f is continuous if for every open U ⊆ R, f−1(U) is also open.

• f is continuous at a if ∀ ϵ > 0 ∃ δ > 0 s.t. ∣x−a∣ < δ implies ∣f(x)−f(a)∣ < ϵ.

THEOREMS WITH NAMES

Preservation of compactness If f is continuous and E is compact, then f(E) is
compact.

Max-Min Existence Theorem If f is continuous andE is compact, then f achieves
an absolute maximum value and absolute minimum value on E.

Preservation of connectedness If f is continuous and E is connected, then f(E)
is connected.

Intermediate Value Theorem (IVT) If f is continuous and a < b, then for every y
between f(a) and f(b), there is x ∈ (a, b) so that f(x) = y.

Continuous functions preserve convergent sequences f is continuous at a if and
only if for every sequence xn → a, then f(xn) → f(a).
In other words, f is cts ⇔ lim f(xn) = f(limxn) for every convergent se-
quence {xn}.

Limits preserve convergent sequences lim
x→a

f(x) = L if and only if for any noncon-
stant {xn}with xn → a, f(xn) → L.

Main Limit Theorem Limits of functions are preserved under arithmetic.

Squeeze Theorem If f(x) ≤ g(x) ≤ h(x) and lim
x→a

f(x) = lim
x→a

h(x) = L, then lim
x→a

g(x) =
L.
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OTHER THEOREMS TO REMEMBER

• Sums, differences, products, quotients and compositions of continuous func-
tions are continuous.

• f ∶ R→ R is continuous⇔ f is continuous at every a ∈ R.

• Monotone surjections are continuous.

• Limits of functions preserve soft inequalities.

• f ∶ R→ R is continuous at a if and only if lim
x→a

f(x) = f(a).

• (☀) The uniform limit of a sequence of continuous functions is continuous.

FACTS ABOUT SPECIFIC FUNCTIONS

• Dirichlet’s function 1Q is not continuous at any x ∈ R.

• f(x) = { sin 1
xn x ≠ 0

0 x = 0 is discontinuous at x = 0 for any n.

• f(x) = { x
m sin 1

xn x ≠ 0
0 x = 0 is continuous if m ≥ 1.

• Thomae’s function τ is continuous at the irrationals, but discontinuous at the
rationals.

• The Cantor function c is continuous.

• Constant functions are continuous.

• The identity function f(x) = x is continuous.

• ∣x∣ is continuous (HW).

• Polynomials are continuous.

• Rational functions are continuous, except at values which make their denom-
inators zero.

• Root functions like
√
x and 3

√
x are continuous (HW).

• (☀) exp, sin and cos are continuous.
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PROOF TECHNIQUES

To prove that f is continuous, do one of these things:

1. Show that for any a < b, f−1(a, b) is open.

2. Show f is a sum/difference/product/composition of functions known to be
continuous.

3. Show f is the quotient of functions known to be continuous, where the de-
nominator is never zero.

4. Show f is a monotone surjection.

5. (☀) Show f is a uniform limit of a sequence of functions known to be con-
tinuous.

6. Show f is continuous at every a ∈ R (see below).

To prove that f is continuous at a, do one of these things:

1. Show f is continuous (see above).

2. Show f is a sum/difference/product/composition of functions known to be
continuous at a.

3. Show f is the quotient of functions known to be continuous at a, where the
denominator is not zero at a.

4. Take an arbitrary sequence xn → a and prove f(xn) → f(a).
5. Use the definition: let ϵ > 0; from scratch work come up with δ > 0 so that
∣x − a∣ < δ implies ∣f(x) − f(a)∣ < ϵ.

6. Show lim
x→a

f(x) = f(a) (see below).

To prove that f is not continuous, do one of these things:

1. Find a single open set U so that f−1(U) is not open.

2. Find a sequence xn → x so that f(xn) /→ f(x).
3. Show f is not continuous at some specific a (see below).

To prove that f is not continuous at a, do one of these things:

1. Find a sequence xn → a so that f(xn) /→ f(a).
2. Use the definition: find one ϵ0 > 0 so that ∀ δ > 0 there is x with ∣x − a∣ < δ

implies ∣f(x) − f(a)∣ ≥ ϵ0.

3. Show f is not bounded in any open interval containing a.

To prove lim
x→a

f(x) = L, do one of these things:
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5.7. Chapter 5 Homework

1. Prove f is continuous, in which case L = f(a).
2. Split the limit up using the Main Limit Theorem, factoring and canceling if

necessary so that what remains is continuous.

3. Take an arbitrary nonconstant sequence xn → a and prove lim f(xn) = L using
a method of Chapter 2.

4. Use the Squeeze Theorem.

5. Use the definition: let ϵ > 0; from scratch work figure out δ > 0 so that 0 <
∣x − a∣ < δ implies ∣f(x) −L∣ < ϵ.

To prove lim
x→a

f(x) does not exist, do one of these things:

1. Show f is unbounded in any open interval containing a.

2. Find a sequence xn → a so that {f(xn)} diverges.

3. Find two sequences xn → a and yn → a so that limxn ≠ lim yn.

4. Use the definition: show that for any L ∈ R, find one ϵ0 > 0 so that ∀ δ > 0
there is x with 0 < ∣x − a∣ < δ but ∣f(x) −L∣ > ϵ0.

5.7 Chapter 5 Homework
Exercises from Section 5.1

1. Finish the proof of Theorem 5.2 by showing that if for all a < b, f−1(a, b) is
open, then f−1(−∞, b) is open for any b ∈ R.

2. Prove, using the open set definition of continuity, that f(x) = ∣x∣ is continu-
ous.

3. Prove, using the open set definition of continuity, that f(x) = x2 is continu-
ous.

4. Prove, using the open set definition of continuity, that for any n ∈ N, f(x) =
n
√
x is continuous.

Hint: There are two cases depending on whether or not n is even or odd.

5. Prove, using the open set definition of continuity, that f ∶ R → R defined by

f(x) = { 3 − x x < 2
2x − 3 x ≥ 2 is continuous.
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6. Prove, using the open set definition of continuity, that f ∶ R → R defined by

f(x) = { 3 − x x < 2
2x − 1 x ≥ 2 is not continuous.

Exercises from Section 5.2

7. Let I = [a, b] ⊆ R and let f ∶ I → I be continuous. Prove that f must have at
least one fixed point (a point p ∈ X is a fixed point of a function f ∶ X → X if
f(p) = p).

Hint: Apply the Intermediate Value Theorem to some appropriately chosen
function.

8. Let f ∶ [0,1] → R be continuous such that f(0) = f(1). Prove that there exists

c ∈ [0, 1
2] such that f(c) = f (c + 1

2). Explain why this result implies that at

any time, there are two antipodal points on the earth’s Equator that have the
same temperature.

9. Prove or disprove: there is a non-constant, continuous function f ∶ R → R
such that f(R) ⊆ Q.

10. Prove that the equation 2x4−11x3+7x2−15 = 0 has at least two real solutions.

11. Let f ∶ R→ R be a polynomial of odd degree, i.e. f(x) = a0+a1x+a2x+...+anxn

where n is odd and a0, a1, ..., an ∈ R, with an ≠ 0.

a) Suppose an > 0. Prove that ∃ b ∈ R s.t. f(b) > 0.
Hint: Factor out xn from the formula for f to get xn times the sum of
a bunch of fractions. Choose x = b where b is large enough so that the
fractions add up to something sufficiently small.

b) Suppose an > 0. Prove that ∃a ∈ R s.t. f(a) < 0.
Hint: Using the factorization from part (a), now choose x = a where a
is sufficiently negative so that the fractions add up to something suffi-
ciently small.

c) Suppose an > 0. Prove that f has a root (i.e. that ∃x ∈ R s.t. f(x) = 0).

d) Suppose an < 0. Prove that f has a root.

12. Give an example of a continuous function f ∶ R → R and an open set E so
that f(E) is not open.
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Exercises from Section 5.3

13. Finish the proof of Theorem 5.15 (monotone surjections are continuous) by
showing, in the context of the proof of that theorem, that x < inf f−1(b).

14. Let f ∶ R→ R be a continuous, monotone function and let E ⊆ R be bounded.
Prove f(supE) = sup f(E).

15. Use the ϵ,δ-definition of continuity at a to prove that every linear function
from R to R is continuous at every a ∈ R.

16. Determine, with proof, whether or not the function f ∶ R → R defined by

f(x) = { x x ∈ Q
0 x ∉ Q is continuous at 0.

17. Consider the function introduced in Exercise 6, namely f ∶ R → R defined by

f(x) = { 3 − x x < 2
2x − 1 x ≥ 2

a) Prove f is not continuous at 2 using the ϵ,δ-definition.

b) Prove f is not continuous at 2 by finding two sequences {xn} and {yn},
both of which converge to 2, so that {f(xn)} and {f(yn)} do not have
the same limit.

18. Prove or disprove: there exists a function f ∶ [0,1] → R which is not continu-
ous at any point, but for which the function ∣f ∣ is continuous on [0,1].

19. Give an example (with proof) of two functions f, g ∶ R → R which are both
discontinuous at x = a, but for which f + g is continuous at a.

20. Let f ∶ R → R and g ∶ R → R be continuous functions so that f(x) = g(x) for
all x ∈ Q. Prove that f = g, i.e. f(x) = g(x) for all x ∈ R.

Hint: Prove this by contradiction; the Density Theorem may be useful.

21. Let f ∶ R → R be additive, meaning that f(x + y) = f(x) + f(y) for all x, y ∈ R.
Prove that if f is additive and continuous, then ∃ r ∈ R so that f(x) = rx.

Hint: The preceding homework exercise may be helpful.

22. In this problem we prove that monotone functions from R to R can have only
countably many points z at which they are discontinuous.

To prove this, for now let f ∶ R→ R be increasing. Define j ∶ R→ R by setting

j(z) = inf{f(x) ∶ x > z} − sup{f(x) ∶ x < z}.

(j is for “jump”, because it is intended to measure the size of any jump in the
graph of f at z.)

217



5.7. Chapter 5 Homework

a) Prove j(z) ≥ 0 for all z ∈ R.

b) Let z ∈ R. Prove that f is continuous at z if and only if j(z) = 0.

c) Prove that the set of points at which f fails to be continuous is a count-
able set.
Hints: For each n ∈ Z and k ∈ N, let

Dn,k = {z ∈ [n,n + 1] ∶ j(z) > f(n + 1) − f(n)
k

} .

What is the cardinality of each Dn,k? How do the sets Dn,k relate to the
set of points where f fails to be continuous?

d) Use part (c) to prove that if f is decreasing, then f can have only count-
ably many points z at which it is discontinuous.

Exercises from Section 5.4

23. Use the ϵ,δ-definition of limit to prove lim
x→3
(x2 − x + 1) = 7.

24. Give a rigorous argument that lim
x→1

x3 − 1
x − 1 = 3.

25. Prove lim
x→0

x2

∣x∣
= 0.

26. Prove lim
x→0

∣x∣
x

does not exist.

27. Prove lim
x→0
⌊x⌋ does not exist.

28. Prove the second statement of the Main Limit Theorem for functions (The-
orem 5.21), which says that if f, g ∶ R → R are such that lim

x→a
f(x) = L and

lim
x→a

g(x) = M , then lim
x→a
[f(x) + g(x)] = L +M . But since we already proved

this in the notes, there’s a catch: your proof must use only the ϵ,δ-definition
of limit and not refer to sequences that converge to a.

Exercises from Section 5.5

29. Let {fn} be the sequence of functions [0,1] → R defined by fn(x) =
nx

1 + nx .
Use Theorem 5.25 to show that {fn} does not converge uniformly on [0,1].

30. a) Prove Dini’s Theorem, which says that if E is compact and {fn}n is a
monotone sequence of continuous functions (“monotone” here means
that for all x ∈ X , {fn(x)} is an increasing sequence of real numbers or
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that for all x ∈X , {fn(x)} is a decreasing sequence of real numbers), and
if fn → f where f is continuous on E, then fn ⇉ f on E.
Hint: First assume WLOG that {fn} is increasing. Fix ϵ > 0 and let Un ⊆ E
be defined by Un = {x ∈ X ∶ f(x) − fn(x) < ϵ}. Show that the {Un}
comprise an open cover of E.

b) Show by explicit example that Dini’s Theorem may fail if the pointwise
limit f is not continuous (but all the other hypotheses are satisfied).
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Chapter 6

Differentiation

6.1 Definition of the derivative
A refresher on the limit definition of derivative

Definition 6.1 A function f ∶ R → R is called differentiable (diffble) at a ∈ R if
there is a number f ′(a) ∈ R such that

lim
h→0

f(a + h) − f(a)
h

= f ′(a).

In this case, f is called differentiable at a and the number f ′(a) is called the deriva-
tive of f at a.

f

a

f (a)
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6.1. Definition of the derivative

Definition 6.2 Let E ⊆ R.
A function f ∶ R → R is called differentiable on E if f is differentiable at every
a ∈ E.
f is called differentiable if it is differentiable at every point in its domain, in which
case the function f ′ which takes a to f ′(a) is called the derivative of f .

Definition 6.3 Let f ∶ R→ R.
The zeroth derivative of f , denoted f (0), is f itself.
The first derivative of f , denoted f (1), is the derivative of f .
For each n ∈ N, define the nth derivative of f , denoted f (n), recursively by setting

f (n) = (f (n−1))′ .

We also denote the nth derivative of f with primes: f (2) = f ′′; f (3) = f ′′′; etc.
f is called n-times differentiable or differentiable n times on E ⊆ R if f (n)(x)
exists for every x ∈ E.

Theorem 6.4 (Alternate definition of the derivative) Suppose f ∶ R→ R.

• If

lim
x→a

f(x) − f(a)
x − a

exists, then f is differentiable at a and the value of this limit is f ′(a).

• If

lim
h→0

f(a) − f(a − h)
h

exists, then f is differentiable at a and the value of this limit is f ′(a).

PROOF Let L = lim
x→a

f(x) − f(a)
x − a

.

To prove the first statement, let ϵ > 0.

By the definition of limit, ∃ such that implies

.

Now, for h such that 0 < ∣h∣ < δ, ∣(a + h) − a∣ ≤ ∣h∣ < δ.
So, by letting x = a + h we have 0 < ∣x − a∣ < δ so

∣f(x) − f(a)
x − a

∣ = ∣f(a + h) − f(a)
a + h − a

∣ = ∣f(a + h) − f(a)
h

−L∣ < ϵ.
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By the definition of limit,

L = lim
h→0

f(a + h) − f(a)
h

.

By uniqueness of limit and definition of the derivative, L = f ′(a).

The proof of the second statement is a HW problem. ◻

Theorem 6.5 (Constant Function Rule) Let c ∈ R and let f ∶ R → R be a constant
function f(x) = c. Then f is differentiable, and f ′(x) = 0.

PROOF HW (use a limit definition of derivative)

Theorem 6.6 (Identity Function Rule) Let f ∶ R → R be the function f(x) = x.
Then f is differentiable, and f ′(x) = 1.

PROOF For all x ∈ R,

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

x + h − x
h

= lim
h→0

h

h
= lim

h→0
1 = 1.

This proves the theorem. ◻

Theorem 6.7 (Reciprocal Rule) Let f ∶ R→ R be the function f(x) = 1
x

. Then f is

differentiable at every x ≠ 0, and f ′(x) = −1
x2 .

PROOF HW (you must use a limit definition of derivative, not any other rule)

Theorem 6.8 (Differentiability implies continuity) Suppose f ∶ R→ R is differ-
entiable at a ∈ R. Then f is continuous at a.

PROOF Suppose f is differentiable at a. Then

lim
x→a
[f(x) − f(a)] = lim

x→a

f(x) − f(a)
x − a

(x − a)

= lim
x→a

f(x) − f(a)
x − a

⋅ lim
x→a
(x − a)

= f ′(a) ⋅ 0
= 0.

222



6.1. Definition of the derivative

We have shown lim
x→a
[f(x) − f(a)] = 0. Therefore

[lim
x→a

f(x)] − f(a) = 0,

i.e.
lim
x→a

f(x) = f(a),

making f continuous at a. ◻

The meaning of differentiability

In Calculus 1 you are taught that the derivative f ′(a)measures

More formally, to say f is differentiable at a means that locally (meaning near a), f
is very well-approximated by a linear function near a. (What does “very” mean?)

Theorem 6.9 Let f ∶ R→ R. TFAE:

1. f is differentiable at a.

2. There is a linear function L(x) = mx + b so that for all ϵ > 0, there is δ > 0 such
that

∣x − a∣ < δ implies ∣f(x) −L(x)∣ ≤ ϵ ∣x − a∣.

(This is what we mean by saying f is “very” well-approximated by L.)

A picture to explain:

f

L

a

f (a)
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6.1. Definition of the derivative

PROOF We begin by proving (1)⇒ (2). Assume f is diffble at a.
Set L(x) = f(a) + f ′(a)(x − a).

(This is the point-slope equation of the tangent line to f at a.)
L is linear, with slope m = f ′(a) and y-int b = f(a) − f ′(a)a.
Notice L(a) = f(a) + f ′(a)(a − a) = f(a) + 0 = f(a).
Now, let ϵ > 0. Since we are assuming f is diffble at a, ∃ δ > 0 s.t.

0 < ∣x − a∣ < δ implies ∣f(x) − f(a)
x − a

− f ′(a)∣ < ϵ.

Now we prove (2)⇒ (1). Observe that from (2),

∣f(a) −L(a)∣ ≤ ϵ∣a − a∣ = 0
so f(a) −L(a) = 0, i.e. L(a) = f(a).
That means the linear function L passes through (a, f(a)).
Next, let m be the slope of L. By the point-slope formula,

L(x) = f(a) +m(x − a). (6.1)

Now let ϵ > 0. From what is given in Statement (2), ∃ δ > 0 so that

∣x − a∣ < δ implies ∣f(x) −L(x)∣ ≤ ϵ2 ∣x − a∣.

Let x be such that 0 < ∣x − a∣ < δ. Then:

∣f(x) −L(x)∣ ≤ ϵ2 ∣x − a∣

⇒ ∣f(x) −L(x)∣ < ϵ∣x − a∣
⇒ ∣f(x) − (f(a) +m(x − a))∣ < ϵ∣x − a∣ (from (6.1))
⇒ ∣f(x) − f(a) −m(x − a)∣ < ϵ∣x − a∣

⇒ ∣f(x) − f(a) −m(x − a)∣
∣x − a∣

< ϵ

⇒ ∣f(x) − f(a) −m(x − a)
x − a

∣ < ϵ

⇒ ∣f(x) − f(a)
x − a

−m∣ < ϵ.

Thus f ′(a) =m by definition of derivative (so f is diffble at a). ◻
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Examples
EXAMPLE 1

The Dirichlet function 1Q is not differentiable at any x ∈ R, since it is not continu-
ous at any x.

EXAMPLE 2
Thomae’s function τ is not differentiable at any rational number, since it is not
continuous there. Is τ differentiable at any irrational numbers? If so, which ones,
and what is τ ′ at those numbers?

0 1
1

2

1

3

2

3

1

4

3

4

2

5

3

5

1

5

4

5

1

1

2

1

3
1

4
1

6
1

10
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6.1. Definition of the derivative

EXAMPLE 3

The function f(x) =
⎧⎪⎪⎨⎪⎪⎩

sin 1
x

if x ≠ 0
0 if x = 0

is not differentiable at 0, since it is not con-

tinuous there.
f

-3 -2 -1 1 2 3

-1

1

EXAMPLE 4

Determine whether the function f(x) =
⎧⎪⎪⎨⎪⎪⎩

x sin 1
x

if x ≠ 0
0 if x = 0

is differentiable at 0.

Note: in the previous chapter, we proved this function is continuous at 0.

f
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6.1. Definition of the derivative

EXAMPLE 5

Determine whether the function f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 sin 1
x

if x ≠ 0
0 if x = 0

is differentiable at 0.

f
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6.2. Differentiability of the Cantor function

6.2 Differentiability of the Cantor function
Let c ∶ [0,1] → [0,1] be the Cantor function. At what numbers a ∈ [0,1] is c differ-
entiable?

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

7

9

8

9
1

1

8

1

4

3

8
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6.2. Differentiability of the Cantor function

Definition 6.10 The (middle-thirds) Cantor set is the subset C of [0,1] consisting
of all real numbers in [0,1] that have a base 3 expansion, none of whose digits is 1.

Theorem 6.11 Let c ∶ [0,1] → [0,1] be the Cantor function.

1. If a ∉ C, then c is differentiable at a and c′(a) = 0.

2. If a ∈ C, then c is not differentiable at a.

PROOF We start with statement (1). Let a ∉ C and let ϵ > 0.

Since a ∉ C, then every ternary expansion of a has at least one 1 in it.

For such an expansion, let an be the first digit which is a 1. Then

a = .a1a2⋯an−11an+1an+2⋯[3].

where none of a1, a2, ...an−1 are 1.

Given such an a, set
a+ = .a1a2⋯an−1122222⋯[3]
= .a1a2⋯an−1200000⋯[3]

and
a− = .a1a2⋯an−11000000⋯[3]
= .a1a2⋯an−10222222⋯[3];

It’s clear that a− ≤ a ≤ a+; since a+ and a− belong to C but a doesn’t, it must be
that a− < a < a+.

Now, let δ = 1
2 min {∣a − a−∣, ∣a+ − a∣}. If ∣x − a∣ < δ, then x has ternary expansion

x = .a1a2⋯an−11xn+1xn+2xn+3⋯[3].

[0,1]
a a+a-

δ δ

Therefore

c(x) = c(a),

since after Step 1 of the Cantor function process x and a would produce the
same sequence.
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6.2. Differentiability of the Cantor function

This implies that for ∣h − 0∣ < δ,

∣c(a + h) − c(a)
h

− 0∣ = 0
∣h∣
= 0 < ϵ,

meaning

lim
h→0

c(a + h) − c(a)
h

= 0,

i.e. c is differentiable at a with c′(a) = 0. This proves (1).

Now for statement (2). Let a ∈ C.

Since a ∈ C, we can consider a ternary expansion of a with no 1s:

a = .a1a2a3⋯[3].

Let bn = .a1a2a3⋯an−1anbn,n+1bn,n+2⋯[3], where

bn,k = {
2 if ak = 0
0 if ak = 2 .

bn is also in C, since it has no 1s in its ternary expansion.

Next, let hn = bn − a and observe

∣hn∣ = ∣bn − a∣ = ∣
∞
∑
k=1

bn,k

3k
−
∞
∑
n=1

an

3k
∣

≤
∞
∑
k=1
∣
bk,n

3n
− an

3k
∣

=
∞
∑

k=n+1

2
3k

= 2 1
3n+1 ⋅

1
1 − 1

3

= 1
3n
.

By the Squeeze Theorem, hn → 0.

However, we can also compute

∣c(a + hn) − c(a)∣ = ∣c(bn) − c(a)∣ =
∞
∑

k=n+1

1
2k
= 1

2n
.

This means

∣c(a + hn) − c(a)
hn

∣ ≥
1

2n

1
3n

= (3
2)

n

→∞.
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6.2. Differentiability of the Cantor function

Since hn → 0 but {c(a + hn) − c(a)
hn

} diverges, it cannot be the case that

lim
h→0

c(a + h) − c(a)
h

exists.

Therefore c is not differentiable at a, proving statement (2). ◻

More about the Cantor set

Earlier in the course we encountered the floor function ⌊x⌋:

⌊x⌋ = sup{n ∈ Z ∶ n ≤ x}.

