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Big picture

Classification problem (proposed by von Neumann)

Classify (ergodic) m.p. actions up to conjugacy.

Classifying actions with discrete spectrum: solved (von Neumann
proved eigenvalues are a complete invariant)

Classifying Bernoulli actions: solved (Ornstein proved entropy is a
complete invariant)
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Big picture

Classification problem (proposed by von Neumann)

Classify (ergodic) m.p. actions up to conjugacy.

Classifying all actions: intractable (Foreman-Rudolph-Weiss proved
that conjugacy of ergodic m.p. systems is complete
analytic)
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(color (T ,S) pink if T is conjugate to S ; the pink region isn’t Borel)
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Big picture

Classification problem (proposed by von Neumann)

Classify (ergodic) m.p. actions up to conjugacy.

Classifying all actions: intractable (Foreman-Rudolph-Weiss proved
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Big picture

Classification problem (proposed by von Neumann)

Classify (ergodic) m.p. actions up to conjugacy.

Classifying rank one actions: ? (Foreman-Rudolph-Weiss proved
that conjugacy of rank one systems is Borel)
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Big picture

Motivation

The work I am going to discuss deals with characterizing the set
labelled with the “?” when T is an odometer.
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Outline of the talk

1 Review rank one systems, setting up language for later

2 Review odometers, setting up language for later

3 State results describing the sets labelled earlier with “?”

4 Brief comments on some ideas in proofs (time permitting)
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What is “rank one”?

From the table of contents of (Ferenczi 1997):
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An example: Chacon map

Stage 0: Start by partitioning X into B0 and E0:
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An example: Chacon map

Stage 0→ Stage 1: Cut and stack B0, inserting spacer taken from
E0:
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An example: Chacon map

Stage 0→ Stage 1: Cut and stack B0, inserting spacer taken from
E0:
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An example: Chacon map

Stage 0→ Stage 1: Cut and stack B0, inserting spacer taken from
E0:
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An example: Chacon map

Stage 0→ Stage 1: Cut and stack B0, inserting spacer taken from
E0:
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An example: Chacon map

Stage 1: This defines T on all but the top of the tower and the
error set E1.
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We get:

a tower T1 = {B1,T (B1), ...,T 3(B1)}
which has base B1 and

levels B1, T (B1), ..., T 3(B1);
(these levels are labelled 0, 1, 2, and 3)

and the tower has shape F1 = {0, 1, 2, 3}.
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An example: Chacon map

Stage 1: This defines T on all but the top level of the tower and
the error set E1.
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We get:

a tower T1 = {T 0(B1),T 1(B1),T 2(B1),T 3(B1)}
which has base B1 and

levels T 0(B1), T 1(B1), T 2(B1) and T 3(B1);
(these levels can be labelled 0, 1, 2, and 3);

and the tower has shape F1 = {0, 1, 2, 3}.
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An example: Chacon map

Back to Stage 0:

�� ��

We can think of stage 0 as describing a tower T0 = {B0} of shape
F0 = {0} and base B0.

The stage 1 tower refines the stage 0 tower, i.e. each level of T1 is
a subset of either a level (really “the” level) of T0 or the error set
E0.
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An example: Chacon map

Stage 1→ Stage 2: Cut and stack B1, inserting spacer taken from
E1.
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An example: Chacon map

Stage 1→ Stage 2: Cut and stack B1, inserting spacer taken from
E1.
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An example: Chacon map

Stage 1→ Stage 2: Cut and stack B1, inserting spacer taken from
E1.
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An example: Chacon map

Stage 2:

⊆ ��
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We get a tower T2 of shape F2 = {0, ..., 12}, refining tower T1,
whose base is B2. T is now defined on more of the space than it
was after Stage 1.
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An example: Chacon map

Remark

Notice that levels 0, 4 and 9 of T2 are subsets of the base B1 of
the previous tower T1.
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An example: Chacon map

Remark

Notice that levels 0, 4 and 9 of T2 are subsets of the base B1 of
the previous tower T1.

We will describe this by saying that the descendants of the stage
1 base in the stage 2 tower are the levels 0, 4 and 9, and write

I1,2 = {0, 4, 9}.
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An example: Chacon map

Remark

Notice that levels 0, 4 and 9 of T2 are subsets of the base B1 of
the previous tower T1.

Similarly,
I0,2 = {0, 1, 3, 4, 5, 7, 9, 10, 12}

since those levels in the stage 2 tower are subsets of B0, the base of
the stage 0 tower.
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An example: Chacon map

Stage 2 → Stage 3 → Stage 4 → · · · : Continue in this fashion
to obtain a measure-preserving transformation (X ,X , µ,T ).

In particular, the levels of the towers generate X , in that any set
in X can be approximated arbitrarily well by a union of levels taken
from some tower Tn.

For every m ≤ n, we get a finite set Im,n of levels in the tower at
stage n that are a subset of the base at stage m.
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Defining rank one transformations

(Constructive geometric) definition of rank one (Baxter)

A rank one Z-action, loosely speaking, is one that can be built
via a process of cutting and stacking similar to the one used to
construct the Chacon map.

