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ABSTRACT
We study minimal Zd-Cantor systems and the relationship between
their speedups, their collections of invariant Borel measures, their
associated unital dimension groups, and their orbit equivalence
classes. In theparticular case ofminimalZd-odometers, we show that
their bounded speedups must again be odometers but, contrary to
the 1-dimensional case, they need not be conjugate, or even isomor-
phic, to the original. Furthermore, we give examples of speedups of
Zd-odometers which show the significant role played by a choice of
‘cone’ associated to the speedup.
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1. Introduction

Speedups of measurable dynamical systems have been studied since the 1969 work of
Neveu [27,28]. In this context, the object under consideration is a Lebesgue probability
space (X,X ,μ) with an ergodic, measure-preserving transformation T : X→ X, and by
its ‘speedup’wemean a transformationTp where p : X→ Z+. Neveu characterized exactly
which functions p lead to Tp being bijective, and proved a version of Abramov’s formula
relating the entropy of Tp to the entropy of T. In a seminal paper of 1985, Arnoux et al.
[2] showed that if T and S are any two ergodic, measure-preserving automorphisms, there
is a speedup of T that is measurably conjugate to S. In other words, if the integral of p is
no object, then one can speed up T to ‘look like’ S. This (trivial) classification of ergodic
transformations up to speedup equivalence has the same flavour as work of Dye [12,13]
in which he proved that all ergodic, measure-preserving automorphisms are (measurably)
orbit equivalent.

The work of Arnoux, Ornstein and Weiss was generalized to ergodic compact group
extensions by Babichev et al. in 2011 [5], and to actions of commuting transformations
(i.e. higher-dimensional actions) by the authors in 2014 [24] and 2015 [25].

In this paper we consider speedups in the topological category. This was first done in
the 2016 Ph.D. thesis of Ash [3] when he studied systems of the form (X,T) where X is
a minimal Cantor space and T : X→ X is a homeomorphism. Further results along this
line can be found in [4]. Similar to how the result of [2] reflects Dye’s Theorem, Ash’s
results are closely tied to fundamental results about topological orbit equivalence proved
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byGiordano et al. [19]. In particular, the last authors showed that orbit equivalence for such
an (X,T) is governed by a unital ordered dimension group that can be associated to the
system. They proved two such systems are orbit equivalent if and only if these dimension
groups are isomorphic, and also if and only if there is a homeomorphism between the
phase spaces of the systems that induces a bijection between their sets of invariant Borel
measures. Ash’s work similarly relates these objects to speedups. For instance, he showed
that one minimal Cantor system is a speedup of another if and only if a surjection between
their unital ordered dimension groups exists, and this is in turn equivalent to the existence
of a homeomorphism between the phase spaces which induces an injection on the sets of
invariant Borel measures.

This work was continued in a 2018 paper by Alvin et al. [1], with the additional assump-
tion that the speedup function p is bounded. They studied the family of minimal Cantor
systems given by odometers and showed there is little freedom for their speedups: a
minimal bounded speedup of an odometer must be a conjugate odometer.

In this paper, we study these topological notions in the context of actions ofZd. Section 2
provides further background for our work. In Section 3, we relate speedups to invariant
measures for the actions and to the orbit equivalence theory of Giordano, Putnam and
Skau. This section culminates with a series of results which we summarize here:

Theorem A: Suppose (X1,T1) is a minimal Zd1-Cantor system and (X2,T2) is a minimal
Zd2-Cantor system. If there is a speedup of T1 conjugate to T2, then:

(1) there is a homeomorphism F : X1→ X2 which induces an injective transformation from
the set of T1-invariant measures to the set of T2-invariant measures; and

(2) there is a surjective group homomorphism from the dimension group of T2 to the
dimension group ofT1 which preserves the positive cones and order units of those groups.

Theorem B: Suppose (X1,T1) is a Zd1-odometer and (X2,T2) is a Zd2-odometer. If there is
a speedup of T1 conjugate to T2, then T1 and T2 are orbit equivalent.

We prove the individual statements of these theorems in Lemma 3.2, Theorems 3.6,
and 3.7.

Section 4 addresses a partial converse of Theorem B for the case where d2 = 1:

Theorem C: Suppose (X1,T1) is a Zd1-odometer and (X2,T2) is a Z-odometer. If T1 and
T2 are orbit equivalent, then for any cone C ⊆ Zd1 , there is a C-speedup S of T1 that is
topologically conjugate to T2.

Finally, in Section 5 we describe what is meant by a bounded speedup, and we discuss
the properties of those speedups in the setting ofZd-odometers.We prove in Theorems 5.3
and 5.5 the following results, which show that in some ways, bounded speedups of Zd-
odometers are similar to the one dimensional setting (statement 1) but in other ways they
are not (statement 2).

Theorem D: Suppose (X,T) is a free Zd1-odometer. If S : Zd2 � X is a minimal bounded
speedup of T, then:
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(1) (X, S) is a free Zd2-odometer, but
(2) (X, S) is not necessarily conjugate to (X,T).

We conclude by showing, via Theorem 5.7 and Corollary 5.10, that the choice of cone
C impacts whether one can obtain a bounded speedup of one Zd-odometer which is
conjugate to a second:

Theorem E: (1) For any two Zd-odometers that are continuously orbit equivalent, there is
a cone C ⊆ Zd such that one of the odometers is conjugate to a C-speedup of the other.

(2) There exists Z2-odometers that are continuously orbit equivalent and a cone C ⊆ Z2

such that no bounded C-speedup of one odometer is conjugate to the other.

2. Terminology

2.1. Dynamical systems

We begin with some standard definitions from topological dynamics. First, given a group
G and a topological space X, we say that (X,T) is a G-action, and write T : G � X, if for
every g ∈ G, there is a homeomorphism Tg : X→ X, and these homeomorphisms satisfy
Tgh = Tg ◦ Th for every g, h ∈ G and also that T0(x) = x for all x ∈ X, where 0 denotes
the identity element of G. In this paper, we concern ourselves with actions where G = Zd

for some d, and will henceforth only give definitions in this setting. However, the ideas
presented in this section apply to actions of more general groups as well.

Given T : Zd � X and x ∈ X, the orbit of x is the set {Tv(x) : v ∈ Zd}. A Zd-action
(X,T) is called free if, for any x ∈ X, Tv(x) = x implies v = 0. A Zd-action is calledmini-
mal if every orbit is dense in X. A minimal Zd-action (X,T) on a Cantor space X is called
aminimal Zd-Cantor system. Given a minimal Zd-Cantor system (X,T), the set of Borel
probability measures invariant under each Tv is denoted M(X,T). If for μ ∈M(X,T),
the only Borel sets invariant under every Tv have μ-measure 0 or 1, then we say (X,T)
is ergodic with respect to μ. It is well known that M(X,T) �= ∅; if M(X,T) consists of
exactly one measure μ, then (X,T) is ergodic with respect to μ and we say that (X,T) is
uniquely ergodic; we may indicate such a system by (X,T,μ).

2.2. Equivalence relations on actions

A natural problem in topological dynamics is to classify systems up to various notions of
equivalence, the most natural notion being conjugacy. Suppose T : Zd � X and S : Zd �
Y . We say (X,T) and (Y , S) are (topologically) conjugate if there is a homeomorphism
� : X→ Y such that� ◦ Tv = Sv ◦� for all v ∈ Zd.

SupposeT : Z2 � X and one defines S by switching the generators ofT, i.e. S(v1,v2)(x) =
T(v2,v1)(x). In general, such a T and S are not conjugate, but they must be equivalent in
the following weaker sense: if T : Zd � X and S : Zd � Y , we say (X,T) and (Y , S) are
isomorphic if there is a homeomorphism� : X→ Y and a group isomorphismϑ : Zd →
Zd such that � ◦ Tv = Sϑ(v) ◦� for all v ∈ Zd. In this setting, ϑ must be given by some
matrix in GLd(Z).

An even weaker notion of equivalence is when T and S can be said to have the same
orbits.More precisely, letT : Zd1 � X and S : Zd2 � Y .We say (X,T) and (Y , S) are orbit
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equivalent if there is a homeomorphism � : X→ Y (called an orbit equivalence) such
that for every x ∈ X,

�

⎛⎝ ⋃
v∈Zd1

Tv(x)

⎞⎠ = ⋃
v∈Zd2

Sv (�(x)) .

IfT : Zd1 � X and S : Zd2 � Y are free actionswhich are orbit equivalent via� : X→ Y ,
then there is a function h� : X × Zd2 → Zd1 such that for all x ∈ X and v ∈ Zd2 ,

Sv(�(x)) = �
(
Th�(x,v)(x)

)
and a function h�−1 : Y × Zd1 → Zd2 such that for all y ∈ Y and w ∈ Zd1 ,

Tw(�−1(y)) = �−1
(
Sh�−1 (y,w)(y)

)
.

The functions h� and h�−1 are called the orbit cocycles associated to the orbit equivalence
�.

For a general orbit equivalence, the orbit cocycles h� and h�−1 may or may not be
continuous, but is natural to ask for some sort of continuity. With this in mind, we say
T : Zd1 � X and S : Zd2 � Y are continously orbit equivalent if there is an orbit equiv-
alence � : X→ Y whose orbit cocycles h� and h�−1 are continuous with respect to the
given topologies on X and Y, the discrete topologies on Zd1 and Zd2 , and the product
topologies on X × Zd2 and Y × Zd1 .

It is clear that conjugate actions are isomorphic, isomorphic actions are continuously
orbit equivalent, and continuously orbit equivalent actions are orbit equivalent. However,
none of these equivalence relations coincide (see [8,22,26]).

2.3. Speedups

In this paper, we examine a relation onminimalZd-Cantor systems coming from speedups.
Speedups were initially studied by Neveu [27,28], although he did not use the terminology
speedup. However, the word speedup came to be used because of its interpretation in the
one-dimensional case (i.e. actions of Z). Essentially, if T : X→ X is some map, then a
speedup of T is a map Tp : X→ X where p : X→ {1, 2, 3, . . .}. So (X,Tp) is a system in
which points are ‘sped up’, i.e. they move forward more quickly than they do under T.

To define what is meant by a speedup of a Zd-action, it becomes necessary to specify
what one means by ‘moving forward’. Toward that end, we make the following definitions:

Definition 2.1: A filled cone is an open, connected subset of Rd whose boundary consists
of d distinct hyperplanes passing through the origin. A cone is the intersection of a filled
cone with (Zd − {0}).

In particular, notice the zero vector does not belong to any cone. There are only two
cones which are subsets of Z: Z+ = {1, 2, 3, . . .} and Z− = {· · · ,−3,−2,−1}.

Definition 2.2: Let T : Zd1 � X and let d2 ∈ Z+.
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A cocycle for T is a function p : X × Zd2 → Zd1 such that p(x, 0) = 0 for all x ∈ X and
p(x, v)+ p(Tp(x,v)(x),w) = p(x, v + w) for all x ∈ X and all v,w ∈ Zd2 .

A speedup of (X,T) is an action S : Zd2 � X where Sv(x) = Tp(x,v)(x) for some cocycle
p called the speedup cocycle.

Given a cone C ⊆ Zd1 , if (X, S) is a speedup of (X,T) such that its speedup cocycle p
satisfies p(x, ej) ∈ C for all j ∈ {1, . . . , d2} and all x ∈ X, thenwe say (X, S) is aC-speedup of
(X,T). Here, and throughout the paper, ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth standard basis
vector.

Observe that if (X, S) is a C-speedup of (X,T) with speedup cocycle p, then it follows
from the cocycle relation, together with the fact that cones are closed under addition, that
p(x, v) ∈ C for all v ∈ [0,∞)d2 − {0}.

Suppose (X,T) and (Y , S) are orbit equivalent via � : X→ Y . Then the orbit cocycles
h� and h�−1 are indeed cocycles, and h can be thought of as a speedup cocycle giving a
speedup of (X,T) (though not necessarily a C-speedup for a particular cone C) which is
conjugate to (Y , S). However, speedups are not necessarily orbit equivalences: given T :
Z � X, the cocycle p(x, v) = 2v defines (X,T2) as a speedup of (X,T). In many cases, T2

is not conjugate, nor even orbit equivalent, to T.
To define a C-speedup of (X,T) with C ⊆ Zd, it is sufficient to specify d functions

p1, . . . , pd : X→ C with the property that, for all i, j ∈ {1, . . . , d},
pi(Tej(x))+ pj(x) = pj(Tei(x))+ pi(x).

Then by defining Sej = Tpj (in other words, defining p(x, ej) = pj(x) and extending so
that p is a cocycle), so long as S acts by homeomorphisms, the Zd-action (X, S) will be a
speedup of (X,T). We say that the speedup so defined is generated by the p1, . . . , pd.

We remark that by definition, a speedup of (X,T) must be an action by homeo-
morphisms, so for example, given T : Z � X and p : X × Z→ Z with p(x, 1) = 2 and
p(T(x), 1) = 1 for some x, p cannot be a speedup cocycle for a speedup of T, because said
speedup would map both x and T(x) to T2(x). In [27], Neveu gave conditions on the val-
ues of p(x, 1) which are necessary and sufficient for a function p : X × {1} → {1, 2, 3, . . .}
to generate a valid speedup cocycle for a Z-action.

In general, the speedup cocycle p defining a speedup need not be continuous, but itmust
be Borel if the action being sped up is a free action:

Theorem 2.3: Let T : Zd1 � X and S : Zd2 � X. Suppose (X, S) is a speedup of (X,T). If
(X,T) is free, then the speedup cocycle p : X × Zd2 → Zd1 is a Borel function.

Proof: Fix v ∈ Zd1 and w ∈ Zd2 . We will show that the set

A(v,w) = {x ∈ X : p(x,w) = v}
is closed, from which it follows that for any S ⊆ Zd1 ,

p−1(S) =
⋃
v∈S

⋃
w∈Zd2

A(v,w)

will be Fσ , meaning p is Borel.
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Let {xj} ⊆ A(v,w) be such that xj→ x. Since Tv and Sw are both homeomorphisms,
we see that Tv(xj)→ Tv(x) and Sw(xj)→ Sw(x). Since, by definition of A(v,w), we know
Tv(xj) = Sw(xj) for all j, we see that Tv(x) = Sw(x). Since (X,T) is free, it follows that
p(x,w) = v, meaning x ∈ A(v,w). �

Speedups of measure-preserving (as opposed to topological) actions ofZd were studied
in [2,5] (for d = 1) and [24,25] for (d>1). In particular, a main result of [24] is a version
of Dye’s theorem [12,13] stating that given any two ergodic measure-preserving actions of
Zd, they are speedup equivalent, in the sense that for any coneC ⊂ Zd, there is ameasurable
C-speedup of one which is measurably conjugate to the other. A major aim of this paper is
to investigate analogous results in the topological category.