If you subtract the floor of x from x, you get the fractional part of x, denoted {x} or
by writing “x mod 1”:

x mod 1 = {x} = x − ⌊x⌋.
EXAMPLES

{5} =

{7
4} =

{−3.62} =

{π} =

{10π} =

{104π} = {10000π} = xxxxxxxxxxxxxxxxxxx

CONCEPT

When you multiply a number in base 10 by a power of 10 like 10k, all that does is
shift the decimal point by k places.

That means the floor of 10kx is the same as the floor of x, except that the first k
decimal digits are “erased”.

The next lemma says that the same thing works in base b: if you multiply by bk, the
base b expansion of x is the same except the “no-longer-decimal” point is shifted
by k places.
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6.2. Differentiability of the Cantor function

Lemma 6.12 Let b ∈ {2,3,4, ...} and suppose x ∈ [0,1] has base b expansion

x = .x1x2x3⋯[b].

Then:

1. A base b expansion of bx is bx = x1 . x2x3x4⋯[b].

2. For every k ∈ {1,2,3, ...}, a base b expansion of bkx is

bkx = x1x2⋯xk . xk+1xk+2⋯[b]

and a base b expansion of {bk} is

{bk} = .xk+1xk+2⋯[b].

PROOF We only have to prove the first claim of statement (2), since statement (1)
follows by setting k = 1, and the second part of statement (2) follows from the
second by dropping the digits before the “decimal” point. Let x have the indicated
base b expansion. Then

x =
∞
∑
n=0

xn

bn
,

so for any k ∈ {1,2,3, ...},

bkx = bk
∞
∑
n=1

xn

bn

= bkx1

b
+ bkx2

b2 +⋯ + b
kxk

bk
+ bkxk+1

bk+1 + b
kxk+2

bk+2 +⋯

= bk−1x1 + bk−2x2 +⋯ + xk +
xk+1

b
+ xk+2

b2 + ...

= x1x2⋯xk . xk+1xk+2⋯[b]. ◻

Lemma 6.13 Let x ∈ C, the Cantor set. Then {3x} ∈ C.

PROOF Suppose x ∈ C. Then x = .x1x2x3⋯[3] where none of the xj equal 1.

Then, by the previous lemma, {3x} = .x2x3x4⋯[3].
None of the digits in this expansion are 1, so {3x} ∈ C as wanted. ◻
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6.2. Differentiability of the Cantor function

Theorem 6.14 (Equivalent characterization of the Cantor set) Define

F =
∞
⋃
n=0
(n + 1

3 , n +
2
3)

= (1
3 ,

2
3)⋃(

4
3 ,

5
3)⋃(

7
3 ,

8
3)⋃⋯.

Then, the Cantor set C is the complement of

E = {x ∈ [0,1] ∶ 3kx ∈ F for some k ∈ N}.


0 1 2 n n+1

F

1

3

2

3

4

3

5

3

F F F F

PROOF This is a set equality argument.

(C ⊆ EC), i.e. (E ⊆ CC):
Suppose x ∈ E. Then 3kx ∈ F for some k ∈ N.

So {3kx} ∈ (1
3 ,

2
3), so any ternary expansion of {3kx}must start with 1:

{3kx} = .1x2x3⋯[3].

By the previous lemma, any ternary expansion of x must look like

x = .y1y2y3⋯yk1x2x3⋯[3]

for suitable digits y1, y2, ..., yk.

Since such an expansion of x has a digit 1 in it, x ∉ C.

This proves E ⊆ CC ; the set inclusion C ⊆ EC follows by contraposition.

(EC ⊆ C), i.e. (CC ⊆ E): Suppose x ∉ C.

So for any ternary expansion x = .x1x2x3⋯[3], at least one digit is 1.

Let n be the smallest index such that xn = 1. Now, from the preceding lemmas,

{3n−1x} = .xnxn+1xn+2⋯[3]
= .1xn+1xn+2⋯[3]

has initial digit 1, so {3n−1x} ∈ [13 ,
2
3].
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6.2. Differentiability of the Cantor function

• If {3n−1x} = 1
3 , then {3n−1x} = .022222⋯[3] and therefore

x = .x1x2⋯xn−102222⋯[3]
is a ternary expansion of x with no 1s in it, meaning x ∈ C, a contradiction.

(None of the x1, ..., xn−1 are 1, by the definition of n.)

• If ⌊3nx⌋ = 2
3 , then 3nx = .20000⋯[3], and therefore

x = .x1x2⋯xn−12000000⋯[3]
is a ternary expansion of x with no 1s in it, meaning x ∈ C, a contradiction.

Therefore {3nx} ∈ (1
3 ,

2
3), meaning 3nx ∈ F , so x ∈ E as wanted.

This proves CC ⊆ E, so EC ⊆ C by contraposition. ◻

Theorem 6.15 The Cantor set C is closed (and therefore also compact, since it is
clearly bounded by 0 and 1).

PROOF HW

Hints: Note the set F defined in Theorem 6.14 is open. Define f ∶ R → R by f(x) =
3x. This f is continuous, which tells you something about the sets E1 = f−1(F ),
E2 = f−1(E1) = f−1(f−1(F )), E3 = f−1(E2), etc. These sets Ej have something to do
with the E in Theorem 6.14.

Theorem 6.16 The Cantor set C is uncountable.

PROOF HW

Hint: Suppose C is countable. Write the ternary expansion of the elements you
counted, and then construct a number in C that wasn’t on your list, with a proce-
dure similar to how we proved [0,1]wasn’t countable in Chapter 3.

Theorem 6.17 The Cantor set C is perfect, meaning that for every x ∈ C and every
ϵ > 0, there is y ∈ (Bϵ(x) ∩ C) − {x}.

PROOF HW

Hints: Since (1
3)

n

→ 0, given any ϵ > 0, we can choose n so that (1
3)

n

< ϵ. Now, take

a ternary expansion .x1x2x3⋯[3] of x ∈ C. Use this ternary expansion to cook up a
y ∈ C which isn’t x (because it has a digit different from x, and because it only has
one ternary expansion) but is within distance ϵ of x. To ensure ∣y − x∣ < ϵ, use the n
chosen at the start of this hint.
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6.3. Differentiation rules for elementary functions

Theorem 6.18 The Cantor set C is totally disconnected, meaning that it does not
contain any interval of positive length.

PROOF HW

Hint: Let E and F be as in Theorem 6.14. Prove this by contradiction: suppose C
contains an interval (a, b) with a < b. Explain why this interval (a, b) must contain
an x with 3kx ∈ F for some k ∈ N.

6.3 Differentiation rules for elementary functions
Linearity, Product and Power Rules

Theorem 6.19 (Linearity of Differentiation) Suppose f ∶ R → R and g ∶ R → R
are differentiable at a. Then:

1. Constant Multiple Rule: for any r ∈ R, rf is diffble at a and (rf)′(a) =
r f ′(a);

2. Sum Rule: f + g is diffble at a, and (f + g)′(a) = f ′(a) + g′(a);

3. Difference Rule: f − g is diffble at a, and (f − g)′(a) = f ′(a) − g′(a).

PROOF HW

Theorem 6.20 (Product Rule) Suppose f ∶ R → R and g ∶ R → R are differentiable
at a. Then fg is differentiable at a and

(fg)′(a) = f ′(a)g(a) + g′(a)f(a).

PROOF This is a direct calculation with the limit definition of derivative, using a
gimmick of adding and subtracting an extra term in the limit, shown in red below:

(fg)′(a) = lim
h→0

(fg)(a + h) − (fg)(a)
h

= lim
h→0

f(a + h)g(a + h) − f(a)g(a)
h

= lim
h→0

f(a + h)g(a + h) − f(a)g(a + h) + f(a)g(a + h) − f(a)g(a)
h
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6.3. Differentiation rules for elementary functions

= lim
h→0

f(a + h)g(a + h) − f(a)g(a + h)
h

+ lim
h→0

f(a)g(a + h) − f(a)g(a)
h

= lim
h→0

g(a + h) [f(a + h) − f(a)
h

] + lim
h→0

f(a) [g(a + h) − g(a)
h

]

= [lim
h→0

g(a + h)] [lim
h→0

f(a + h) − f(a)
h

] + f(a) [lim
h→0

g(a + h) − g(a)
h

]

= g(a) [lim
h→0

f(a + h) − f(a)
h

] + f(a) [lim
h→0

g(a + h) − g(a)
h

]

Since f and g are assumed differentiable at a, the blue limits are f ′(a) and g′(a),
respectively. So the above limit becomes

g(a)f ′(a) + f(a)g′(a),

which is the derivative of fg at a as wanted. ◻

Theorem 6.21 (Power Rule) For any n ∈ {1,2,3, ...}, the function f(x) = xn is
differentiable, and f ′(x) = nxn−1.

PROOF # 1 Let’s prove this by induction on n.

The base case (n = 1) is the Identity Function Rule, done earlier this chapter:
(the derivative of f(x) = x1 = x is 1 = 1x0 = 1x1−1).

For the induction step, we need to show:

if [xn]′ = nxn−1, then [xn+1]′ = (n + 1)xn.

To verify this, assume the induction hypothesis f(x) = xn+1 = x(xn).
By the Product Rule,

f ′(x) = [x]′(xn) + [xn]′x
= 1(xn) + (nxn−1)x
= xn + nxn

= (n + 1)xn.

By induction, we are done. ◻

PROOF # 2: This time, we will use the Binomial Theorem, which says ∀x,h ∈ R,

(x + h)n =
n

∑
k=0
(n
k
)xkhn−k =

n

∑
k=0

n!
k!(n − k)!x

khn−k.

(For a proof of this theorem, take MATH 414, or write your own proof.)
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6.3. Differentiation rules for elementary functions

Assuming the Binomial Theorem, the Power Rule follows like this:

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

(x + h)n − xn

h

= lim
h→0

n

∑
k=0
(n

k
)xkhn−k − xn

h

= lim
h→0

[x0hn + nx1hn−1 + ... + ( n
n−2)xn−2h2 + nxn−1h + xn] − xn

h

= lim
h→0

hn + nx1hn−1 + ... + ( n
n−2)xn−2h2 + nxn−1h

h

= lim
h→0

h [hn−1 + nx1hn−2 + ... + ( n
n−2)xn−2h + nxn−11]

h

= lim
h→0
[hn−1 + nx1hn−2 + ... + ( n

n − 2)x
n−1h + nxn−1]

= 0 + 0 + 0 +⋯ + 0 + nxn−1 = nxn−1. ◻

Chain Rule

Theorem 6.22 (Carathéodory’s Theorem) Let f ∶ R → R and let a ∈ R. The fol-
lowing are equivalent:

1. f is differentiable at a.

2. There exists ψ ∶ R→ R such that

a) ψ is continuous at a;

b) f(x) − f(a) = ψ(x)(x − a) for all x ∈ R; and

c) ψ(a) = f ′(a).

f

ψ(a)=f '(a)
=this slope

ψ(x)=this slope

a x≠a

f (a)

f (x)
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6.3. Differentiation rules for elementary functions

PROOF (1)⇒ (2): Assume f is differentiable at a. Now, define ψ by

ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x) − f(a)
x − a

if x ≠ a
f ′(a) if x = a.

ψ obviously satisfies (b) and (c), and it satisfies (a) since by def’n of derivative,

ψ(a) = f ′(a) = lim
x→a

f(x) − f(a)
x − a

= lim
x→a

ψ(x).

(2)⇐ (1): Starting with (b), write ψ(x) = f(x) − f(a)
x − a

for all x ≠ a. Since ψ is cts at a,

f ′(a) = ψ(a) = lim
x→a

f(x) − f(a)
x − a

Thus f ′(a) exists by a definition of derivative. ◻

Theorem 6.23 (Chain Rule) Suppose g ∶ R→ R is differentiable at a and f ∶ R→ R
is differentiable at g(a). Then f ○ g is differentiable at a, and

(f ○ g)′(a) = f ′(g(a))g′(a).

PROOF By Carathéodory’s Theorem, since g is differentiable at a, there is ψg ∶ R →
R such that

1a) ψg is cts at a;
1b) g(x) − g(a) = ψg(x)(x − a); and
1c) g′(a) = ψg(a).

Applying Carathéodory’s Theorem again, since f is diffble at g(a), there is ψf ∶ R→
R such that

2a) ψf is cts at g(a);
2b) f(y) − f(g(a)) = ψf(y)(y − g(a)); and
2c) f ′(g(a)) = ψf(g(a)).

Now,

(f ○ g)(x) − (f ○ g)(a) = f(g(x)) − f(g(a))

= ψf(g(x))( g(x) − g(a) ) (by (2b) above)

= ψf(g(x)) ψg(x)(x − a) . (by (1b) above)
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6.3. Differentiation rules for elementary functions

Let Ψ(x) = ψf(g(x))ψg(x). From the previous page, we have

(f ○ g)(x) − (f ○ g)(a) = Ψ(x)(x − a).

Furthermore, Ψ, being made up of functions which are cts at a, is cts at a.

By Carathéodory’s Theorem, (f ○ g) is diffble at a and

(f ○ g)′(a) = Ψ(a) = ψf(g(a))ψg(a) = f ′(g(a))g′(a). ◻

Quotient Rule

Theorem 6.24 (Quotient Rule) Suppose f ∶ R→ R and g ∶ R→ R are differentiable

at a. Then, if g(a) ≠ 0,
f

g
is differentiable at a and

(f
g
)
′
(a) = f

′(a)g(a) − g′(a)f(a)
[g(a)]2

.

PROOF We will prove the Quotient Rule by rewriting an arbitrary quotient as a
product and a composition, allowing us to use the Product and Chain Rules.

Let h(x) = 1
g(x)

= [g(x)]−1. By the Chain Rule and the Reciprocal Rule, h is

differentiable at a and

h′(a) = −1[g(a)]−2g′(a) = −g
′(a)

[g(a)]2
.

That means that by the Product Rule,

(f
g
)
′
(a) = (fh)′(a) = f ′(a)h(a) + h′(a)f(a)

= f ′(a) 1
g(a)

+ −g
′(a)

[g(a)]2
f(a).

Add these fractions by finding a common denominator to get

f ′(a)g(a)
[g(a)]2

− g
′(a)f(a)
[g(a)]2

= f
′(a)g(a) − g′(a)f(a)

[g(a)]2
. ◻
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6.3. Differentiation rules for elementary functions

EXAMPLE 5, CONTINUED

Earlier, we saw that the function f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 sin 1
x

if x ≠ 0
0 if x = 0

is differentiable at 0,

and f ′(0) = 0.

1. Is f differentiable at x when x ≠ 0? If so, what is f ′(x) for x ≠ 0?

(Let’s assume here, without proof, that sinx is differentiable at all x and that
d

dx
(sinx) = cosx.)

2. Is the derivative f ′ continuous at 0?
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6.4 Optimization
Recall the Max-Min Existence Theorem, which says:

.
If f ∶ R→ R is on E, where E is ,
then f has an absolute maximum and an absolute minimum on E.

In Calculus 1, you learn how to find the absolute maximum and/or absolute min-
imum of a function on a compact (i.e. closed and bounded) interval. To optimize
function f on [a, b] you:

The reason this method is logically sound is because of the following theorem:

Theorem 6.25 (Fermat’s Theorem) Let f ∶ [a, b] → R be differentiable.

1. If c ∈ (a, b) is the location of the absolute maximum value of f on [a, b]
(i.e. c is such that f(x) ≤ f(c) for all x ∈ [a, b]),
then f ′(c) = 0.

2. If c ∈ (a, b) is the location of the absolute minimum value of f on [a, b],
(i.e. c is such that f(x) ≤ f(c) for all x ∈ [a, b]),
then f ′(c) = 0.

Note: This is not Fermat’s Last Theorem, or Fermat’s Little Theorem. Those are
different things, that don’t have to do with MATH 430. This is Fermat’s Theorem.

PROOF We prove the first statement here.

Assume c is a location of the absolute maximum value of f on [a, b].
By the limit definition of derivative,

f ′(c) = lim
h→0

f(c + h) − f(c)
h

. (6.2)

Since c is the location of the maximum value of f , f(c) ≥ f(c + h) for all h.
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6.5. Mean Value Theorem

This means the numerator in (6.2) is ≤ 0, so since limits preserve ≤, f ′(c) ≤ 0.

However, we also know from the previous lemma that

f ′(c) = lim
h→0

f(c) − f(c − h)
h

. (6.3)

And since c is the location of the maximum value of f , f(c) ≥ f(c − h) for all h.

This means the numerator in (6.3) is ≥ 0, so since limits preserve ≥, f ′(c) ≥ 0.

Since f ′(c) ≤ 0 and f ′(c) ≥ 0, it follows that f ′(c) = 0.

The proof of the second statement is HW. ◻

6.5 Mean Value Theorem
Theorem 6.26 (Mean Value Theorem (MVT)) Let f ∶ R → R and let a < b be real
numbers. If f is continuous on [a, b] and differentiable on (a, b), then there is c ∈ (a, b)
such that

f ′(c) = f(b) − f(a)
b − a

.

Picture that makes the statement “obvious”:

f

slope = f '(c) = LHS of MVT

slope =
f (b) - f (a)

b - a
= RHS of MVT

a c b

f (a)

f (b)
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6.5. Mean Value Theorem

Physics explanation that makes the MVT “obvious”:

Suppose f(t) = the position of an object at time t. Then:

The MVT says that given any trip, your instantaneous velocity must equal your
average velocity over the whole trip.

PROOF Let g ∶ [a, b] → R be defined by

g(x) = f(x) − (f(b) − f(a)
b − a

)x. (6.4)

f

g(x)
f (b) - f (a)

b - a
x

a x b

Since f is differentiable on (a, b), g is also differentiable on (a, b) and by usual
differentiation rules,

g′(x) = f ′(x) − f(b) − f(a)
b − a

. (6.5)

Furthermore, since f is continuous on [a, b], so is g.

Claim: There exists c ∈ (a, b) such that g′(c) = 0.

Proof of claim: By the Max-Min Existence Theorem, g has an absolute
maximum value and an absolute minimum value, occurring at some point in
[a, b]. There are two cases:

Case 1: Either the abs. max. or the abs. min. of g occurs at c ∈ (a, b)
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6.5. Mean Value Theorem

(i.e. not at an endpoint of [a, b]).
In this situation, by Fermat’s Theorem, g′(c) = 0.

Case 2: The abs. max. and abs. min. values of g occur only at a and b.

Here, observe that the following algebra shows g(a) = g(b):

g(b) = f(b) − (f(b) − f(a)
b − a

) b (from (6.4))

= f(b)(b − a) − (f(b) − f(a))b
b − a

= bf(b) − af(b) − bf(b) + bf(a)
b − a

= bf(a) − af(b)
b − a

= bf(a) − af(a) − af(b) + af(a)
b − a

= f(a)(b − a) − (f(b) − f(a))a
b − a

= f(a) − (f(b) − f(a)
b − a

)a

= g(a) (from (6.4)).

So if the endpoints are the locations of the abs. max./min. values of g,
then those absolute max./min. values of g must coincide, making g
constant on [a, b].
That means g′(c) = 0 for every c ∈ (a, b), proving the claim.

For whatever c ∈ (a, b) that has g′(c) = 0, we have

0 = g′(c)

0 = f ′(c) − f(b) − f(a)
b − a

(from (6.5))

⇒ f(b) − f(a)
b − a

= f ′(c).

This completes the proof of the MVT. ◻
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Consequences of the MVT

Theorem 6.27 (Zero Derivative Theorem (ZDT)) Let f ∶ R → R and let α,β be
real numbers. If f ′(x) = 0 for all x ∈ (α,β), then f is constant on (α,β).

PROOF Suppose not, i.e. that f is nonconstant on (α,β).
That means there are two numbers a < b in (α,β) such that f(a) ≠ f(b).
Apply the MVT to find c ∈ (a, b) such that

f ′(c) = f(b) − f(a)
b − a

f

a c b

f (a)

f (b)≠f (a)

This is a contradiction! Thus f is constant on (α,β). ◻

APPLICATION

Suppose c ∶ R → R and s ∶ R → R are two differentiable functions with the proper-
ties

c′(x) = −s(x); s′(x) = c(x); s(0) = 0; c(0) = 1.

Prove that for all x ∈ R, [c(x)]2 + [s(x)]2 = 1.
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Definition 6.28 Let f ∶ R→ R. An antiderivative of f is another function ′f ∶ R→
R (pronounced “f antiprime”) such that

(′f)′ = f.

EXAMPLE 7
Find an antiderivative of f(x) = x2.

QUESTION

Are antiderivatives unique?

Theorem 6.29 (Antiderivative Theorem) Let F and G be two antiderivatives of
f ∶ R→ R. Then there is a constant C such that

F (x) = G(x) +C.

PROOF Suppose F and G are both antiderivatives of f .

That means F ′(x) = f(x) and G′(x) = f(x).
Now, let H(x) = F (x) −G(x). Then,

H ′(x) = ...

The rest of this proof is HW. ◻

Definition 6.30 Let f ∶ R→ R. The indefinite integral of f , denoted

∫ f(x)dx or just ∫ f,

is the set of all antiderivatives of f .
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EXAMPLE 8
Find all antiderivatives of f(x) = x2.

Darboux’s Theorem
QUESTION

Let f ∶ R→ R. Is it necessarily the case that f has an antiderivative?

Theorem 6.31 (Darboux’s Theorem) Let f ∶ R → R be differentiable, and let a < b
be real numbers. For any z between f ′(a) and f ′(b), there is c ∈ [a, b] such that
f ′(c) = z.

This looks a lot like the IVT, and follows immediately from the IVT if f ′ is con-
tinuous. But, as we have seen, f ′ may not be continuous (as an example: let

f(x) = x2 sin 1
x

for x ≠ 0 and f(0) = 0)!

PROOF If f ′(a) = f ′(b), the result is vacuously true as there is no z between f ′(a)
and f ′(b).

Assume for now that f ′(a) < f ′(b) and let z ∈ (f ′(a), f ′(b)).
Let g ∶ R→ R be g(x) = f(x) − zx.

g is diffble since f is, and g′(x) = f ′(x) − z.

As g is diffble on [a, b], it is cts on [a, b] so by the Max-Min Existence Theorem,
g obtains its minimum value on [a, b].

Claim 1: The minimum of g on [a, b] is not achieved at a.

Proof of Claim 1: Observe that g′(a) = f ′(a) − z < 0.


0 -g'(a)g'(a) ϵ

ϵϵ

247



6.5. Mean Value Theorem

Let ϵ = −g
′(a)
2 to obtain a δ > 0 s.t. 0 < x − a < δ implies

∣g(x) − g(a)
x − a

− g′(a)∣ < ϵ = −g
′(a)
2 ,

which implies g(x) − g(a) < g
′(a)
2 < 0 which implies g(x) < g(a).

Thus the minimum of g on [a, b] is not achieved at a, proving Claim 1.

Claim 2: The minimum of g on [a, b] is not achieved at b.

Proof of Claim 2: This is similar to Claim 1. This time, g′(b) = f ′(b) − z > 0.

Therefore, we can let ϵ = g
′(a)
2 to obtain δ > 0 s.t. 0 < b − x < δ implies

∣g(x) − g(b)
x − b

− g′(b)∣ < ϵ = g
′(a)
2 ,

which implies g(b)−g(x) > g
′(a)
2 > 0 which implies g(x) < g(b), proving Claim 2.

From Claims 1 and 2, g obtains a minimum value at some c ∈ [a, b].
By Fermat’s Theorem, we have g′(c) = 0, i.e. f ′(c) − z = 0 i.e. f ′(c) = z.

This proves the theorem in the situation where f ′(a) < f ′(b).

