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What is a LEGO Brick?

A LEGO brick is a plastic building toy which typically has studs
on one side and holes on another side used for interlocking them.

Most LEGO bricks are rectangular prisms. Here is a picture of
a 2× 4 LEGO brick (the studs are on the top; the holes are on
the bottom):

Question: Suppose you connect n LEGO bricks of the same
size (and color) together. How many different buildings can you
make?
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Notation

Define B to be a specific type of LEGO brick (for example, a

2× 4 brick).

Then let TB(n) be the number of buildings (counted up to rota-

tions and translations) that can be constructed out of n bricks

of type B.

Main Question: What kind of function is TB(n)? How fast

does it grow?

2



What is entropy?

Definition: The entropy of a LEGO brick of type B is the
number

hB = lim
n→∞

1

n
logTB(n)

(that this limit exists needs to be proven).

Idea: The entropy of a function captures its exponential growth
rate. If hB exists and is finite, then TB(n) ∼ 2hBn so TB grows
exponentially at rate hB.

Note: we use log base 2, but the base is not important.

Remark: By “entropy”, we mean information entropy, which is
somewhat different than the thermodynamic entropy you learn
about in chemistry.
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History

In a paper published in 2014 by Durhuus and Eilers, the authors

showed:

1. The entropy of any rectangular LEGO brick is finite.

(Reason: superadditivity of a sequence growing at the same

rate as logTB(n).)

2. log 78 ≤ h2×4 ≤ log 177. (The methods they use could be

adapted to give bounds for any rectangular brick.)

We want to extend these results to other types of LEGO bricks.
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L-shaped LEGO bricks

A brick in class L(B,W, b, w) is a B ×W rectangular brick, with

a b× w notch cut out of the upper-right corner (when the brick

is rotated so that the side of length B is horizontal):

The picture above is a brick in class L(6,6,3,4).
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General results about L-shaped bricks

Lemma For any B,W, b and w,

TL(B,W,b,w)(2) = 2(2B−1)(2W−1)+2(B+W−1)2−9(B−b)(W−w).

Theorem 1 (McClendon-W) For any B,W, b and w, hL(B,W,b,w)
exists and is finite.

Theorem 2 (McClendon-W) logTL(B,W,b,w)(2) ≤ hL(B,W,b,w) ≤

log

(
(2(BW − (B − b)(W − w))− 1)BW−(B−b)(W−w)−1(BW − (B − b)(W − w))

(2(BW − (B − b)(W − w))− 2)(BW−(B−b)(W−w))−2

)
.
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Our favorite example: L(2,2,1,1)

From the formula on the previous slide:

TL(2,2,1,1)(2) = 27⇒ hL(2,2,1,1) ≥ log 27.

We have recently improved this lower bound to log 36 and we

think we can improve it further.
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Our favorite example: L(2,2,1,1)

Our best upper bound (as of now; we are planning to sharpen

this) is

hL(2,2,1,1) ≤ log 146.

Where does this upper bound come from?
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Finding the upper bound

Consider a finite string of 6(n−1) symbols taken from a “alpha-

bet” of size 13.

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

The first six symbols in this sequence tell us how to attach the

next bricks to the first brick. The next six tell us how to attach to

the second brick. The same can be done for this entire sequence

of symbols.
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Finding the upper bound

Some of these sequences will lead to contradictions; for example,

if two bricks are forced to occupy the same space, or if the

building is not contiguous.

The sequences that do not lead to a contradiction are called al-

lowable. We can find an upper bound on the number of allowable

sequences, giving us a upper bound on TB(n).
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