2.4. Odometers

We will especially consider a well-studied class of minimal Cantor systems called odome-
ters. These can be defined in a variety of ways; the two approaches we review here are a
construction due to Cortez [7] and an equivalent characterization given by Giordano et al.
[22].

For Cortez’ construction, we begin by considering any decreasing sequence G =
{Gj}∞j=1 of subgroups of Zd, where each Gj has finite index in Zd. For each j ≥ 1, let
qj : Zd/Gj+1→ Zd/Gj be the quotient map. Then, define

XG = lim←− (Zd/Gj)

= {(x1, x2, x3, . . .) : xj ∈ Zd/Gj and qj(xj+1) = xj for all j}.

XG is a topological group (the topology is the product of the discrete topologies on
each Zd/Gn); for each j ≥ 1 there is a natural coordinate map πj : XG→ Zd/Gj. More
importantly, there is a minimal action σG : Zd � XG given by

σ v
G(x1, x2, x3, . . .) = (x1 + v, x2 + v, x3 + v, . . .)

where the sum in the jth component is taken mod Gj.

Definition 2.4 (Cortez definition of odometer): AZd-odometer is anyZd-action conju-
gate to one of the form (XG, σG) described above, where G is some decreasing sequence
of finite-index subgroups of Zd.

We remark that G-odometers can be defined for any residually finite group G (not just
Zd); for more, see [9] or [10].

Theorem 2.5 (Basic properties of odometers): Let G = {G1,G2, . . .} be a decreasing
sequence of finite-index subgroups of Zd.

(1) So long as Gj �= Gj+1 for infinitely many j, (XG, σG) is a minimal Zd-Cantor system;
(2) (XG, σG) is free if and only if

⋂∞
j=1 Gj = {0};
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(3) (XG, σG) is uniquely ergodic with invariant Borel probability measure μG satisfying
μG(π

−1
j (x+ Gj)) = [Zd : Gj]−1 for all j ≥ 1 and all x ∈ Zd.

We say that a Zd-odometer is product-type if it is conjugate to a product of d Z-
odometers. Equivalently, this means the odometer is conjugate to some (XG, σG), where
each group Gj ∈ G is of the form Gj = ×d

k=1(Z/mj,kZ).
A second characterization ofZd-odometers, given by Giordano, Putnam and Skau, uses

Pontryagin duality. Given any compact abelian group K, its Pontryagin dual is K̂, the set of
continuous group homomorphisms from K to the circle T = R/Z. Now let H be a group
such that Zd ≤ H ≤ Qd; give both H and H/Zd the discrete topology. Then

H/Zd ⊆ Qd/Zd ⊆ Rd/Zd ∼= Td,

so there is an inclusionmap ρ : H/Zd → Td. LetYH = Ĥ/Zd; using duality we have T̂d ∼=
R̂d/Zd ⊆ YH . SinceZd ∼= T̂d, we have ρ̂ : Zd → YH . Thus for every v ∈ Zd, ρ̂(v) is a con-
tinuous homomorphism from H/Zd to T. We can then define an action ψH : Zd � YH
by, for each v ∈ Zd,

ψv
H(x) = x+ ρ̂(v),

i.e. for any group homomorphism x : H/Zd → T,

(ψv
H(x))(h+ Zd) = x(h) e2π i(h·v).

Definition 2.6 (Giordano-Putnam-Skaudefinition of odometer): AZd-odometer is any
Zd-action conjugate to one of the form (YH ,ψH) described above. In this setting, we call
H the first cohomology group of the odometer.

The reason H is called the first cohomology group comes from the following ideas first
studied by Forrest andHunton [18]. Given aminimalZd-Cantor system (X,T), letC(X,Z)
be the set of continuous functions from X to Z. C(X,Z) is a Zd-module via usual addition
and the scalar multiplication v · f = f ◦ Tv for v ∈ Zd, f ∈ C(X,Z). In this context, for an
odometer (YH ,ψH), H = H1(X,T), the first cohomology group of Zd with coefficients in
the module C(X,Z).

It turns out that the Cortez and Giordano-Putnam-Skau definitions produce the same
class of systems. More precisely, given any sequence G = {G1,G2, . . .} as in the Cortez
definition, define for each j,

Hj = {v ∈ Rd : v · x ∈ Z for all x ∈ Gj}

and set H =⋃∞j=1Hj. The odometer (YH ,ψH) is conjugate to (XG, σG). For the reverse
direction, given any H with Zd ≤ H ≤ Qd, define for each j, Hj = ( 1j!Zd) ∩H and set

Gj = {v ∈ Rd : v · x ∈ Z for all x ∈ Hj}.

This produces a sequence G = {G1,G2, . . .} for which the corresponding odometer
(XG, σG) is conjugate to (YH ,ψH).
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Notice, in the previous paragraph, the dual relationship between the Gj and the Hj in
the two definitions of Zd-odometer actions. As we will need notation for this relationship
later, we define, for any set E ⊆ Rd, the set E∗ by

E∗ = {v ∈ Rd : v · x ∈ Z for all x ∈ E}.

An advantage of the Giordano-Putnam-Skau approach to defining odometers is that the
equivalence relations outlined in Section 1.2 can be easily characterized, for Z and Z2-
odometers, in terms of the first cohomology group of the action:

Theorem 2.7 ([22, Theorem 1.5]): Let (X,T) be a free Zd1-odometer whose first cohomol-
ogy group is H(T), and let (Y , S) be a free Zd2-odometer whose first cohomology group is
H(S).

(1) If d1, d2 ≤ 2, then (X,T) and (Y , S) are conjugate if and only if d1 = d2 and H(T) =
H(S).

(2) If d1, d2 ≤ 2, then (X,T) and (Y , S) are isomorphic if and only if d1 = d2 and
α(H(T)) = H(S) for some α ∈ GLd1(Z).

(3) If d1, d2 ≤ 2, then (X,T) and (Y , S) are continuously orbit equivalent if and only if d1 =
d2 and α(H(T)) = H(S) for some α ∈ GLd1(Q) with detα = ±1.

(4) (X,T) and (Y , S) are orbit equivalent if and only if the superindex (see [22]) of H(T) in
Zd1 equals the superindex of H(S) in Zd2 .

2.5. Towers, refinements and Kakutani-Rohklin partitions

This section describes some machinery that will be used in subsequent proofs. First,
for any nonnegative integer h, let [h] = {0, 1, 2, . . . , h− 1}. Second, for any vector h =
(h1, . . . , hd) ∈ Zd withh ≥ 0 (meaning hj ≥ 0 for all j), set [h] = [h1]× [h2]× · · · × [hd].

2.5.1. Pretowers and precastles
A pretower is simply a rectangular array of disjoint subsets of X of equal measure:

Definition 2.8: Letμ be a Borel probabilitymeasure on aCantor spaceX and leth ∈ Zd be
such that h ≥ 0. A pretower (inX) is a collection {E(v) : v ∈ [h]} of clopen subsets E(v) ⊆
X, where the sets are pairwise disjoint and all have the same μ-measure. The vector h is
called the size or height of the pretower; d is the dimension of the pretower; the individual
sets E(v) are called levels of the pretower, and μ is the pretower measure.

Definition 2.9: A precastle (in X) is a set of finitely many pretowers in X, all having the
same dimension and same μ for their pretower measure, and where the levels of the pre-
towers are all disjoint from one another. We denote a precastle byP = {E(α, v) : 1 ≤ α ≤
t, v ∈ [h(α)]}, which indicates that the precastle consists of tmany pretowers of respective
heights h(α).

A one-dimensional (i.e.d = 1) pretower can be subdivided into three disjoint pieces: the
base, the top, and the interior. We define the base and top of a one-dimensional precastle
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to be the sets

P0 =
t⊔

α=1
E(α, 0) and P2 =

t⊔
α=1

E(α, h(α)− 1),

while the interior of a precastle isP1 =
⊔t
α=1

⊔h(α)−2
v=1 E(α, v). Setting the boundary of a

precastle P , denoted ∂P , to be the union of its base and top, we note that P1 = P − ∂P
is the set of points in the precastle that are not in its boundary.

2.5.2. Towers and castles
First, given clopen subsets A and B of a Cantor space, we write T : A

∼=→ B if T is a home-
omorphism from A to B. If we define an action by homeomorphisms between the levels of
a pretower (precastle), the pretower (precastle) becomes a tower (castle).

Definition 2.10: Let h ∈ Zd and suppose {E(v) : v ∈ [h]} is a pretower in a Cantor space
X. If for each v,w ∈ [h], there is Tw−v : E(v)

∼=→ E(w) such that:

(1) for every v ∈ [h], T0 : E(v)
∼=→ E(v) is the identity map,

(2) Tx ◦ Ty = Tx+y wherever these maps are defined, and
(3) each Tw−v preserves the pretower measure μ, meaning for any Borel A ⊆ E(w),

μ(T−(w−v))(A) = μ(A),

then we call the pretower a T-tower. A T-castle is a union of finitely many T-towers
of the same dimension and with the same μ as their pretower measure, and all of whose
levels are disjoint. Given a T-castle {E(α, v) : 1 ≤ α ≤ t, v ∈ [h(α)]}, for any x ∈ E(α, v)
we define the T-column over x to be {Tw(x) : w ∈ [h(α)]− v}.

2.5.3. Kakutani-Rohklin partitions
Castles are closely related to Kakutani-Rohklin partitions:

Definition 2.11: Let X be a Cantor space and let T : Zd � X. AKakutani-Rohklin (K-R)
partition for (X,T) is a partition ofX into finitelymany clopen sets {B(j, v) : 1 ≤ j ≤ t, v ∈
A(j)}, where for each j,A(j) is a finite subset ofZd containing 0, such that for each v ∈ A(j),
B(j, v) = Tv(B(j, 0)).

If (X,T) is aminimalZd-Cantor systemwithμ ∈M(X,T), then anyKakutani-Rohklin
partition for (X,T) with each A(j) = [hj] for some hj ∈ Zd is a T-castle with pretower
measure μ. However, T-castles need not be K-R partitions for a Zd-action, because it is
possible that T is not defined on every level, e.g. those levels one could think of as being
on the boundary of the rectangle [hj].

Odometers possess a useful, standard sequence of K-R partitions, described in the
following theorem:

Theorem 2.12 (K-R partitions for odometers): Given a Zd-odometer (XG, σG) with
unique invariant measure μ, there exists a sequence {Pj}∞j=1 of partitions of X with the
following properties:
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(1) each Pj is a K-R partition for (XG, σG) consisting of one rectangular tower;
(2) the partitions Pj refine, i.e. each atom of Pj is a union of atoms of Pj+1;
(3) the partitions Pj generate the topology on XG;
(4) each atom of Pj has measure [Zd : Gj]−1;
(5) μ(∂Pj)→ 0 as j→∞; and
(6) the maximum diameter of any atom of Pj tends to 0 as j→∞.

Proof: Let G = {G1,G2, . . .}. For each j, define d integers as follows: let

mj,1 = min{n > 0 : ne1 ∈ Gj}.
Since Gj has finite index, such an integer exists. Then let

mj,2 = min{n > 0 : ∃ i such that ne2 + Gj = (i, 0, . . . , 0)+ Gj}.
Analogously, for each k = 1, . . . , d, define

mj,k = min{n > 0 : ∃ i1, i2, . . . , ik−1 such that

nek + Gj = (i1, i2, . . . , ik−1, 0, . . . , 0)+ Gj}.
Defining mj = (mj,1,mj,2, . . . ,mj,d), we see that each rectangle [mj] contains exactly one
representative element from each coset in Zd/Gj.

Finally, for each j ≥ 1 and each v ∈ [mj], set B(j, v) = π−1j (v + Gj), and define Pj =
{B(j, v) : v ∈ [mj]}. The partitions so defined satisfy the requirements of the theorem. �

2.5.4. Refinements
Let T = {E(α, v) : 1 ≤ α ≤ t, v ∈ [h(α)]} be a one-dimensional T-castle (these construc-
tions extend to higher dimensions, but we will only use them when d = 1). A refinement
of T is another T-castle T ′, where each level of T ′ is a subset of a single E(α, v). One way
to construct a refinement of T is to partition each E(α, 0) into finitely many clopen sets
P(α) = {E(α, 0, 1), . . . ,E(α, 0, s(α))}. Themap T then induces a partition on each E(α, v)
in such a way that each T-tower in T is divided into s(α) disjoint T-towers. We call the T ′
so obtained a castle refinement over{P(α) : α ∈ {1, . . . , t} }.

We next describe two specific methods of obtaining such a castle refinement that will
be used in the proof of Theorem 4.3. For the first, suppose {xj} is some finite set where
the T-columns over each xj are pairwise disjoint. For each α, partition E(α, 0) into finitely
many disjoint clopen sets E(α, 0, i) such that E(α, 0, i) intersects at most one T-column of
an xj. This yields a refinement of T so that the xj are in separate T-towers, and we say the
resulting T-castle is obtained by separating the xj into distinct towers.

For the second, letP be any finite clopen partition ofX. For eachα ∈ {1, . . . , t}, letP(α)
be the partition of E(α, 0) intoP-names, i.e. we partition each E(α, 0) intomaximal clopen
atoms E(α, 0, 1), . . . ,E(α, 0, s(α)), where for every x ∈ E(α, 0, i) and every v ∈ [h(α)], the
atom of P to which Tv(x) belongs depends only on v and i, and not on x. The resulting
T-castle is called the refinement of T into pure P-columns.

2.6. Dimension groups

We next describe an algebraic object which is a useful tool for studying Cantor minimal
systems and that we will use in Theorem 3.7. This algebraic object, called a dimension
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group, was originally introduced by Elliott [16] as an isomorphism invariant of approxi-
mately finite algebras. A different, but equivalent, approach to defining dimension groups,
which we follow here, originates in [15].

Definition 2.13: A partially ordered group (G,G+) is a countable abelian group G
together with a subset G+ ⊆ G called the positive cone, satisfying:

(1) G+ + G+ ⊆ G+;
(2) G+ − G+ = G;
(3) G+ ∩ (−G+) = {0}.

A partially ordered group is called unperforated if for any g ∈ G, g + g + · · · + g ∈
G+ implies g ∈ G+. Given a partially ordered group (G,G+) and g, h ∈ G, we say g ≤ h if
h− g ∈ G+ and g < h if h− g ∈ G+ − {0}.

Definition 2.14: A dimension group is an unperforated, partially ordered group (G,G+)
which satisfies the following property (called the Riesz interpolation property):

• Given any a1, b1, a2, b2 ∈ G with ai ≤ bj for all i, j ∈ {1, 2}, there is c ∈ G such that ai ≤
c ≤ bj for all i, j ∈ {1, 2}.