If f ′(a) > f ′(b), given z ∈ (f ′(b), f ′(a))we can apply the previous case to
h(x) = −f(x) and −z ∈ (h′(a), h′(b)) = (−f ′(a),−f ′(b)) to obtain a c where
h′(c) = −z, thus f ′(c) = z. ◻

EXAMPLE 9
Prove that the Dirichlet function 1Q has no antiderivative.
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6.5. Mean Value Theorem

Classifying functions as increasing or decreasing

In Calculus 1, you learn that a differentiable function f is increasing if
and decreasing if .

But what exactly do increasing and decreasing mean?

f

a b

f (a)

f (b)

f

a b

f (a)

f (b)
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Definition 6.32 Let f ∶ R→ R, and let a < b.
1. f is called increasing on (a, b) if for every x, y ∈ (a, b), x ≤ y implies f(x) ≤
f(y). (In other words, f preserves soft inequalities.)

2. f is called strictly increasing on (a, b) if for every x, y ∈ (a, b), x < y implies
f(x) < f(y). (In other words, f preserves hard inequalities.)

3. f is called decreasing on (a, b) if for every x, y ∈ (a, b), x ≤ y implies f(x) ≥
f(y). (In other words, f reverses soft inequalities.)

4. f is called strictly decreasing on (a, b) if for every x, y ∈ (a, b), x < y implies
f(x) > f(y). (In other words, f reverses hard inequalities.)

5. f is called monotone on (a, b) if either (f is increasing on (a, b)) or (f is
decreasing on (a, b)).

Theorem 6.33 (Monotonicity Test) Let f ∶ R→ R be differentiable.

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is increasing on (a, b).
2. If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on (a, b).
3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is decreasing on (a, b).
4. If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on (a, b).

PROOF (1) and (2) are HW.
Hint: The proofs of (3) and (4) can be used as a prototype.

For the third statement, suppose f ′(x) ≤ 0 for all x ∈ (a, b).
Suppose not, then there are x, y ∈ (a, b)with x < y but f(x) < f(y).

Apply the MVT to get z ∈ (x, y)with f ′(z) = f(y) − f(x)
y − x

=
positive
positive

> 0.

f

x c y

f (x)

f (x)<f (y)

This is a contradiction to f ′ ≤ 0 on (a, b), proving (3).

The proof of (4) is almost identical to that of (3): replace the red ≤with <, the
green <with ≤ and the orange >with ≥. ◻
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APPLICATION

Let f(x) = 1
x

.

Using the MVT to prove inequalities

The concept in the proof of the preceding theorem can be used to prove lots of in-
equalities, like these:

EXAMPLE 10

Prove
√
x + 1√

x
> 2 for every x ≥ 1.

EXAMPLE 11

Prove
√

1 + x ≤ 1 + x2 for every x ≥ 0.

251



6.6. L’Hôpital’s Rule

6.6 L’Hôpital’s Rule
Theorem 6.34 (Cauchy’s Mean Value Theorem) Let f ∶ R → R and g ∶ R → R be
continuous on [a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f ′(c)[g(b) − g(a)] = g′(c)[f(b) − f(a)].

Note: the equation in the conclusion of the Cauchy MVT can be rewritten as

f ′(c)
g′(c)

= f(b) − f(a)
g(b) − g(a)

.

PROOF Case 1: g(b) = g(a).
Then, by the MVT applied to g, there is c ∈ (a, b) such that

g′(c) = g(b) − g(a)
b − a

= 0
b − a

= 0.

For this c, both sides of the equation in Cauchy’s MVT are 0.

Case 2: g(a) ≠ g(b). Define h ∶ R→ R by

h(x) = f(x) − f(b) − f(a)
g(b) − g(a)

g(x). (6.6)

h is cts on [a, b] and diffble on (a, b), since f and g are.

Observe

h(b) − h(a)

= [f(b) − f(b) − f(a)
g(b) − g(a)

g(b)] − [f(a) − f(b) − f(a)
g(b) − g(a)

g(a)] (by (6.6))

= f(b) [g(b) − g(a)] − [f(b) − f(a)] g(b) − f(a) [g(b) − g(a)] + g(a) [f(b) − f(a)]
g(b) − g(a)

= 0.

So by the MVT applied to h on [a, b], there is c ∈ (a, b) such that

h′(c) = h(b) − h(a)
b − a

= 0
b − a

= 0.

But

0 = h′(c) = f ′(c) − f(b) − f(a)
g(b) − g(a)

g′(c) (using the def’n of h in (6.6))
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rearranges into

−f ′(c) = −f(b) − f(a)
g(b) − g(a)

g′(c)

⇒ f ′(c) = f(b) − f(a)
g(b) − g(a)

g′(c)

⇒ f ′(c)[g(b) − g(a)] = g′(c)[f(b) − f(a)]. ◻

Theorem 6.35 (L’Hôpital’s Rule) Let f ∶ R → R and g ∶ R → R be differentiable
functions. Suppose that a ∈ R is such that f(a) = g(a) = 0. If there exists η > 0 such
that g′(x) ≠ 0 for all x ∈ (a − η, a + η) − {a}, then

lim
x→a

f(x)
g(x)

L= lim
x→a

f ′(x)
g′(x)

.

Note: The “L” above the = is just a notational device that tells the reader we are
using L’Hôpital’s Rule.

APPLICATION

Compute lim
x→3

x2 − 9
x2 + 10x + 21 without factoring and cancelling.

PROOF We start with the following preliminary fact:

Claim: Given η as in the theorem, g(x) ≠ 0 for x ∈ (a − η, a + η).
Proof of claim: Suppose not, i.e ∃x ∈ (a − η, a + η) − {a} such that g(x) = g(a) = 0.

Then, apply the MVT to find c between a and x (hence not equal to a) s.t.

g′(c) = g(x) − g(a)
x − a

= 0 − 0
x − a

= 0.

But we have a hypothesis that g′(c) ≠ 0 for c ∈ (a − η, a + η) except when c = a.

253



6.6. L’Hôpital’s Rule

By contradiction, the claim is true.

Now for the proof of L’Hôpital’s Rule. Let ϵ > 0 and let L =lim
x→a

f ′(x)
g′(x)

.

By definition of limit, there is δ > 0 such that

0 < ∣x − a∣ < δ implies ∣f
′(x)
g′(x)

−L∣ < ϵ2 . (6.7)

Now, fix x such that 0 < ∣x − a∣ < δ.
Observe that by the earlier claim, together with the Main Limit Theorem,

lim
y→a

f(y) = 0⇒ lim
y→a

f(y)
g(x)

= 0 and lim
y→a

g(y) = 0⇒ lim
y→a

g(y)
g(x)

= 0.

By applying the Main Limit Theorem again, we see that for any constant K,

K =K(1 − 0) + 0

=K (1 − lim
y→a

g(y)
g(x)

) + lim
y→a

f(y)
g(x)

= lim
y→a
[K (1 − g(y)

g(x)
) + f(y)

g(x)
] .

Thus, for each K there is δ1 = δ1(K) > 0 so that

0 < ∣y − a∣ < δ1(K) implies ∣K (1 − g(y)
g(x)

) + f(y)
g(x)

−K∣ < ϵ2 . (6.8)

Now, let y be between a and x; by Cauchy’s MVT, ∃ c between x and y such that

f ′(c)[g(x) − g(y)] = g′(c)[f(x) − f(y)]

⇒ f ′(c)
g′(c)

= f(x) − f(y)
g(x) − g(y)

Substituting into (6.7), we see that for x, y ∈ (a − δ, a + δ)with y between a and x,

∣f(x) − f(y)
g(x) − g(y)

−L∣ < ϵ2 .
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Rearrange this to get

L − ϵ2 < f(x) − f(y)
g(x) − g(y)

< L + ϵ2

(L − ϵ2)
g(x) − g(y)

g(x)
< f(x) − f(y)

g(x)
< (L + ϵ2)

g(x) − g(y)
g(x)

(L − ϵ2)(1 −
g(y)
g(x)

) < f(x)
g(x)

− f(y)
g(x)

< (L + ϵ2)(1 −
g(y)
g(x)

)

(L − ϵ2)(1 −
g(y)
g(x)

) + f(y)
g(x)

< f(x)
g(x)

< (L + ϵ2)(1 −
g(y)
g(x)

) + f(y)
g(x)

(5.9)

Now, let δ2 =min{δ, δ1 (L −
ϵ

2) , δ1 (L +
ϵ

2)}.

This yields, from (6.8), whenever x is such that 0 < ∣x − a∣ < δ2,

∣(L − ϵ2)(1 −
g(y)
g(x)

) + f(y)
g(x)

− (L − ϵ2)∣ <
ϵ

2
and

∣(L + ϵ2)(1 −
g(y)
g(x)

) + f(y)
g(x)

− (L + ϵ2)∣ <
ϵ

2 .

Substituting the previous two lines into (5.9), we get

(L − ϵ2) −
ϵ

2 < f(x)
g(x)

< (L + ϵ2) +
ϵ

2

L − ϵ < f(x)
g(x)

< L + ϵ

so ∣f(x)
g(x)

−L∣ < ϵ. By definition, we have proved

lim
x→a

f(x)
g(x)

= L = lim
x→a

f ′(x)
g′(x)

. ◻
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6.7. Taylor polynomials

6.7 Taylor polynomials
RECALL

To say that a function f is differentiable at ameans it can be very well-approximated
by a line L (whose slope is f ′(a), i.e. L′(a) = f ′(a)).
Since the line L has slope f ′(a) and passes through (a, f(a)), there is only one line
that well-approximates f .

f

L

a

f (a)

In this section, explore approximations of f (near x = a) by polynomials. Ostensi-
bly this should lead to approximations that are harder to compute than the tangent
line L, but that approximate f better than L does.

FIRST QUESTION

If I want a polynomial P to well-approximate f near x = a, what does that mean?

f

P

a

f (a)

SECOND QUESTION

Given f and a, how many polynomials P (of degree ≤ n) are there that do this?
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Lemma 6.36 Let E ⊆ R be open and suppose f ∶ E → R is differentiable n times at
a ∈ E.
Then, there is exactly one polynomial Pn of degree ≤ n so that

P
(k)
n (a) = f (k)n (a)

for all k ∈ {0,1,2, ..., n}.

PROOF Suppose Pn is a polynomial of degree ≤ n with P (k)n (a) = f (k)(a) for all
k ∈ {0,1, ..., n}.

Use algebra to write Pn(x) = c0 + c1(x − a) + c2(x − a)2 +⋯ + cn(x − a)n. Then:

Pn(a) = c0 + c1(a − a) + c2(a − a)2 + c3(a − a)3 +⋯ + cn(a − a)n = c0

P ′n(x) = 0 + c1 + 2c2(x − a) + 3c3(x − a)2 +⋯ + ncn(x − a)n−1

P ′n(a) = 0 + c1 + 2c2(a − a) + 3c3(a − a)2 +⋯ + ncn(a − a)n−1 = c1

P ′′n (x) = 0 + 0 + 2c2 + 3 ⋅ 2c3(x − a) +⋯ + n(n − 1)cn(x − a)n−2

P ′′n (a) = 0 + 0 + 2c2 + 3 ⋅ 2c3(a − a) +⋯ + n(n − 1)cn(a − a)n−2 = 2c2

P ′′′n (x) = 0 + 0 + 0 + 3 ⋅ 2 ⋅ 1c3 +⋯ + n(n − 1)(n − 2)cn(x − a)n−3

P ′′′n (a) = 0 + 0 + 9 + 3!c3 +⋯ + n(n − 1)(n − 2)cn(a − a)n−3 = 3!c3

Continuing in this fashion, we see P (k)N (a) = k!ck ∀k.

To satisfy the lemma, we must have f (k)(a) = k!ck ∀k, i.e. ck =
f (k)(a)
k! ∀k.

This forces PN to have the form described in the lemma. ◻

Definition 6.37 Let E ⊆ R be open, and suppose f ∶ E → R is differentiable n times
at a ∈ E.
The nth Taylor polynomial of f centered at a is the polynomial

Pn(x) =
n

∑
k=0

f (k)(a)
k! (x − a)k

= f(a) + f ′(a)(x − a) + f
′′(a)
2! (x − a)

2 +⋯ + f
(n)(a)
n! (x − a)n.

Concept: Pn is the only polynomial of degree ≤ n whose derivatives at a equal the
derivatives of f at a up to the nth derivative, so Pn should be the polynomial of
degree ≤ n that best approximates f near a.
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Technicality: When x = a, in the formula for Taylor polynomials, we get for
the k = 0 term

f (k)(0)
0! (x − a)0 = 00.

This is technically indeterminate, but by convention in Taylor polynomials this
00 is always 1 , i.e. the definition of Pn is really

Pn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n

∑
k=0

f (k)(a)
k! (x − a)k x ≠ a

f(a) x = a
.

and this ensures Pn is n-times differentiable at a.

Low order Taylor polynomials:

• The zeroth Taylor polymomial P0(x) = f(a) is a constant function;

• The first Taylor polynomial P1(x) = f(a) + f ′(a)(x− a) is the tangent line to f
at a.

Taylor’s Theorem
RECALL

The MVT says that if f is differentiable 1 time on open interval E, then for any
x, a ∈ E,

The equation of the MVT can be rearranged by solving for f(x) and using the
language of Taylor polynomials:
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Corollary 6.38 (Restated MVT) Let E = (a, b) ⊆ R and suppose f ∶ E → R is a
differentiable function on E. Let a ∈ E and let P0 be the first Taylor polynomial of f
centered at a.

Then, ∀x ∈ E, ∃ c between a and x so that

f(x) = P0(x) +
f ′(c)

1! (x − a)
1.

This restated version of the MVT generalizes to higher-order Taylor polynomials
as follows:

Theorem 6.39 (Taylor’s Theorem) Let E = (α,β) ⊆ R and suppose f ∶ E → R is a
function that is differentiable n + 1 times on E. Let a ∈ E and let Pn be the nth Taylor
polynomial of f centered at a.
Then, ∀x ∈ E, ∃ c between a and x so that

f(x) = Pn(x) +
f (n+1)(c)
(n + 1)! (x − a)

n+1.

PROOF Fix x ∈ E and define an auxiliary function g ∶ E → R by

g(t) =
n

∑
k=0

f (k)(t)
k! (x − t)k + (x − t)

n+1

(x − a)n+1 [f(x) − Pn(x)] .

g is built so that it has the following properties:

• g is differentiable on E;

• g(a) =
n

∑
k=0

f (k)(a)
k!

(x − a)k + (x − a)n+1

(x − a)n+1 [f(x) − Pn(x)] = Pn(x) + f(x) −Pn(x) = f(x);

• g(x) =
n

∑
k=0

f (k)(x)
k! (x − x)k + (x − x)

n+1

(x − a)n+1 [f(x) − Pn(x)] = f(x).

So by the MVT, ∃ c between a and x so that

g′(c) = g(x) − g(a)
x − a

= f(x) − f(x)
x − a

= 0.
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For this c,

0 = g′(c)

= d

dt
[g(t)]t=c

= d

dt
[

n

∑
k=0

f (k)(t)
k! (x − t)k + (x − t)

n+1

(x − a)n+1 [f(x) − Pn(x)]] t=c

= [
n

∑
k=0

f (k+1)(t)
k! (x − t)k −

n

∑
k=1

f (k)(t)
k! k(x − t)k−1 − (n + 1)(x − t)n

(x − a)n+1 [f(x) − Pn(x)]] t=c

=
n

∑
k=0

f (k+1)(c)
k! (x − c)k −

n

∑
k=1

f (k)(c)
(k − 1)!(x − c)

k−1 − (n + 1)(x − c)n
(x − a)n+1 [f(x) − Pn(x)]

(change indices on first series)

=
n+1
∑
k=1

f (k)(c)
(k − 1)!(x − c)

k−1 −
n

∑
k=1

f (k)(c)
(k − 1)!(x − c)

k−1 − (n + 1)(x − c)n
(x − a)n+1 [f(x) − Pn(x)]

= f
(n+1)(c)
n! (x − c)n − (n + 1)(x − c)n

(x − a)n+1 [f(x) − Pn(x)] .

Divide through by (x − c)n to get

0 = f
(n+1)(c)
n! − (n + 1)

(x − a)n+1 [f(x) − Pn(x)] .

This rearranges into

f (n+1)(c)
n! = (n + 1)

(x − a)n+1 [f(x) − Pn(x)]

⇒ f (n+1)(c)
(n + 1)! (x − a)

n+1 = f(x) − Pn(x)

⇒ Pn(x) +
f (n+1)(c)
(n + 1)! (x − a)

n+1 = f(x)

which is the formula we want. ◻
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6.8 Interchanging limit and derivative
QUESTION 1

Let E ⊆ R be open, and {fn} a sequence of differentiable functions E → R.
If fn → f on E, is f necessarily differentiable?

EXAMPLE E = (−1,1); fn(x) =
nx

1 + nx2

QUESTION 2
Let E ⊆ R be open, and {fn} a sequence of differentiable functions E → R.
If fn ⇉ f on E, is f necessarily differentiable?

EXAMPLE E = (0,2); fn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xn

n
x < 1

x + 1
n
− 1 x ≥ 1

f1

f2
f3

f

1 2

1

2

QUESTION 3
Let E ⊆ R be open, and {fn} a sequence of differentiable functions E → R.
If fn ⇉ f on E, and f is assumed differentiable, does f ′ = lim(f ′n)?
(In other words, is (lim fn)′ = lim(f ′n)?)

EXAMPLE E = R; fn(x) =
1
n

sinnx
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6.8. Interchanging limit and derivative

All the “no” answers on the previous page should not surprise you, because they
involve interchange of limits:

(lim fn)′ (x) = lim
h→0

⎛
⎝

lim
n→∞

fn(x + h)− lim
n→∞

fn(x)

h

⎞
⎠
= lim

h→0
lim
n→∞

fn(x + h) − fn(x)
h

lim (f ′n) (x) = lim
n→∞

lim
h→0

fn(x + h) − fn(x)
h

.

QUESTION 4
Can you ever interchange limit (of a sequence of functions) and derivative legally?

Theorem 6.40 (Interchange of Limit and Derivative) Let E = (α,β) ⊆ R, and
let {fn} be a sequence of differentiable functions E → R. If

1. f ′n ⇉ g on E, and

2. ∃a ∈ E s.t. {fn(a)} converges,

then ∃ f ∶ E → R s.t. fn ⇉ f and f ′ = g.

Note: We are not assuming fn → f here; in statement (2) we only assume that there
is a single value a so that the sequence {fn(a)} of numbers converges.
Rather, the assumption about convergence made is that the sequence of derivatives
{f ′n} converges uniformly on E.

PROOF We are going to start by showing {fn} is uniformly Cauchy.
Toward that end, let ϵ > 0.
Since {fn(a)} converges, {fn(a)} is Cauchy, so ∃N1 s.t.

m,n ≥ N1⇒ ∣fm(a) − fn(a)∣ <
ϵ

2 .

Since f ′n ⇉ g on E, {f ′n} is uniformly Cauchy, so ∃N2 s.t.

m,n ≥ N2⇒ ∣f ′m(y) − f ′n(y)∣ <
ϵ

2(β − α) ∀ y ∈ E.
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6.8. Interchanging limit and derivative

Now, let N =max{N1,N2} and assume m,n ≥ N .
By the MVT applied to the function fm − fn with endpoints a and x, we

know ∃ y ∈ E s.t.

(fm − fn)(x) − (fm − fn)(a)
x − a

= (fm − fn)′(y)

⇒ (fm − fn)(x) − (fm − fn)(a) = [f ′m(y) − f ′n(y)] (x − a)
⇒ (fm − fn)(x) = (fm − fn)(a) + [f ′m(y) − f ′n(y)] (x − a)
⇒ fm(x) − fn(x) = fm(a) − fn(a) + [f ′m(y) − f ′n(y)] (x − a)
⇒ ∣fm(x) − fn(x)∣ = ∣fm(a) − fn(a) + [f ′m(y) − f ′n(y)] (x − a)∣

≤ ∣fm(a) − fn(a)∣ + ∣f ′m(y) − f ′n(y)∣ ∣x − a∣

< ϵ2 +
ϵ

2(β − α)(x − a)

≤ ϵ2 +
ϵ

2(β − α)(β − α)

= ϵ.

This shows {fn} is uniformly Cauchy on E, so by completeness ∃ f ∶ E → R
s.t. fn ⇉ f on E.

It remains to show f ′ = g. To do this, choose z in E; we will show f ′(z) = g(z).
Let ϵ > 0.
Since {f ′n} is uniformly Cauchy, ∃M1 s.t.

m,n ≥M1⇒ ∣f ′m(y) − f ′n(y)∣ <
ϵ

3 ∀ y ∈ E.

Since f ′n ⇉ g, ∃M2 s.t.

n ≥M2⇒ ∣f ′n(x) − g(x)∣ <
ϵ

3 ∀x ∈ E.

Let M =max{M1,M2}. Since fM is differentiable at z, ∃ δ > 0 s.t.

0 < ∣x − z∣ < δ⇒ ∣fM(x) − fM(z)
x − z

− f ′M(z)∣ <
ϵ

3 .

Suppose x is such that 0 < ∣x − z∣ < δ, and let n ≥M .
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6.8. Interchanging limit and derivative

Apply the MVT to fn − fM with endpoints x and z to get y ∈ E s.t.

(fn − fM)(x) − (fn − fM)(z)
x − z

= (fn − fM)′(y)

⇒ fn(x) − fM(x) − fn(z) + fM(z)
x − z

= f ′n(y) − f ′M(y)

⇒ fn(x) − fn(z)
x − z

− fM(x) − fM(z)
x − z

= f ′n(y) − f ′M(y)

⇒ ∣fn(x) − fn(z)
x − z

− fM(x) − fM(z)
x − z

∣ = ∣f ′n(y) − f ′M(y)∣

⇒ ∣fn(x) − fn(z)
x − z

− fM(x) − fM(z)
x − z

∣ < ϵ3

⇒ lim
n→∞
∣fn(x) − fn(z)

x − z
− fM(x) − fM(z)

x − z
∣ ≤ lim

n→∞

ϵ

3

⇒ ∣f(x) − f(z)
x − z

− fM(x) − fM(z)
x − z

∣ ≤ ϵ3 .

Finally,

∣f(x) − f(z)
x − z

− g(z)∣ ≤ ∣f(x) − f(z)
x − z

− fM(x) − fM(z)
x − z

∣

+ ∣fM(x) − fM(z)
x − z

− f ′M(z)∣

+ ∣f ′M(z) − g(z)∣

< ϵ3 +
ϵ

3 +
ϵ

3 = ϵ.

This shows lim
x→z

f(x) − f(z)
x − z

= g(z), i.e. f ′(z) = g(z). ◻

Derivatives of transcendental functions

Theorem 6.40 can be used to verify that the derivatives of exp, sin and cos are what
they are supposed to be. Recall that

expx =
∞
∑
n=0

xn

n! sinx =
∞
∑
n=0
(−1)n x2n+1

(2n + 1)! cosx =
∞
∑
n=0
(−1)n x2n

(2n)! ;

these series converge for all x ∈ R and converge uniformly on any compact subset
of R, so these functions are all continuous.
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6.8. Interchanging limit and derivative

Theorem 6.41 exp ∶ R→ R is differentiable, and exp′ = exp.

PROOF Fix x ∈ R.
Let SN be the N th partial sum of the series that defines exp:

SN =
N

∑
n=0

xn

n! .

Since SN is a polynomial, it is differentiable and

S′N =
d

dx
[

N

∑
n=0

xn

n! ]

= d

dx
[1 + x + x

2

2! +
x3

3! +⋯ +
xN

N !]