Other ways to define rank one transformations:

Non-constructive geometric definition (Ornstein, Ferenczi)

Constructive symbolic definition (Kalikow, del Junco-Rudolph)

Non-constructive symbolic definition (del Junco)
generalized to group actions via (C ,F )-models
(Danilenko)

Adic definition (Adams-Ferenczi-Petersen)
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Rank one actions of Zd

This talk is about actions of Zd . We will write

T : Zd y (X , µ)

when T is an action of Zd on (X , µ) by measure-preserving
transformations.

The action of v ∈ Zd is denoted Tv.
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Rank one actions of Zd

Definitions

A shape F is a nonempty, finite subset of Zd .

A tower T of shape F for a m.p. action T : Zd y (X , µ) is a
collection of disjoint subsets (of the same positive measure) of the
form

{Tv(B) : v ∈ F}.

(WLOG 0 ∈ F , so that B is one of the levels of the tower.)
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Rank one actions of Zd

Definitions

T : Zd y (X ,X , µ) is rank one if there is a sequence {Tn} of
towers, where Tn has shape Fn, so that for any A ∈ X and every n,
there is a union Ln of levels of Tn so that

lim
n→∞

µ(Ln4A) = 0.

If each Tn+1 refines Tn, and the error sets decrease, we say T is
stacking rank one.

If this definition can be satisfied so that the tower shapes {Fn}
form a Følner sequence, then we say T is Følner rank one.

Recall that {Fn} is a Følner sequence in Zd if for every v ∈ Zd ,

lim
n→∞

#(Fn4 (Fn + v))

#(Fn)
= 0.
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Rank one actions of Zd

Definitions

T : Zd y (X ,X , µ) is rank one if there is a sequence {Tn} of
towers, where Tn has shape Fn, so that for any A ∈ X and every n,
there is a union Ln of levels of Tn so that

lim
n→∞

µ(Ln4A) = 0.

If each Tn+1 refines Tn, and the error sets decrease, we say T is
stacking rank one.

If this definition can be satisfied so that the tower shapes {Fn}
form a Følner sequence, then we say T is Følner rank one.

Theorem (Robinson-Şahin 2011)

If T is Følner rank one, then T is stacking rank one (with towers
of the same shapes).
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“Rank one” is not “rank one”

WARNING

The definition of a rank one Zd -action given on the previous slide
does not match the definition(s) of rank one given earlier for
Z-actions.

To satisfy the old definition, the shapes of the towers must be in-
tervals in Z (shapes of the form {0, 1, 2, ..., hn − 1}).

Here, the shapes of the towers can be any finite subsets of Zd , so
thinking of this in terms of Z-actions, our towers might look like

{T−7(B),T−4(B),B,T 5(B),T 8(B),T 19(B)},

etc.
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“Rank one” is not “rank one”

WARNING

The definition of a rank one Zd -action given on the previous slide
does not match the definition(s) of rank one given earlier for
Z-actions.

As such, this definition of rank one for Zd -actions generalizes not
the notion of rank one for Z-actions, but the class of Z-actions called
funny rank one (Thouvenot, Ferenzci).

The class of funny rank one transformations is known to be a larger
class than the class of rank one Z-actions.

David McClendon Rank one Zd -actions conjugate to odometers



Descendants

Definition

Suppose T : Zd y (X , µ) is stacking rank one. For any m ≤ n, set

Im,n = {i ∈ Fn : Ti(Bn) ⊆ Bm}.

These are the descendants of the base of Tm in the tower Tn.
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Zd -odometers

An important class of rank one Zd -actions are odometers:

Definition

Let G = {G1,G2,G3, ...} be a decreasing sequence of subgroups of
Zd , each of which has finite index in Zd .

For each k , since Gk ≥ Gk+1, there is a quotient map

qk : Zd/Gk+1 → Zd/Gk .

Let XG = lim
←−

(Zd/Gk), so a point x ∈ XG formally looks like

x = (x1 + G1, x2 + G2, x3 + G3, ...)

where qk(xk+1 + Gk+1) = xk + Gk for all k .
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Zd -odometers

An important class of rank one Zd -actions are odometers:

Definition (continued)

Define σG : Zd y XG by

σv
G(x) = (x1 + v + G1, x2 + v + G2, ...).

This action is ergodic with respect to the Haar measure on XG.

Any action conjugate to such a (XG, σG) is called a Zd -odometer.

Zd -odometers are Følner rank one actions (with rectangular tower
shapes and empty error sets).
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Zd -odometers

If you are used to seeing an odometer as an “add and carry” proce-
dure on sequences of digits, here’s the translation: think of

as

(9 + 10Z, 59 + 100Z, 559 + 103Z, 4559 + 104Z, ...) ∈ XG

where G = {10Z, 102Z, ..., 10kZ, ...}.
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Zd -odometers

Remarks

If the sequence G = {Gk} is eventually constant, then #(XG) is
finite, and σG is the action of Zd by translations on some finite
quotient group Zd/GK . We call such an action a finite odometer
and denote it by τZd/Gk

.