Definition 2.15: Let (G,G+) be a partially ordered group. We call u ∈ G+ an order unit
if for every g ∈ G there is n ∈ N such that g ≤ nu. A dimension group with an order unit
is called a unital dimension group and is denoted by (G,G+, u).

In this paper, we will deal only with dimension groups which have the additional
property that they are simple:

Definition 2.16: Let (G,G+) be a partially ordered group. An order ideal is a subgroup
J ≤ G such that

(1) J = J+ − J+, where J+ = J ∩ G+; and
(2) whenever 0 ≤ a ≤ b and b ∈ J, it follows that a ∈ J.

A dimension group is called simple if it has no non-trivial order ideals.

Definition 2.17: Let (G,G+, u) be a simple, unital dimension group. A homomorphism
p : G→ R is called a state if p is positive (i.e. p(G+) ⊆ [0,∞)) and p(u) = 1.

An infinitesimal on (G,G+, u) is an element a ∈ G such that p(a) = 0 for every state p
of G. The subgroup consisting of all infinitesimals on (G,G+, u) is denoted Inf(G).

Observe that the quotient group G/Inf(G) has a natural induced ordering, i.e. [g] >
0 if g > 0, where [g] is the coset of g ∈ G. If G has a distinguished order unit u, then
G/Inf(G) inherits the distinguished order unit [u]. Thus if (G,G+, u) is a unital dimension
group then (G/Inf(G), (G/Inf(G))+, [u]) is also a unital dimension group which has no
infinitesimals other than the coset of 0.
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A simple, unital dimension group G always has at least one state, and the states
determine the order structure of the dimension group, in that

G+ = {g ∈ G : p(g) > 0 for all states p of G} ∪ {0}.

(This is essentially Corollary 4.2 of [14].)

2.7. Dimension groups and dynamical systems

Having laid out the abstract definition of a dimension group, we now turn to the connec-
tions between such objects and dynamics (for additional references, see [11,19,21,23]). To
get started, given a minimal Zd-Cantor system (X,T), let C(X,Z) denote the collection of
all continuous integer-valued functions on X. Under addition, C(X,Z) forms a countable
abelian group. Next, define the set of coboundaries in C(X,Z), denoted BT, to be the sub-
group of C(X,Z) generated by all functions of the form f − f ◦ Tv where f ∈ C(X,Z) and
v ∈ Zd. Then set

K0(X,T) = C(X,Z)/BT.

We define an ordering onK0(X,T) by decreeing that a coset f + BT ∈ K0(X,T) belongs to
K0(X,T)+ precisely when there is a g ∈ f + BT such that g(x) ≥ 0 for all x ∈ X. We then
have:

Theorem 2.18 ([17, Theorem 1.4]): Let (X,T) be a Cantor minimal Zd-system. Then
(K0(X,T),K0(X,T)+, 1+ BT) is a simple, unital dimension group.

By the comments at the end of Section 2.6, we then also have:

Corollary 2.19: Let (X,T) be a Cantor minimal Zd-system and let

G(X,T) = K0(X,T)/Inf(K0(X,T)).

Then (G(X,T),G(X,T)+, [1+ BT]) is a simple, unital dimension group.

Giordano et al. [19] proved a converse of the preceding theorem, showing that
any simple, unital dimension group (G,G+, u) other than Z can be realized as
(K0(X,R),K0(X,R)+, 1+ BR) for a minimal Z-Cantor system (X,R). Furthermore, they
also showed that orbit equivalence of twominimalZ-Cantor systems (X,T) and (Y , S) cor-
responds exactly with isomorphism of the systems’ associated dimension groups G(X,T)
and G(Y , S); this result was extended to actions of Zd in [20,21].

We will see that these ideas carry over to the realm of speedups. If one minimal Zd-
Cantor system can be sped up to obtain a conjugate version of a second, then one can
construct a surjective group homomorphism from the dimension group associated to
the second system to the dimension group associated to the first. This is our upcoming
Lemma 3.7.

The infinitesimal subgroup Inf(K0(X,T)) has an alternate characterization which will
help us simplify G(X,T). We first need the following relationship between states on the
dimension group K0(X,T)) and T-invariant measures on X:
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Theorem 2.20 ([17, Lemma 7.3]): Let (X,T) be a Cantor minimal Zd-system. Then:

(1) Every μ ∈M(X,T) induces a state pμ on (K0(X,T),K0(X,T)+, 1+ BT) by

pμ(f + BT) =
∫

f dμ.

(2) The map μ �→ pμ is a bijective correspondence between M(X,T) and the set of states
on (K0(X,T),K0(X,T)+, 1+ BT).

We can then note that the infinitesimals of (K0(X,T),K0(X,T)+, 1+ BT) are exactly
the cosets of functions which integrate to 0 against every T-invariant probability measure.
Defining

ZT =
{
f ∈ C(X,Z) :

∫
f dμ = 0 for all μ ∈M(X,T)

}
,

we can conclude that Inf(K0(X,T)) ∼= ZT/BT, and finally that

G(X,T) = K0(X,T)/Inf(K0(X,T)) ∼= C(X,Z)/ZT,

where the unit of G(X,T) is exactly the coset 1+ ZT. Note that each state p on
K0(X,T) then induces a state p on G(X,T) simply by defining, for h ∈ K0(X,T), p(h+
Inf(K0(X,T)) = p(h).

3. Speedups, invariant measures and orbit equivalence

In this section, we explore the relationship between speedups and the associated sets of
invariant measures, along with how these relate to orbit equivalence. We also give a result
about speedups and the dimension group.

We begin by comparing the sets of invariant measures for a minimal Cantor system and
a minimal speedup of that Cantor system.

Lemma 3.1: Let (X,T) be a minimal Zd1-Cantor system. If minimal Zd2-Cantor system
(X, S) is a speedup of (X,T), thenM(X,T) ⊆M(X, S).

Proof: Let μ ∈M(X,T) and let A ⊆ X be Borel. Fix v ∈ Zd2 and for each w ∈ Zd1 , let
Aw = {x ∈ A : Sv(x) = Tw(x)}. Notice that {Aw : w ∈ Zd1} is a Borel partition of A and
since Sv is a homeomorphism, {Tw(Aw) : w ∈ Zd1}must partition Sv(A). Therefore:

μ(Sv(A)) = μ
⎛⎝ ⊔

w∈Zd1

Tw(Aw)

⎞⎠
=
∑

w∈Zd1

μ(Tw(Aw))

=
∑

w∈Zd1

μ(Aw)
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= μ
⎛⎝ ⊔

w∈Zd1

Aw

⎞⎠
= μ(A).

Thus μ ∈M(X, S) as desired. �

We need only slightly modify this to find the relationship between the sets of invariant
measures of two minimal Cantor systems when one is conjugate to a speedup of the other.

Lemma 3.2: Let (X1,T1) be a minimal Zd1-Cantor system with speedup (X1, S) that is
a minimal Zd2-Cantor system. Suppose (X1, S) is conjugate to (X2,T2). Then there is a
homeomorphism F : X1→ X2 such that F∗ : M(X1,T1)→M(X2,T2) is injective.

Proof: Let F be a homeomorphism F : X1→ X2 such that F ◦ Sv = Tv
2 ◦ F, as given to us

by the conjugacy between (X1, S) and (X2,T2). We know by Lemma 3.1 thatM(X1,T1) ⊆
M(X1, S). Given μ ∈M(X1,T1) and Borel set A ⊆ X2, note that

F∗ (μ) (Tv
2A) = μ

(
F−1

(
Tv
2A
)) = μ (Sv (F−1A)) = μ (F−1(A)) = F∗ (μ) (A),

and thus F∗ does sendmeasures inM(X1,T1) toM(X2,T2). Ifμ, ν ∈M(X1,T1) are such
that μ �= ν, then there is some Borel set A ⊆ X1 with μ(A) �= ν(A). But then F∗(μ) and
F∗(ν) give different values to the Borel set F(A) ⊆ X2, showing that F∗ is injective. �

If the systems mentioned in Lemma 3.1 are uniquely ergodic, then we can rephrase that
result as follows.

Corollary 3.3: Let (X,T,μ) be a uniquely ergodic, minimal Zd1-Cantor system. If uniquely
ergodic, minimal Zd2-Cantor system (X, S, ν) is a speedup of (X,T), then

(1) μ = ν; and
(2) (X, S) and (X,T) share the same clopen value set, meaning

{μ(E) : E ⊆ X is clopen} = {ν(E) : E ⊆ X is clopen}.

If, in addition, the systems have one-dimensional actions, then we can say even more:

Corollary 3.4: Let (X,T) be a uniquely ergodic, minimal Z-Cantor system. If uniquely
ergodic, minimal Z-Cantor system (X, S) is a speedup of (X,T), then (X, S) and (X,T) are
orbit equivalent.

Proof: This follows from Theorem 2.2 in [19]. �

And if the uniquely ergodic, minimal Z-Cantor systems are in fact odometers, we get
an even stronger result:

Corollary 3.5: Let (X1,T1) and (X2,T2) be two Z-odometers. If (X2,T2) is conjugate to a
speedup of (X1,T1), then (X1,T1) and (X2,T2) are themselves conjugate.
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Proof: (X1,T1) and (X2,T2) are orbit equivalent by Corollary 3.4. Orbit equivalent Z-
odometers are isomorphic, and therefore conjugate, by the rigidity theorem of Boyle and
Tomiyama [6] (see also Corollary 5.9 in [22]). �

However, our main interest is in higher-dimensional odometers. We summarize what
we know thus far for that context.

Theorem 3.6: Let (X1,T1,μ1) be a Zd1-odometer and let (X2,T2,μ2) be a Zd2-odometer.
Let C ⊆ Zd1 be any cone. Then, for the following statements:

(1) There is a C-speedup of (X1,T1) that is conjugate to (X2,T2).
(2) There is a homeomorphism F : X1→ X2 such that F∗(μ1) = μ2.
(3) (X1,T1) and (X2,T2) are orbit equivalent.
(4) (X1,T1) and (X2,T2) have the same clopen value sets.

we have the implications (1)⇒ (2)⇔ (3)⇔ (4).

Proof: (1)⇒ (2) comes from Lemma 3.2, together with the fact that odometers are
uniquely ergodic. The equivalence of (2), (3) and (4) follows from Corollaries 2.6 and 2.7
of [21]. �

In the next section we will prove a partial converse to this theorem, where we must
assume d2 = 1. But first we recall that the invariant measures for (X,T) correspond
to states on K0(X,T). These in turn induce states on the dimension group G(X,T) =
K0(X,T)/Inf(K0(X,T)) and thus Lemma 3.1 suggests a connection between speedups and
maps between the dimension groups. The precise nature of this relationship is as follows:

Theorem 3.7: Let (X1,T1) be a minimal Zd1-Cantor system with dimension group G1 =
C(X1,Z)/ZT1 . Let (X2,T2) be a minimal Zd2−Cantor system, with dimension group G2 =
C(X2,Z)/ZT2 .

If there is a speedup of T1 conjugate to T2, then there is a surjective group homomorphism
ϕ : (G2,G+2 , 1+ ZT2)→ (G1,G+1 , 1+ ZT1) such thatϕ(G

+
2 ) = G+1 andϕ(1+ ZT2) = 1+

ZT1 .

Proof: Let S be the speedup of T1 conjugate to T2. Let G = C(X1,Z)/ZS so that
(G,G+, 1+ ZS) is the unital dimension group associated to (X1, S). The conjugacy between
(X1, S) and (X2,T2) induces a unital dimension group isomorphism ϕ1 : (G2,G+2 , 1+
ZT2)→ (G,G+, 1+ ZS). Define ϕ2 : (G,G+, 1+ ZS)→ (G1,G+1 , 1+ ZT1) by

ϕ2(g + ZS) = g + ZT1 .

By Lemma 3.1, M(X,T1) ⊆M(X, S), so ZS ≤ ZT1 . Therefore ϕ2 is well-defined and
surjective. The function ϕ = ϕ2 ◦ ϕ1 gives the desired group homomorphism. �

4. A converse of Theorem 3.6

In this section, we prove that the converse of (1)⇒ (2, 3, 4) of Theorem 3.6 holds when
d2 = 1. This will be Theorem 4.3; we first need a pair of preliminary lemmas:
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Lemma 4.1: Let (X,T,μ) be a Zd-odometer.

(1) Given two disjoint, clopen subsets A,B ⊆ X with μ(A) ≤ μ(B), there exists a clopen
subset B′ ⊆ B with μ(A) = μ(B′).

(2) Given two disjoint, clopen subsets A,B ⊆ X with μ(A) = μ(B) and any partition of A
into clopen subsets A1, . . . ,An, there is a partition of B into clopen subsets B1, . . . ,Bn
with μ(Aj) = μ(Bj) for all j.

Proof: Let {Pn} denote the sequence of K-R partitions for (X,T) coming from
Theorem 2.12. As this sequence generates the topology of X, we can write the two clopen
sets A and B as unions of atoms from the Pn’s. But A and B are also closed subsets of the
compact set X and thus are themselves compact sets. This means the union of atoms cov-
ering A and B have finite subcovers, meaning we can choose N ∈ N such that A and B are
both unions of atoms of PN .

Furthermore, since μ(A) ≤ μ(B), and since PN consists of equal-measure atoms, the
number of atoms ofPN whose union is A (say a) must be less than or equal the number of
atoms of PN whose union is B. Choose a of the atoms of PN comprising B, and let B′ be
the union of those atoms. This proves (1), and statement (2) clearly follows. �

Lemma 4.2: Fix a cone C ⊆ Zd, and suppose that (X,T,μ) is a Zd-odometer. Given two
disjoint, clopen subsets of A,B ⊆ X of equal positive measure, then there is a function p :
A→ C such that Tp : A

∼=→ B.
Furthermore, given xA ∈ A and xB ∈ B, p can be chosen so that Tp(xA) �= xB.

Proof: Let {Pn} denote the sequence of K-R partitions for (X,T) coming from
Theorem 2.12. As in the proof of Lemma 4.1, we can choose N ∈ N such that A and B are
both unions of atoms of PN , and since μ(A) = μ(B), the number of atoms of PN whose
union is A must equal the number of atoms of PN whose union is B. We can thus write,
using the notation of Theorem 2.12,

A =
m⊔
j=1
π−1N (vj + GN); B =

m⊔
j=1
π−1N (wj + GN),

where, without loss of generality, xA ∈ π−1N (v1 + GN). For j = 1, choose a vector p1 ∈ C ∩
(w1 − v1 + GN) so that Tp1(xA) �= xB, and for each j ∈ {2, . . . ,m}, choose any vector pj ∈
C ∩ (wj − vj + GN). Then definep : A→ Zd by settingp(x) = pj whenever x ∈ π−1N (vj +
GN); we have Tp which maps A homeomorphically to B as wanted. �

We now come to the aforementioned converse of Theorem 3.6. Essentially, the proof
uses the homeomorphism described in (2) of Theorem 3.6 to mimic the K-R sequence
of partitions for the Z-odometer in the phase space of the other odometer, and applies
Lemma 4.2 to define the speedup on these partition elements. This argument follows the
general framework of [3], with modifications to allow for higher dimensions.