= 0 + 1 + 2x
2! +

3x2

3! +⋯ +
NxN−1

N !

= 1 + x + x
2

2! +⋯ +
xN−1

(N − 1)!
= SN−1.

Now, fix x ∈ R.
From Chapter 5, S′N = SN−1 ⇉ exp on the compact set E = [−∣x∣ − 1, ∣x∣ + 1].
We also know that SN(0) → 1.
So by Theorem 6.40 (with g = exp, f ′n = S′N and a = 0), ∃ f ∶ E → R s.t. SN ⇉ f

on E and f ′ = exp.
By uniqueness of limits, f = exp (since SN → exp on R).
Therefore exp′ = exp as wanted. ◻

Theorem 6.42 sin ∶ R→ R is differentiable, and sin′ = cos.
cos ∶ R→ R is differentiable, and cos′ = − sin.

PROOF HW

Hints: Let SN =
N

∑
n=0
(−1)n x2n+1

(2n + 1)! and CN =
N

∑
n=0
(−1)n x2n

(2n)! denote the partial sums

of the power series that define sine and cosine, respectively. Show that S′N =
Csomething and show that C ′N = −Ssomething, and then use logic similar to the proof
that exp′ = exp.
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6.9. Taylor series

6.9 Taylor series
In Section 6.7 we studied how to approximate n-times differentiable functions f by
polynomials Pn. Ostensibly these approximations got better as n got larger.

Suppose now that f is n-times differentiable for every n. This suggests that if we
let n → ∞, maybe the Taylor polynomials Pn become a better and better approxi-
mation of f , i.e. they converge to f .

This would give a representation of f as a convergent power series.

EXAMPLE

Let f(x) = exp(x) and let a = 0.
Then, since exp(k)(x) = expx for all k, exp(k)(a) = exp(0) = 1.
That makes the nth Taylor polynomial of f centered at 0

Pn(x) =
n

∑
k=0

f (k)(0)
k! (x − 0)k =

n

∑
k=0

1
k!x

k =
n

∑
k=0

xk

k! .

As n→∞, Pn →
∞
∑
k=0

xk

k! = exp(x).

So we recover the original function exp as a limit of its Taylor polynomials cen-
tered at 0.

EXAMPLE

Let f(x) = sin(x) and let a = 0.
From the previous section, we see that the derivatives of f(x) = sinx at 0 are

sin(0)(0) = sin 0 = 0
sin(1)(0) = sin′(0) = cos 0 = 1
sin(2)(0) = sin′′(0) = − sin 0 = 0
sin(3)(0) = sin′′′(0) = − cos 0 = −1
⋮ ⋮

sin(k)(0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if k − 1 is a multiple of 4
−1 if k − 3 is a multiple of 4
0 if k is even

Thus the Taylor series of sin centered at 0 is
∞
∑
k=0

sin(k)(0)
k! xk = 0 + 1

1!x + 0 + −13! x
3 + 0 + 1

5!x
5⋯

=
∞
∑
k=0
(−1)k x2k+1

(2k + 1)!
= sinx.
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6.9. Taylor series

As with exp, we recover sin as a limit of its Taylor polynomials centered at 0.
(The same thing works with cos, which you will check in the HW.)

QUESTION

Does the same thing happen if we start with a different a and/or different f?
Answer: Sometimes. In this section we investigate this further.

Definition 6.43 Let E ⊆ R be open and suppose that f ∶ E → R is infinitely differen-
tiable at a ∈ E (meaning f is n-times differentiable at a for every n ∈ N).
The Taylor series of f centered at a is

∞
∑
k=0

f (k)(a)
k! (x − a)k.

In other words, the Taylor series of f centered at a is the infinite series whose nth

partial sum is Pn, the nth Taylor polynomial of f centered at a.

For any infinitely differentiable f , we can write down its Taylor series. Here’s a
test you can use to show that series converges to f :

Theorem 6.44 (Convergence of Taylor series) Let E = (α,β) ⊆ R and suppose
f ∶ E → R is infinitely differentiable on E. Let Pn be the nth Taylor polynomial of f
centered at a ∈ E. If, for every c ∈ E,

f (n+1)(c)
(n + 1)! (β − α)

n+1 → 0,

then Pn → f pointwise on E.

PROOF Let x ∈ E. By Taylor’s Theorem, ∃ c between a and x so that

f(x) = Pn(x) +
f (n+1)(c)
(n + 1)! (x − a)

n+1,

meaning

∣f(x) − Pn(x)∣ = ∣
f (n+1)(c)
(n + 1)! (x − a)

n+1∣

= ∣f
(n+1)(c)∣
(n + 1)! ∣x − a∣

n+1

≤ ∣f
(n+1)(c)∣
(n + 1)! (β − α)

n+1 (since x, a ∈ (α,β)).

By the Squeeze Theorem, Pn(x) → f(x), i.e. Pn → f pointwise on E. ◻
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6.9. Taylor series

APPLICATION

Consider f(x) = exp(x) =
∞
∑
n=0

xn

n! .

Recall the nth-term test for Divergence (Exercise 11 of the Chapter 4 HW),
which says that if an /→ 0, then∑an diverges.

For each x ∈ R, we know∑
xn

n! converges (to exp(x)), so by the contrapositive

of the nth-term test,
xn

n! → 0∀x ∈ R.

We just prove f (n)(x) = exp(x) for all n, so for any α < β and any c ∈ (α,β),

f (n+1)(c)
(n + 1)! (β − α)

n+1 = ec

(n + 1)!(β − α)
n+1 = ec (β − α)n+1

(n + 1)! → ec(0) = 0.

By Theorem 6.44, any Taylor series of exp centered at any a ∈ R converges to
expx:

∞
∑
n=0

ea

n!(x − a)
n = expx.

QUESTION

If you take any infinitely differentiable f ∶ E → R, does its Taylor series centered at
a necessarily converge to f?

Unfortunately, NO: consider f ∶ R→ R defined by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

exp(− 1
x2) x ≠ 0

0 x = 0
.

One can compute that f (n)(0) = 0 for all n (HW), so the Taylor series of f is the
constant 0. This converges to 0 for all x ∈ R, but 0 ≠ f(x) for any x ≠ 0.
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6.10 Properties of transcendental functions
More on the exponential function

Recall that we defined exp ∶ R→ R as a power series: exp(x) =
∞
∑
n=0

xn

n! . At this point,

here’s what we’ve proven about exp:

• exp(0) = 1
• exp(1) = e (this is the definition of e)

• for x ≥ 0, exp(x) ≥ 1 + x, so {exp(n)}n is unbounded as n→∞.

• exp is differentiable (hence continuous) and exp′ = exp.

In this section, we rigorously prove other familiar facts about exp.

Exponent rules

First, we can use the fact that exp′ = exp to recover the exponent rules:

Lemma 6.45 (Exponent rules) For every x, y ∈ R and every n ∈ Z, we have

exp(x + y) = exp(x) exp(y) exp(x − y) = exp(x)
exp(y) exp(nx) = [exp(x)]n .

PROOF For the first rule, fix y and let g ∶ R→ R be g(x) = exp(x + y)
exp(x) exp(y) .

Differentiate g using the Quotient Rule and the fact exp′ = exp to get

g′(x) = exp(x + y) exp(x) exp(y) − exp(x) exp(y) exp(x + y)
[exp(x) exp(y)]2

= 0.

By the Zero Derivative Theorem, g must be constant.

Observe g(0) = exp(0 + y)
exp(0) exp(y) =

exp(y)
1 exp(y) = 1.

So since g is constant, g(x) = 1 for every x, i.e.
exp(x + y)

exp(x) exp(y) = 1.

This rearranges into exp(x + y) = exp(x) exp(y) as wanted.

For the second rule, fix y and let h ∶ R→ R be h(x) = exp(x − y) exp(y)
exp(x) .

Differentiate h using the Quotient Rule and the fact exp′ = exp to get

h′(x) = exp(x − y) exp(y) exp(x) − exp(x) exp(y) exp(x − y)
[exp(x)]2

= 0.
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By the Zero Derivative Theorem, h must be constant.

But h(0) = exp(0 − y) exp(y)
exp(0) = exp(−y) exp(y) = exp(−y + y) = exp(0) = 1.

Since h is constant, h(x) = 1 for every x, i.e.
exp(x − y) exp(y)

exp(x) = 1.

This rearranges into exp(x − y) = exp(x)
exp(y) as wanted.

Finally, for the last rule, there are three situations: if n = 0, then

exp(nx) = exp(0x) = exp(0) = 1 = [exp(x)]0 = [exp(x)]n .

If n ≥ 1, then applying the first rule we get

exp(nx) = exp(x + x + x +⋯ + x)
= exp(x) exp(x) exp(x)⋯ exp(x) (by the first rule)
= [exp(x)]n .

If n < 0, then −n ≥ 1 so by the second rule and the previous case,

exp(nx) = exp(0 − (−nx)) = exp(0)
exp(−nx) =

1
exp(−nx) =

1
[exp(x)]−n = [exp(x)]n

as wanted.

Connecting exp with ex

Recall that we defined the number e to be e = exp(1). We are now in position
to show that the function exp (defined with a power series) coincides with the
function ex.

This begs the question of what exactly ex means. When x ∈ Q, this isn’t a problem,
because ex is defined algebraically:

• when n ∈ N, en = e ⋅ e ⋅ e⋯ e.
• when n = 0, en = e0 = 1.

• when n ∈ Z is negative, −n is positive and then en = 1
en

.

• when n = p
q
∈ Q, en = ep/q = q

√
ep = ( q

√
e)p, and these roots are guaranteed to

exist by work we did in Chapter 2.

But what does eπ mean? More generally, if x ∉ Q, what is ex? If you use algebra
alone, such an expression isn’t defined yet. So for now, put aside what happens
when x is irrational and let’s worry about rational x:
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Lemma 6.46 For every x ∈ Q, ex = exp(x).

PROOF First, let q ∈ {1,2,3, ...}. By exponent rules proved just earlier,

e = exp(1) = exp(q ⋅ 1
q
) = [exp(1

q
)]

q

so by taking the qth root of both sides, we get q
√
e = exp(1

q
).

Now, let x ∈ Q. We can write x = p
q

with p, q ∈ Z and q > 0, so

ex = ep/q

= [ q
√
e] p

= [exp(1
q
)] p

= exp(p ⋅ 1
q
) (by an exponent rule proved earlier)

= exp(p
q
) .◻

Here’s how we handle irrational exponents: we have to define what ex is when x
is irrational. Since we just proved ex = exp(x)when x ∈ Q, it makes sense to simply
do this:

Definition 6.47 If x ∈ R −Q, we define ex to be ex = exp(x) =
∞
∑
n=0

xn

n! .

To summarize:

• exp(x) is defined for all x as a power series exp(x) =
∞
∑
n=0

xn

n! .

• when x ∈ Q, ex is defined algebraically with powers and roots, and it turns
out that ex = exp(x).

• when x ∉ Q, ex is defined to be the power series exp(x).

The point is that we now know exp(x) = ex for all x ∈ R, and that our understanding
of exponential functions coming from algebra can be applied to exp.
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exp is a strictly increasing bijection

To finish our discussion of exponential, we’ll show that it is strictly increasing and
is a bijection from R to (0,∞):

Lemma 6.48 For all x ∈ R, exp(x) > 0.

PROOF First, suppose x ≥ 0.
In this case, since all the terms of the series defining exp are positive,

exp(x) =
∞
∑
n=0

xn

n! ≥
1
∑
n=0

xn

n! = 1 + x ≥ 1.

Now, suppose x < 0. Then −x > 0 so exp(−x) > 0. But that means

exp(x) = exp(−(−x)) = 1
exp(−x) =

1
positive #

> 0.

In either situation, exp(x) > 0 as wanted. ◻

Corollary 6.49 exp ∶ R→ R is strictly increasing.

PROOF We know exp′(x) = exp(x) > 0 for all x; apply the Monotonicity Test. ◻

Lemma 6.50 The range of exp is (0,∞).

PROOF exp is continuous and R = (−∞,∞) is connected, so by preservation of
connectedness the range exp(R)must be an interval.

By Lemma 6.48, exp(R) ⊆ (0,∞).
Since for x ≥ 0, ex ≥ 1+x, {exp(n)} is unbounded. That means sup(exp(R)) = ∞,

which means exp(R)must have the form [a,∞) or (a,∞) for some a ≥ 0.

Now, for any ϵ > 0, choose x ∈ R so that exp(x) > 1
ϵ

. Then 0 < exp(−x) < ϵ, so ϵ
is not a lower bound of exp(R).

From Lemma 6.48, 0 is a lower bound of exp(R) and 0 ∉ exp(R), so 0 = inf exp(R)
and therefore exp(R) = (0,∞) as wanted. ◻

Corollary 6.51 exp ∶ R→ (0,∞) is a bijection.

PROOF By Corollary 6.49, exp is strictly increasing, hence injective. By Lemma
6.50, exp is a surjection onto (0,∞). ◻
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More on sine and cosine

Here’s what we’ve already shown about sine and cosine:

• sinx =
∞
∑
n=0
(−1)n x2n+1

(2n + 1)! ; cosx =
∞
∑
n=0
(−1)n x2n

(2n)! .

These power series converge for every x ∈ R and converge uniformly on any
compact subset of R.

• sin ∶ R → R and cos ∶ R → R are differentiable functions with sin′ = cos and
cos′ = − sin.

• sin 0 = 0 and cos 0 = 1.

• sin(−x) = − sinx and cos(−x) = cosx.

In this section, our goal is to recover familiar properties of sine and cosine.

Pythagorean identity

Lemma 6.52 (Pythagorean identity) For any x ∈ R, cos2 x + sin2 x = 1.
In other words, for any x ∈ R the point (cosx, sinx) is on the unit circle in R2.

PROOF Let f ∶ R→ R be f(x) = cos2 x + sin2 x.
Differentiate f using the Chain Rule and the facts sin′ = cos, cos′ = − sin to get

f ′(x) = 2 cosx(− sinx) + 2 sinx(cosx) = 0.

By the Zero Derivative Theorem, f is constant.
But f(0) = cos2 0 + sin2 0 = 12 + 02 = 1, so f(x) = cos2 x + sin2 x = 1 for all x. ◻

Corollary 6.53 For any x ∈ R, −1 ≤ cosx ≤ 1 and −1 ≤ sinx ≤ 1.

PROOF Suppose not, then either cos2 x > 1 or sin2 x > 1.
That forces cos2 x + sin2 x > 1, contradicting the Pythagorean identity. ◻

Taylor series and convergence

Here, we check that sin and cos are equal to their Taylor series centered at any value
of a:

Lemma 6.54 Let a ∈ R and let PN(x) denote the N th Taylor polynomial for sinx,
centered at a. Then PN(x) → sinx on R.
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PROOF Let α < β and let a, c ∈ R.
For any n, sin(n+1) is one of ± sin or ± cos, and all these functions are bounded

by −1 and 1. So

sin(n+1)(c)
(n + 1)! (β − α)

n+1 ≤ (β − α)
n+1

(n + 1)! .

Observe
∞
∑
n=0

(β − α)n
n! = exp(β − α).

So by the nth-term test for Divergence,
(β − α)n+1

(n + 1)! → 0.

By Theorem 6.44, PN(x) → sinx. ◻

Lemma 6.55 Let a ∈ R and let PN(x) denote the N th Taylor polynomial for cosx,
centered at a. Then PN(x) → cosx on R.

PROOF HW (this is very similar to the previous proof).

Periodicity

Theorem 6.56 (Periodicity of sine and cosine) There exists a real number π > 0
so that for all x ∈ R,

sin(x + 2π) = sinx and cos(x + 2π) = cosx.

Furthermore, sin and cos have the following values:

x 0 π

2 π
3π
2 2π

sinx 0 1 0 −1 0

cosx 1 0 −1 0 1

Even further still,

• sin strictly increases on (0, π2) and (3π
2 ,2π) and decreases on (π2 ,

3π
2 ), and

• cos strictly decreases on (0, π) and increases on (π,2π).

Concept: this theorem tells us what the graphs of cos and sin look like.
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sin

π

2
π

3π

2
2π

-1

1

cos

π

2
π

3π

2
2π

-1

1

PROOF Claim # 1: ∃ t0 ∈ (0,2) so that cos t0 = 0, but cosx > 0 for x ∈ (0, t0).
Proof of Claim # 1: Apply Taylor’s Theorem to cos with n = 3, a = 0 and x = 2.

This gives us a c ∈ (0,2) so that

cos 2 = P2(2) +
cos(4)(c)

4! (2 − 0)4

=
2
∑
k=0

cos(k)(0)
k! (2 − 0)k + 16

24 cos c

= cos 0
0! +

cos′(0)
1! (2 − 0) + cos′′(0)

2! (2 − 0)2 + 2
3 cos c

= 1
1 +
− sin 0

1 (2) + − cos 0
2 (2)2 + 2

3 cos c

= 1 + 0 − 1
2(4) +

2
3 cos c

= 1 − 2 + 2
3 cos c.

Therefore, since cos c ≤ 1, cos 2 ≤ 1 − 2 + 2
3 = −

1
3 < 0.

Now, we know cos is continuous, cos 0 = 1 > 0 and cos 2 < 0.
By the IVT, ∃x ∈ (0,2) so that cosx = 0.

Let t0 be the smallest x > 0 so that cos t0 = 0. Let π = 2t0 so that t0 =
π

2 .

By continuity, cosx > 0 for x ∈ [0, π2). For if not, by the IVT there would be

x ∈ (0, t0)with cosx = 0, violating the definition of t0 as the smallest
positive x with cosx = 0. This proves Claim # 1.
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Claim # 2: sin π2 = 1.

Proof of Claim # 2: By the Pythagorean identity, cos2 π

2 + sin2 π

2 = 1, so

02 + sin2 π

2 = 1, so sin t0 ∈ {−1,1}.

But for x ∈ [0, π2), sin′(x) = cosx > 0 so sin is strictly increasing on [0, π2), so

sin π2 > sin 0 = 0 meaning sin π2 = 1 (as opposed to −1).

Note that in Claim # 2 we proved sin is strictly increasing on (0, π2).

That means sinx > sin 0 = 0 for all x ∈ (0, π2), so cos′ = − sinx < 0 for all x ∈ (0, π2),

and this means cos is strictly decreasing on (0, π2).

Claim # 3: For all x ∈ R, sinx = cos(x − π2).

Proof of Claim # 3: Since cos π2 = 0 and sin π2 = 1, we now know all the derivatives

of sin at
π

2 :

sin(0) (π2) = sin π2 = 1

sin(1) (π2) = sin′ (π2) = cos π2 = 0

sin(2) (π2) = sin′′ (π2) = − sin π2 = −1

sin(3) (π2) = sin′′′ (π2) = − cos π2 = 0⋮ ⋮

sin(n) (π2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if n is a multiple of 4
−1 if n is even but not a multiple of 4
0 if n is odd

From the discussion on Taylor series of sin and cos, we know sinx equals its
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Taylor series centered at
π

2 , i.e.

sinx =
∞
∑
n=0

f (n) (π
2 )

n! (x − π2)
n

= 1 − 1
2! (x −

π

2)
2
+ 1

4! (x −
π

2)
4
− 1

6! (x −
π

2)
t

+ ...

=
∞
∑
n=0

(−1)n
(2n)! (x −

π

2)
2n

= cos(x − π2) (by the series definition of cos).

This proves Claim # 3.

Claim # 4: For all x ∈ R, cosx = − sin(x − π2).

Proof of Claim # 4: Let f ∶ R→ R be f(x) = cosx + sin(x − π2).

f is differentiable and (applying Claim # 3),

f ′(x) = − sinx + cos(x − π2) = − sinx + sinx = 0.

So by the ZDT, f is constant.

When x = π2 , f(x) = cos t0 + sin(t0 − t0) = 0.

Since f is constant, f(x) = 0∀x, i.e. Claim # 4 holds.

From Claims 3 and 4, we can compute

sinπ = cos(π − π2) = cos π2 = 0

cosπ = − sin(π − π2) = − sin π2 = −1

sin 3π
2 = cos(3π

2 −
π

2) = cosπ = −1

cos 3π
2 = − sin(3π

2 −
π

2) = − sinπ = −0 = 0

sin 2π = cos(2π − π2) = cos 3π
2 = 0

cos 2π = − sin(2π − π2) = − sin 3π
2 = −(−1) = 1

so the table of values in the theorem is complete.
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Also, Claim 3 tells us that the graph of sin is the graph of cos shifted right by
π

2 units. So since cos is strictly decreasing on (0, π2), sin is strictly decreasing

on (π2 , π). But since sinπ = 0, sinx > 0 for x ∈ (π2 , π), making cos strictly

decreasing on (π2 , π) since its derivative is − sinx. This in turn makes sin

strictly decreasing on (π, 3π
2 ), making sinx < 0 on (π, 3π

2 ), making cos

strictly increasing on (π, 3π
2 ), making sin strictly increasing on (3π

2 ,2π),

making sinx < sin 2π = 0 for x ∈ (3π
2 ,2π), making cos strictly increasing

on (3π
2 ,2π). This takes care of all the statements about the increasing/

decreasing nature of sin and cos in the theorem.

Claim # 5: sin(x − 2π) = sinx for all x ∈ R.
Proof of Claim # 5: This is a direct calculation:

sinx = cos(x − π2) (by Claim # 3)

= − sin((x − π2) −
π

2) (by Claim # 4)

= − sin(x − π)

= − cos((x − π) − π2) (by Claim # 3)

= − cos(x − 3π
2 )

= −(− sin((x − 3π
2 ) −

π

2)) (by Claim # 4)

= sin(x − 2π).

From Claim # 5, we see that if we let y = x + 2π, then

sin(x + 2π) = sin y = sin(y − 2π) = sinx.

Thus sin is periodic with period 2π, as wanted.

Claim # 6: cos(x + 2π) = cosx.
Proof of Claim # 6: For this, apply Claim # 4 and the fact sin is periodic:

cos(x + 2π) = − sin((x + 2π) − π2) = − sin((x − π2) + 2π) = − sin(x − π2) = cosx.

This, at last, finishes the proof of this theorem. ◻
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Corollary 6.57 sin ∶ R→ [−1,1] and cos ∶ R→ [−1,1] are surjective.

PROOF From the previous theorem, sin π2 = 1 and sin 3π
2 = −1.

As sin is cts, by the IVT ∀ y ∈ (−1,1)∃x ∈ (π2 ,
3π
2 ) so that sinx = y.

Turning to cosine, from the previous theorem, cos 0 = 1 and cosπ = −1.
As cos is cts, by the IVT ∀ y ∈ (−1,1)∃x ∈ (0, π) so that cosx = y. ◻

Angle

Corollary 6.58 For every point (p, q) ∈ R2 which lies on the unit circle, ∃x ∈ R so
that cosx = p and sinx = q.
Furthermore, any two values of x satisfying the conclusions of this corollary must
differ by a multiple of 2π.

Concept: we can define any x in this corollary to be the radian measure of the
angle formed by the line segment from (0,0) to (1,0) and the line segment from
(0,0) to (p, q). This makes cosx and sinx the coordinates of the point on the unit
circle at angle x, from which the rest of trigonometry (SOHCAHTOA, Laws of
Sines and Cosines, Heron’s formula, other trig identities, etc.) can be deduced.

x

(p,q)=(cos x, sin x)

1

There’s a little more we need to check, namely that the arc length along the circle
from (1,0) to (p, q) is x; we’ll have to postpone that until after we’ve done integrals.

