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AMmbrose-Kakutani Theorem

Theorem (Amb 1940, Amb-Kak 1942) Any
aperiodic measure-preserving flow 1y on a stan-
dard probability space (X,X,u) is isomorphic
to a suspension flow.

A suspension flow (G,G,v,S:), also called a
flow under a function, l10oks like this:
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Suspension semiflows
If the return-time transformation S in the pre-

vious picture is not injective, then we obtain a
suspension semiflow:
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Our problem

Let

e X be an uncountable Polish space, with

e B(X) its o—algebra of Borel sets,

e 11 a probability measure on (X,B(X)) and

o T} : X xRt — X an aperiodic, jointly Borel
action by surjective maps preserving pu.

Call (X,B(X),u,T;) a Borel semiflow.

Question: What Borel semiflows are isomor-
phic to suspension semiflows?



A restriction: discrete orbit branchings

For any point z not in the base of a suspen-
sion semiflow (G, St), #(S_+(z)) = 1 for ¢t small
enough. So if we let

B={z€ G:#(5_¢(2)) > 1Vt > 0},
every point z € G must satisfy:

The set of times t > 0 where S;(z) € B is a
discrete subset of RT.

More generally, we have the following for any
suspension semiflow (G, St):

Given any z, the set of times tg > 0 where

L S—¢Si(2) #= (] S-¢Si(2)

t<tp t>1o

is a discrete subset of RT.

Any Borel semiflow for which the preceding
sentence holds is said to have discrete orbit

branchings.



Another issue: instantaneous
discontinuous identifications

Suppose (X,T;) is a Borel semiflow and that z
and y are two distinct points in X (x # y) with

Ti(x) =Ty (y) Ve > 0.

We say that x and y are instantaneously and
discontinuously identified (IDI) by T;.

Define the (Borel) equivalence relation:

IDI = {(z,y) € X?: Ty(z) = T:(y) vt > O}.

This relation must contain the diagonal A. If
IDI = A, we say that T} has no IDIs.

T; has no IDIs if and only if T\ ,)(x) deter-
mines x uniquely for every =z € X.

Suspension semiflows (as defined thus far) have
no IDIs.



A conjecture

We conjecture that the previously described is-

sues are the only restrictions to isomorphism
with a suspension semiflow, i.e.

Conjecture Any Borel semiflow with the dis-
crete orbit branching property that has no IDIs
IS isomorphic to a suspension semiflow.



A partial result

Theorem 1 (M) If a countable-to-1 Borel semi-
flow (X,T}) is such that

1. I3 has discrete orbit branchings, and

2. 1y has no IDIs,

then (X, T}) is isomorphic to a suspension semi-
flow (G, S;), with the caveat that the measure
U on the base may be o—finite.

Note: The measure v =v x A on (G is a prob-
ability measure.

Note: Asking that 7; being countable-to-1 is
virtually equivalent to asking that 7} be bimea-
surable, that is, that T3(A) is Borel for every
t > 0 and every Borel A C X.



An example with infinite base measure

Consider the map S : R — R defined by S(z) =
1

£Xr — —.

T
Let X =R -, S~™(0). (This will be the base
of the suspension semiflow.)

S: X —» X preserves Lebesgue measure, is
ergodic, and is everywhere 2-to-1.



An example with infinite base measure

Construct a suspension semiflow with base )?,
return map S with height function f:

T his suspension semiflow has the discrete orbit
branching property but is not isomorphic to
any suspension semiflow where the measure on
the base is finite.

Question: What conditions ensure isomor-
phism with a suspension semiflow where the
measure on the base is finite?



Some ingredients of the proof

Lemma 1 (Krengel 1976, Lin & Rudolph 2002)
Every Borel semiflow has a measurable cross-
section F with measurable return-time func-
tion rp bounded away from zero.

0 —> T(y)

Consequence: Every x € X can be written
x="Ti(y) wherey € ' and 0 <t <rp(y).
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Another lemma

Lemma 2 There is a countable list of Borel
functions j; taking values in Rt whose domains
J(1) are Borel subsets of X so that x has an
orbit branching at time tg, i.e.

U T Ti(z) &£ ﬂ T 4T (z),

t<to t>to
if and only if j,(x) = tg for some i.
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More on Lemma 2

To establish Lemma 2, consider the set

B* = {(z,t) € X x RT : z has orbit branching
at time t}.

Since each T} is countable-to-1, for any Borel
A C X, T;y(A) is Borel for each ¢t > 0. Using
this, one can show that B* is a Borel set.

Since B* must have countable sections by as-
sumption, the Lusin-Novikov theorem applies.
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Combining the two lemmas

Superimpose the pictures from the previous
two lemmas:

13



Cutting and rearranging

Make a new section G1 (with return time func-
tion g) consisting of F together with all orbit
branchings of T;:
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Obtaining an isomorphism

With respect to this new section, every x € X
can be written uniquely as x = T;(y) where
y € G1 and 0 <t < g(y). This allows for an
isomorphism between (X,T;) and the suspen-
sion semiflow over G1.

(nt) <—>T(y)
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Finite measures on the base

Theorem 2 (M) If a countable-to-1 Borel semi-
flow (X,T}) is such that

1. 1y has no IDIs, and

2. there is some ¢ > 0 such that if x has orbit
branchings at timest and t’, then [t—t'| > c,

then (X,T}) is isomorphic to a suspension semi-
flow (G, S;) where the measure on the base is
finite.

Proof: Adapt the preceding argument to con-
struct a section G4 with return-time function
bounded away from zero.
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What if the semiflow has IDIs?

Definition: Start with the following:

1. Two standard Polish spaces G1 and Gbo.

2. A o—finite Borel measure v on G1 U G».

3. A measurable function g : G — RT with
[gdv = 1.

4. A measurable map o : G1 U Go» — G1 such
that O‘|G1 = 1d.

5. A measurable map §: Gy — G1 U Go.

Now let G be the set

{(z;) e G1 xRT 10 <t < g(2)} |J(G2 x {0})

(endowed with subspace product topology) and
define the Borel semiflow Sy on G as indicated
in the picture on the next slide:
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Suspension semiflows with IDIs

Definition (continued):

o ——— T ———

(G, Sy) is called a suspension semiflow with IDIs.
Notice that for any z € G5, (z,0(xz)) € IDL
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An Ambrose-Kakutani type theorem with
IDIs

Theorem 3 (M) A countable-to-1 Borel semi-
flow (X, T}) is isomorphic to a suspension semi-

flow with IDIs if and only if Ty has discrete orbit
branchings.
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Questions

Suppose one considered a Borel semiflow that
IS not necessarily countable-to-1.

Q1. Is the discrete orbit branching property
sufficient to guarantee isomorphism with a sus-
pension semiflow with IDI?

Q2. How complicated can the IDI relation be?
In particular, when does the relation IDI have
a Borel selector?

e Always?

e If the semiflow has discrete orbit branch-
ings?
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More questions

Q3. Given a Borel semiflow (X,T}), can one
choose a Polish topology on X with the same
Borel sets as the original topology such that
the action T3} is jointly continuous?

A3. No, if IDI # A.

Conjecture If 1} has no IDIs, then Q3 has an
affirmative answer.

Theorem 4 (M) For countable-to-1 Borel semi-
flows with discrete orbit branchings and no
IDIs, the conjecture holds.
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