Theorem 4.3: Let (X1,T1,μ1) be a free Zd-odometer and let (X2,T2,μ2) be a free Z-
odometer. If (X1,T1) and (X2,T2) are orbit equivalent, then for any cone C ⊆ Zd, there is
a C-speedup S of T1 that is topologically conjugate to T2.



DYNAMICAL SYSTEMS 17

Proof: Choose a vectoru ∈ C and choose any x0 ∈ X1; let x2 = T−u1 (x0). Let {A0,n}∞n=0 be a
nested, decreasing sequence of clopen sets inX1 with∩nA0,n = {x0} and diam(A0,n) <

1
2n .

Similarly, let {A2,n}∞n=0 be a nested, decreasing sequence of clopen sets inX1 with∩nA2,n =
{x2} and diam(A2,n) <

1
2n . Without loss of generality, assume A0,0 ∩ A2,0 = ∅ and that

μ1(A0,n) = μ1(A2,n) for every n.
By the equivalence of (2) and (3) in Theorem 3.6, there is a homeomorphism F : X1→

X2 such that F∗(μ1) = μ2.
Main idea of the proof: We want to mimic the structure of (X2,T2) on X1, so we begin

by considering the sequence of K-R partitions for (X2,T2) described in Theorem 2.12. We
denote this sequence of partitions by {P2(k)}∞k=1; the sets comprising P2(k) are labelled
as {B(k, v) : v ∈ [h2(k)]}. Similarly, let {P1(k)}∞k=1 be the sequence of K-R partitions for
(X1,T1) coming from Theorem 2.12 which, we recall, generates the topology of X1.

We construct the speedup S by induction, with S being defined onmore and more of X1
at each step. At the end of the induction, we will have defined S at all points inX1 except for
x2 and we will have defined S−1 at all points in X1 except for x0; we can then set S(x2) = x0
to complete the construction.

Base case: We begin the induction by considering the base case, which consists of six
steps.

Step 1: choose partition P2(n0) of X2 and copy that partition over to X1 to obtain Q̃1(0).
Fix ε0 such that 0 < ε0 < μ1(A0,0), and then choose n0 > 0 such that the measure of each
atom ofP2(n0) is less than ε0. We move the structure given byP2(n0) on X2 over to X1 by
considering, for each v ∈ [h2(n0)], the set Ẽ1(0, (1, v)) = F−1(B2(n0, v)). This collection
of sets {̃E1(0, (1, v)) : v ∈ [h2(n0)]} forms a partition of X1 we call Q̃1(0).

A remark regarding our notation: the reason for the extra ‘1’ in the sets comprising
Q̃1(0) is that all these sets are coming from the first (and only) pretower comprising the
precastle Q̃1(0). Later, there will be multiple (pre)towers, but we want to be able to use the
same notation; for instance, by Ẽ1(k, (α, v)) we mean the level at height v in the αth tower
of the partition of X1 used in the kth induction step.

Step 2: ‘Swap’ sets in Q̃1(0) to create the partitionQ1(0) of X1, and define sets F(0) and
R(0).We next adjust Q̃1(0) so that the resulting partitionQ1(0)will have xq ∈ (Q1(0))q ⊆
Aq,0 for each q ∈ {0, 2}, where we recall that (Q1(0))0 is the base and (Q1(0))2 is the top
of the pretowerQ1(0). This adjustment is done by a procedure we will call ‘swapping’, and
we will repeat this procedure twice, once for q = 0 and again for q = 2. At the q = 0 step,
we will delete from Ẽ1(0, (1, 0)) the points not in the set A(0,0) and then add in points from
A(0,0), including x0 if necessary. More specifically, first define

D0(0) = Ẽ1(0, (1, 0))− A0,0.

We know that

μ1
(̃
E1(0, (1, 0))

)
< ε0 ≤ μ1

(
A0,0

)
,

so by Lemma 4.1, we can choose a clopen set C0(0) ⊆ A0,0 − Ẽ1(0, (1, 0)) such that

μ1(C0(0)) = μ1(D0(0))

and such that x0 ∈ C0(0) whenever x0 /∈ Ẽ1(0, (1, 0)).
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Basically, we want to swap out D0(0) for C0(0). To do this rigorously, note that the set
C0(0) may intersect a variety of the sets Ẽ1(0, (1,w)) from Q̃1(0). Use this to partition
C0(0) into clopen sets

C0(0, (1,w)) = C0(0) ∩ Ẽ1(0, (1,w)).
We think of (1,w) as the current location of this set in the first (and only) pretower.

Next, use Lemma 4.1 to partition D0(0) into clopen sets {D0(0, (1,w))} such that

μ1 (D0(0, (1,w))) = μ1 (C0(0, (1,w))) .

We think of the (1,w) as the location this subset of D0(0) will be moved to.
We now wish to exchange D0(0, (1,w)) and C0(0, (1,w)) for all w. This means, for

each Ẽ1(0, (1, x)), some points might be swapped out and others swapped in. The specifics
depend on whether or not Ẽ1(0, (1, x)) = Ẽ1(0, (1, 0)). If it is, set

Ê1(0, (1, x)) =
(̃
E1(0, (1, x))

⋃
C0(0)

)
− D0(0).

Otherwise, set

Ê1(0, (1, x)) =
(̃
E1(0, (1, x))− C0(0, (1, x))

) ∪ D0(0, (1, x)).

After these changes have been made to create the partition {̂E1(0, (1, v)) : v ∈ [h2(n0)]},
rename the sets in this partition back to {̃E1(0, (1, v))} and repeat for the q = 2 step. That is,
let u be such that x2 ∈ Ẽ1(0, (1, u)) and swap out some D2(0) ⊆ Ẽ1(0, (1, h2(n0)− 1)) for
some C2(0) ⊆ A2,0 − Ẽ1(0, (1, h2(n0)− 1)), ensuring x2 ∈ C2(0) unless u = h2(n0)− 1.
Note that when performing this swapping procedure for q = 2, we will have Ê(0, (1, 0)) =
Ẽ(0, (1, 0)), as this set is already a subset of A0,0, a set that is disjoint from A2,0.

When this process has been completed, rename the resulting partition

Q1(0) =
{
E1(0, (1, v)) : v ∈ [h2(n0)]

}
and note that this partition of X1 satisfies

xq ∈
(
Q1(0)

)
q
⊆ Aq,0

for all q ∈ {0, 2}.
Define F(0) = ∅ (in the inductive steps, we will use F(k) to record which points have

been swapped, but it is not important to keep track of whether or not points have been
swapped in the base step). Also set R(0) = ∅ (in the inductive steps, R(k) will denote the
set of points where the definition of Sk−1 was altered in the kth step, but in the base step,
there is no S−1 to alter, soR(0) is trivially empty). This completes the ‘swapping’ procedure.

Step 3: Construct aC-speedup S0 of T1 on the pretowerQ1(0). For each v ∈ [h2(n0)− 1],
use Lemma 4.2 to construct a map

S0 : E1(0, (1, v))
∼=→ E1(0, (1, v+ 1))

such that S0(x) = Tp0(x)(x) for some p0 :
⊔h2(n0)−2

v=0 E1(0, (1, v))→ C. We want to ensure
x0 and x2 do not end up in the same S0-orbit, so toward that end let x∗ = Sh2(n0)−10 (x0).
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Then, use Lemma 4.2 to construct S0 : E1(0, (1, h2(n0)− 2))
∼=→ E1(0, (1, h2(n0)− 1))

such that S0(x) = Tp0(x)(x) for p0 taking values in C, but with the additional property that
S0(x∗) �= x2. This converts the pretowerQ1(0) into an S0-tower.

Step 4: RefineQ1(0). We make two modifications to the partitionQ1(0), based on con-
structions described in Section 2.5.4. First, separate the two points x0 and x2 into distinct
towers, creating an S0-castle with two different towers. Second, to ensure that we end up
with a sequence of partitions that generate the topology of X1, we refine this S0-castle into
pure P1(0)-columns. We denote the resulting partition, which is a refinement of Q1(0)
into t(0)many [h2(n0)]-sized S0-towers, by

Q1(0) = {E1(0, (α, v)) : 1 ≤ α ≤ t(0), v ∈ [h2(n0)]} .

Step 5: Copy the refinement of Step 4 over to X2. Next, we ‘copy’ the partitionQ1(0) over
to X2, producing a refinement of P2(n0) we callQ2(0). To accomplish this, note that

μ2(B2(n0, 0)) = μ1
(̃
E1(0, (1, 0))

) = μ1
(
E1(0, (1, 0))

)
.

and

E1(0, (1, 0)) =
t(0)⊔
α=1

E1(0, (α, 0)).

Partition B2(n0, 0) into disjoint clopen subsets {E2(0, (α, 0)) : 1 ≤ α ≤ t(0)} such that for
each α, μ1(E1(0, (α, 0))) = μ2(E2(0, (α, 0))). Then let Q2(0) be the castle refinement of
P2(n0) over this partition of B2(n0, 0). We denote this refinement by

Q2(0) = {E2(0, (α, v)) : 1 ≤ α ≤ t(0), v ∈ [h2(n0)]}

and observe that Q2(0) is a T2-castle, i.e. Tv
2(E2(0, (α, 0)) = E2(0, (α, v)) for all 1 ≤ α ≤

t(0) and all v ∈ [h2(n0)].
Step 6: Define a partial set-wise conjugacy �0. Finally, define �0 : Q1(0)→ Q2(0) by

setting�0(E1(0, (α, v))) = E2(0, (α, v)). This map satisfies

T2 ◦�0 (E1(0, (α, v))) = �0 ◦ S0 (E1(0, (α, v)))

for all α ∈ {1, . . . , t(0)} and all v ∈ [h2(n0)− 1].
This completes the base case of the proof. Note that we have now defined integers n0

and t(0), along with partitions Q1(0) of X1 and Q2(0) of X2, subsets F(0) and R(0) of
X1, a partially-defined speedup S0 of T1 (defined below in item 6b) and a set map �0
intertwining S0 and T2.

Inductive step: Let k ≥ 1 and suppose we have constructed

(1) nonnegative integers n0 < n1 < · · · < nk−1;
(2) positive integers t(0), t(1), t(2), . . . , t(k− 1);
(3) subsets F(0), F(1), . . . , F(k− 1) ofX1 withμ1(F(j)) < 4μ1(A0,j) for j ∈ {0, 1, . . . , k−

1};
(4) subsets R(0),R(1), . . . ,R(k− 1) of X1;
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(5) finite clopen partitionsQ1(0),Q1(1), . . . ,Q1(k− 1) of X1 with

Q1(j) = {E1(j, (α, v)) : 1 ≤ α ≤ t(j), v ∈ [h2(nj)]}
and finite clopen partitionsQ2(0),Q2(1), . . . ,Q2(k− 1) of X2 with

Q2(j) = {E2(j, (α, v)) : 1 ≤ α ≤ t(j), v ∈ [h2(nj)]}
which satisfy, for all j ∈ {0, . . . , k− 1}:
(a) Q1(j) refines P1(j);
(b) xq ∈ (Q1(j))q ⊆ Aq,j for q = 0, 2;
(c) Q2(j) refines P2(nj);

(d) Q2(j) is a T2-castle, i.e. T2 : E2(j, (α, v))
∼=→ E2(j, (α, v+ 1)) for all α and all v ∈

[h2(nj)− 1];
(6) homeomorphisms S0, S1, . . . , Sk−1, where

Sj : Q1(j)−
(
Q1(j)

)
2→ Q1(j)−

(
Q1(j)

)
0

so that, for all j ∈ {0, 1, . . . , k− 1}:
(a) Q1(j) is an Sj-castle;
(b) Sj is a partially defined C-speedup of T1, meaning there is a Borel function pj :

Q1(j)− (Q1(j))2→ C so that Sj(x) = Tpj(x)
1 (x);

(c) x0 and x2 are not in the same Sj-orbit;
(d) for every x in the domain of Sj−1, we have pj = pj−1 (i.e. Sj(x) = Sj−1(x)) unless

x ∈ Rj;
(7) and bijections�0,�1, . . . ,�k−1 where each�j : Q1(j)→ Q2(j) such that

T2 ◦�j(E1(j, (α, v))) = �j ◦ Sj(E1(j, (α, v)))
for all α ∈ {1, . . . , t(j)} and all v ∈ [h2(nj)− 1].

As with the base case, the inductive step itself subdivides into six steps.
Step 1: Choose a partition P2(nk) of X2, refine it with respect toQ2(k− 1) and copy the

refined partition over to X1 to obtain Q̃1(k). Fix εk such that 0 < εk < μ(A0,k) and

8εk
k−1∑
j=0

μ1(A0,j) <
1
3
μ1(A0,k).

Choose nk > nk−1 such that

μ2 (∂P2(nk)) < min
{
εk,

1
3
μ1(A0,k)

}
,

recalling that ∂P2(nk) is the union of the base and top levels of the K-R partition P2(nk).
At the completion of the (k− 1)th step, we have a partitionQ2(k− 1) on X2 where

Q2(k− 1) = {E2(k− 1, (α, v)) : 1 ≤ α ≤ t(k− 1), v ∈ [h2(nk−1)]}.
This partition has t(k− 1) towers, each of height [h2(nk−1)].
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The first part of step 1 is to refine P2(nk) into pure Q2(k− 1)-columns; this divides
P2(nk)–which is one tower of height h2(nk)–into many (say s(k)) towers, denoted by

P̃2(nk) =
{̃
B2(k, (β ,w)) : 1 ≤ β ≤ s(k), w ∈ [h2(nk)]

}
.

We can also think of this first part of step 1 as dividing the towers of Q2(k− 1) into
sub-towers, which are then grouped together to form the s(k) subdivisions ofP2(nk) com-
prising P̃2(nk). We notate this as follows: each set E2(k− 1, (α, v)), for 1 ≤ α ≤ t(k− 1)
and v ∈ [h2(nk−1)], is subdivided into

E2(k− 1, (α, v)) =
m(α)⊔
j=1

E2(k− 1, (α, v), j)

where for each (α, v) and j there exists β = β((α, v), j) and w = w((α, v), j) such that

E2(k− 1, (α, v), j) = B̃2(k, (β ,w)).