PROOF Let (p, q) be a point on the unit circle.
If p = 1, then q = 0 so from the periodicity theorem, we can choose x to be any

multiple of 2π, but (also by the periodicity theorem) there are no x ∈ (0,2π)
with cosx = 1, proving this corollary.

If p = −1, then q = 0 so from the periodicity theorem, we can choose x to be
π plus any multiple of 2π, but (also by the periodicity theorem) there are no
x ∈ [0, π)⋃(π,2π]with cosx = −1, proving this corollary.

When 0 ≤ p < 1, since cos is surjective, ∃x ∈ (0,2π) so that cosx = p. From the

279



6.11. Inverse functions and natural logarithm

periodicity theorem, either x ∈ (0, π2) or x ∈ (3π
2 ,2π). But since cos is strictly

monotone on these intervals, there is only one x in each interval that works.

For the x ∈ (0, π2), sinx > 0 but for the x ∈ (3π
2 ,2π), sinx < 0 so there is only

one x ∈ (0,2π) for which cosx = p and sinx = q (for the other one,
sinx = −q). By periodicity, adding any multiple of 2π to this x produces
another valid x, proving this corollary.

Finally, when −1 < p < 0, since cos is surjective, ∃x ∈ (0,2π) so that cosx = p.

From the periodicity theorem, either x ∈ (π2 , π) or x ∈ (π, 3π
2 ), and since

cos is strictly monotone on these intervals, there is only one x in each

interval that works. For the x ∈ (π2 , π), sinx > 0 but for the x ∈ (π, 3π
2 ),

sinx < 0 so there is only one x ∈ (0,2π) for which cosx = p and sinx = q
(for the other one, sinx = −q). By periodicity, adding any multiple of 2π to
this x produces another valid x, proving this corollary. ◻

6.11 Inverse functions and natural logarithm
RECALL

If a function f ∶ A → B is bijective, then it is invertible, meaning that there is a
function f−1 ∶ B → A so that f−1 ○ f(x) = x for all x ∈ A and f ○ f−1(x) = x for all
x ∈ B.

In this section we run through some results telling us about the continuity and
differentiability of the inverse of a continuous or differentiable bijection.

Theorem 6.59 (Continuous Inverse Theorem) Let E ⊆ R be an open interval,
and suppose f ∶ E → R is a continuous bijection from E onto f(E) Then f−1 ∶
f(E) → E is continuous.

Observe: In this setting f(E) must be an interval since continuous functions pre-
serve connectedness.

PROOF We start with this claim:
Claim: If f ∶ E → f(E) is a continuous bijection, then either f is strictly

increasing or f is strictly decreasing.
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Proof of claim: Suppose not. Then, ∃x, y, z ∈ E with x < y < z and either

(a) f(y) < f(x) and f(y) < f(z), or

(b) f(y) > f(x) and f(y) > f(z).

In situation (a), there are two possibilities.
The first is that f(x) < f(z), i.e. f(x) < f(z) < f(y).

Since f is cts, by the IVT ∃ c ∈ (x, y) s.t. f(c) = f(z).
But c ≠ z, contradicting f being injective.

The second possibility is f(z) < f(x) < f(y).
By the IVT, ∃ c ∈ (y, z)with f(c) = f(x).
But c ≠ x, contradicting f being injective.

In situation (b), there are also two possibilities.
The first is f(x) < f(z), i.e. f(y) < f(x) < f(z).

By the IVT, ∃ c ∈ (y, z)with f(c) = f(x).
But c ≠ x, contradicting f being injective.

The second case of situation (b) is f(x) > f(z), i.e. f(y) < f(z) < f(x).
By the IVT, ∃ c ∈ (y, x)with f(c) = f(z).
But c ≠ z, contradicting f being injective.

This proves the claim.

Now, to show f−1 is continuous, it suffices to show that for any (a, b) ⊆ E,
(f−1)−1(a, b) is open, i.e. f(a, b) is open.

Assume for now that f is strictly increasing.
We will prove f(a, b) = (f(a), f(b)) by a a set inclusion argument.
(⊆) Suppose y ∈ f(a, b). Then ∃x ∈ (a, b) s.t. f(x) = y.

Since x ∈ (a, b), a < x < b.
Since f is strictly increasing, f(a) < f(x) < b, i.e. y ∈ (f(a), f(b)).

(⊇) Suppose y ∈ (f(a), f(b)).
That means f(a) < y < f(b).
Since f is surjective, ∃x ∈ E s.t. f(x) = y.
It must be that a < x < b, for if not, since f is strictly increasing we would

have f(a) ≥ f(x) = y or y = f(x) ≥ f(b), both of which contradict
f(a) < y < f(b).

If f is strictly decreasing, then f(a, b) = (f(b), f(a)) by a similar argument
(HW). ◻
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Theorem 6.60 (Inverse Function Theorem) Let E ⊆ R be an open interval and let
f ∶ E → R be a bijection from E to f(E). Let a ∈ E.
If f is differentiable at a ∈ E and f ′(a) ≠ 0, then f−1 is differentiable at f(a), and

(f−1)′(f(a)) = 1
f ′(a)

.

PROOF Apply Carathéodory’s Theorem to f to obtain a function ψf ∶ R→ R s.t.
(a) ψf is continuous at a;
(b) f(x) − f(a) = ψf(x)(x − a) for all x ∈ R; and
(c) ψf(a) = f ′(a).

Claim: ∃ δ > 0 s.t. ψf(x) ≠ 0 for all x ∈ (a − δ, a + δ).

Proof of claim: Suppose not, then ∀n∃xn ∈ (a −
1
n
, a + 1

n
) s.t. ψf(x) = 0.

Since ∣xn − a∣ <
1
n

, by the Squeeze Theorem xn → a.
But ψf is cts, so 0 = limψf(xn) = ψf(limxn) = ψf(a).
This is a contradiction, proving the claim.

Now, let x ∈ (a − δ, a + δ) ∩E and let y = f(x). Observe

y − f(a) = f(f−1(y)) − f(a) = ψf(f−1(y))(f−1(y) − a)
= ψf(f−1(y))(f−1(y) − f−1(f(a))).

Since ψf(f−1(y)) = ψf(x) ≠ 0, we can divide through to get

1
ψf(f−1(y))

(y − f(a)) = f−1(y) − f−1(f(a))

Let ψf−1(y) = 1
ψf(f−1(y))

. Observe:

(a) ψf−1 is the composition of cts functions at a, hence is cts at a; and
(b) ψf−1(y)(y − f(a)) = f−1(y) − f−1(f(a)).

By Caratheodory’s Theorem, f−1 is differentiable at f(a) and

(f−1)′(f(a)) = ψf−1(f(a)) = 1
f ′(f−1(f(a))

= 1
f ′(a)

. ◻
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Natural logarithm

Definition 6.61 The natural logarithm function log ∶ (0,∞) → R is the inverse of
exp:

logx = y means exp y = x.

Remark on the notation: You are probably used to seeing the natural logarithm
written “ln”. Mathematicians don’t write “ln” for logs. Usually, we write log for
the natural logarithm.

Theorem 6.62 log ∶ (0,∞) is differentiable and log′(x) = 1
x

.

PROOF Let x ∈ (0,∞) and let y = logx. That means exp y = x.
Apply the Inverse Function Theorem to get

log′(x) = 1
exp′(y) =

1
exp y =

1
x
. ◻

Log rules

Theorem 6.63 (Logarithm rules) Let x, y ∈ (0,∞) and n ∈ N. Then

log(xy) = logx + log y log (x
y
) = logx − log y log(xn) = n logx.

PROOF Let x, y ∈ R and let a = logx and b = log y. Thus expa = x and exp b = y.
For the first log rule, apply an exponent rule proven earlier to get

xy = exp(a) exp(b) = exp(a + b) = exp(logx + log y).

Take log of both sides to get the first log rule.

The other two rules are HW. ◻

Exponentials and logarithms in other bases

Once you have natural logarithms, you can define exponentials and logarithms in
other bases as follows:

Definition 6.64 For any x ∈ R and any b > 0, define bx = exp(x log b).

For any x ∈ R and any b > 0, define logb x =
logx
log b .

From these definitions you can derive all the usual properties of exponentials and
logs (some of these are in the HW).
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6.12 Chapter 6 Summary
DEFINITIONS TO KNOW

Nouns x

• The derivative of f at a is f ′(a) = lim
h→0

f(a + h) − f(a)
h

.

• The (middle-thirds) Cantor set is the set C ⊆ [0,1] consisting of numbers
in [0,1] that have a ternary expansion with no 1s.

• An antiderivative of f is another function ′f so that (′f)′ = f .

• The indefinite integral of f is the set of all its antiderivatives.

• (☀) The nth Taylor polynomial of f centered at a is

Pn(x) =
n

∑
k=0

f (k)(a)
k! (x − a)k.

Adjectives that describe functions f ∶ R→ R x

• f is called differentiable at a ∈ R if f ′(a) exists (see above).
f is called differentiable on E if it is differentiable at every a ∈ E.
f is called differentiable if it is differentiable at every point in its do-
main.

• f is called increasing on (a, b) if ∀x, y ∈ (a, b), x ≤ y implies f(x) ≤ f(y).
f is called strictly increasing on (a, b) if ∀x, y ∈ (a, b), x < y implies
f(x) < f(y).
f is called decreasing on (a, b) if ∀x, y ∈ (a, b), x ≤ y implies f(x) ≥ f(y).
f is called strictly decreasing on (a, b) if ∀x, y ∈ (a, b), x < y implies
f(x) > f(y).
f is called monotone on (a, b) if f is increasing on (a, b) or f is decreasing
on (a, b).

THEOREMS WITH NAMES

Differentiability implies continuity If f is differentiable at a, then f is continu-
ous at a.

Carathéodory’s Theorem f is differentiable at a⇔ ∃ψ ∶ R → R which is continu-
ous at a, satisfies f(x) − f(a) = ψ(x)(x − a)∀x ∈ R, and has ψ(a) = f ′(a).

Fermat’s Theorem If c is the location of an absolute extremum of differentiable
function f , then f ′(c) = 0.
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Mean Value Theorem (MVT) Let f be continuous on [a, b] and differentiable on

(a, b). Then ∃ c ∈ (a, b) s.t. f ′(c) = f(b) − f(a)
b − a

.

Zero Derivative Theorem (ZDT) If f ′(x) = 0 for all x ∈ (a, b), then f is constant on
(a, b).

Antiderivative Theorem Any two antiderivatives of the same function differ by
at most a constant.

Darboux’s Theorem If f is differentiable, then for any z between f ′(a) and f ′(b),
there is c ∈ [a, b] s.t. f ′(c) = z.

Monotonicity Test If f ′(x) ≥ 0 on (a, b), then f is increasing on (a, b).
If f ′(x) > 0 on (a, b), then f is strictly increasing on (a, b).
If f ′(x) ≤ 0 on (a, b), then f is decreasing on (a, b).
If f ′(x) < 0 on (a, b), then f is strictly decreasing on (a, b).

Cauchy’s Mean Value Theorem Let f, g be continuous on [a, b] and differentiable
on (a, b). Then, ∃ c ∈ (a, b) s.t. f ′(c)[g(b) − g(a)] = g′(c)[f(b) − f(a)].

L’Hôpital’s Rule Let f, g be differentiable. If f(a) = g(a) = 0 and ∃ η > 0 s.t. g′(x) ≠

0 for x ∈ (a − η, a + η) − {a}, then lim
x→a

f(x)
g(x)

L= lim
xtoa

f ′(x)
g′(x)

.

(☀) Taylor’s Theorem If f is n+1-times differentiable on (α,β), then for any a, x ∈

(α,β), ∃ z between a and x so that f(x) = Pn(x) +
f (n+1)(z)
(n + 1)! (x − a)

n+1.

(☀) Interchange of Limit and Derivative If f ′n ⇉ g on E = (α,β) and ∃a ∈ E s.t.
{fn(a)} converges, then ∃ f s.t. fn ⇉ f and f ′ = g.

BASIC DERIVATIVE RULES

Constant Function Rule: c′ = 0 for any constant c ∈ R.

Identity Function Rule: x′ = 1.

Power Rule: ∀n ∈ N, (xn)′ = nxn−1.

Reciprocal Rule: (1
x
)
′
= −1
x2 .

Constant Multiple Rule: (r f)′ = f ′ for any r ∈ R.

The rules below work under the assumption that f and g are differentiable:

Sum Rule: (f + g)′ = f ′ + g′.
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Difference Rule: (f − g)′ = f ′ − g′.
Product Rule: (fg)′ = f ′ g + g′ f .

Quotient Rule: (f
g
)
′
= f

′ g − g′ f
g2 .

Chain Rule: (f ○ g)′ = (f ′ ○ g) g′.

OTHER THEOREMS TO REMEMBER

• Alternate definitions of the derivative f ′(a) include

lim
x→a

f(x) − f(a)
x − a

and lim
h→0

f(a) − f(a − h)
h

.

• f is differentiable at a if and only if f is very well-approximated by a linear
function, i.e. ∃ linear function L so that ∀ ϵ > 0∃ δ > 0 s.t. ∣x − a∣ < δ implies
∣f(x) −L(x)∣ ≤ ϵ∣x − a∣.

• If x = .d1d2d3d4⋯[b], then bx = d1.d2d3d4⋯[b].

• The Cantor set C is compact, uncountable, perfect and totally disconnected.

• (☀) If f is n-times differentiable at a, then there is exactly one polynomial
Pn of degree ≤ n (namely, the nth Taylor polynomial of f centered at a) which
satisfies P (k)n (a) = f (k)(a) for all k ∈ {0,1,2, ..., n}.

FACTS ABOUT SPECIFIC FUNCTIONS

• The fractional part of x ∈ R is {x} = x − ⌊x⌋].

• Dirichlet’s function 1Q and Thomae’s function τ are nowhere differentiable.

• For any n ∈ N, f(x) = { sin 1
xn x ≠ 0

0 x = 0 and f(x) = { x sin 1
xn x ≠ 0

0 x = 0 are not

differentiable at 0.

• For any n ∈ N, f(x) = { x
m sin 1

xn x ≠ 0
0 x = 0 is differentiable at 0 if m > 1.

• While f(x) = { x
2 sin 1

x x ≠ 0
0 x = 0 is differentiable at every x ∈ R (including x =

0), its derivative is not continuous at 0.

• The Cantor function is differentiable at every a ∉ C, and not differentiable at
any a ∈ C.
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• (☀) exp, sin and cos are differentiable, with respective derivatives exp, cos
and − sin.

• (☀) ex = exp(x) for every x ∈ R (this is a theorem for x ∈ Q and a definition
for x ∈ R −Q).

• (☀) exp is a strictly increasing bijection from R to (0,∞).

• (☀) Exponent rules hold: exp(x + y) = exp(x) exp(y); exp(nx) = [exp(x)]n;

exp(x − y) = exp(x)
exp(y) .

• (☀) cos2 x + sin2 x = 1, meaning the point (cosx, sinx) is on the unit circle in
R2 for every x; conversely, for every point (p, q) on the unit circle, there is
number x, unique up to multiples of 2π, so that p = cosx and q = sinx.

• (☀) −1 ≤ cosx ≤ 1; −1 ≤ sinx ≤ 1; cos(x + 2π) = cosx; sin(x + 2π) = sinx

• (☀) log ∶ (0,∞) → R is the inverse of exp; log is a strictly increasing, differen-

tiable bijection; the usual log rules hold; log′(x) = 1
x

• (☀) f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(−1
x2 ) x ≠ 0

0 x = 0
is a function whose Taylor series centered at

0 converges for all x, but does not converge to f when x ≠ 0.

PROOF TECHNIQUES

To prove that f is differentiable (or to compute f ′), do one of these things:

1. Show that f is a sum/difference/product/composition of functions already
known to be differentiable.

2. Use a definition and show that the limit that defines f ′ exists.

3. (☀) Apply the interchange of limit and derivative (especially if f is defined
as a power series).

To prove an inequality using the MVT, set one side equal to a constant, call the
other side f(x) and show that f ′(x) is either ≥ or ≤ a constant. Then suppose not,
and use the MVT to derive a contradiction.

To prove that f is not the derivative of another function, one option is to show
that f does not satisfy the conclusion of Darboux’s Theorem.
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6.13 Chapter 6 Homework
Exercises from Section 6.1

1. Prove the second statement of Theorem 6.4, which says that if lim
h→0

f(a) − f(a − h)
h

exists, then f ∶ R→ R is differentiable at a and lim
h→0

f(a) − f(a − h)
h

= f ′(a).

2. Prove the Constant Function Rule (Theorem 6.5), which says that if f ∶ R→ R
is constant, then f is differentiable and f ′(x) = 0.

3. Prove the Reciprocal Rule (Theorem 6.7), which says that if f ∶ R − {0} → R
is f(x) = 1

x
, then f is differentiable at every x ≠ 0 and f ′(x) = −1

x2 .

4. Let h ∶ R→ R be defined by h(x) = { x
2 if x ∈ Q

0 else

a) Show h′(0) = 0.

b) Show that if x ≠ 0, then h is not differentiable at x. (One way to do this
is to show that h is not continuous at x.)

5. Let f ∶ R → R be f(x) = x∣x∣. Determine the numbers at which f is differen-
tiable, and compute f ′(x)wherever it exists.

6. Let f ∶ R → R be f(x) = 3
√
x. Determine the numbers at which f is differen-

tiable, and compute f ′(x)wherever it exists.

Exercises from Section 6.2

7. Prove that the Cantor set C is closed.

8. Prove that the Cantor set C is uncountable.

9. Prove that the Cantor set C is perfect, meaning that for every x ∈ C and every
ϵ > 0, there is y ∈ (Bϵ(x) ∩ C) − {x}.

10. Prove that the Cantor set C is totally disconnected, meaning that C does not
contain any interval of positive length.

Exercises from Section 6.3

11. Prove the Constant Multiple Rule, which says that if f ∶ R → R is differen-
tiable at a ∈ R, then for any constant rinR the function r f is differentiable at
a and (r f)′(a) = r f ′(a).
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12. Prove the Sum Rule, which says that if f, g ∶ R→ R are differentiable at a ∈ R,
then f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a).

13. Prove the Difference Rule, which says that if f, g ∶ R → R are differentiable
at a ∈ R, then f − g is differentiable at a and (f − g)′(a) = f ′(a) + g′(a).

Exercises from Section 6.4

14. Prove the second statement of Fermat’s Theorem (Theorem 6.25), which says
that if f ∶ [a, b] → R is differentiable and c ∈ (a, b) is the location of the absolute
minimum value of f on [a, b], then f ′(c) = 0.

Exercises from Section 6.5

15. Prove the Antiderivative Theorem (Theorem 6.29; the proof was started in
the notes).

16. Prove the first two statements of the Monotonocity Test (Theorem 6.33), which
say that if f ∶ R→ R is differentiable, then

a) if f ′(x) ≥ 0 for x ∈ (a, b), then f is increasing on (a, b); and

b) if f ′(x) > 0 for x ∈ (a, b), then f is strictly increasing on (a, b).

17. Prove Rolle’s Theorem, which says that if f ∶ R → R is continuous on [a, b]
and differentiable on (a, b)where a < b, then ∃ c ∈ (a, b) so that f ′(c) = 0.

18. Give a proof of the Mean Value Theorem that assumes Rolle’s Theorem.

Hint: Apply Rolle’s Theorem to the auxiliary function g(x) = f(a)+f(b) − f(a)
b − a

(x−
a).

19. Let g ∶ R→ R be defined by

g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x + x2 sin(1
x
) if x ≠ 0

0 if x = 0

Prove that g′(0) = 1 (an example from the notes may be helpful), but prove
that even though g′(0) > 0 the function g is not increasing on any open inter-
val containing 0.

20. Let f ∶ R → R be a function. For each x ∈ X , consider the recursively defined
sequence {an} defined by setting a0 = x and an = f(an−1) for all n > 0. {an} is
called the forward orbit of x under f .
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Suppose f is differentiable. Let c ∈ R be a fixed point of f (this means f(c) =
c). Suppose f ′ is continuous at c and that ∣f ′(c)∣ < 1. Prove that there exists
an open set E containing c such that for all x ∈ E, an → c (where {an} is the
forward orbit of x under f ).

Exercises from Section 6.7

21. In the notes, I mentioned that given a ∈ R, any polynomial p of degree n can
be written as

p(x) = a0 + a1(x − a) + a2(x − a)2 +⋯ + an(x − a)n =
n

∑
k=0

ak(x − a)k

for suitably chosen constants a0, ..., an. To illustrate why this is true, let’s do

an example: write the polynomial f(x) = x4 − x in the form
4
∑
k=0

ak(x − 2)k for

constants a0, a1, ..., a4.

Hint: This is basically an algebra problem.

22. Prove that for any cubic polynomial f , P3 = f .

Remark: It is true that for any polynomial f of degree n, Pn = f , but we’ll
only prove this when n = 3. To do this, write down a general form of a
cubic polynomial and work out its third Taylor polynomial; you can show it
simplifies to what you started with.

23. In Calculus I you learn something called the Second Derivative Test, which
says the following:

Let E ⊆ R be open and let f ∶ E → R be a twice-differentiable function. If c ∈ E
is such that f ′(c) = 0 and f ′′ is continuous at c, then:

• if f ′′(c) > 0, then c is a local minimum of f ;
• if f ′′(c) < 0, then c is a local maximum of f .

Prove the Second Derivative Test.

Hints: Start by assuming that f ′′(c) > 0. First, use the fact that f ′′ is continu-
ous at c to find a δ > 0 such that f ′′ > 0 on (c− δ, c+ δ). Next, let x ∈ (c− δ, c+ δ)
and use Taylor’s Theorem with n = 1 to show that f(x) ≥ f(c) (i.e. that c is a
local minimum).

Then, assume that f ′′(c) < 0. Apply the previous case to −f to get show that
c is a local minimum of −f , which implies c is a local maximum of f .

24. A function f ∶ R → R is called convex (a.k.a. concave up) if given any two
points on the graph of f , no part of the line segment connecting those two
points lies below the graph of f .
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a) Give a precise definition of what it means for f to be convex. Your defi-
nition should encapsulate the idea described above.

b) Prove that if f is differentiable, then f is convex if and only if f(x) ≥ L(x)
for any function L which is a tangent line of f .
Hint: Taylor’s theorem may be useful.

25. a) Prove that if f ∶ R→ R is twice-differentiable, then for every a ∈ R,

f ′′(a) = lim
h→0

f(a + h) − 2f(a) + f(a − h)
h2 .

b) Prove that if f is twice-differentiable, then f is convex if and only if
f ′′(x) ≥ 0 for all x (in other words, for twice-differentiable functions,
“convex” is a synonym of “concave up”).

Exercises from Section 6.8

26. Let fn ∶ (0,2) → R be fn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn

n
x < 1

x + 1
n
− 1 x ≥ 1

be the sequence of functions

from Question 2 of Section 6.8 in the notes. Prove fn ⇉ f on (0,2), where

f(x) = { 0 x < 1
x − 1 x ≥ 1 .

27. Prove sin ∶ R → R and cos ∶ R → R are differentiable functions, with sin′ = cos
and cos′ = − sin.

28. Prove that for the function f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(−1
x2 ) x ≠ 0

0 x = 0
, f (n)(x) = 0 for all n ≥ 0.

Exercises from Section 6.10

29. Prove Lemma 6.55, which says that if PN(x) is the N th Taylor polynomial for
cosx centered at a, then PN(x) → cosx on R.