Otherwise, we say σG is an infinite odometer. An infinite
odometer is a free action if and only if ∩kGk = {0}.

Example yielding a finite Z2-odometer: Gk = 2Z× 2Z∀k

Example yielding an infinite, but not free, Z2-odometer:
Gk = 2Z× 2kZ

Example yielding a free Z2-odometer: Gk = 2kZ× 2kZ
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Back to the big picture

Questions

1 Which rank one Zd -actions factor onto a given Zd -odometer?

2 Which rank one Zd -actions factor onto some Zd -odometer?

3 Which rank one Zd -actions are conjugate to a given
Zd -odometer?

4 Which rank one Zd -actions are conjugate to some
Zd -odometer?

For d = 1, these questions were recently answered by Foreman, Gao,
Hill, Silva and Weiss (to appear, Isr. J. Math.).

Note: In that setting, “rank one” means that the tower shapes
must be intervals.
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Back to the big picture

Questions

1 Which rank one Zd -actions factor onto a given Zd -odometer?

2 Which rank one Zd -actions factor onto some Zd -odometer?

3 Which rank one Zd -actions are conjugate to a given
Zd -odometer?

4 Which rank one Zd -actions are conjugate to some
Zd -odometer?

Johnson-M answered these questions for Følner rank one Zd -actions.

Our methods likely extend to actions of any amenable and residually
finite group.

They also apply to funny rank one Z-actions with Følner tower
shapes, including certain funny rank one (but not rank one) sys-
tems studied by Ferenczi.
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Results

Theorem 1 (Johnson-M)

Let T : Zd y (X , µ) be Følner rank one and let σG be the
Zd -odometer coming from the sequence G = {G1,G2,G3, ...}.
TFAE:

1 (X ,T) factors onto (XG, σG).

2 “Eventually, most descendants are congruent mod each Gk .”
This means:
∀ k ∈ N, ∀ ε > 0, ∃N ∈ N so that ∀n ≥ m ≥ N, ∃ g ∈ Zd so
that

#({i ∈ Im,n : i 6≡ g mod Gk})
#(Im,n)

< ε.
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Results

Theorem 2 (Johnson-M)

Let T : Zd y (X , µ) be Følner rank one and let σG be the
Zd -odometer coming from the sequence G = {G1,G2,G3, ...}.
TFAE:

1 (X ,T) is conjugate to (XG, σG).
2 Both a) and b) hold:

a) “The descendants of every tower are eventually not too badly
distorted mod Gk .” This means:
∀ l ∈ N,∀ ε > 0, ∃k ,N ∈ N so that ∀m ≥ N, ∃D ⊆ Zd/Gk so
that

#({Il,m4{i ∈ Fm : i + Gk ∈ D})
#(Il,m)

< ε.

b) Eventually, most descendants are congruent mod each Gk

(same condition as Theorem 1).
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Results

Theorem 3 (Johnson-M)

Let T : Zd y (X , µ) be Følner rank one. TFAE:

1 (X ,T) is conjugate to some infinite odometer.

2 ∀ l ∈ N,∀ ε > 0, there exists a finite index subgroup G of Zd

so that both a) and b) hold:

a) ∃Na ∈ N so that ∀m ≥ Na, ∃D ⊆ Zd/G for which

#({Il,m4{i ∈ Fm : i + G ∈ D})
#(Il,m)

< ε.

b) ∀ η > 0, ∃Nb ∈ N so that ∀ n > m ≥ Nb, ∃ g ∈ Zd for which

#({i ∈ Im,n : i 6≡ g mod G})
#(Im,n)

< η.
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Some ideas in the proofs

To obtain factor maps from conditions on descendants (2⇒ 1)

An action (X ,T) factors onto an odometer (XG, σG) if and only if
it factors onto each of the finite odometers (Zd/Gk , τZd/Gk

)
(recall G = {G1,G2,G3, ...}).

So to construct factor maps (X ,T)→ (XG, σG), one can focus on
an analysis of the “finite odometer factors” of (X ,T).
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Some ideas in the proofs

The importance of Følner tower shapes

Absent the Følner rank one assumption (even if T is assumed to
be stacking rank one), Theorems 1-3 are false.

We use the Følner condition to show that the intersections of
“enough” of the tower shapes must intersect “enough” of the
cosets in each Zd/Gk in “sufficiently large amounts”.

This is applied in Theorem 1 to guarantee that certain proposed
factor maps (X ,T)→ (Zd/Gk , τZd/Gk

) are surjective, and used in
Theorem 3 to verify that the odometer we construct from the
conditions on descendants is actually infinite (and conjugate to
(X ,T)).
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Some ideas in the proofs

To obtain conditions on descendants from factor maps (1⇒ 2)

If a factor map exists, then levels of the towers are “almost
contained” in pullbacks of cylinder sets under the factor map.

This forces “almost containment” of most levels of later towers in
pullbacks of cylinder sets.
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