Importantly, the map ((α, v), j) �→ (β ,w) is a bijection, since P̃2(nk) consists of pure
Q2(k− 1)-columns.

The second part of step 1 is to partition and rearrange Q1(k− 1) in an analogous
way, creating a partition Q̃1(k) of X1. More specifically, for every α, 1 ≤ α ≤ t(k−
1), use Lemma 4.1 to partition E1(k− 1, (α, 0)) into disjoint clopen subsets {E1(k−
1, (α, 0), j), 1 ≤ j ≤ m(α)} where

μ1
(
E1(k− 1, (α, 0), j)

) = μ2
(
E2(k− 1, (α, 0), j)

)
.

Then, let {E1(k− 1, (α, v), j) : 1 ≤ α ≤ t(k− 1), 1 ≤ j ≤ m(α), v ∈ [h2(nk−1)] } be the
castle refinement ofQ1(k− 1) over these partitions. Finally, we define the partition Q̃1(k)
of X1 into s(k) pretowers of height h2(nk) as follows: given β = β((α, v), j) ∈ {1, . . . , s(k)}
and w = w((α, v), j) ∈ [h2(nk)], we define Ẽ1(k, (β ,w)) = E1(k, (α, v), j). We may assume
that the two special points x0 and x2 are in two different pretowers of the precastle Q̃1(k);
if not, separate them as described in Section 2.5.4.

The third part of Step 1 is to make some adjustments to Q̃1(k), ensuring that xq ∈
(Q̃1(k))q for q = 0, 2. To get started with this part, notice that for every level Ẽ1(k, (β ,w))
of Q̃1(k), there is v ∈ [h2(nk−1)] and an α ∈ {1, . . . , t(k− 1)} such that

Ẽ1(k, (β ,w)) ⊆ E1(k− 1, (α, v)).

Now, consider the pretower of Q̃1(k) containing x0; suppose this pretower is

{̃E1(k, (β0,w)) : w ∈ [h2(nk)]}
and that x0 ∈ Ẽ1(k, (β0,w0)). Let γ0 be so that

x0 ∈ Ẽ1(k, (β0,w0)) ⊆ E1(k− 1, (γ0, 0)).

Now, we ‘change the base’ of the tower of Q̃1(k) containing x0 by setting, for each w ∈
[h2(nk)], ˜̃E1(k, (β0,w)) = Ẽ1(k, (β0,w+ w0 mod h2(nk)))



22 A. S. A. JOHNSON AND D. M. MCCLENDON

where by ‘x mod h’ we mean the unique integer in [h] which is congruent to xmodulo h.
Renaming the sets in this tower as Ẽ1(k, (α, v)), we now have that

x0 ∈
(
Q̃1(k)

)
0 .

Repeat the procedure described in the preceding paragraph a second time (if necessary)
on a different tower in Q̃1(k), changing its base so that after the alteration, x2 ∈ (Q̃1(k))2.

Step 2: Swap sets in Q̃1(k) to create the partitionQ1(k) and adjust Sk−1 as needed.We next
adjust Q̃1(k) so that the resulting partitionQ1(k) will have sets such that (Q1(k))q ⊂ Aq,k
for q = 0, 2. This adjustment is done analogously to how it was done in the base case, using
the swapping procedure twice, once for q = 0 and once for q = 2. At the qth step, for each
Ẽ1(k, (β ,w)) ∈ (Q̃1(k))q, we first delete from it the points in Ẽ1(k, (β ,w)) that are not in the
set Aq,k and then add in points from Aq,k not already used in another set Ẽ1(k, (β ,w′)) ∈
(Q̃1(k))q. After this alteration, we will end up with a new partition Q1(k) which has sets
of the same measure and configuration as Q̃1(k), but has an additional property (akin to
Property 5(b) from the induction hypothesis) that xq ∈ (Q1(k))q ⊆ Aq,k.

The details are the same as the base case, but are repeated here to establish the notation
needed to adjust Sk−1. First, let q = 0 and define

Dq(k) =
(
Q̃1(k)

)
q − Aq,k.

We know

μ1
(
∂Q̃1(k)

) = μ2 (∂P2(nk)) <
1
3
μ1(Aq,k),

so by Lemma 4.1 we can choose a clopen set

Cq(k) ⊆ Aq,k − ∂Q̃1(k)

such that

μ1(Cq(k)) = μ1(Dq(k)).

We next swap outDq(k) for Cq(k), exactly the way this swapping was done in the base case
(so the details are omitted). After repeating this same swapping procedure for q = 2, define

F(k) =
⋃

q∈{0,2}

(
Cq(k)

⋃
Dq(k)

)
;

so that F(k) is the set of all points which are swapped during this step. Observe that

μ1 (F(k)) ≤ 2
∑

q∈{0,2}
μ1
(
Aq,k

) = 4μ1
(
A0,k

)
;

establishing statement (3) of the induction.
When this process has been completed for q = 0, 2, rename the resulting partition

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ s(k), v ∈ [h2(nk)]}
and note that this partition of X1 satisfies xq ∈ (Q1(k))q ⊆ Aq,k for q = 0, 2.
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Unlike the base case, we need to adjust the definition of Sk−1 to account for the swapping
that has taken place.

Let

Q̌1(k) = {Ě1(k, (α, v)) : 1 ≤ α ≤ r(k), v ∈ [h2(nk)]}
be the castle refinement ofQ1(k) into pure {F(k), F(k)C}-columns. Fix one pretower in this
partition, say

{Ě1(k, (α, v)) : v ∈ [h2(nk)]}.
This pretower divides into blocks of length h2(nk−1), each based at some Ě1(k, (1,w))with
w amultiple of h2(nk−1). For those blocks with no levels contained in F(k), the block forms
a Sk−1-tower and we do not alter the definition of Sk−1.

However, suppose that a block has one or more levels which are subsets of F(k). For
instance, suppose there is exactly one such level, at height v. We can think of this block
as looking something like the figure below (where the block is arranged sideways to save
space). Notice that since Ě1(k, (1, v)) was swapped from its previous location, the Sk−1
defined in the prior induction step no longer maps to and/or from this set as wanted:

Ě1(k, (1,w))

��

Ě1(k, (1,w+ h2(nk−1)− 1))

��
•

Sk−1
�� •

Sk−1
�� • • •

Sk−1
�� •

Sk−1
�� •

Ě1(k, (1, v))

��

Use Lemma 4.2 to (re)define Sk−1 : Ě1(k, (1, v− 1))
∼=→ Ě1(k, (1, v)) and/or Sk−1 :

Ě1(k, (1, v))
∼=→ Ě1(k, (1, v+ 1)), so that Sk−1 = Tp(x)

1 for p taking values in C (the places
where Sk−1 may have been redefined are indicated by the dashed arrows below).We remark
that if Ě1(k, (1, v)) is the base or top of this block, Sk−1 only needs to be redefined on one
set.

•
Sk−1

�� •
Sk−1

�� •
Sk−1

����� •
Sk−1

����� •
Sk−1

�� •
Sk−1

�� •

Ě1(k, (1, v))

��

Repeat the procedure outlined above for each level of each block comprising the tower
which is a subset of F(k).

Let R(k) be the set of all points in X1 such that Sk−1 has been redefined via this pro-
cedure (this set is the union of the Ě1(k, (1, v))s and the Ě1(k, (1, v− 1))s over the v such
that Ě1(k, (1, v)) ⊆ F(k)). This completes the swapping procedure and the readjustment of
Sk−1.

Step 3: Construct the partial speedup Sk on the pretower Q1(k). Note that Q1(k) con-
sists of s(k) pretowers, each of which is made up of blocks of length h2(nk−1) on which
Sk−1 is defined. In other words, each pretower consists of unions of smaller Sk−1-towers,
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as indicated in the diagram below (again, the tower is presented horizontally).

•
Sk−1

�� •
Sk−1

�� •
Sk−1

�� • •
Sk−1

�� •
Sk−1

�� •
Sk−1

�� •

Notice the heights of the bases of the smaller towers are integers in [h2(nk)] that are
multiples of h2(nk−1).

For each v ∈ [h2(nk)− 1], define Sk : E1(k, (α, v))
∼=→ E1(k, (α, v+ 1)) to coincide with

Sk−1 if v+ 1 is not a multiple of h2(nk−1). If v+ 1 is a multiple of h2(nk−1), use Lemma 4.2
so that Sk = Tp(x)

1 for p taking values in C. This yields the partial speedup Sk and makes
Q1(k) into a Sk-castle, establishing (6) of the induction.

Step 4: RefineQ1(k). Denote by

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]} ;

the refinement ofQ1(k) into pureP1(k)-columns. This partition has t(k)-many Sk-towers,
each of height [h2(nk)]. (5a) of the induction is immediate, and (5b) follows from our work
in Step 2 above.

Step 5: Copy the refinement of Step 4 over to X2. Recall that we had, for each α,

μ2
(̃
B2(nk, (α, 0))

) = μ1
(̃
E1(k, (α, 0))

) = μ1
(
E1(k, (α, 0))

)
.

Define, for each α, the sets {E1(k, (α, 0), j) : 1 ≤ j ≤ q(α)}; these are the atoms of
Q1(k) contained in the atom E1(k, (α, 0)) which belongs to the base of Q1(k). Thus
E1(k, (α, 0)) =

⊔q(α)
j=1 E1(k, (α, 0), j) gives different notation for the refinement constructed

in Step 4. Then choose disjoint clopen subsets {E2(k, (α, 0), j)}, whose union is all of
B̃2(nk, (α, 0)), with μ2(E2(k, (α, 0), j) = μ1(E1(k, (α, 0), j). Denote by

Q2(k) = {E2(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}

the castle refinement of P̃2(nk) over these partitions; we now have (5c) and (5d) of the
induction.

Step 6: Define the partial set-wise conjugacy�l. Finally, define�k : Q1(k)→ Q2(k) by
setting�k(E1(k, (α, v))) = E2(k, (α, v)). This map satisfies

T2 ◦�k (E1(k, (α, v))) = �k ◦ Sk (E1(k, (α, v)))

for all α ∈ {1, . . . , t(k)} and all v ∈ [h2(nk)− 1]. This establishes (7) of the induction, and
completes the induction step.

Conclusion: After completing the induction procedure, we have constructed:

(1) subsets R(0),R(1),R(2), . . . of X1, where each R(k) is the set of points where Sk does
not equal Sk−1;
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(2) finite clopen partitionsQ1(0),Q1(1),Q1(2), . . . which refine and generate the topol-
ogy of X1 with

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}
and finite clopen partitions Q2(0),Q2(1),Q2(2), . . . which refine and generate the
topology of X2 with

Q2(k) = {E2(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}
which satisfy, for all k:
(a) xq ∈ (Q1(k))q ⊆ Aq,k for q = 0, 2;
(b) Q2(k) is a T2-castle;
(c) Q1(k) is an Sk-castle, where Sk(x) = Tp(x)

1 (x) for p taking values in C and x0 and
x2 are never in the same Sk-orbit; and

(3) bijections�0,�1,�2, . . . where each�k : Q1(k)→ Q2(k) is such that

T2 ◦�k (E1(k, (α, v))) = �k ◦ Sk (E1(k, (α, v)))
for all α ∈ {1, . . . , t(k)} and all v ∈ [h2(nk)− 1].

We next claim that no x belongs to infinitely many R(k). We first show this is true for
the point x0. Based on the third part of Step 1 of the induction procedure, we know x0
always belongs to (Q̃1(k))0. Since x0 ∈ A0,k for every k, it is never swapped in Step 2 of
the induction procedure. It is possible that for some k, Sk−1(x0) is part of a set swapped
in Step 2 of the induction procedure, necessitating that Sk(x0) �= Sk−1(x0), i.e. x0 ∈ R(k).
If this is the case, then the set that contained Sk−1(x0) would have been swapped with a
set disjoint from A0,k meaning Sk(x0) /∈ A0,k and thus Sk(x0) /∈ A0,k′ for every k′ ≥ k. This
would mean Sk(x0) /∈ F(k′) for every k′ > k and so x0 /∈ R(k′) for every k′ > k.

We next note that x2 belongs to no R(k). This is because Sk(x2) is not even defined for
any k, since x2 is in the top of every Q̃1(k) after the third part of Step 1 of the induction.

Last, we consider x /∈ {x0, x2}. Then for some k, x /∈ A0,k
⋃

A2,k. At the kth induction
stage and beyond, if x /∈ ∂Q̃1(k), x would never be swapped into ∂Q̃1(k) (since it isn’t in
A0,k orA2,k). If x ∈ ∂Q̃1(k) at the kth induction stage, xwould be swapped out of its location
at that time (since it isn’t in A0,k or A2,k), but then for l > k, x /∈ A0,l ∪ A0,l so x would
never be swapped back into ∂Q̃1(l). Thus x /∈ F(l) for every l > k. Therefore, the only way
x ∈ R(l) is if Sl−1(x) ∈ F(l) for some l > k. But this can only happen once, analagous to
the situation of x0. Therefore there is an L so that x /∈ R(l) for l > L.

Since no x belongs to infinitely many R(k), and because for x /∈ R(k), Sk−1(x) = Sk(x),
and since the boundaries ofQ1(l) shrink to the two exceptional points {x0, x2}mentioned
earlier, we see that for every x other than x2, we can define S : X − {x2} → X − {x0} by

S(x) =
∞⋂
j=0

∞⋃
k=j

Sk(x).

Extend the definition of S to the exceptional point x2 by defining S(x2) = x0. By the way
these points were originally chosen, we know that this specially defined S is of the form Tp

1
for p : X1→ C. Thus we obtain a C-speedup S of (X1,T1) defined on the entirety of X1.
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Now, for any point x ∈ X, x is only swapped at finitely many induction steps. Suppose x
is not swapped after the kth induction step; sinceQ1(l) refine and generate, every x ∈ X1 is
determined by the sequence of atoms ofQ1(l) (starting with l = k+ 1) to which it belongs.
Call those atomsQ1(l)(x). Then, define

�(x) =
∞⋂

l=k+1
�l(Q1(l)(x));

since the atoms ofQ2(l) also refine and generate, � is a homeomorphism from X1 to X2.
By property (3) above, � ◦ S = T2 ◦�, meaning that we have a C-speedup S of (X1,T1)

conjugate to (X2,T2) as wanted. �

There are two directions in which one might hope to generalize the result of
Theorem 4.3. We end this section by discussing the challenges involved.