30. Use the MVT to prove that ∣ sinx − sin y∣ ≤ ∣x − y∣ for all x, y ∈ R.

Exercises from Section 6.11

31. Finish the proof of the Continuous Inverse Theorem (Theorem ??) by show-
ing that if f is continuous and strictly decreasing, then f(a, b) = (f(b), f(a)).

32. Prove that for any x, y ∈ (0,∞), log (x
y
) = logx − log y.
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33. Prove that for any x ∈ (0,∞) and any n ∈ N, log (xn) = n logx.

34. Let b > 0. Prove that the functions f ∶ R → (0,∞) and g ∶ (0,∞) → R defined
by f(x) = bx and g(x) = logb x are inverses.

35. Let b > 0. Prove logb(xy) = logb x + logb y for any x, y ∈ (0,∞).

36. Let b > 0. Prove the function f(x) = bx is differentiable; compute and simplify
its derivative.

37. Prove lim
n→∞
(1 + 1

n
)

n

= e.

Hint: Rewrite (1 + 1
n
)

n

using the definition of exponential function, then re-

arrange this rewritten form so that you can use L’Hôpital’s Rule.
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Chapter 7

Riemann integration

7.1 Definition of the Riemann integral
Motivation

In Calculus 1, integrals are developed to compute
xxx

xxx
xxxxxxxx :

f

a b

To do this, you approximate the area under f by computing the area of some rect-
angles, as shown above. We need appropriate notation for this, so we can derive
the theory of integration rigorously.
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7.1. Definition of the Riemann integral

Definition 7.1 Let [a, b] ⊆ R be a closed, bounded interval with a < b.
A partition P of [a, b] is a finite list of numbers {x0, x1, ..., xn} where

a = x0 < x1 < x2 < ... < xn−1 < xn = b.

The size of the partition is n (even though the partition has n + 1 numbers in it).
Given a partition P = {x0, ..., xn} of [a, b], for each k ∈ {1,2, ..., n} we define the kth

subinterval of P to be [xk−1, xk].
We define the width of the kth subinterval to be ∆xk = xk − xk−1.
The norm of P , denoted ∣∣P∣∣, is the largest width of any subinterval, i.e.

∣∣P∣∣ =max{∆xk ∶ 1 ≤ k ≤ n}.

EXAMPLE 1
Let P = {0,2,5,9,10}. (This is a partition of [0,10].)

0 10

Keep in mind: For any partition P of [a, b],
n

∑
k=1

∆xk =
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7.1. Definition of the Riemann integral

Definition 7.2 Let P = {x0, ..., xn} be a partition of [a, b].
A set {c1, c2, ..., cn} of numbers is called a list of test points for P if ck ∈ [xk−1, xk]
for all k ∈ {1,2, ..., n}.
A partition, together with a list of test points for that partition, is called a tagged
partition of [a, b]. We denote tagged partitions by P̂ = {x0, ..., xn};{c1, ..., cn}.
Given a partition P = {x0, ..., xn} of [a, b], choosing test points ck ∈ [xk−1, xk] for each
k is called tagging P to create P̂ .

EXAMPLE 2
Consider the tagged partition of [a, b] into n equal-length subintervals, where the
test points are the left endpoint of each subinterval.

a b

We’ll need this technical result later, which guarantees partitions of any interval of
arbitrarily small norm:

Lemma 7.3 Let [a, b] be a closed, bounded interval with a < b. Given any ϵ > 0, there
is a partition P (and therefore also a tagged partition P̂) with ∣∣P∣∣ < ϵ.

PROOF Given ϵ > 0, let n > b − a
ϵ

.

Consider the partition P of [a, b] into n equal-length subintervals.

Each subinterval of P has width
b − a
n
< ϵ, so ∣∣P∣∣ < ϵ.

If we need a tagged partition, choose test points for P arbitrarily. ◻
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7.1. Definition of the Riemann integral

Riemann sums

Definition 7.4 Let a < b and suppose f ∶ [a, b] → R.
Given a tagged partition P̂ = {x0, ..., xn};{c1, ..., cn} of [a, b], the Riemann sum (for
f ) (associated to P̂) is the number

RS(f ; P̂) =
n

∑
k=1

f(ck)∆xk.

Given an untagged partition P = {x0, ..., xn}, a Riemann sum (for f ) associated to
P is any Riemann sum associated to a tagged partition coming from P , i.e. associated
to some choice of test points for P .

f

a x1 x2 xk-1 xk xn -1 b

f (c1)
f (ck)

Theorem 7.5 (Riemann sums are linear) Let a < b and suppose f, g ∶ [a, b] → R.
For any tagged partition P̂ = {x0, ..., xn};{c1, ..., cn} of [a, b],

1. RS(rf ; P̂) = rRS(f ; P̂) for any constant r ∈ R.

2. RS(f + g; P̂) = RS(f ; P̂) +RS(g; P̂).

PROOF We prove statement (1) here.

RS(rf ; P̂) =
n

∑
k=1
(rf)(ck)∆xk =

Statement 2 is a HW problem. ◻
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7.1. Definition of the Riemann integral

Definition of the integral

Definition 7.6 Let a < b and suppose f ∶ [a, b] → R.
We say f is (Riemann) integrable on [a, b] if there is a real number, denoted

∫
b

a
f(x)dx or just ∫

b

a
f,

and called the Riemann integral of f from a to b, such that ∀ ϵ > 0 ∃ δ > 0 such
that if P̂ is any tagged partition of [a, b] with ∣∣P̂ ∣∣ < δ, then

∣RS(f ; P̂) − ∫
b

a
f ∣ < ϵ.

Concept

This is another ϵ definition (like the definition of the limit of a sequence or the
definition of open set or the definition of the limit of a function).

Here, the idea is that if I = ∫
b

a
f , then given any ϵ > 0, the Riemann sums you get

for f are always within ϵ of I , no matter how you pick the test points, and no
matter which partition you choose, if the norm of the partition is small enough
(where “small enough” means less than δ, which is allowed to depend on ϵ).




a

b
f

ϵ

Drawbacks

• The definition of limit of a sequence gives you a decent way to check whether
or not an → L. But it doesn’t tell you what L is (you have to guess L or figure
L out some other way).

• Similarly, this definition of Riemann integral gives you a decent way to check

whether or not some number ∫
b

a
f is the integral of f from a to b. But it

doesn’t give you insight into how to find the number ∫
b

a
f .
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7.1. Definition of the Riemann integral

EXAMPLE 3
Let f ∶ R→ R be a constant function f(x) = c. Prove f is integrable on [a, b] for any
a < b.

f

a b

c
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7.1. Definition of the Riemann integral

EXAMPLE 4
Let f ∶ R→ R be f(x) = x. Prove f is integrable on [0,1].

1

1

How we will get around this dilemma

We will consider the biggest (more precisely, the sup) and smallest (the inf) values
that Riemann sums associated to a partition P can take. This will take care of all of
them.

Problem

The “biggest” Riemann sum associated to P may not actually be a Riemann sum.

Spoiler alert

We will eventually develop a much better way of studying this example.
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7.1. Definition of the Riemann integral

Theorem 7.7 If f is Riemann integrable on [a, b], then ∫
b

a
f is unique (there cannot

be two different values for the integral).

PROOF Suppose not, i.e. that L = ∫
b

a
f and M = ∫

b

a
f , where L ≠M .

WLOG
x

x
xxxxxxxxxx .

Now let ϵ =

By def’n of Riemann integral, ∃ δL > 0 s.t. for any tagged partition P̂ of [a, b],

∣∣P̂ ∣∣ < δL implies ∣RS(f ; P̂) −L∣ < ϵ.

Similarly, ∃ δM > 0 s.t. for any tagged partition P̂ of [a, b],

∣∣P̂ ∣∣ < δM implies ∣RS(f ; P̂) −M ∣ < ϵ.

Let δ = . For any tagged partition P̂ of [a, b]with ∣∣P̂ ∣∣ < δ,

∣RS(f ; P̂) −L∣ < ϵ and ∣RS(f ; P̂) −M ∣ < ϵ.


L M

ϵ ϵ

So by the Triangle Inequality,

∣L −M ∣ ≤ ∣L −RS(f ; P̂)∣ + ∣RS(f ; P̂) −M ∣ < ϵ + ϵ = 2ϵ =

This is impossible. Therefore L =M , as wanted. ◻
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7.1. Definition of the Riemann integral

Theorem 7.8 (Integrable functions are bounded) Let f ∶ [a, b] → R. If f is Rie-
mann integrable on [a, b], then f is bounded on [a, b].

PROOF We prove the contrapositive.

Toward that end, suppose that f is not bounded on [a, b].

For now, let I = ∫
b

a
f (we will show later that such an I cannot exist).

Using ϵ = 1 in the def’n of the Riemann integral, ∃ δ > 0 so that

∣∣P̂ ∣∣ < δ implies ∣RS(f ; P̂) − I ∣ < 1⇒ .

Now, let Q be any partition (not tagged yet) of [a, b]with ∣∣Q∣∣ < δ.
Since f is unbounded, so is ∣f ∣, ∃ j s.t. ∣f ∣ is unbounded on the jth subinterval
[xj−1, xj].
To tag the partition Q, first choose all the test points {c1, c2, ..., cj−1, cj+1, ..., cn}
but the jth one arbitrarily.

Then, choose the jth test point cj so that

∣f(cj)∣ >
∣I ∣ + 1 + ∣

n

∑
k=1,k≠j

f(ck)∆xk∣

∆xj

. (7.1)

(This can be done since ∣f ∣ is unbounded on the jth subinterval.)

f

a xj -1 xj b

f (cj)
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7.1. Definition of the Riemann integral

Now

∣RS(f ; Q̂)∣ =
RRRRRRRRRRR

n

∑
k=1,k≠j

f(ck)∆xk + f(cj)∆xj

RRRRRRRRRRR

≥ ∣f(cj)∆xj ∣ −
RRRRRRRRRRR

n

∑
k=1,k≠j

f(ck)∆xk

RRRRRRRRRRR

(by (7.1)

>

RRRRRRRRRRRRRRRRRRRR

∣I ∣ + 1 + ∣
n

∑
k=1,k≠j

f(ck)∆xk∣

∆xj

∆xj

RRRRRRRRRRRRRRRRRRRR

−
RRRRRRRRRRR

n

∑
k=1,k≠j

f(ck)∆xk

RRRRRRRRRRR

= ∣I ∣ + 1 +
RRRRRRRRRRR

n

∑
k=1,k≠j

f(ck)∆xk

RRRRRRRRRRR
−
RRRRRRRRRRR

n

∑
k=1,k≠j

f(ck)∆xk

RRRRRRRRRRR
= ∣I ∣ + 1,

so ∣RS(f ; Q̂) − I ∣ ≥ 1 = ϵ.

This is a contradiction to I = ∫
b

a
f , so f cannot be integrable on [a, b]. ◻

EXAMPLE 5

The function f ∶ R → R defined by f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
x

if x ≠ 0

0 if x = 0
is not integrable on [0,1],

since it is not bounded on [0,1].

QUESTIONS WE WANT TO EVENTUALLY ADDRESS

1. Is there a bounded function that is not integrable?

2. Can you actually get an expression for ∫
b

a
f symbolically, in terms of f?
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7.2. Upper and lower Riemann sums

7.2 Upper and lower Riemann sums

Definition 7.9 Let a < b and suppose f ∶ [a, b] → R is bounded. Let P = {x0, ..., xn}
be a partition of [a, b].

• The upper (Riemann) sum (of f ) associated to P is

U(f ;P) =
n

∑
k=1

wk ∆xk

where wk = sup{f(x) ∶ x ∈ [xk−1, xk]}.

• The lower (Riemann) sum (of f ) associated to P is

L(f ;P) =
n

∑
k=1

vj ∆xj

where vk = inf{f(x) ∶ x ∈ [xk−1, xk]}.

f

a x1 x2 x2 b

w2

w1

w3

w4

f

a x1 x2 b

v2

v1
v3
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Note: The upper and lower “Riemann” sums are not necessarily Riemann sums,
because there may not be cj ∈ [xj−1, xj] such that f(cj) = vj or wj (see the lower sum
picture on the previous page).

On the other hand, if f is continuous, then U(f ;P) and L(f ;P) are Riemann sums
by the Max-Min Existence Theorem, because in this case f achieves its maximum
and minimum on every compact interval like [xj−1, xj].

One more note: There are no tags (test points) needed to define an upper or lower
Riemann sum associated to a partition. In the long run, this will be an advantage
of thinking about the integral in terms of upper and lower sums, as opposed to
general Riemann sums.

A remark on the notation: Throughout this chapter, if P is a partition of [a, b] and
f ∶ [a, b] → R is bounded, then by “vj” and “wj” we mean

vj = inf{f(x) ∶ x ∈ [xj−1, xj]} and wj = sup{f(x) ∶ x ∈ [xj−1, xj]}.

So we (and you) can use vj and wj in this chapter without defining them again.

If we need to specify the function or the partition from which the vj and/or wj

come from, we’ll use superscripts, like this:

different functions: vf
j versus vg

j

different partitions: wPj versus wQj
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Lemma 7.10 Let f ∶ [a, b] → R be bounded and let P = {x0, ..., xn} be a partition of
[a, b]. Then, if we tag P with test points {c1, ..., cn} to create P̂ , we have

L(f ;P) ≤ RS(f ; P̂) ≤ U(f ;P).

PROOF By definition of infimum and supremum, we have vk ≤ f(ck) ≤ wk for all k.
Thus

L(f ;P) =
n

∑
k=1

vk∆xk ≤
n

∑
k=1

f(ck)∆xk = RS(f ; P̂)

and
RS(f ; P̂) =

n

∑
k=1

f(ck)∆xk ≤
n

∑
k=1

wk∆xk ≤ U(f ;P). ◻

The next result shows that you can get tag a partition to produce a Riemann sum
that is arbitrarily close to its upper and lower sum:

Lemma 7.11 (Approximation of upper/lower sums by Riemann sums) Let a <
b and suppose f ∶ [a, b] → R is bounded. Let P = {x0, x1, ..., xn} be any partition of
[a, b].

1. Given any ϵ > 0, P can be tagged with test points to create P̂ so that

RS(f ; P̂) − L(f ;P) < ϵ.

2. Given any ϵ > 0, P can be tagged with test points to create P̂ so that

U(f ;P) −RS(f ; P̂) < ϵ.

PROOF We prove the first statement here.

Denote P as {x0, ..., xn} and let ϵ > 0.

Recall
vj = inf{f(x) ∶ x ∈ [xj−1, xj]}.

By a characterization of infimum (Chapter 2), for each j there is cj such that

f(cj) < vj +
ϵ

b − a

which implies
f(cj) − vj <

ϵ

b − a
.
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7.2. Upper and lower Riemann sums

Tag P with the {cj} to make P̂ . Now

RS(f ; P̂) − L(f ;P) =
n

∑
j=1
f(cj)∆xj −

n

∑
j=1
vj ∆xj

=
n

∑
j=1
[f(cj) − vj] ∆xj

<
n

∑
j=1

ϵ

b − a
∆xj

= ϵ

b − a

n

∑
j=1

∆xj

= ϵ

b − a
(b − a)

= ϵ.

The second statement is similar and left as HW. ◻

MORE QUESTIONS WE WANT TO ADDRESS

Fix a bounded function f ∶ [a, b] → R.

Lemma 7.10 shows that for any fixed partition P , the lower sum associated to P is
≤ the upper sum associated to P .

1. What if you took two different partitions P and Q? Is the lower sum associ-
ated to P necessarily ≤ the upper sum associated to Q?

2. More generally, how can we construct arguments that take into account mul-
tiple partitions at once?
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7.3 Refinements and joins

Definition 7.12 Let P = {x0, ..., xm} and Q = {y0, ..., yn} be two partitions of [a, b].
We say Q is a refinement of P , and write Q ≥ P , if either of the following equivalent
conditions hold:

• Q ⊇ P as sets, i.e. {x0, ..., xm} ⊆ {y0, ..., yn};

• every subinterval of Q is contained in a single subinterval of P .

I think it is clear that these two conditions are equivalent, but if you don’t believe
me, here’s a picture:

a=x0=y0 b=xm=yn




x1 x2

y6y2

EXAMPLES AND NON-EXAMPLES

• P = {0,1,5,10}
Q = {0,1,2,3,4,5,6,7,8,9,10}

• P = {0,2,5}
Q = {0,2,5,6}

• P = partition of [a, b] into n equal-length subintervals;

Q = partition of [a, b] into m equal length subintervals.

Lemma 7.13 If Q ≥ P , then ∣∣Q∣∣ ≤ ∣∣P∣∣.

PROOF Suppose Q ≥ P .
By definition of norm, there is a subinterval I of Qwith length ∣∣Q∣∣.
SinceQ ≥ P , I is contained in a single subinterval J of P , so that subinterval

J must have length at least ∣∣Q∣∣.
But the length of J is at most ∣∣P∣∣, so ∣∣Q∣∣ ≤ length(J) ≤ ∣∣P∣∣ as wanted. ◻
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Definition 7.14 Let P = {x0, ..., xm} and Q = {y0, ..., yn} be two partitions of [a, b].
Define the partition P ∨ Q, called the least common refinement of P and Q, also
called the join of P and Q, to be

P ∨Q = P⋃Q = {x0, ..., xm, y0, ..., yn}

where duplicate numbers are removed and the remaining numbers are rewritten in
increasing order as, say, {z0, ..., zp}.

EXAMPLE

Let P = {0,2,7,10} and let Q = {0,1,2,4,9,10}.





0 2 7 10

0 1 2 4 9 10

Lemma 7.15 Let P andQ be two partitions of [a, b]. Then P ∨Q ≥ P and P ∨Q ≥ Q.

PROOF This is immediate, since it is effectively a restatement of the two facts

P ⊆ P⋃Q and Q ⊆ P⋃Q. ◻

Using joins, we can show that any lower sum is ≤ any upper sum. This is shown
in the next two results.
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Theorem 7.16 (Refining makes upper sum smaller and lower sum bigger) Let
f ∶ [a, b] → R be bounded and let P and Q be partitions of [a, b]. If Q ≥ P , then

L(f ;P) ≤ L(f ;Q) and U(f ;P) ≥ U(f ;Q).

PROOF We prove the first inequality here. Let

P = {x0, x1, ..., xnP} and Q = {y0, y1, ..., ynQ}.

SinceQ ≥ P , for every subinterval [yi−1, yi] ofQ, there is a subinterval [xk(i)−1, xk(i)]
of P which contains it. Therefore, for each i ∈ {1,2, ..., nQ},

vQi = inf{f(x) ∶ x ∈ [yi−1, yi]} ≥ inf{f(x) ∶ x ∈ [xk(i)−1, xk(i)]} = vPk(i). (7.2)

because there are more x’s in [xj(i)−1, xj(i)] than in [yi−1, yi], hence more possible
places for the function f to be small.

f

yi -1 yixk (i) -1 xk (i)

Now

L(f ;Q) =
nQ

∑
i=1
vQi ∆yi

=
nP

∑
k=1

⎛
⎝ ∑
{i ∶k(i)=k}

vQi ∆yi

⎞
⎠

≥
nP

∑
k=1

⎛
⎝ ∑
{i ∶k(i)=k}

vPk ∆yi

⎞
⎠

(from (7.2) above)

=
nP

∑
k=1

⎛
⎝
vPk ∑
{i ∶k(i)=k}

∆yi

⎞
⎠

=
nP

∑
k=1
(vPk ∆xk) = L(f ;P).

The inequality involving upper sums is similar and left as HW. ◻
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Theorem 7.17 (Any lower sum is at most any upper sum) Let f ∶ [a, b] → R be
bounded and let P = {x0, ..., xn} and Q = {y0, ..., yn} be partitions of [a, b]. Then
L(f ;P) ≤ U(f ;Q).

PROOF Let R = P ∨Q. Then L(f ;P) ≤ L(f ;R) ≤ U(f ;R) ≤ U(f ;Q). ◻

7.4 Integrability criteria
In this section, we take aim at one of our earlier questions: can you get an expres-

sion for ∫
b

a
f symbolically, in terms of f?

Along the way, we will come up with a nice criterion that can be used to determine
whether a function f is integrable on [a, b].

Theorem 7.18 (Integrability criteria) Let a < b and suppose f ∶ [a, b] → R is
bounded. Then, the following are equivalent:

1. f is Riemann integrable on [a, b];

2. ∀ϵ > 0, ∃δ > 0 such that if P is any partition of [a, b] with ∣∣P∣∣ < δ, then
U(f ;P) − L(f ;P) < ϵ;

3. ∀ϵ > 0, ∃ partition P of [a, b] with U(f ;P) − L(f ;P) < ϵ;

4. sup{L(f ;P) ∶ P is a part. of [a, b]} = inf{U(f ;P) ∶ P is a part. of [a, b]}

When statement (4) holds, both quantities in statement (4) are equal to ∫
b

a
f .
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How to interpret these statements:

• Statement (3) gives a way (which is in most cases the best way) to check
whether a function f is integrable on [a, b], without having to actually com-

pute a potential value of ∫
b

a
f :

• Statement (4) gives a way, once you know that f is integrable on [a, b], to
write a formula for the integral of f :

∫
b

a
f = sup

P
{L(f ;P)} = inf

P
{U(f ;P}.




a

b
fℒ(f ;)'sℒ(f ;)'s (f ;)'s

• Statement (3) says that once you know f is integrable, you can choose a par-
tition P so that both the upper sum and the lower sum associated to that P is

within ϵ of ∫
b

a
f :




a

b
f

ϵ

ℒ (f ;)  (f ;)

• Statement (1) (the definition of the Riemann integral) says that once you
know a function is integrable, then for any partition with suitably small

norm, any Riemann sum associated to that partition is within ϵ of ∫
b

a
f .




a

b
f

ϵ

RS(f ;)

• Statement (2) says that once you know a function is integrable, then for all
partitions of suitably small norm, the upper and lower sums of that partition
are within ϵ of each other.



ϵ

ℒ (f ;)  (f ;)
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7.4. Integrability criteria

PROOF First, we show (1) ⇒ (2). Let ϵ > 0.

Since f is integrable, there is δ > 0 such that

∣∣P̂ ∣∣ < δ implies ∣RS(f ; P̂) − ∫
b

a
f ∣ < ϵ4 .

Let P be a partition of [a, b]with ∣∣P∣∣ < δ.
By Lemma 7.11,
● P can be tagged to make P̂1 so that RS(f ; P̂1) − L(f ;P) < ϵ4 ;

● P can also be tagged to make P̂2 so that U(f ;P) −RS(f ; P̂2) <
ϵ

4 .




a

b
fRS(f ;1) RS(f ;2)ℒ(f ;) (f ;)

<
ϵ

4
<
ϵ

4
<
ϵ

4
<
ϵ

4

Now

U(f ;P) − L(f ;P)
= ∣U(f ;P) − L(f ;P)∣

≤ U(f ;P) −RS(f ; P̂2) + ∣RS(f ; P̂2) − ∫
b

a
f ∣

+ ∣∫
b

a
f −RS(f ; P̂1)∣ +RS(f ; P̂1) − L(f ;P)

< ϵ4 +
ϵ

4 +
ϵ

4 +
ϵ

4 = ϵ.

This finishes the proof of (1) ⇒ (2).

Next, we show (2) ⇒ (3).
This is clear: just choose a partition P with ∣∣P∣∣ < δ and apply (2).

Next, we prove (3) ⇒ (4).
To do this, let

A = sup
P
{L(f ;P)} = sup{L(f ;P) ∶ P is a partition of [a, b]};

B = inf
P
{U(f ;P)} = inf{U(f ;P) ∶ P is a partition of [a, b]}.