First, ideally one would be able to conclude an analogous result for arbitrary minimal
Zd-Cantor systems (X1,T1) (as opposed to just Zd-odometers). A major problem here
is that one needs an analogue of Lemma 3.1, which says that given two subsets of equal
measure, there is a function p taking values in C such that Tp

1 homeomorphically maps
one subset to the other. When d = 1, such a result exists (see Lemma 3.16 of [3]). But the
proof uses induced transformations (first returnmaps to subsets of the phase space), which
are not well-defined for minimal actions of Zd when d ≥ 2.

Second, we conjecture that our Theorem 4.3 is valid even if T2 is a higher-dimensional
odometer action. The problem here is that while K-R partitions exist for Zd-odometers
(and indeed, for all minimal Zd-Cantor systems [17]), the boundaries of the K-R par-
titions decrease to an uncountable collection of points (as opposed to our situation in
Theorem 4.3, where we have just the two exceptional points x0 and x2). Our argument
does not allow for this, as we have no method of defining one or more generators of the
speedup S on this uncountable boundary.

5. Bounded speedups of odometers

We now turn our attention to speedups where the speedup cocycle is bounded.

Definition 5.1: Suppose S : Zd2 � X is a speedup of T : Zd1 � X with speedup cocycle
p. We say the speedup is bounded if for each v ∈ Zd2 , the set {p(x, v) : x ∈ X} is a bounded
subset of Zd1 .

First, we note the connection between boundedness of a speedup and continuity of the
speedup cocycle:

Lemma 5.2: LetT : Zd1 � X be aZd-Cantor system and suppose S : Zd2 � X is a speedup
of T. The following are equivalent:

(1) The speedup is bounded.
(2) For each j ∈ {1, . . . , d2},the sets {p(x, ej) : x ∈ X} are bounded.
(3) For each j ∈ {1, . . . , d2}, the function x �→ p(x, ej) is continuous.
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(4) For each v ∈ Zd2 , the function x �→ p(x, v) is continuous.
(5) The speedup cocycle p : X × Zd2 → Zd1 is continuous.

Proof: It is obvious that (1) implies (2); the fact that (2) implies (1) follows from the cocycle
equation; and clearly conditions (3), (4) and (5) are equivalent. We have (3) implies (2),
because under any continuous function,X is mapped to a compact, hence bounded, subset
of the codomain.

Finally, to show that (2) implies (3), fix j and note that if {p(x, ej) : x ∈ X} is bounded,
then there is a finite set {p1, . . . , pn} ⊆ Zd so that X =⊔n

i=1{x ∈ X : p(x, ej) = pi}. By the
proof of Theorem 2.3, each set in this union is closed; since the union is finite, each set is
also open, making x �→ p(x, ej) continuous as wanted. �

In [1], the authors prove that a Z-action that is a minimal bounded speedup of a Z-
odometer is an odometer which is conjugate to the original odometer. We prove below in
Theorem 5.3 that a minimal bounded speedup of a Zd-odometer is an odometer. In light
of Theorem 3.6, this speedup must be orbit equivalent to the original odometer. However,
we prove in Theorem 5.5 that a bounded speedup of a Zd-odometer is not necessarily
isomorphic, and thus not necessarily conjugate, to the original system, even if it is also an
action of Zd.

Theorem 5.3: Let (XG, σG) be a free Zd1-odometer and suppose S : Zd2 � X is a minimal
speedup of σG, where the speedup cocycle p is bounded. Then (XG, S) is a free Zd2-odometer.

Proof: Wefirst find a decreasing sequence of subgroupsH = {H1,H2,H3, . . .}with appro-
priate properties, so that by Definition 2.4 and Theorem 2.5, (XH, σH) is a free, minimal
Zd2-odometer. The proof is then concluded by establishing that (XH, σH) is conjugate to
(XG, S).

To find the subgroups making up H, we start by considering p : XG× Zd2 → Zd1 , the
speedup cocycle generating S from σG. As XG is compact and for each v ∈ Zd2 the map
x �→ p(x, v) is continuous, each such map must also be uniformly continuous.

Now consider the sequence {Pj} of partitions of XG as described in Theorem 2.12. As
the maximum diameter of any atom of Pj tends to zero as j increases, there is J such that
for all j ≥ J, whenever x and y lie in the same atom of Pj, p(x, v) = p(y, v) for all v ∈
Zd2 . So without any loss of generality, we can assume J = 1 by renaming our sequence G
from {G1,G2, . . .} to {GJ ,GJ+1,GJ+2, . . .}. This produces a conjugate version of the original
odometer σG by Lemma 1 of [7].

Recalling from the proof of Theorem 2.12 thatPj = {B(j, v) : v ∈ [mj]} and noting that
σw

G(B(j, v)) = B(j, x) where x ∈ [mj] is congruent to v + w mod Gj, we see that for each
w ∈ Zd1 , σw

G takes atoms of Pj to atoms of Pj. Since p is constant on elements of Pj, it
follows that σ p(x,v)

G = Sv(x) also takes atoms ofPj to atoms ofPj for each v ∈ Zd2 . In other
words, for each v ∈ Zd2 and any atom A of Pj, Sv(A) is also an atom of Pj. As each Sv is a
homeomorphism, this means that for every j, each Sv simply permutes the elements ofPj.
Letting Ej denote the atom ofPj containing the identity element 0 of the group XG, we can
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then define

Hj = {h ∈ Zd2 : Sh(Ej) = Ej}.
It is clear that each Hj is a subgroup of Zd2 .

Claim 1: For all j, Hj ≥ Hj+1.

Suppose h ∈ Hj+1. This means Sh(Ej+1) = Ej+1. Since Ej+1 ⊆ Ej, it follows that
Sh(Ej) ∩ Ej ⊇ Ej+1 �= ∅. But from our earlier observation that each Sv permutes the atoms
of Pj, we can conclude that Sh(Ej) = Ej and so h ∈ Hj as desired.

Claim 2:
⋂

j Hj = {0}.

Let w ∈⋂j Hj. Then Sw(Ej) = Ej for all j, which means that Sw(0) = 0. If w �= 0, this
means that σ v

G(0) = 0 for some nonzero vector v ∈ Zd1 , contradicting the freeness of σG.

Claim 3: Hj is a finite-index subgroup of Zd2 .

We need to show there are only finitely many cosets of Hj. We know there are only
finitely many atoms in Pj: denote them by A0 = Ej, A1,. . . , Ak. Since S is minimal, we can
find v0, v1,. . . , vk such that Svi(Ej) = Ai. Our claim will then be proved by showing that
the cosets of Hj are exactly {vi +Hj : 0 ≤ i ≤ k}. So let w ∈ Zd2 : we want to show that w
is in one of {vi +Hj : 0 ≤ i ≤ k}. Since Sw permutes the elements ofPj, we know Sw(Ej) is
one of those atoms of Pj, say Ai. We also know that S−vi(Ai) = Ej. Thus S−vi+w(Ej) = Ej,
meaning that−vi + w ∈ Hj, i.e. w ∈ vi +Hj as wanted.

In light of Claims 1, 2, and 3, we can conclude that (XH, σH) is a free Zd2-odometer.
What remains is to find φ : XG→ XH with φ ◦ Sv = σ v

H ◦ φ for each v ∈ Zd2 , which we
will build out of a sequence of maps φj : Pj→ Zd2/Hj. To define φj, letA be an atom inPj
and set

Hj(Ej,A) = {h ∈ Zd2 : Sh(Ej) = A}.
We then set φj(A) = h+Hj where h ∈ Hj(Ej,A). This map is well-defined because of the
following:

Claim 4: Fix A to be an atom inPj and h1 and h2 to be any two elements in Hj(Ej,A). Then
h1 +Hj = h2 +Hj.

We need to show that h1 − h2 ∈ Hj. But since Sh1(Ej) = A and Sh2(Ej) = A by the
definition ofHj(Ej,A), we immediately see that Sh1−h2(Ej) = Ej, which gives us the result.

The map φj respects the Zd2 action in the following way:

Claim 5: For all j ∈ N, all A ∈ Pj and all v ∈ Zd2 , φj(Sv(A)) = φj(A)+ v (where the
addition is modulo Hj).

Let w ∈ φj(Sv(A)). So w ∈ h+ Hj where h ∈ Hj(Ej, Sv(A)), meaning Sh(Ej) = Sv(A).
But then Sh−v(Ej) = A so h− v ∈ Hj(Ej,A). On the other hand, w ∈ h+ Hj tells us that
w − v ∈ h− v + Hj and thus w − v ∈ φj(A) or w ∈ v + φj(A), as wanted.
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For the other direction, let w ∈ v + φj(A) = v + (h+Hj) for some h ∈ Hj(Ej,A). But
if Sh(Ej) = A then Sh+v(Ej) = Sv(A) and we have h+ v ∈ Hj(Ej, SvA). This tells us that
w ∈ (v + h)+Hj = φj(Sv(A)), as wanted.

We are now ready to define φ : XG→ XH. Given x ∈ XG, let Pj(x) be the atom of Pj
containing x. Note that x is determined by this decreasing sequence of atoms ofPj. We can
then define

φ(x) = (φ1(P1(x)),φ2(P2(x)), . . .).

The remaining claims show that φ is the wanted conjugacy.

Claim 6: φ(x) ∈ XH.

By definition, φj(Pj(x)) ∈ Zd2/Hj for all j, so we need only show that for each j,

qj(φj+1(Pj+1(x)) = φj(Pj(x)),

where we recall that qj : Zd2/Hj+1→ Zd2/Hj is the quotient map. In other words, if we
denote φj+1(Pj+1(x)) by k +Hj+1 and φj(Pj(x)) by h+Hj, we just need to show that
k ≡ h mod Hj. To do this, note that Ej+1 ⊆ Ej and Pj+1(x) ⊆ Pj(x). Since by definition
of φj+1 we have that Sk(Ej+1) = Pj+1(x), this means Sk(Ej) ∩ Pj(x) �= ∅. Since Sk simply
permutes the elements ofPj, we have Sk(Ej) = Pj(x).We also know by definition of φj that
h ∈ Hj(Ej,Pj(x)) or Sh(Ej) = Pj(x). Thus Sk−h(Ej) = Ej and k − h ∈ Hj, as needed.

Claim 7: φ is injective.

We first show that each φj is injective. LetA,B ∈ Pj. Denote φj(A) by h1 +Hj and φj(B)
byh2 + Hj, so Sh1(Ej) = A and Sh2(Ej) = B. Ifφj(A) = φj(B) thenwemust haveh1 − h2 ∈
Hj or Sh1−h2(Ej) = Ej.We can rewrite this as S−h2+h1(Ej) = S−h2(A) = Ej or Sh2(Ej) = A.
But then we have that A = B and thus φ is injective.

We now consider x, y ∈ XG. If φ(x) = φ(y) then we have φj(Pj(x)) = φj(Pj(y)) for
every j. By the above this meansPj(x) = Pj(y) for every j, which can only happen if x = y.

Claim 8: φ is surjective.

We first show that each φj is surjective. Let h+Hj ∈ Zd2/Hj. We know Sh(Ej) is some
atom of Pj: call it A. Thus h ∈ Hj(Ej,A) and φj(A) = h+Hj, as wanted.

Now consider (x1, x2, . . .) ∈ XH. Since xj ∈ Zd2/Hj, we can write it as xj = hj +Hj and,
by the above, find Aj such that φj(Aj) = hj +Hj. Since we have qj(xj+1) = xj for every j by
assumption, we then have hj+1 ≡ hj modHj and so Shj+1(Ej) = Aj as well as Shj+1(Ej+1) =
Aj+1. But we know that Ej+1 ⊆ Ej and thus we must have Aj+1 ⊆ Aj, meaning {Aj} is a
decreasing sequence of nested atoms. By Theorem 2.12 there is exactly one point x ∈ ∩jAj
and we then have φ(x) = (x1, x2, . . .) as wanted.

Claim 9: φ and φ−1 are continuous.

This follows because the image and pre-image of any cylinder set is a cylinder set.
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Claim 10: φ intertwines the actions of S and σH.

If x is an element of A ∈ Pj, then Sv(x) is an element of Sv(A) and we have that
Pj(Sv(x)) = Sv(Pj(x)). Thus

φ(Sv(x)) = (φ1(P1(Sv(x))),φ2(P2(Sv(x))), . . .)

= (φ1(Sv(P1(x))),φ2(Sv(P2(x))), . . .)

= (v + φ1(P1(x)), v + φ2(P2(x)), . . .) (by applying Claim 5)

= σ v
H(φ1(P1(x)),φ2(P2(x), . . .)

= σ v
H(φ(x)).

Thus φ gives a conjugacy between (XH, σH) and (XG, S), making S an odometer as wanted.
�

Our work yields the following result in dimension 1, first proven by Alvin et al. [1] using
combinatorial methods:

Corollary 5.4: Let (X,T) be a Z-odometer and suppose S is a minimal speedup of T, where
the speedup function p is bounded. Then (X, S) is a Z-odometer, conjugate to (X,T).

Proof: By Theorem 5.3, (X, S) is aZ-odometer. The result then follows fromCorollary 3.5.
�

Despite the fact that the bounded speedup of an odometer is an odometer, in the higher-
dimensional case the speedup is not necessarily conjugate, nor even isomorphic, to the
original odometer. We show this in the following theorem where we find a Z2-odometer
and construct a bounded speedup of it that is not isomorphic to the original odometer.

Theorem5.5: There exists a pair of nonisomorphicZ2-odometers, for which one is a speedup
of the other.

Proof: To describe the first odometer, set Gj = 3jZ× 2jZ for each j ≥ 1. As described
in Theorem 2.5, the sequence G = {G1,G2,G3, . . .} then yields a minimal Z2-odometer
(XG, σG). The second odometer will be a speedup of (XG, σG), using the partition P1 as
described in Theorem2.12 to define the speedup cocycles. Note thatP1 in this case consists
of six sets associated to the six cosets in Z2/G1. We then define p1, p2 : X→ Z2 by setting
p1(x) = (1, 0) and

p2(x) =
{
(0, 1) if x ∈ π−11 ({(0, 0)+ G1, (1, 0)+ G1, (2, 0)+ G1})
(1, 1) if x ∈ π−11 ({(0, 1)+ G1, (1, 1)+ G1, (2, 1)+ G1}) .

The Z2-action (XG, S) generated by p1 and p2 is therefore a bounded C-speedup of σG for
any cone C containing the positive x-axis and the portion of the line y = x lying in the
first quadrant; by Theorem 5.3, (XG, S) is a Z2-odometer. Note that (XG, σG) and (XG, S)
are continuously orbit equivalent using the identity map and the speedup cocycle p for the
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orbit cocycle. Therefore the orbits of (XG, σG) are exactly the same sets as the orbits of
(XG, S), so since (XG, σG) is minimal, (XG, S) is minimal as well.

It remains to show that (XG, σG) and (XG, S) are not isomorphic. We will do this by
computing the first cohomology group of each odometer and then using Theorem 2.7.
ForH(σG), note thatGj = 3jZ× 2jZ hasG∗j = 1

3j Z× 1
2j Z and thusH(σG) =

⋃∞
j=1 G∗j =

Z[ 13 ]× Z[ 12 ]. To find H(S), we will follow the construction in the proof of Theorem 5.3
to find a sequence of subgroups {G′1,G′2,G′3, . . .} associated to (XG, S) and then similarly
compute H(S) =⋃∞j=1(G′j)∗.

Beginning with G′1, recall it is defined to be {h ∈ Z2 : Sh(E1) = E1}, where E1 is the
atom of P1 containing the identity element of XG. We can see that (3, 0) and (2, 2) are in
G′1 by definition of p1 and p2 and then check that these in fact generate all of G′1. Thus

G′1 =
(

3 2
0 2

)
Z2.

In a similar fashion, we can show that

G′j =
(

3j 3j − 2j−1
0 2j

)
Z2.

We can therefore calculate

(G′1)
∗ = {(p, q) ∈ R2 : (p, q) · (a, b) ∈ Z for all (a, b) ∈ G′1}
= {(p, q) ∈ R2 : (p, q) · (3, 0) ∈ Z and (p, q) · (2, 2) ∈ Z}

=
{
(p, q) ∈ R2 :

(
3 0
2 2

)(
p
q

)
∈ Z2

}

=
{
(p, q) ∈ R2 : there exists(m, n) ∈ Z2 with

(
p
q

)
=
(

3 0
2 2

)−1 ( m
n

)}

=
(

1/3 0
−1/3 1/2

)
Z2 = 1

6

(
2 0
−2 3

)
Z2.

In a similar fashion, we can show that

(G′j)
∗ = 1

6j

(
2j 0

2j−1 − 3j 3j

)
Z2

=

⎧⎪⎨⎪⎩
⎛⎜⎝

1
3j
m(

1
6 · 3j−1 −

1
2j

)
m+ 1

2j
n

⎞⎟⎠ : m, n ∈ Z

⎫⎪⎬⎪⎭
But if (x, y) ∈ (G′j)∗, then x = 1

3j m and y = ( 12 − ( 32 )j)x+ 1
2j n or y− 1/2x = 1

2j n− 3j
2j x =

1
2j n− 1

2j m. Thus

H(S) =
∞⋃
j=1
(G′j)

∗ =
{
(x, y) ∈ Z2 : x ∈ Z

[
1
3

]
, y− 1

2
x ∈ Z

[
1
2

]}
.
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We then see that H(S) contains ( 13 ,
1
6 ) but H(σG) does not. So by (1) of Theorem 2.7,

(XG, σG) and (XG, S) are not conjugate.
To show that they are not isomorphic, we use contradiction. Suppose they are isomor-

phic: then by (2) of Theorem 2.7, there isα ∈ GL2(Z) such that α(H(σG)) = H(S). Denote
α as

( a b
c d
) ∈ GL2(Z). Since (0, 1/2j) ∈ H(σG) for every j, we must have(

a b
c d

)(
0

1/2j

)
=
(

b/2j
d/2j

)
∈ H(S)

for every j. In other words, b/2j ∈ Z[ 13 ] for every j, which implies b = 0. We also know
(1/3j, 0) ∈ H(σG) for every j, and thus we must have(

a 0
c d

)(
1/3j

0

)
=
(

a/3j
c/3j

)
∈ H(S)

for every j. Thismeans c
3j − 1

2
1
3j = 1

3j (c− 1
2a) ∈ Z[ 12 ] for every j, and thus c = 1

2a. But this
means the determinant of matrix α is

det
(

2c 0
c d

)
= 2cd.

But 2cd cannot equal±1 for any c, d ∈ Z, contradicting our assumption that α ∈ GL2(Z).
�

As mentioned in the above proof, the odometers (XG, σG) and (XH, σH) are contin-
uously orbit equivalent even though they are not isomorphic. We conjecture that this is
always true, at least in the d = 2 case, and leave it as an open problem:

Conjecture 5.6: Let (XG, σG) be a freeZ2-odometer and suppose S : Z2 � X is aminimal
speedup of σG, where the speedup cocycle p is bounded. Then theZ2-odometer (XG, S) is
continuously orbit equivalent to (XG, σG).

The result in the other direction is almost immediate:

Theorem 5.7: Let (XG, σG) and and (XH, σH) be Zd-odometers that are continuously orbit
equivalent. Then there exists a cone C ⊆ Zd such that (XH, σH) is conjugate to a C-speedup
of (XG, σG).

Proof: The definition of continuous orbit equivalence gives us a homeomorphism � :
XG→ XH and a continuous orbit cocycle h such that � ◦ σ h(x,v)

G (x) = σ v
H ◦�(x) for

all x ∈ X and v ∈ Zd. Since h is continuous and XG compact, we see that each func-
tion x �→ h(x, ej) can only take finitely many values as x ranges over XG. Let C be any
cone that contains all the values of the h(x, ej). We can then define a speedup cocycle by
p(x, v) = h(x, v): the homeomorphism � then gives a conjugacy between the C-speedup
so defined and (XH, σH). �

The above theorem assures us that given two continuously orbit equivalent odometers,
there is a cone C (in fact, many cones) such that one odometer is a bounded C-speedup of
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the other. But does this remain true for an arbitrary cone C? The answer can be no, even
if the odometers are assumed conjugate. We prove this in Corollary 5.10 via an example
constructed in Theorem 5.9. We also show in Theorem 5.11 that there are odometers for
which the shape of the cone C is not an obstruction. We first need this preliminary lemma:

Lemma 5.8: Let G < Z2 be a group with index [Z2 : G] = 6j for some integer j. If there exist
m, m̃ ∈ N with

3mZ× 2mZ ≤ G ≤ 3m̃Z× 2m̃Z,

then G = 3jZ× 2jZ.

Proof: This result follows from investigating the form of the elements in G. We begin by
noting that (3m, 0) ∈ 3mZ× 2mZ ≤ G. Let x be the smallest positive integer such that
(x, 0) ∈ G and note x ∈ 3m̃Z, i.e. x = 3m̃z for z ∈ Z. We then have that the group gen-
erated by the two vectors (3m, 0) and (x, 0) is a subgroup of G. Looking just at the first
coordinates of the elements in this subgroup, note that these coordinates must be gener-
ated by the greatest common divisor of x and 3m, which thus will have the form 3k for some
integer k (later, we will show k = j). So we have (3k, 0) ∈ G and by definition of x, it must
in fact be that x = 3k.

We next define b ∈ Z to be the smallest positive number such that there exists a nonneg-
ative integer a with (a, b) ∈ G. We may assume a < 3k, else subtract a multiple of (3k, 0)
until it is so.

We claim that G is generated by (3k, 0) and (a, b). To show this, let g ∈ G and write
g = (g1, g2). If g2 = 0, then g1 must be a multiple of 3k and thus (g1, g2) is in the group
generated by (3k, 0) and (a, b), as wanted. So assume g2 �= 0.Note that g2 must be amultiple
of b, else we can add to (g1, g2)multiples of (a, b) and (0, 3k) until the second coordinate is
between 0 and b and the first coordinate is between 0 and 3k, contradicting our definition of
b. Sowe have g2 = hb for h ∈ Z.We can then say that (g1, g2)− h(a, b) = (g1 − ha, 0) ∈ G,
which means 3k must divide g1 − ha, or g1 = ha+ c3k for some integer c. We thus have
that g = (g1, g2) = (ha+ c3k, hb) = h(a, b)+ c(3k, 0), as wanted.

This tells us thatG =
(
3k a
0 b

)
Z2.What remains is to show is that j = k, b = 2j and a = 0.

To investigate the form of b, we note that since the index [Z2 : G] is the determinant of
the matrix, it must be that 3kb = 6j. We thus have that b = 2j3j−k. On the other hand, we
know that (0, 2m) ∈ 3mZ× 2mZ ≤ G and thus there must be integers p and q such that
(0, 2m) = p(3k, 0)+ q(a, b) = (p 3k + q a, q b) or 2m = q b. Thus b = 2j3j−k must divide
2m. This implies that j = k and b = 2j, yielding

G =
(

3j a
0 2j

)
Z2.

Finally, we consider a. Since 3mZ× 2mZ ≤ G, we know that (3m, 2m) ∈ G. Thus there
must be integers z and w such that

(3m, 2m) = z(3j, 0)+ w(a, 2j) = (z3j + wa,w2j).

This tells us that 2m = w2j and 3m = z3j + wa. The first says thatw is a power of 2; together
with the second equality we then have that amust be amultiple of 3. But we know that 3k =
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3j divides 3m and thus must dividewa, hence divide a as well. If a is nonzero, it follows that
a = 3l for some l ≥ k. But we assumed a < 3k, and thus we must have a = 0, as wanted.

�

With this technical result in hand, we can show that in some cases, a C-speedup must
have a very specific structure:

Theorem5.9: For each j, define Gj = 3jZ× 2jZ and let (XG, σG) be theZ2-odometer given
by G = {G1,G2,G3, . . .}. Let C = {0, 1, 2, . . .} × {0, 1, 2, . . .} − {(0, 0)}.

Suppose (XG, S) is a bounded C-speedup of (XG, σG)which is conjugate to (XG, σG). Then
the speedup is a product of two one-dimensional speedups, meaning that Se1 is a speedup of
σ
e1
G and Se2 is a speedup of σ e2

G .

Proof: Suppose S is a bounded C-speedup of σG that is conjugate to σG, and let p be
its speedup cocycle. We will prove the theorem by showing that p(x, e1) = p1(x)e1 and
p(x, e2) = p2(x)e2 for functions p1, p2 : XG→ Z+.

We begin by considering some of the structure of an odometer and its speedup.
For instance, let Pj be the sequence of K-R partitions for (XG, σG) as described in
Theorem 2.12. Just as was done in Theorem 5.3, we can let J be the smallest j ≥ 0 such
that for each v ∈ Z2, p(x, v) is constant on the atoms of PJ (and hence constant on all
atoms of anyPj for any j ≥ J). Thus we can think of σG

p(·,v) = Sv as simply permuting the
6j elements of Pj.

Also similar to what we did in Theorem 5.3, let Hj = {v ∈ Z2 : Sv(Ej) = Ej}, where Ej
is the atom ofPj containing the zero element of XG. Recall this yields a sequence of groups
with HJ ≥ HJ+1 ≥ · · · which can be used to define (a conjugate version of) the odometer
(XG, S).

Choose any x ∈ XG. For each j ≥ J, let Aj be the atom of Pj containing x. Observe that
it follows from the justification of Claim 3 in the proof of Theorem 5.3 that for any j ≥ J,

Hj = {v ∈ Z2 : Sv(Aj) = Aj}.
Next, since we are assuming (XG, S) and (XG, σG) are conjugate, we can use Lemma 1 of
[7] to say that for each j, there existsmj and m̃j such that

3mjZ× 2mjZ ≤ Hj ≤ 3m̃jZ× 2m̃jZ.

By Lemma 5.8, we then know there is some kj ∈ N such thatHj = 3kjZ× 2kjZ. In particu-
lar, this says that (3kJ , 0) ∈ HJ and so S(3

kJ ,0) sendsAJ to itself. We can rewrite this as saying
that σG

p(·,(3kJ ,0)) sends AJ to AJ . But we said above that p(·, (3kJ , 0)) is constant on AJ and
thus we can find a constant vector (αJ ,βJ) ∈ Z2 which equals p(·, (3kJ , x)) when restricted
to AJ . That is, S(3

kJ ,0) = σG
(αJ ,βJ) when restricted to AJ .

Our goal is to show βJ = 0, and our main tool will be the fact that by the definition of
σG, we know that for all j,

{v ∈ Z2 : σ v
G(Aj) = Aj} = 3jZ× 2jZ.

We begin by noting that when j = J, the above tells us that (αJ ,βJ) = (3Ja, 2Jb) for some
nonnegative integers a and b.
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We next consider j = J + 1. We similarly find that S(3
kJ+1 ,0) sends AJ+1 to AJ+1. But for

all points in AJ+1 ⊂ AJ ,

S(3
kJ+1 ,0) =

(
S(3

kJ ,0)
)3kJ+1−kJ

=
(
σG

(3Ja,2Jb)
)3kJ+1−kJ

= σ (3kJ+1−kJ 3Ja,3kJ+1−kJ 2Jb)G .

We then know that σ (3
kJ+1−kJ 3Ja,3kJ+1−kJ 2Jb)

G sends AJ+1 to AJ+1. But we also know that the
only vectors v ∈ Z2 such that σ v

G sendsAJ+1 toAJ+1 are those in 3J+1Z× 2J+1Z, and thus
we have that

(3kJ+1−kJ3Ja, 3kJ+1−kJ2Jb) = (3J+1m, 2J+1n) for somem, n ∈ Z.

In particular, this says that 3kJ+1−kJ2Jb = 2J+1n, implying that bmust be divisible by 2.
We can then repeat this argument for each j > J. In other words, we have S(3

kj ,0) sends
Aj to Aj and, for points in Aj, we can rewrite S(3

kj ,0) as

S(3
kj ,0) =

(
S(3

kJ ,0)
)3kj−kJ

=
(
σG

(3Ja,2Jb)
)3kj−kJ

= σ (3
kj−kJ 3Ja,3kj−kJ 2Jb)

G .

We then again use that the only vectors v ∈ Z2 such that σ v
G sends Aj to Aj must be of the

form 3jZ× 2jZ to conclude that

(3kj−kJ3Ja, 3kj−kJ2Jb) = (3jp, 2jq) for some p, q ∈ Z.

In particular, this says that 3kj−kJ2Jb = 2jq, implying that b must be divisible by 2j−J . As
this holds for all j > J, bmust be zero.

We now proceed with proving p(x, e1) = (p1(x), 0) for every x ∈ XG. Since b = 0, the
vector (αJ ,βJ) found above actually can be written (αJ , 0) and thus,

S(3
kJ ,0)(x) = σ (αJ ,βJ)G (x) = σ (αJ ,0)G (x). (1)

We have now shown that for every x ∈ XG, p(x, 3kJe1) = (αJ , 0) for some αJ = αJ(x) ∈
Z+.

Next, we see from the cocycle equation that

p(x, 3kJe1) = p(x, e1)+ p(Se1x, e1)+ p(S2e1x, e1)+ · · · + p(S(3
kJ−1)e1x, e1). (2)

From the choice of C, each vector in this sum has a second coordinate which is non-
negative, so if any of these vectors have a positive second coordinate, then p(x, 3kJe1) =
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(αJ , 0)must also have a positive second coordinate, a contradiction. In particular, this says
that the second coordinate of p(x, e1)must be zero and we can write p(x, e1) = (p1(x), 0)
for some function p1 : XG→ Z+, as wanted.