Since every lower sum is less than or equal to every upper sum, A ≤ B.
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7.4. Integrability criteria

Suppose not, i.e. A < B. Then let ϵ = B −A2 > 0.

Assuming (3), there is P such that

U(f ;P) − L(f ;P) < ϵ = B −A2 . (7.3)

But L(f ;P) ≤ A and U(f ;P) ≥ B, so

U(f ;P) − L(f ;P) ≥ B −A. (7.4)



A B

(f ;*)'sℒ(f ;*)'s
ϵ ϵ

ℒ(f ;) (f ;)

<ϵ
(7.3) and (7.4) contradict one another, so A must equal B, proving (4).

Next, we prove (4) ⇒ (3). To do this, we let

A = sup
P
{L(f ;P)} = inf

P
{U(f ;P)}.

By definition of sup (inf), ∃ partitions Q, R such that

A − L(f ;Q) < ϵ2 and U(f ;R) −A < ϵ2 .

Let P = Q ∨R; we have

A − ϵ2 < L(f ;Q) ≤ L(f ;P) ≤ U(f ;P) < U(f ;R) < A + ϵ2



Aℒ(f ;)

(f ;*)'sℒ(f ;*)'s

(f ;ℛ)

<
ϵ

2
<
ϵ

2

ℒ(f ;) (f ;)
and this implies

U(f ;P) −L(f ;P) < (A + ϵ2) − (A −
ϵ

2) = ϵ,

showing (3) as wanted.
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7.4. Integrability criteria

Next, let’s prove (3) ⇒ (2) (unfortunately, this is the hardest part).

To do this, let ϵ > 0.

By (3), ∃ partition Q = {y0, ..., ym} of [a, b] such that U(f ;Q) −L(f ;Q) < ϵ2 .

Now let
δ = ϵ

4Mm

where m is the size of Q and M is a bound for f (i.e. ∣f(x)∣ ≤M ∀x ∈ [a, b]).
Now let P = {x0, ..., xn} be any partition of [a, b]with ∣∣P∣∣ < δ.
We need to show U(f ;P) −L(f ;P) < ϵ.
To do this, divide the indices of P (other than zero) into two types:





Note that #(I2) ≤ (size of Q− 2) < size of Q =m. Now,

U(f ;P) −L(f ;P) =
n

∑
k=1

wPk ∆xk −
n

∑
k=1

vPk ∆xk

=
n

∑
k=1
[wPk − vPk ]∆xk

= ∑
k∈I1

[wPk − vPk ]∆xk + ∑
k∈I2

[wPk − vPk ]∆xk
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So altogether, the expression on the previous page becomes

U(f ;P) − L(f ;P) < [U(f ;Q) − L(f ;Q)] + 2Mδm

< ϵ2 + 2M ( ϵ

4Mm
)m

= ϵ2 +
ϵ

2 = ϵ.

This proves (3) ⇒ (2).

Finally, let’s prove (2) ⇒ (1). Again, we let

A = sup
P
{L(f ;P)} = inf

P
{U(f ;P)}.

To prove f is Riemann integrable, we need to show that

Toward that end, let ϵ > 0.

Assuming (2), we can choose δ > 0 so that

∣∣P∣∣ < δ implies U(f ;P) − L(f ;P) < ϵ.

Now let P be any partition of [a, b]with ∣∣P∣∣ < δ. We have

∣U(f ;P) −A∣ = U(f ;P) −A ≤ U(f ;P) − L(f ;P) < ϵ and
∣L(f ;P) −A∣ = A − L(f ;P) ≤ U(f ;P) − L(f ;P) < ϵ.

Now, no matter how P is tagged to create P̂ ,

RS(f ; P̂) −A ≤ U(f ;P) −A < ϵ and

−(RS(f ; P̂) −A) = A −RS(f ; P̂) ≤ A −L(f ;P) < ϵ.



A RS(f ;)ℒ(f ;) (f ;)

< ϵ

Therefore ∣RS(f ;P) −A∣ < ϵ, so ∫
b

a
f = A by definition, proving (1). ◻
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7.4. Integrability criteria

Examples
EXAMPLE 4, REVISITED

Let f ∶ R→ R be f(x) = x. Prove f is integrable on [0,1], and compute ∫
1

0
f .

1

1

EXAMPLE 5

Determine if the Dirichlet function 1Q is integrable on [0,1]. If so, compute ∫
1

0
1Q.
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EXAMPLE 6

Determine if Thomae’s function τ is integrable on [0,1]. If so, compute ∫
1

0
τ .

0 1
1

2

1

3

2

3

1

4

3

4

2

5

3

5

1

5

4

5

1

1

2

1

3
1

4
1

6
1

10
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Theorem 7.19 (Monotone functions are integrable) Suppose f ∶ [a, b] → R is
monotone. Then f is Riemann integrable on [a, b].

PROOF Suppose for now that f is increasing.

If f(a) = f(b), then f is constant on [a, b] so f is integrable on [a, b]
(This was Example 3, earlier in this chapter.)

So henceforth we’ll assume f(a) < f(b).

Now given ϵ > 0, set δ = ϵ

f(b) − f(a)
, so that δ[f(b) − f(a)] < ϵ.

Let P = {x0, ..., xn} be any partition of [a, b]with ∣∣P∣∣ < δ.
We have

U(f ;P) − L(f ;P) =
n

∑
k=1

wk ∆xk −
n

∑
k=1

vk ∆xk =
n

∑
k=1
(wk − vk) ∆xk.

The key observation is that since f is increasing,

vk =
wk =

f

xk -1 xk

vk

wk

Therefore, from above we have

U(f ;P) − L(f ;P)

=
n

∑
k=1
[f(xk) − f(xk−1)] ∆xk

<
n

∑
k=1
[f(xk) − f(xk−1)]δ

= δ ([f(x1) − f(x0)] + [f(x2) − f(x1)] + ... + [f(xn) − f(xn−1)])
= δ[f(xn) − f(x0)]
= δ[f(b) − f(a)]
< ϵ.

By (3) of the integrabiilty criteria, f is integrable on [a, b].
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7.4. Integrability criteria

If f is decreasing, then −f is increasing, so by the first part of this argument, −f is
integrable on [a, b]. By a theorem we haven’t proven yet (but that you will do as
HW), any multiple of an integrable function is integrable, so −(−f) = f is integrable
on [a, b] as well. ◻

EXAMPLE 7
Let c ∶ [0,1] → R be the Cantor function. Since c is monotone (earlier HW), c is

Riemann integrable on [0,1]. What is ∫
1

0
c?

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

7

9

8

9
1

1

8

1

4

3

8

1

2

5

8

3

4

7

8

1

1

27

2

27

1

9

2

9

7

27

8

27

1

3

2

3

7

9

8

9
1

1

8

1

4

3

8

1

2

5

8

3

4

7

8

1
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7.5. Properties of Riemann integrals

7.5 Properties of Riemann integrals
Theorem 7.20 (Integration is linear) Let a < b and suppose f and g are Riemann
integrable on [a, b]. Then:

1. f + g is Riemann integrable on [a, b] and ∫
b

a
(f + g) = ∫

b

a
f + ∫

b

a
g.

2. For any r ∈ R, r f is Riemann integrable on [a, b] and ∫
b

a
(rf) = r∫

b

a
f .

PROOF First, let’s prove (1). Let ϵ > 0.

Since f and g are integrable, there is δf > 0 and δg > 0 such that

∣∣P∣∣ < δf implies ∣RS(f ; P̂) − ∫
b

a
f ∣ <

∣∣P∣∣ < δg implies ∣RS(g; P̂) − ∫
b

a
g∣ <

Now let δ =

If ∣∣P∣∣ < δ, then

∣RS(f + g; P̂) − (∫
b

a
f + ∫

b

a
g)∣ =

The proof of statement (2) is left as a HW problem.
As a hint, start by letting ϵ > 0.
You have to figure out what δ > 0 has to be (in terms of ϵ) so that

∣∣P∣∣ < δ implies ∣RS(rf ; P̂) − r∫
b

a
f ∣ < ϵ.
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Theorem 7.21 (Additivity of integrals) Let a < c and suppose f ∶ [a, c] → R. Let
b ∈ (a, c). Then, the following two statements are equivalent:

1. f is Riemann integrable on [a, c].

2. f is Riemann integrable on both [a, b] and [b, c].

Furthermore, when these statements are true, we have

∫
c

a
f = ∫

b

a
f + ∫

c

b
f.

PROOF (1)⇒ (2): Suppose f is Riemann integrable on [a, c].
Let ϵ > 0.

By the integrability criterion, ∃ δ > 0 so that for any partition P of [a, b],

∣∣P∣∣ < δ implies U(f ;P) − L(f ;P) < ϵ.

Let P be any partition of [a, c]with ∣∣P∣∣ < δ that contains b. Write

P = {a = x0, x1, x2, ..., xn = b, xn+1, ..., xm}

and then set

P1 = {a = x0, x1, x2, ..., xn = b} and P2 = {b = xn, xn+1, ..., xm = c}.

These are partitions of [a, b] and [b, c], respectively. Now

U(f ;P1) − L(f ;P1) =
n

∑
k=1
(wP1

k − v
P1
k ) ∆xk

≤
m

∑
k=1
(wPk − vPk ) ∆xk

= U(f ;P) − L(f ;P) < ϵ,

so by the integrability criterion, f is Riemann integrable on [a, b].
Similarly,

U(f ;P2) − L(f ;P2) =
m

∑
k=n+1

(wP2
k − v

P2
k ) ∆xk

≤
m

∑
k=1
(wPk − vPk ) ∆xk

= U(f ;P) − L(f ;P) < ϵ,

so by the integrability criterion, f is Riemann integrable on [b, c].
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(2)⇒ (1): Suppose f is Riemann integrable on both [a, b] and [b, c]. Let

I1 = ∫
b

a
f and I2 = ∫

c

b
f.

To show ∫
c

a
f = I1 + I2, let ϵ > 0.

By hypothesis, there is a partition P1 = {a = x0, x1, ..., xn1 = b} of [a, b] s.t.

U(f ;P1) − I1 <
ϵ

4 and I1 − L(f ;P1) <
ϵ

4 ,

and a partition P2 = {b = xn1 , xn1+1, ..., xm = c} of [b, c] s.t.

U(f ;P2) − I2 <
ϵ

4 and I2 − L(f ;P2) <
ϵ

4 .

Now let P = P1 ∪ P2 = {a = x0, x1, x2, ..., xm = c}.
For this partition of [a, c],

U(f ;P) =
n

∑
k=1

wPk ∆xj

=
n

∑
k=1

wPk ∆xk +
m

∑
k=n+1

wPk ∆xj

=
n

∑
k=1

wP1
k ∆xk +

m

∑
k=n+1

wP2
k ∆xj

= U(f ;P1) + U(f ;P2)

Similarly, L(f ;P) = L(f ;P1) + L(f ;P2) (same proof with vk’s instead of wk’s).

Therefore

U(f ;P) − L(f ;P) = [U(f ;P1) + U(f ;P2)] − [L(f ;P1) + L(f ;P2)]
= [U(f ;P1) − L(f ;P1)] + [U(f ;P2) − L(f ;P2)]
= [U(f ;P1) − I1] + [I1 − L(f ;P1)] + [U(f ;P2) − I2] + [I2 − L(f ;P2)]

< ϵ4 +
ϵ

4 +
ϵ

4 +
ϵ

4
= ϵ.

By the integrability criterion, f is Riemann integrable on [a, c].
Furthermore,

U(f ;P) − (I1 + I2) = [U(f ;P1) − I1] + [U(f ;P2) − I2] <
ϵ

4 +
ϵ

4 =
ϵ

2 ,
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and since ϵ > 0 is arbitrary, this implies

I1 + I2 ≥ inf
P
U(f ;P) = ∫

c

a
f. (7.5)

Similarly

(I1 + I2) − L(f ;P) = [I1 − L(f ;P1)] + [I2 − L(f ;P2)] <
ϵ

4 +
ϵ

4 =
ϵ

2 ,

and since ϵ > 0 is arbitrary, we have

I1 + I2 ≤ sup
P
L(f ;P) = ∫

c

a
f. (7.6)

Inequalities (7.5) and (7.6) together imply

I1 + I2 = ∫
b

a
f + ∫

c

b
f = ∫

c

a
f. ◻

Definition 7.22 If a < b and f is Riemann integrable on [a, b], then we define

∫
a

b
f = −∫

b

a
f.

Definition 7.23 If f is Riemann integrable on any interval I of positive length con-
taining a, then we define

∫
a

a
f = 0.

Corollary 7.24 (Additivity of integrals (general situation)) For any a, b, c ∈ R,
so long as all these integrals exist, we have

∫
c

a
f = ∫

b

a
f + ∫

c

b
f.

PROOF This is just a bunch of cases depending on which of a, b, c is the least and
which is the greatest. For instance, if c ≤ a ≤ b, then

∫
b

c
f = ∫

a

c
f + ∫

b

a
f
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7.6. Uniform continuity and the integrability of continuous functions

by Theorem 7.21. Restated, this is

−∫
c

b
f = −∫

c

a
f + ∫

b

a
f

which rearranges into

∫
c

a
f = ∫

b

a
f + ∫

c

b
f

as wanted. The other cases are similar and omitted. ◻

7.6 Uniform continuity and the integrability of continuous func-
tions
Uniform continuity

Recall what it means for f ∶ R→ R to be continuous on a set E ⊆ R:

Sometimes, we need to be able to choose one δ that works for all x ∈ E, rather
than choosing a different δ for each x. (We’ll see one reason why when we prove
that any continuous function on a compact interval is Riemann integrable on that
interval.)

Unfortunately, this is not assured just because a function is continuous on E. Let’s
consider two examples to learn more:
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7.6. Uniform continuity and the integrability of continuous functions

EXAMPLE A
Let f(x) = x2 and suppose E = (0,1). Prove f is continuous on E.

1

1
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EXAMPLE B

Let f(x) = 1
x

and suppose E = (0,1). Prove f is continuous on E.

1

1

Despite the similar looking arguments, there is a big difference between Examples
A and B above.
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Definition 7.25 Let f ∶ R → R and suppose E ⊆ R. We say f is uniformly contin-
uous (unif. cts.) on E if for every ϵ > 0, there is δ > 0 such that for all a, x ∈ E,

∣x − a∣ < δ implies ∣f(x) − f(a)∣ < ϵ.

On the previous pages, we showed:

• f(x) = x2 is unif. cts. on (0,1), but

• f(x) = 1
x

, despite being cts on (0,1), is not unif. cts. on (0,1).

Theorem 7.26 Let f ∶ R → R. If E ⊆ R is compact and f is continuous on E, then f
is uniformly continuous on E.

PROOF Let ϵ > 0.

Since f is continuous at each a ∈ E, there is δ(a) > 0 such that

∣x − a∣ < δ(a) implies ∣f(x) − f(a)∣ < ϵ2 . (7.7)

Consider the open cover {B 1
2 δ(a)(a) ∶ a ∈ E} of E.

Since E is compact, there is a finite subcover:

{B 1
2 δ(a1)(a1),B 1

2 δ(a2)(a2), ...,B 1
2 δ(an)(an)}.

Let δ =min{1
2δ(a1), ..,

1
2δ(an)}.

Now, let x, y ∈ E be such that ∣x − y∣ < δ.
Since the sets B 1

2 δ(aj)(aj) cover E, x ∈ B 1
2 δ(aj)(aj) for some j.

Therefore ∣x − aj ∣ <
1
2δ(aj), meaning ∣f(x) − f(aj)∣ <

ϵ

2 by (7.7).

Furthermore, ∣y − aj ∣ ≤ ∣y − x∣ + ∣x− aj ∣ < δ +
1
2δ(aj) <

1
2δ(aj) +

1
2δ(aj) = δ(aj).

So by (7.7) again, ∣f(y) − f(aj)∣ <
ϵ

2 .

Putting this together with the triangle inequality,

∣f(x) − f(y)∣ ≤ ∣f(x) − f(aj)∣ + ∣f(aj) − f(y)∣ <
ϵ

2 +
ϵ

2 = ϵ,

making f unif. cts on E by definition. ◻
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APPLICATION

f(x) = x sin 3x is unif. cts. on [−3,7].

The important consequence of Theorem 7.26 is that we can use uniform continu-
ity to show that continuous functions must be integrable, for if f ∶ [a, b] → R is
continuous, it must be uniformly continuous since [a, b] is compact.

Theorem 7.27 Suppose f and g are Riemann integrable on [a, b].

1. For any φ ∶ R→ R which is continuous, φ ○ f is integrable on [a, b].

2. f 2 is integrable on [a, b].

3. fg is integrable on [a, b].

PROOF Let’s start with the first statement. Let ϵ > 0.

The eventual goal is to make a partition P such that U(φ ○ f ;P) − L(φ ○ f ;P) < ϵ.

Part 1: Our goal in this part is to find a bound on φ.

f is integrable on [a, b], so f is bounded on [a, b], meaning

f([a, b]) ⊆ [c, d]

for suitable c, d ∈ R.

Since φ is continuous on [c, d], it is unif. cts. on [c, d].
Thus ∃ δ > 0 such that for all y, y0 ∈ [c, d],

∣y − y0∣ < δ implies ∣φ(y) − φ(y0)∣ <
ϵ

2(b − a) . (7.8)

Also, since φ is cts on [c, d], the image φ([c, d]) is compact, hence bounded.

So there is M ≥ 0 such that ∣φ(y)∣ ≤M for all y ∈ [c, d].

Part 2: Now we define our partition P .

Since f is integrable on [a, b], ∃ partition P = {x0, ..., xn} of [a, b]with

U(f ;P) − L(f ;P) < δϵ

4M . (7.9)
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Part 3: We split the subintervals of P into two types.

● let I1 = {k ∈ {1, ..., n} ∶ wf
k − v

f
k < δ};

● let I2 = {k ∈ {1, ..., n} ∶ wf
k − v

f
k ≥ δ}.

Part 4: We show that for the first type of subinterval, wφ○f
k − vφ○f

k is small.

For every k ∈ I1, and every x, y ∈ [xk−1, xk], ∣f(x) − f(y)∣ < δ so by (7.8),

∣(φ ○ f)(x) − (φ ○ f)(y)∣ < ϵ

2(b − a)

Therefore for k ∈ I1, wφ○f
k − vφ○f

k ≤ ϵ

2(b − a) .
Part 5: We show that the second type of subintervals are very skinny, collectively.

Claim: The total length of the subintervals corresponding to indices
in I2 must be at most

ϵ

4M .

Proof of claim: Suppose not. Then we would have

U(f ;P) − L(f ;P) =
n

∑
k=1
(wf

k − v
f
k) ∆xk

≥ ∑
k∈I2

(wf
k − v

f
k) ∆xk

≥ ∑
k∈I2

δ∆xk

= δ ∑
k∈I2

∆xk ≥ δ
ϵ

4M , contradicting (7.9).

Part 6: Put everything together and show U(φ ○ f ;P) − L(φ ○ f ;P) < ϵ.

U(φ ○ f ;P) − L(φ ○ f ;P) =
n

∑
k=1
(wφ○f

k − vφ○f
k ) ∆xk

= ∑
k∈I1

(wφ○f
k − vφ○f

k ) ∆xk + ∑
k∈I2

(wφ○f
k − vφ○f

k ) ∆xk

≤ ∑
k∈I1

(wφ○f
k − vφ○f

k ) ∆xk + ∑
k∈I2

(M − (−M))∆xk (from part 1)

< ∑
k∈I1

ϵ

2(b − a) ∆xk + ∑
k∈I2

(M − (−M))∆xk (from part 4)

= ϵ

2(b − a) ∑k∈I1

∆xk + 2M ∑
k∈I2

∆xk

≤ ϵ

2(b − a)(b − a) + 2M ∑
k∈I2

∆xk

≤ ϵ2 + 2M ( ϵ

4M ) (from the claim in part 5)

= ϵ2 +
ϵ

2 = ϵ.
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By (3) of the integrability criteria, φ ○ f is integrable on [a, b].

For (2), note that φ(x) = x2 is cts. Therefore φ ○ f = f 2 is integrable by (1).

For (3), observe

fg = 1
2
[(f + g)2 − f 2 − g2] ,

which is integrable by statement (2), together with linearity. ◻

Corollary 7.28 (Continuous functions are integrable) Suppose φ ∶ [a, b] → R is
continuous. Then φ is Riemann integrable on [a, b].

PROOF The function f(x) = x is integrable on [a, b] (earlier example). Apply state-
ment (1) of the previous theorem.

7.7 Fundamental Theorem of Calculus
Order properties of the Riemann integral

Theorem 7.29 (Order properties) Let a < b and suppose f and g are Riemann in-
tegrable on [a, b]. Then:

1. if f ≥ 0 on [a, b], then ∫
b

a
f ≥ 0.

2. if f ≤ g on [a, b], then ∫
b

a
f ≤ ∫

b

a
g.

3. Max-Min Inequality for Integrals: if m,M ∈ R are such that m ≤ f(x) ≤M
on [a, b], then

m(b − a) ≤ ∫
b

a
f ≤M(b − a).

4. Triangle Inequality for Integrals: ∣f ∣ is Riemann integrable on [a, b], and

∣∫
b

a
f ∣ ≤ ∫

b

a
∣f ∣.
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PROOF For statement (1), first notice that f ≥ 0 implies that all the vj ≥ 0∀ j, so any
lower sum for f is nonnegative, because

L(f ;P) =
n

∑
j=1
vj ∆xj ≥ 0.

Thus ∫
b

a
f = sup

P
L(f ;P) ≥ 0.

To prove (2), suppose f ≤ g. Let h = g − f ; then h ≥ 0 on [a, b], so by (1),

0 ≤ ∫
b

a
h = ∫

b

a
(f − g) = ∫

b

a
f − ∫

b

a
g.

Rearrange this inequality to get (2).

For statement (3), apply (2): consider the constant functions m and M ; by (2) and
our previous computation of the integral of a constant function, we have

m(b − a) = ∫
b

a
m ≤ ∫

b

a
f ≤ ∫

b

a
M =M(b − a)

as wanted.

The first part of statement (4) follows from Theorem 7.27, since φ(x) = ∣x∣ is cts.

Finally, since −∣f ∣ ≤ f ≤ ∣f ∣, we have (by (2) of this theorem)

−∫
b

a
∣f ∣ ≤ ∫

b

a
f ≤ ∫

b

a
∣f ∣,

so
∣∫

b

a
f ∣ ≤ ∫

b

a
∣f ∣. ◻

The Fundamental Theorem of Calculus
QUESTION

How do you actually compute integrals?
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Theorem 7.30 (Fundamental Theorem of Calculus (Part 1)) Let E ⊆ R be open,
and suppose f ∶ E → R is cts. Let a ∈ E and define F ∶ E → R by

F (x) = ∫
x

a
f(t)dt.

Then F is differentiable on E and F ′ = f .

PROOF Let x0 ∈ E. We need to show the following limit statement:

lim
h→0

F (x0 + h) − F (x0)
x0

= f(x0).

To do this, let ϵ > 0.

We start by using the continuity of f to get a bound on the integral of f on a small
interval near x0. Since f is cts at x0, there is δ > 0 s.t.

∣t − x0∣ < δ⇒ ∣f(t) − f(x0)∣ < ϵ.

Thinking of t as x0 + h, this means that if ∣h∣ < δ, then for all t ∈ [x0, x0 + h],

∣t − x0∣ ≤ ∣h∣ < δ so ∣f(t) − f(x0)∣ < ϵ.