A similar argument shows that there is a function p2 : XG→ Z+ such that p(x, e2) =
(0, p2(x)) for all x ∈ XG. In particular, we can write S(0,2

kJ ) as σ (γJ ,δJ)G where (γJ , δJ) =
(3Jc, 2Jd). We can prove c = 0, and therefore γJ = 0, by observing that whenever j > J,
S(0,2

kj ) sends each atom of each Pj to itself, which implies c is divisible by 3j−J for all
j > J. �

The following corollary then says that the form of the cone C can severely restrict what
a bounded C-speedup can be conjugate to.

Corollary 5.10: For each j, define Gj = 3jZ× 2jZ and let (XG, σG) be the Z2-odometer
given by G = {G1,G2,G3, . . .}. Let C ⊆ Z2 be a cone. If there is a bounded C-speedup of
(XG, σG) which is conjugate to (XG, σG), then C must contain points along both coordinate
axes.

Proof: Notice from the proof of Theorem5.9 that Equation (1) can be obtained irrespective
of the cone C, i.e. the speedup cocycle p defining Smust satisfy p(x, 3kJe1) = (αJ(x), 0) for
all x ∈ XG. If C contains no points along the horizontal axis, then by definition of it being a
cone, it must lie entirely above or entirely below the horizontal axis. Thus the second coor-
dinate of p(·, e1) will always be positive or will always be negative. By using Equation (2),
this in turn tells us that the second coordinate of p(x, 3kJe1) cannot be zero, contrary to
what we said above. Thus we know that C must indeed contain some points on the hori-
zontal axis. Similarly, we can obtain p(x, 2kJe2) = (0, δJ(x)) for all x ∈ XG; since C contains
the range of p(·, e2), it must also contain points along the vertical axis. �

Thus for the odometerσGgiven by the groupsGj = 3jZ× 2jZ, there is substantial rigid-
ity in the speedups of σG which are conjugate to σG. In the next example, we demonstrate
that this rigidity does not always exist:

Theorem 5.11: Let G = {Gn}∞n=1, where Gn = 2nZ× 2nZ. Then, for any cone C ⊆ Z2,
there is a C-speedup of the Z2-odometer (XG , σG) which is conjugate to (XG , σG).

Proof: Given C ⊆ Z2, choose an integer vector p̃ = (p1, p2) such that p̃ ∈ C, p̃+ (0, 1) ∈
C, and p1 is odd. We use this p̃ to define the speedup of (XG , σG): define the cocycle
p(x, (v1, v2)) = v1p̃+ v2(p̃+ (0, 1)) for all x ∈ XG , and let (XG , S) be the C-speedup of
(XG , σG) given by cocycle p.

Claim 1: S is minimal.

Consider the refining and generating sequence of partitions Pn described in
Theorem 2.12.Wewill show that the S-orbit of the identity element 0 ∈ XG intersects every
atom ofPn for every n. So fix n and an atom ofPn: such an atommust be the inverse image
of some coset (u1, u2)+ Gn under the map πn, as defined in Section 2.4. We will know the
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orbit of 0 intersects this atom if we can find v ∈ Z2 such that the nth coordinate of Sv(0)
equals (u1, u2)mod Gn = 2nZ× 2nZ.

Since p1 is odd, we can find an integerm such thatmp1 = u1 mod 2n. With thism fixed,
we can then pick an integer k such that (mp2 +m)+ k = u2 mod 2n. Now let v1 = −k and
v2 = k+m. Then

S(v1,v2)(0) = σ p(0,(v1,v2))
G (0)

= (v1p̃+ v2(p̃+ (0, 1))mod G1, v1p̃+ v2(p̃+ (0, 1))mod G2, . . .).

The nth coordinate is thus

v1p̃+ v2(p̃+ (0, 1)) = (v1p1 + v2p1, v1p2 + v2(p2 + 1))

= (mp1, k+mp2 +m)

= (u1, u2)mod 2nZ× 2nZ,

as wanted.
Because the partitionsPn generate the topology ofXG , the above tells us that the S-orbit

of 0 must be dense in XG . Since the S-orbit of any x ∈ XG is just the S-orbit of 0 translated
by x, it follows that every S-orbit is dense, meaning S is minimal.

By Theorem 5.3, (XG , S) is therefore a Z2-odometer and is thus associated to some
decreasing sequence {G′n} of finite-index subgroups of Z2. One such sequence can be
obtained by following the construction in the proof of Theorem 5.3, where we found that
G′n = {h ∈ Z2 : Sh(En) = En}, where En is the atom of Pn containing 0.

Claim 2: For every n there are positive integers an and bn such that G′n = 2anZ× 2bnZ.

We prove this by induction. Consider G′1 = {h ∈ Z2 : Sh(E1) = E1}. Note that (2, 0) ∈
G′1 because

S(2,0) = σ p(·,(2,0))
G = σ 2p̃

G = σ
(2p1,2p2)
G

and (2p1, 2p2) = (0, 0)mod 2Z× 2Z. Similarly we have (0, 2) ∈ G′1 and thus 2Z× 2Z ⊆
G′1. If they are not equal, we can find (a, b) ∈ G′1 with at least one of a, b odd. By subtracting
off elements from 2Z× 2Z we can then find (ã, b̃) ∈ G′1 with one or both of ã, b̃ equal to
1. But note that (1, 0) /∈ G′1, since

S(1,0) = σ p(·,(1,0))
G = σ p̃

G = σ
(p1,p2)
G

and p1 is odd.We similarly see that (0, 1) /∈ G′1. This leaves (1, 1) as the only possibility, yet

S(1,1) = σ p(·,(1,1))
G = σ 2p̃+(0,1)

G = σ (2p1,2p2+1)G .

But 2p2 + 1 �= 0 mod 2, and thus σ (2p1,2p2+1)G cannot send E1 to E1.
Now assume G′n = 2anZ× 2bnZ for nonnegative integers an and bn. We will in fact

show that G′n+1 = 2an+1Z× 2bn+1Z, where an+1 ∈ {an, an + 1} and bn+1 ∈ {bn, bn + 1}.
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To do so, it suffices to show that if (w1,w2) ∈ G′n, then (2w1, 2w2) ∈ G′n+1. Toward that
end, suppose (w1,w2) ∈ G′n. Then

S(w1,w2)(0) = σw1p̃+w2(p̃+(0,1))
G (0) ∈ En.

Note that when the partition Pn is refined into Pn+1, the atom En of Pn is subdivided
into four atoms ofPn+1, namely π−1((0, 0)+ Gn+1), π−1((2n, 0)+ Gn+1), π−1((0, 2n)+
Gn+1) and π−1((2n, 2n)+ Gn+1). Thus S(w1,w2)(0) lies in exactly one of these four atoms.
Nomatter which of these atoms contains S(w1,w2)(0), it must be the case that S(2w1,2w2)(0) ∈
π−1((0, 0)+ Gn+1) = En+1, making (2w1, 2w2) ∈ G′n+1 as wanted.

At this point, we have G′n = 2anZ× 2bnZ for sequences {an}, {bn} of integers satisfying
a1 = b1 = 1 and an+1 − an ∈ {0, 1}, bn+1 − bn ∈ {0, 1} for all n.

Claim 3: The sequences an→∞ and bn→∞.

We prove this by contradiction. So assume one of these, say an, does not diverge to
infinity. That means there is N such that an = aN for all n ≥ N. So for all n ≥ N, G′n =
2aNZ× 2bnZ, which implies (2aN , 0) ∈ G′n. By the definition of G′n, this means

S(2
aN ,0)(0) = σ 2aN p̃

G (0) ∈ En

for all n ≥ N, and it follows that σ 2aN p̃
G (0) = 0. This contradicts the freeness of σG .

Therefore an→∞, and a similar proof shows bn→∞.
Since (XG , S) is conjugate to (XG′ , σG′), where G ′ = {G′1,G′2, . . .} and each G′n is of the

form 2anZ× 2bnZ with an, bn→∞, we see that

H(S) =
∞⋃
n=1
(G′n)

∗ = Z

[
1
2

]
× Z

[
1
2

]
= H(σG).

By Theorem 2.7, (XG , S) is conjugate to (XG , σG). �

Theorems 5.9 and 5.11 show a role that the particular structure of the speedup and the
choice of cone C play in the theory of bounded C-speedups of higher-dimensional odome-
ters. In dimension 1, a bounded minimal speedup of an odometer is a conjugate odometer
[1]. Furthermore, there are only two cones in Z, namely the positive integers and nega-
tive integers. Since any Z-odometer σG is conjugate to its inverse σ−1G , the structure of
speedups whose cocycle takes values in the positive cone is identical to the structure of
speedups whose cocycle takes negative values.

But in higher dimensions, there are many cones one could be interested in, and depend-
ing on the odometer being sped up, the choice of cone C can play a substantial role in the
structure of its bounded, minimal C-speedups. For example, while any resulting speedup
must be an odometer, no matter the cone (see Theorem 5.3), whether or not said speedup
can be conjugate to the original may be completely independent of C, exemplified in
Theorem 5.11, or highly dependent on the choice of C, as demonstrated in Corollary 5.10.



DYNAMICAL SYSTEMS 39

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] L. Alvin , D. Ash, and N. Ormes, Bounded topological speedups, Dyn. Syst. 33 (2018), pp.
303–331.

[2] P. Arnoux, D. Ornstein, and B. Weiss, Cutting and stacking, interval exchanges and geometric
models, Isr. J. Math. 50 (1985), pp. 160–168.

[3] D. Ash, Topological speedups, preprint. Available at arXiv:1605.08446.
[4] D. Ash and N. Ormes, Topological speedups for minimal cantor systems, preprint.
[5] A. Babichev, R. Burton, and A. Fieldsteel, Speedups of ergodic group extensions, Ergod. Theory

Dyn. Syst. 33 (2013), pp. 969–982.
[6] M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and C∗−algebras, J. Math.

Soc. Japan50 (1998), pp. 317–329.
[7] M.I. Cortez, Zd Toeplitz arrays, Discrete Contin. Dyn. Syst. 15 (2006), pp. 859–881.
[8] M.I. Cortez and K. Medynets, On virtual conjugacy of generalized odometers, J. London Math.

Soc. (2) 94 (2016), pp. 545–556.
[9] M.I. Cortez and S. Petite, G-odometers and their almost 1−1 extensions, J. London Math. Soc.

78 (2008), pp. 1–20.
[10] T. Downarowicz, Survey of odometers and Toeplitz flows, in Algebraic and Topological Dynam-

ics, S. Kolyada, Y. Manin, and T. Ward, eds., Contemporary Mathematics, Vol. 385, American
Mathematical Society, Providence, RI, 2005, pp. 7–37.

[11] F. Durand, Combinatorics on Bratteli diagrams and dynamical systems, in Combinatorics,
Automata and Number Theory, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, Cam-
bridge, 2010, pp. 324–372.

[12] H.A. Dye, On groups of measure preserving transformations I, Amer. J. Math. 81 (1959), pp.
119–159.

[13] H.A. Dye, On groups of measure preserving transformations II, Amer. J. Math. 85 (1963), pp.
551–576.

[14] E.G. Effros, Dimensions and C∗-algebras, CMBS Regional Conference Series in Mathematics
46, Conference Board of the Mathematical Sciences, Amer. Math. Soc., Providence, RI, 1981.

[15] E. Effros, D. Handelman, and C.-L. Shen, Dimension groups and their affine representations,
Amer. J. Math. 102 (1980), pp. 385–407.

[16] G. Elliott, On the classification of inductive limits of sequences of semi-simple finite dimensional
algebras, J. Algebra 38 (1976), pp. 29–44.

[17] A. Forrest, A Bratteli diagram for commuting homeomorphisms of the Cantor set, Internat. J.
Math.11 (2000), pp. 177–200.

[18] A. Forrest and J. Hunton, The cohomology and K-theory of commuting homeomorphisms of the
Cantor set, Ergod. Theory Dyn. Syst. 19 (1999), pp. 611–625.

[19] T. Giordano, I. Putnam, and C. Skau, Topological orbit equivalence and C∗-crossed products, J.
Reine Angew. Math. 469 (1995), pp. 51–111.

[20] T. Giordano, I. Putnam, and C. Skau, The orbit structure of Cantor minimal Z2-systems,
in Operator Algebras: The Abel Symposium 2004, Abel Symp. 1, Springer, Berlin, 2006, pp.
145–160.

[21] T. Giordano, H. Matui, I. Putnam, and C. Skau, Orbit equivalence for Cantor minimal Zd-
systems, Invent. Math. 179 (2010), pp. 119–158.

[22] T. Giordano, I. Putnam, and C. Skau, Zd-odometers and cohomology, Groups Geom. Dyn. 13
(2019), pp. 909–938.

[23] R. Herman, I. Putnam, and C. Skau, Ordered Bratteli diagrams, dimension groups and topolog-
ical dynamics, Internat. J. Math. 3 (1992), pp. 827–864.

[24] A.S.A. Johnson and D. McClendon, Speedups of ergodic group extensions of Zd-actions, Dyn.
Syst. 29 (2014), pp. 255–284.



40 A. S. A. JOHNSON AND D. M. MCCLENDON

[25] A.S.A. Johnson andD.McClendon, Speedups and orbit equivalence of finite extensions of ergodic
Zd-actions, New York J. Math. 21 (2015), pp. 1371–1387.

[26] X. Li, Orbit equivalence rigidity, Ergod. Theory Dyn. Syst. 38 (2018), pp. 1543–1563.
[27] J. Neveu, Temps d’arrêt d’un systèm dynamique [Stopping times of a dynamical system], Z.

Wahrscheinlichkeitstheor. Verw. Geb. 13 (1969), pp. 81–94.
[28] J. Neveu, Une démonstration simplifée et une extension de la formule d’Abramov sur l’entropie

des tranformations induites [A simple proof and extension of the Abramov formula for entropy of
induced transformations], Z. Wahrscheinlichkeitstheor. Verw. Geb. 13 (1969), pp. 135–140.


	1. Introduction
	2. Terminology
	2.1. Dynamical systems
	2.2. Equivalence relations on actions
	2.3. Speedups
	2.4. Odometers
	2.5. Towers, refinements and Kakutani-Rohklin partitions
	2.5.1. Pretowers and precastles
	2.5.2. Towers and castles
	2.5.3. Kakutani-Rohklin partitions
	2.5.4. Refinements

	2.6. Dimension groups
	2.7. Dimension groups and dynamical systems

	3. Speedups, invariant measures and orbit equivalence
	4. A converse of Theorem 3.6
	5. Bounded speedups of odometers
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