Now, we can verify the limit statement from earlier. For h such that 0 < ∣h − 0∣ < δ,

∣F (x0 + h) − F (x0)
h

− f(x0)∣ =
RRRRRRRRRRR

∫
x0+h

a f(t)dt − ∫
x0

a f(t)dt
h

− f(x0)
RRRRRRRRRRR

=
RRRRRRRRRRRR

∫
x0+h

x0
f(t)dt
h

− f(x0)
RRRRRRRRRRRR

=
RRRRRRRRRRRR

∫
x0+h

x0
f(t)dt − hf(x0)

h

RRRRRRRRRRRR

=
RRRRRRRRRRRR

∫
x0+h

x0
[f(t) − f(x0)]dt

h

RRRRRRRRRRRR
= 1
∣h∣
∣∫

x0+h

x0
[f(t) − f(x0)] dt∣

≤ 1
∣h∣ ∫

x0+h

x0
∣f(t) − f(x0)∣ dt

< 1
∣h∣ ∫

x0+h

x0
ϵ dt

≤ 1
∣h∣
ϵ ∣(x0 + h) − x0∣ =

1
∣h∣
ϵ ∣h∣ = ϵ.
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Therefore
lim
h→0

F (x0 + h) − F (x)
h

= f(x0),

i.e. F ′(x0) = f(x0) as wanted. Since x0 ∈ U was arbitrarily chosen, F ′ = f on E,
proving the FTC. ◻

Corollary 7.31 (Cts functions have antiderivatives) If E ⊆ R is open and f ∶
E → R is cts, then there is a differentiable function ′f ∶ E → R such that (′f)′ = f on
E.

PROOF Choose a ∈ E and let ′f(x) = ∫
x

a
f(x)dx. Apply the FTC. ◻

Corollary 7.32 (Fundamental Theorem of Calculus (Part 2)) Let E ⊆ R be open
and f ∶ E → R be continuous. If ′f ∶ E → R is any differentiable function such that
(′f)′ = f on E, then for any a, b ∈ E, we have

∫
b

a
f = [ ′f]ba = ′f(b) − ′f(a).

Significance: To compute an integral, it is sufficient to find any antiderivative of f.

PROOF Let ′f be any antiderivative of f . as in the theorem.

Define F (x) = ∫
x

a
f(t)dt − ′f(x). Note

F ′(x) = f(x) − f(x) = 0

so by the , F is constant.

Since F (a) = ∫
a

a
f(t)dt − ′f(a), we have F (a) = − ′f(a).

As F is constant, we have, for any b ∈ U ,

0 = F (b) − F (a)

= [∫
b

a
f(t)dt − ′f(b)] − [∫

a

a
f(t)dt − ′f(a)]

= ∫
b

a
f(t)dt − ′f(b) − 0 + ′f(a)

Rearrange this to get

∫
b

a
f = ′f(b) − ′f(a). ◻
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APPLICATION

∫
2

1
x2 dx =

Remarks on the inverse relationship between differentiation and
integration

In Calculus 1, you are told that differentiation and integration are inverse opera-
tions:

This story you are told is a lie (or at the very least, it’s a gross oversimplification).

EXAMPLE 8
Let τ ∶ [0,1] → R be Thomae’s function.

1. Let F ∶ [0,1] → R be F (x) = ∫
x

0
τ(t)dt. What is F ?

2. For the function F in the previous question, what is F ′?
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7.7. Fundamental Theorem of Calculus

EXAMPLE 9

Let f ∶ R→ R be f(x) =
⎧⎪⎪⎨⎪⎪⎩

x2 sin 1
x2 if x ≠ 0

0 if x = 0
.

1. Prove f is differentiable at all x, and compute f ′(x).

2. Is ∫
1

0
f ′(x)dx = f(1) − f(0)?
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Integration techniques

We end this section by verifying two Calc 2 techniques for computing integrals:

u-substitutions

Theorem 7.33 Let E1,E2 ⊆ R be open sets, and suppose

1. g ∶ E1 → E2 is differentiable on E (hence continuous on E);

2. g′ ∶ E1 → R is continuous; and

3. f ∶ E2 → R is continuous.

Then, for all a < b in E1, ∫
b

a
f(g(x))g′(x)dx = ∫

g(b)

g(a)
f(u)du.

PROOF Let F ∶ E2 → R be defined by F (y) = ∫
y

g(a)
f(u)du.

By the FTC, F is
x

x
xxxxxxxxxxxxxxxxxxxxx and F ′ = x

x
xxxx .

Now let G = F ○ g. This makes G(x) = ∫
g(x)

g(a)
f(u)du.

Notice G(a) = ∫
g(a)

g(a)
f(u)du = 0.

By the Chain Rule, G ∶ E1 → R is differentiable and

G′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).
On the one hand, this makes G an antiderivative of f(g(x))g′(x).
But also, by the FTC ∫

x

a
f(g(t))g′(t) is an antiderivative of f(g(x))g′(x).

So by the
x

x
xxxxxxxxxxxxxxxxxxxxxxxx Theorem, ∃C so that

G(x) = ∫
x

a
f(g(t))g′(t)dt +C.

Plug in x = a to both sides of this to get G(a) = C, i.e. 0 = C. That means

G(x) = ∫
x

a
f(g(t))g′(t)dt.

Plugging in x = b, we get

∫
b

a
f(g(t))g′(t)dt = G(b) = ∫

g(b)

g(a)
f(u)du

as wanted. ◻
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Parts

Theorem 7.34 Let E ⊆ R be open and suppose f, g ∶ E → R are continuous.
Suppose F,G ∶ E → R are differentiable with F ′ = f and G′ = g on E.

Then, ∀a < b ∈ E, ∫
b

a
fG = (FG)(b) − (FG)(a) − ∫

b

a
Fg.

PROOF By the Product Rule,

(FG)′ = F ′G + FG′ = fG + Fg.

Since F and G are continuous on E, fG and Fg are products of continuous
functions, hence continuous on E. By the FTC,

(FG)(b) − (FG)(a) = ∫
b

a
(FG)′ = ∫

b

a
(fG + Fg) = ∫

b

a
fG + ∫

b

a
Fg.

This rearranges into the statement of the theorem. ◻
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7.8 Interchange of limit and integral
QUESTION 1

Let E = [a, b] ⊆ R, and {fn} a sequence of integrable functions E → R.

If fn → f on E, does ∫
b

a
fn → ∫

b

a
f?

(In other words, is lim∫
b

a
fn = ∫

b

a
(lim fn)?)

EXAMPLE E = [0,1]; fn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2n − 2n ∣x − 1
2n ∣ 0 ≤ x ≤ 1

n

0 x > 1
n

fn

11

n

1

2 n

2n
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QUESTION 2
Let E = [a, b] ⊆ R, and {fn} a sequence of integrable functions E → R.

If fn ⇉ f on E, does ∫
b

a
fn → ∫

b

a
f?

Theorem 7.35 (Interchange of limit and integral) Suppose {fn} is a sequence of
integrable functions on E = [a, b], and suppose fn ⇉ f on E.

Then f is integrable on E and lim
n→∞∫

b

a
fn = ∫

b

a
f .

PROOF First, we claim {∫
b

a
fn} is a Cauchy sequence of numbers.

To show this, let ϵ > 0.
Since fn ⇉ f , {fn} is uniformly Cauchy, so ∃M s.t.

m,n ≥ N ⇒ ∣fm(x) − fn(x)∣ <
ϵ

b − a
∀x ∈ E.

Restated, we have ∀x ∈ E,

−ϵ
b − a

< fm(x) − fn(x) <
ϵ

b − a

⇒ ∫
b

a

−ϵ
b − a

< ∫
b

a
[fm(x) − fn(x)] < ∫

b

a

ϵ

b − a

⇒ −ϵ < ∫
b

a
fm − ∫

b

a
fn < ϵ

which means ∣∫
b

a
fm − ∫

b

a
fn∣ < ϵ.

This proves the claim, so by completeness, ∃L ∈ R so that ∫
b

a
fn → L.

Now, we will show ∫
b

a
f = L using the definition of integral.

To do this, let ϵ > 0.
Since fn ⇉ f , ∃N1 so that

n ≥ N1⇒ ∣fn(x) − f(x)∣ <
ϵ

3(b − a) ∀x ∈ [a, b].

Since ∫
b

a
fn → L, ∃N2 so that

n ≥ N2⇒ ∣∫
b

a
fn −L∣ <

ϵ

3 .
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Let N =max{N1,N2}. Since fN is integrable on [a, b], ∃ δ > 0 so that

∣∣P̂ ∣∣ < δ⇒ ∣RS(fN ; P̂) − ∫
b

a
fN ∣ <

ϵ

3 .

Now, let P̂ be a tagged partition of [a, b]with ∣∣P̂ ∣∣ < δ.

∣RS(f ; P̂) −L∣ ≤ ∣RS(f ; P̂) −RS(fN ; P̂)∣ + ∣RS(fN ; P̂) − ∫
b

a
fN ∣ + ∣∫

b

a
fN −L∣

< ∣
n

∑
k=1
[f(ck) − fN(ck)]∣ ∆xj +

ϵ

3 +
ϵ

3

≤
n

∑
k=1
∣f(ck) − fN(ck)∣∆xj +

ϵ

3 +
ϵ

3

<
n

∑
k=1

ϵ

3(b − a)∆xj +
ϵ

3 +
ϵ

3

= ϵ

3(b − a)
n

∑
k=1

∆xj +
ϵ

3 +
ϵ

3

= ϵ

3(b − a)(b − a) +
ϵ

3 +
ϵ

3
= ϵ3 +

ϵ

3 +
ϵ

3
= ϵ.

By definition, ∫
b

a
f = L = lim

n→∞∫
b

a
fn. ◻
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7.9 Chapter 7 Summary
DEFINITIONS TO KNOW

Nouns x

• A partition P of [a, b] is a finite list of numbers {x0, x1, ..., xn} with a =
x0 < x1 < x2 < ⋯ < xn = b.
n is the size of P ; the kth subinterval of P is [xk−1, xk]; the width of the
kth subinterval is ∆xk = xk − xk−1; the norm of P is ∣∣P∣∣ = max{∆xk ∶ 1 ≤
k ≤ n}.

• A tagged partition P̂ is a partition together with a list of test points
{c1, ..., cn}, i.e. points where ck ∈ [xk−1, xk] for all k.

• A refinement of partition P is another partition Q s.t. Q ⊇ P as sets.
The join P ∨Q is the least common refinement of P and Q, i.e. P ∨Q =
P ⋃Q as sets.

• The Riemann sum for f ∶ [a, b] → R associated to tagged partition P̂ is

the number RS(f ; P̂) =
n

∑
k=1

f(ck)∆xk.

• The upper Riemann sum for for bounded f ∶ [a, b] → R associated to

(untagged) partition P is the number U(f ;P) =
n

∑
k=1

wk∆xk, where wk =

sup{f(x) ∶ x ∈ [xk−1, xk]}.
The lower Riemann sum for for bounded f ∶ [a, b] → R associated to

(untagged) partition P is the number U(f ;P) =
n

∑
k=1

vk∆xk, where vk =

inf{f(x) ∶ x ∈ [xk−1, xk]}.

• If a < b, the Riemann integral of f from a to b is a number ∫
b

a
f so that

∀ ϵ > 0∃ δ > 0 s.t. if ∣∣P̂ ∣∣ < δ, then ∣RS(f ; P̂) − ∫
b

a
f ∣ < ϵ.

If a = b, then ∫
a

a
f = 0.

If a > b, then ∫
b

a
f = −∫

a

b
f .

Adjectives that describe functions f ∶ R→ R x

• f is called integrable on [a, b] if ∫
b

a
f exists (see above).

• f is called uniformly continuous on E ⊆ R if ∀ ϵ > 0∃ δ > 0 s.t. for all
x, a ∈ E, ∣x − a∣ < δ implies ∣f(x) − f(a)∣ < ϵ.
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THEOREMS WITH NAMES

Integrability criteria Suppose f ∶ [a, b] → R is bounded. TFAE:

1. f is integrable on [a, b].
2. ∀ϵ > 0, ∃δ > 0 s.t. if P is a partition of [a, b] with ∣∣P∣∣ < δ, then U(f ;P) −
L(f ;P) < ϵ;

3. ∀ϵ > 0, ∃ partition P of [a, b]with U(f ;P) − L(f ;P) < ϵ;
4. sup{L(f ;P) ∶ P is a part. of [a, b]} = inf{U(f ;P) ∶ P is a part. of [a, b]}

When statement (4) holds, both quantities in statement (4) equal ∫
b

a
f .

Max-Min Inequality for Integrals If f is integrable on [a, b] and m ≤ f(x) ≤ M ,

then m(b − a) ≤ ∫
b

a
f ≤M(b − a).

Triangle Inequality for Integrals If f is integrable on [a, b], then so is ∣f ∣ and

∣∫
b

a
f ∣ ≤ ∫

b

a
∣f ∣.

Fundamental Theorem of Calculus (FTC) Part 1 If f ∶ E → R is continuous where
E is open, if a ∈ E and F (x) = ∫

x

a
f , then F is differentiable on E and F ′ = f .

Fundamental Theorem of Calculus (FTC) Part 2 If f ∶ E → R is continuous where
E is open, and if ′f is any antiderivative of f on E, then for any a < b in E,

∫
b

a
f = ′f(b) − ′f(a).

Continuous functions have antiderivatives If f ∶ E → R is continuous where E is
open, then ∃ differentiable function ′f ∶ E → R which is an antiderivative of
f .

(☀) Interchange of limit and integral If {fn} is a sequence of integrable functions

on [a, b]with fn ⇉ f on [a, b], then f is integrable on E and ∫
b

a
fn → ∫

b

a
f .

OTHER THEOREMS TO REMEMBER

• Partitions of arbitrarily small norm exist.

• Integrable functions must be bounded.

• Any lower sum of f is less than or equal to any upper sum of f on the same
interval.
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• Refining a partition decreases the upper sum and increases the lower sum.

• Upper (lower) sums can be approximated arbitrarily well by Riemann sums:
∀P and ∀ ϵ > 0, ∃ tagging P̂ of P so that RS(f ; P̂) − L(f ;P) < ϵ and ∃ tagging
P̂ of P so that U(f ;P) −RS(f ; P̂) < ϵ.

• Riemann sums and integrals are linear (they preserve +, − and constant mul-
tiples).

• Integrals are additive: ∫
c

a
f = ∫

b

a
f + ∫

c

b
f .

• Monotone functions are integrable.

• Continuous functions are integrable.

More generally, if f is integrable and ϕ is continuous, then ϕ ○ f is integrable.

• Products of integrable functions are integrable.

• A continuous function on a compact domain is automatically uniformly con-
tinuous.

• Integrals preserve soft inequalities.

FACTS ABOUT SPECIFIC FUNCTIONS

• Dirichlet’s function 1Q is not integrable on any interval of positive length.

• Thomae’s function f is integrable on [0,1] and ∫
1

0
f = 0.

CAUTION: If f is Thomae’s function, then [∫
x

a
f]
′
≠ f .

• The Cantor function c is integrable on [0,1] and ∫
1

0
c = 1

2 .

• If f(x) = { x
2 sin 1

x2 x ≠ 0
0 x = 0 , then f is differentiable at 0, but f ′ is not inte-

grable on any interval containing 0.

CAUTION: For this function, if a < 0 < b then ∫
b

a
f ′ ≠ f(b) − f(a).
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PROOF TECHNIQUES

To prove that f is integrable on [a, b], do one of these things:

1. Show that f is a sum/difference/product of functions already known to be
integrable.

2. Show f is a continuous composition of a function already know to be inte-
grable.

3. Show f is monotone.

4. Show f is continuous.

5. (☀) Show f is the uniform limit of integrable functions.

6. Use an integrability criterion: show f is bounded and then let ∀ ϵ > 0. Come
up with a partition P so that U(f ;P) − L(f ;P) < ϵ.

7. Show f is bounded and then take a sequence of partitions Pn with ∣∣Pn∣∣ → 0
and show lim

n→∞
U(f ;P) = lim

n→∞
L(f ;P); then apply the result of a HW problem.

8. Use the definition (requires guessing what ∫
b

a
f is): let ϵ > 0 and come up

with δ > 0 so that if ∣∣P̂ ∣∣ < δ, then ∣RS(f ; P̂) − ∫
b

a
f ∣ < ϵ.

To prove that f is not integrable on [a, b], do one of these things:

1. Show f is unbounded on [a, b]

2. Show sup
P
L(f ;P) ≠inf

P
U(f ;P).

3. Take a sequence of partitions Pn with ∣∣Pn∣∣ → 0 and show lim
n→∞
U(f ;P) >

lim
n→∞
L(f ;P); then apply the result of a HW problem.

To prove that f is uniformly continuous on E, do one of these things:

1. Show f is continuous and E is compact.

2. Use the definition: let ϵ > 0 and come up with δ > 0 so that ∣x − a∣ < δ implies
∣f(x) − f(a)∣ < ϵ.
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7.10 Chapter 7 Homework
Exercises from Section 7.1

1. Prove Statement 2 of Theorem 7.5, which says that if f, g ∶ [a, b] → R and
P̂ = {x0, ..., xn};{c1, ..., cn} is a tagged partition of [a, b], then RS(f + g; P̂) =
RS(f ; P̂) +RS(g; P̂).

Exercises from Section 7.2

2. Prove the second statement of Lemma 7.11, which says that if a < b and f ∶
[a, b] → R is bounded, and if P = {x0, x1, ..., xn} is any partition of [a, b], then
for any ϵ > 0, P can be tagged with test points to create P̂ so that U(f ;P) −
RS(f ; P̂) < ϵ.

Exercises from Section 7.3

3. Prove the second inequality in Theorem 7.16, which says that if f ∶ [a, b] → R
is bounded and P andQ are partitions of [a, b] such thatQ ≥ P , then U(f ;P) ≥
U(f ;Q).

Exercises from Section 7.4

4. Let f ∶ [a, b] → R be bounded. Prove that the following are equivalent:

a) f is integrable on [a, b].
b) For any sequence {Pn} of partitions of [a, b]with ∣∣Pn∣∣ → 0, lim

n→∞
U(f ;Pn) =

lim
n→∞
L(f ;Pn).

Also, prove that if statement (2) holds, then the common values of these limits

is ∫
b

a
f .

5. Let a < b. Without using the Fundamental Theorem of Calculus (or any other
results after the integrability criteria), prove that f(x) = x is integrable on

[a, b] and determine ∫
b

a
x.

Hint: You may use the result of Exercise 4.

6. Let a < b. Without using the Fundamental Theorem of Calculus (or any other
results after the integrability criteria), prove that f(x) = x2 is integrable on

[0, b] and determine ∫
b

0
x2.
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Hints: You may use the result of Exercise 4, and you may use without proof

the summation formula
n

∑
k=0

k2 = n(n + 1)(2n + 1)
6 .

(P.S. if you are curious how to prove this summation formula, use induction.)

7. Let f, g ∶ R → R be so that f is integrable on [a, b], and let z ∈ [a, b]. Suppose

g(x) = f(x) for all x ∈ [a, b] − {z}. Prove g is integrable on [a, b] and ∫
b

a
g =

∫
b

a
f .

Exercises from Section 7.5

8. Prove the second statement of Theorem 7.20, which says that if f is integrable
on [a, b] (with a < b), then for any r ∈ R, r f is integrable on [a, b] and

∫
b

a
(rf) = r∫

b

a
f.

Exercises from Section 7.6

9. Let a > 0 be a constant. Prove that the function f(x) = 1
x2 is uniformly contin-

uous on [a,∞).

10. Prove that f(x) = 1
x2 is not uniformly continuous on (0,∞).

11. Let E ⊆ R. A function f ∶ E → R is called Lipschitz if there is a constant K > 0
so that

∣f(x) − f(y)∣ ≤K ∣x − y∣

for all x, y ∈ E.

a) Prove that every Lipschitz function is uniformly continuous on E.

b) Prove that f(x) =
√
x is uniformly continuous on [0,1], but not Lipschitz

on [0,1].

12. Suppose f is continuous and f(x) ≥ 0 for all x ∈ [a, b]. Prove that if ∫
b

a
f = 0,

then f(x) = 0 for all x ∈ [a, b].
Hints: Suppose not, i.e. that there is a z ∈ [a, b] such that f(z) > 0. Explain why

this implies that there is a c ∈ (a, b) (not [a, b]) such that f(c) > 0. Let ϵ = f(c)2
and use the uniform continuity of f to find a δ > 0 such that ∣x− c∣ < δ implies
∣f(x) − f(c)∣ < ϵ. Then use additivity to split the integral into pieces; show
one piece must be strictly positive and use this to derive a contradiction.
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13. Show, by providing a specific counterexample with proof, that if f(x) ≥ 0

for all x ∈ [a, b] (but f is not assumed continuous), then ∫
b

a
f = 0 does not

necessarily imply f(x) = 0 for all x ∈ [a, b].

14. Let f ∶ R → R be differentiable and suppose f ′ is bounded. Prove that f is
uniformly continuous.

15. Give an example of a function g ∶ [0,1] → R which is uniformly continuous
and differentiable on (0,1), but for which g′ is not bounded on (0,1).

Exercises from Section 7.7

16. Prove that if f and g are both continuous and ∫
b

a
f = ∫

b

a
g, then there is a

c ∈ [a, b]where f(c) = g(c).

17. Prove that if f ∶ [0,1] → R is continuous and ∫
x

0
f(t)dt = ∫

1

x
f(t)dt for all

x ∈ [0,1], then f(x) = 0 for all x ∈ [0,1].

18. Prove the Mean Value Theorem for Integrals (not to be confused with the
regular Mean Value Theorem), which says that if a < b and if f ∶ [a, b] → R is
continuous, then there is a c ∈ [a, b] such that

1
b − a ∫

b

a
f(x)dx = f(c).

Hint: Apply the Mean Value Theorem to an appropriately defined function
g. If you want g′(c) to be f(c), how should g be defined?

19. Prove the Weighted Law of the Mean, which says that if f, g ∶ [a, b] → R are
such that g and fg are integrable on [a, b] and g(x) ≥ 0 for all x ∈ [a, b], then
∃ c ∈ R such that

∫
b

a
fg = c∫

b

a
g.

20. Suppose f ∶ [a, b] → R is continuous and g ∶ [a, b] → [0,∞) is integrable on
[a, b]. Prove that ∃ t ∈ [a, b] such that

∫
b

a
fg = f(t)∫

b

a
g.

21. In this problem we prove the Schwarz Inequality for integrable functions,
which says that if f, g ∶ [a, b] → R are integrable, then

(∫
b

a
fg)

2
≤ (∫

b

a
f 2)(∫

b

a
g2) .
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a) Prove that for all t > 0,

2 ∣∫
b

a
fg∣ ≤ t∫

b

a
f 2 + 1

t ∫
b

a
g2.

Hint: Consider ∫
b

a
(tf + g)2 and ∫

b

a
(tf − g)2. What is true about these

two integrals (think in terms of inequalities)?

b) Prove that if ∫
b

a
f 2 = 0, then ∫

b

a
fg = 0.

c) Prove the Schwarz Inequality.
Hints: Most of the time, you can choose a particular value of t in the
inequality you proved in part (a) and the Schwarz Inequality will follow
from algebra. Sometimes, however, your formula for t won’t work–part
(b) of this question helps you handle that situation.

22. Prove Jensen’s Inequality (this name is pronounced “yen-sen”), which says
that if ϕ ∶ R → R is a differentiable and convex function (see the Chapter 6
homework for a definition of convex), then for any f ∈ R([0,1]),

ϕ(∫
1

0
f) ≤ ∫

1

0
ϕ ○ f.
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